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A Additional Tables and Figures

Table A.1: Participant Demographics

(1) (2) (3) (4) (5) (6)

Full Any Any Any Any Any
Sample r=01 r=02 r=03 r=05 1r=028

Number of Participants 2,102 1,247 1,250 1,246 1,221 1,212
Time Taken (in minutes) 27.3 27.2 27.3 27.3 27.3 274
Age 25.2 25.1 25.1 25.4 25.2 25.2
Prolific Score 99.8 99.8 99.8 99.8 99.8 99.8
Number of Approvals 304.9 304.7 298.7 310.5 302.9 305.5
Female 50.0 50.6 50.2 49.9 49.5 50.3
Current Student 41.9 42.0 43.7 41.0 40.1 42.0
College Degree 62.1 62.4 61.8 62.5 62.7 62.5
Working (full- or part-time) 59.3 58.5 59.3 60.8 58.9 60.1
English First Language 57.9 58.9 57.2 59.1 58.9 56.8
Attention Checks

Incentive Question Correct 95.5 95.4 95.8 95.7 95.8 95.6

Passed Attention Check 96.3 96.2 96.6 96.4 96.2 96.5
Comprehension Questions

MPL Question Correct 85.2 84.5 85.5 84.5 85.9 84.7

Bin Question Correct 79.4 79.7 79.7 78.9 78.5 79.9

Both Questions Correct 69.4 69.5 69.7 67.7 69.4 69.3
Current Residency

United States 24.6 25.3 23.2 25.2 26.0 24.6

United Kingdom 38.4 37.9 39.8 39.3 37.3 38.0

Portugal 21.8 21.7 22.5 20.5 21.5 22.9

Spain 5.5 5.3 5.0 5.6 5.2 5.8

Germany 3.1 3.4 2.9 3.0 3.1 2.7

Notes: Column (1): participant demographics for all 2,102 participants. Columns (2) to Column (6): partici-

pant demographics if ever assigned to a given value of r across four possible (p,r) pairs.



Table A.2: Mean Valuations by p and r

hap  hap  hop e N ap  Map N
Panel A: r =0.1
p=20.23 36.78 23.83 31.10 34.43 406 36.24 24.92 208
p=20.5 37.99 27.77 31.50 32.59 421 37.62 28.47 203
p=0.8 41.34 36.52 34.91 34.86 422 40.50 35.14 205
p=20.9 40.37 35.20 34.37 33.81 430 40.36 36.38 219
Panel B: » = 0.2
p=20.23 35.63 26.35 32.16 32.07 425 34.89 23.95 212
p=20.5 38.57 29.17 34.00 32.82 468 39.09 30.35 207
p=0.8 39.56 36.36 36.52 36.46 419 38.79 35.59 216
p=20.9 39.42 38.71 35.20 35.34 398 40.22 39.68 194
Panel C: r =0.3
p=20.23 36.48 29.14 34.49 34.25 399 36.50 28.76 211
p=20.5 39.65 32.95 35.55 35.65 389 38.74 33.89 194
p=0.8 42.18 39.37 35.92 36.44 474 40.88 39.01 249
p=20.9 39.32 40.14 37.09 37.62 435 39.00 40.26 213
Panel D: r = 0.5
p=20.3 37.38 30.17 38.23 38.00 426 37.64 31.48 207
p=20.5 39.28 34.37 39.51 39.58 412 38.62 35.17 221
p=0.8 38.75 37.61 37.82 37.71 388 38.87 36.21 191
p=20.9 38.58 38.67 37.43 36.78 425 39.12 37.36 197
Panel E: r =0.8
p=20.3 37.34 34.54 36.73 36.89 446 36.73 35.07 237
p=20.5 38.04 37.45 38.67 38.25 412 38.81 36.98 193
p=0.8 40.64 41.25 42.56 42.56 399 40.50 41.84 215
p=20.9 38.32 39.48 37.87 38.01 414 38.21 38.71 212

Notes: Table presents mean valuations for each (p,r) combination. Each participant provides a valuation
for four (p,r) combinations subject to the restriction that they see each p exactly once. For two (p,r) pairs,
participants report all six valuations: hag, hap’, hcp, Mag, Wag, and hep. For the remaining two (p, ) pairs,
participants provide four valuations: hap, hap', hcp, and hip. We randomly label multiple valuations hxy

or h'xy, so that it was equally likely that either was presented first.



Table A.3: Correlations Between hxy and h'yy by p and r

) ) @) @ )
r=0.1 r=0.2 r=0.3 r=0.5 r=0.8
Panel A: p(hap,,p5)
p=20.3 0.256 0.369 0.422 0.372 0.617
p=0.5 0.402 0.464 0.540 0.586 0.696
p=0.8 0.428 0.545 0.395 0.447 0.641
p=0.9 0.314 0.497 0.402 0.519 0.548
Panel B: p(h/yg5, 1y p/)
p=0.3 0.254 0.492 0.439 0.433 0.545
p=20.5 0.320 0.406 0.445 0.619 0.614
p=0.8 0.564 0.444 0.461 0.475 0.584
p=209 0.292 0.514 0.385 0.355 0.483
Panel C: p(hcp, hep)
p=0.3 0.452 0.453 0.570 0.538 0.541
p=20.5 0.474 0.512 0.410 0.590 0.583
p=0.8 0.435 0.484 0.461 0.389 0.529
p=20.9 0.462 0.431 0.485 0.453 0.432

Notes: Table reports correlation coefficients calculated using all valuations for which there are multiple measures
for a given individual and (p,r). Multiple measures of hcp are available for all observations, and therefore an
average sample of 420 observations is used to compute each p(hcp, hep). Multiple measures of hap and hsp/ are
available for only half of observations, and therefore an average sample of 210 observations is used to compute each
p(hap,h/ap) and p(hap:, W, p/). The exact sample sizes for each cell are listed in Appendix Table A.2.



Table A.4: Means and Sign Tests

M 2) ®3) @) () (6) @) (®)
Number of Cases
Probability Common A Mean Test _ Sign Test A
(p) Ratio (r) (Mean) (p-value) A>0 A=0 A<0 (p-value)  (Median)
Panel A: Test of A%, =0
0.3 0.1 5.68 0.000 224 65 117 0.000 4
0.3 0.2 3.48 0.000 208 60 157 0.009 0
0.3 0.3 1.99 0.016 186 72 141 0.015 0
0.3 0.5 —0.85 0.243 160 93 173 0.511 0
0.3 0.8 0.61 0.363 176 79 191 0.465 0
0.5 0.1 6.49 0.000 245 71 105 0.000 5
0.5 0.2 4.57 0.000 249 93 126 0.000 1
0.5 0.3 4.10 0.000 215 52 122 0.000 2
0.5 0.5 —0.23 0.722 153 97 162 0.652 0
0.5 0.8 —0.63 0.295 146 112 154 0.686 0
0.8 0.1 6.42 0.000 278 50 94 0.000 6
0.8 0.2 3.04 0.000 239 60 120 0.000 3
0.8 0.3 6.26 0.000 299 62 113 0.000 4
0.8 0.5 0.93 0.214 176 65 147 0.119 0
0.8 0.8 —1.92 0.004 121 76 202 0.000 -1
0.9 0.1 6.00 0.000 291 55 84 0.000 3
0.9 0.2 4.22 0.000 236 61 101 0.000 2
0.9 0.3 2.23 0.002 230 74 131 0.000 1
0.9 0.5 1.16 0.112 191 7 157 0.077 0
0.9 0.8 0.45 0.443 177 62 175 0.958 0
Panel B: Test of AL, =0
0.3 0.1 —10.60 0.000 93 36 277 0.000 -8
0.3 0.2 —5.72 0.000 129 50 246 0.000 -3
0.3 0.3 —5.11 0.000 121 59 219 0.000 -2
0.3 0.5 —7.83 0.000 96 59 271 0.000 —6
0.3 0.8 —2.35 0.002 156 73 217 0.002 0
0.5 0.1 —4.81 0.000 127 54 240 0.000 —4
0.5 0.2 —3.65 0.000 128 69 271 0.000 —4
0.5 0.3 —2.70 0.002 119 64 206 0.000 -1
0.5 0.5 —5.22 0.000 106 67 239 0.000 —4
0.5 0.8 —0.80 0.240 136 85 191 0.003
0.8 0.1 1.66 0.062 171 86 165 0.785 0
0.8 0.2 —0.10 0.894 164 60 195 0.113 0
0.8 0.3 2.93 0.000 216 77 181 0.088 0
0.8 0.5 —0.11 0.887 155 76 157 0.955 0
0.8 0.8 —1.31 0.071 149 46 204 0.004 -1
0.9 0.1 1.39 0.059 170 111 149 0.263 0
0.9 0.2 3.36 0.000 182 81 135 0.010 0
0.9 0.3 2.52 0.002 193 70 172 0.295 0
0.9 0.5 1.89 0.009 170 73 182 0.558 0
0.9 0.8 1.46 0.026 170 72 172 0.957 0
Panel C: Test of A% =0
0.3 0.1 1132 0.000 143 27 38 0.000 9
0.3 0.2 10.94 0.000 161 18 33 0.000 10
0.3 0.3 7.74 0.000 127 43 41 0.000 5
0.3 0.5 6.16 0.000 127 35 45 0.000 5
0.3 0.8 1.67 0.031 114 41 82 0.027 0
0.5 0.1 9.15 0.000 144 30 29 0.000 10
0.5 0.2 8.74 0.000 139 38 30 0.000 6
0.5 0.3 4.85 0.000 113 36 45 0.000 4
0.5 0.5 3.45 0.000 111 48 62 0.000 1
0.5 0.8 1.82 0.048 89 48 56 0.008 0
0.8 0.1 5.36 0.000 132 35 38 0.000 5
0.8 0.2 3.19 0.001 125 35 56 0.000 4
0.8 0.3 1.87 0.049 144 36 69 0.000 2
0.8 0.5 2.66 0.009 107 32 52 0.000 2
0.8 0.8 -1.34 0.117 70 53 92 0.099 0
0.9 0.1 3.98 0.001 134 37 48 0.000 3
0.9 0.2 0.54 0.634 87 37 70 0.201 0
0.9 0.3 —1.26 0.218 86 40 87 1.000 0
0.9 0.5 1.76 0.103 95 45 57 0.003 0
0.9 0.8 —0.50 0.519 79 42 91 0.399 0

Notes: Means test and sign test for Acgr, Acc, and Aprx for each (p,r) combination. We conduct a two-sided t-test
for the difference in means. We also conduct a two-sided sign test, where we exclude all ties (instances of Az = 0). See
Appendix C.1 for test descriptions.
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Table A.7: Sensitivity of Results to Experimental Parameters in our Stage-2 Experiments

Panel A. Experimental-Parameter Sensitivity Panel B. Canonical vs. Non-Canonical Parameters
M @) ) @) ©) ©)
CR CC MX . Non- .
Study Study Study Canonical Canonical Difference
Probability (p) 26.25 51.32 —27.65 (i): KT Parameters
(7.43) (7.11) (7.09) CRE — RCRE 17.44 9.57 —7.35
(8.47) (13.79) [—1.86]
Common Ratio (r) —34.80 —0.46 —29.63 Experiments 12 108 120

(3.20)  (3.13)  (2.97)
(ii): Allais Parameters

Outcome Mean 10.45 —5.77 16.00 CCE — RCCE 8.17 —6.79 —14.96
Experiments 120 120 120 (6.04) (12.93) [—2.81]
Observations 8,408 8,408 8,408 Experiments 6 114 120

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR, CC, or MX studies
from our stage 2 experiments. The specifications include the probability of the high outcome (p), the common ratio (r)
linearly, and a constant. Column (1) presents the results for the 120 CR experiments that we conducted in stage 2 of our
experiment, where the outcome is the net share of participants displaying a CRE relative to an RCRE, CRE — RCRE.
Column (2) presents the results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the
outcome is the net share of participants displaying a CCE relative to an RCCE, CCE — RCCE. Column (3) presents the
results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the outcome is the net share
of participants displaying a MXE relative to an RMXE, MXFE — RMXE. Standard errors are in parentheses. Panel
B presents the average of these outcomes based on whether our stage 2 experiments were conducted at the canonical
parameters in Kahneman and Tversky (1979) (p = 0.8, r € {0.2,0.3}) or Allais (1953) (p = 0.9, r = 0.1). Standard
deviations are in parentheses, and t-statistics are in brackets.



Figure A.1: Histogram of Response Patterns for r € {0.1,0.2,0.3} and p € {0.8,0.9}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Anx)) combinations, where Acr = hag — hep,
Acc = hap — hlpg, and Ay x = Wy — By 5. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 1,296 observations from the parameters r € {0.1,0.2,0.3} and p € {0.8,0.9} for
which we elicit h'yp and h'y5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.



Figure A.2: Histogram of Response Patterns for r ¢ {0.1,0.2,0.3} or p ¢ {0.8,0.9}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Anx)) combinations, where Acr = hag — hep,
Acc = hap — hlpg, and Ay x = Wy — By 5. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 2,908 observations from the parameters r ¢ {0.1,0.2,0.3} or p ¢ {0.8,0.9} for
which we elicit h'yp and h'y5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.
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Figure A.3: Histogram of Response Patterns for r € {0.1,0.2,0.3} and p € {0.3,0.5}
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Notes: Figure presents histogram of (sign(Acr), sign(Acc), sign(Anx)) combinations, where Acr = hag — hep,
Acc = hap — hlpg, and Ay x = Wy — By 5. Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to Acr > 0, RCR to Acr < 0, and OCR to
Acr = 0). The histogram covers the 2,508 observations from the parameters r € {0.1,0.2,0.3} or p € {0.3,0.5} for
which we elicit h'yp and h'y5,. Patterns marked in light green are ones with Acg > 0 and Acc > 0.
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Figure A.4: Predicting Stage 2 Choice Probabilities using Stage 1 Valuations
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A-C use raw stage 1 responses.

Decomposed Preferences: p (E[h’,sIstage 1] - stage 2 H)

Decomposed Preferences: p (E[h’,;Istage 1] - stage 2 H)

Decomposed Preferences: p (E[h’.,Istage 1]- stage 2 H)

choice shares Pr(X|{X,Y}). Panels

Panels D-F use the estimated population distribution of preferences from the

decomposition in Section 4.2 combined with a participant’s raw stage 1 valuations to generate a posterior preference

measure FE[h%, |stage 1] for that participant. For each x-axis, one hundred equally sized bins are constructed with

approximately 168 observations per bin. Within each bin, the stage 2 choice share is calculated to construct the

y-axis. Due to a large number of observations at some values, there are 94, 93, and 91 unique bins in panels A, B,

and C, respectively. To make valuations comparable across (p,r), all stage 1 measures are scaled by p to control for

the fact that a fixed value of the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix
C.3 for details).



B Predictions of Existing Non-EU Models (for Table 1)

In this appendix, we derive the predictions presented in Table 1. To review the structure, given
parameters (M, p,7), h¥g, h¥p, and hEp are the indifference values that satisfy the following

indifference conditions:
(M, 1) ~ (hip.p)
(M71) ~ (h’ZB/)pT;Ma]-_T)

(M,r) ~ (h&p,pr)

The objects of interest are then:

* — p% *
ACR = hAB - h‘CD
* — % *
ACC = h’AB’ - h’CD
* — p% *
AM)( = hAB - h’AB’

B.1 Original Prospect Theory (OPT)

Under original prospect theory (OPT) as in Kahneman and Tversky (1979), the indifference values

are determined from:

M) = whubip) = iy =0 (oso0n)
v(M) = w(prv(hig) + 7l —rv(M) < hig =v"! (WU(MO
n(r)v(M) = =(pr)v(hEp) = hip=v"! <7:_T(§;))U(M)>
Hence: ) )
Atp>0 <= higp>hip, <= ) > ;r(prr)
At >0 = Wyp >hip — 1—n(1-r)>n(r)
1 1—7(1—r)

A* o >0 <= h%,>h%, — >
MX AB AB W(p) 7l'(p7")

In this formulation, v(x) is a value function defined over experimental gains and losses, but note
that as long as v is monotonically increasing, its form is irrelevant to OPT’s predictions for the
sign of Afp, Afq, and A}, . In contrast, w(q) is a probability weighting function that transforms

probabilities into decision weights, and its form fully determines those predictions. Here, we derive
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predictions using the functional form from Tversky and Kahneman (1992):

q(S

[¢° + (1 —q)°]°

m(q) =

This one-parameter functional form nests the EU case of 7(q) = ¢ when § = 1. For § € (0.279, 1),
it has the inverse-S shape emphasized by Tversky and Kahneman (1992) and the subsequent liter-
ature: It is initially concave and then convex, with overweighting (7(q) > ¢) for small ¢ and then
underweighting (7(q) < ¢) for larger ¢.B! Tversky and Kahneman (1992) suggest a d of roughly 0.6.
For § > 1, this functional form initially yields an S-shape—initially convex and then concave with
underweighting for small ¢ and then overweighting for larger ¢—but eventually becomes convex

with underweighting for all ¢ € (0, 1).

OPT Result:

(1) 6 € (0.279,1) implies Az > 0 and A% > 0; A}, x can be positive or negative

depending on (p,r) combination.
(2) 0 > 1 implies A}p <0, A >0, and A}, <O0.

Proof: Consider first the Afp results. Rearranging the condition above yields

A5n: 0 ST
CR — ") (p)
which we can write as

(pr)° () + (1—7)7]" (p)°
[(pr)® + (1 — pr)o]° (r)° )+ (1 —p)i]

Canceling terms and then taking both sides to the power ¢ yields

(r)?+@1-r)° 1
(pr)° + (L —=pr)? " (p)° + (1 —p)?

[(p)° + (1= p)°][(r)° + (1 = 7)) (pr)° + (1 — pr)°
(pr)’ + (A =71) + (r(L=p)° + (L =p)A —71))" : (pr)° + (1L — pr)°

(p(L =)’ + (r(1 =p))’ + (L= p) (1 = 7)) (1= pr)°

Note that we can rewrite this as
A+ 00+

where a =p(1—7r),b=r(1—p),c=(1—p)(1 —r), and d = 1 — pr, and note that a + b + ¢ = d.

)

Then because the function f(z) = z° is concave when § < 1, it follows that a + b + ¢ = d implies

BlFor § € (0,0.279), m(q) is nonmonotonic (Ingersoll, 2008).
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fla) + f(b) + f(c) > f(d), and thus § < 1 implies A% > 0. Analogously, f(x) is convex when
d>1,50a+0b+c=dimplies f(a) + f(b) + f(c) < f(d), and thus 6 > 1 implies A}, < 0.

Next consider the Af results. Rearranging the condition above yields
Abe 0 = 1l:7n(r)+7n(1—r)

which we can write as

() (1-ry

: s T 1/6

[(r)? + (1 =7)°] [(r)? + (1 =7)°]
1-1/8
1: [(’I“)5 +(1— 7“)5]

When 6 < 1: r <1 and § < 1 implies r® > 7 and (1 —7)°® > 1 — 7 and thus (r)° + (1 —7)° > 1. In
addition, § < 1 implies 1 —1/6 < 0, and thus [(r)® + (1 — r)5]1_1/5 < 1 and therefore A% > 0.

When § > 1: r < 1 and § > 1 implies 7% < r and (1 —7)° <1 —r and thus (r)’ + (1 —7)? < 1.
In addition, § > 1 implies 1 — 1/6 > 0, and thus [(r)’ + (1 — r)5]1_1/6 < 1 and therefore again
Afe > 0.

Finally, when § > 1, the combination of A%, < 0 and Af~ > 0 implies A}, y = Afp — Af- < 0.

In contrast, for 6 < 1, it is possible for A%}, to be positive or negative.

B.2 Cumulative Prospect Theory (CPT)

Cumulative prospect theory (CPT) as in Tversky and Kahneman (1992) differs from OPT only for
gambles with more than one non-zero outcome. In our context, this means they differ only in the
evaluation of lottery B’. Hence, the h% 5 and h., indifference values are as in OPT, but the h% g,

indifference value is now determined from:

v(M) = w(pr)v(h¥g) + (m(pr+ 1 —1) — 7w (pr))v(M)

e (Lt 1) ()
= ( ) an)

Hence, we now have:

1)

AbLp >0 < hip>hip ) > Tor)
1—(

* * *
ACC>O < hAB/ >hCD <

* * *
AYyx >0 <= hipg>hiy, <

m(p) m(pr)



As in OPT, the value function v is irrelevant for the model’s predictions for the sign of A% p, Af -,
and A%y, which are fully determined by the form of the probability weighting function 7. Here,

we again derive predictions using the functional form from Tversky and Kahneman (1992).

CPT Result:

(1) 0 € (0.279,1) implies Afp > 0 and A%~ > 0; A}, can be positive or negative.

(2) 0 > 1 implies A% < 0; A%~ and A%,y can be positive or negative.
Proof: The Af, equations are the same as in OPT, and thus the proof from the OPT Result still
holds. So we just need to prove that ¢ € (0.279,1) implies Af > 0.
We begin with two preliminary results. First, note that for all § > 0.279,

CVE /LS A S U
7r(1/2)—[2(1/2)6]1/5—<2> <5 b ) 5> L

Second, we prove that
m(l—a)—7n(1l—=05b)>n(b) —m(a) forany 0 <a<b<1/2 (B.1)

In words, equation (B.1) says that 7(q) is steeper for ¢ above 1/2 than for ¢ below 1/2. To prove
this, we rewrite the inequality in equation (B.1) as 7(a) + 7(1 — a) > m(b) + w(1 — b), which yields

(@ +(1-a) (B +1=b)
[(a)é + (1 — a)§](1/5) [(b)5 + (1 _ b)(;](l/zi)

5]1’(1/5) 5]17(1/6)

(@) +(1-a) > @)+ @ -b)

Then because

d[(@)® + (1 — )] "
dz

—(1/5)
= (1= (/) @ + =2 | 8@ - (1 - 2) )
is negative as long as § < 1 and x < 1/2, equation (B.1) follows.
We now prove that ¢ € (0.279,1) implies A%~ > 0. The A condition can be written as

1+ m(pr) - w(pr+1—r)+n(r)
2 2

At >0

Let’s define z such that min{r, pr+1—r} = pr+z, and note that this implies that max{r, pr+1—r} =
1 — 2z (sothat (r) + (pr+1—7) = (pr+2)+(1—2) =1+ pr). We can then rewrite the A%,

condition as

1+ 7(pr) - w(pr+z)+7(1—2)

A >0 —
lele; 5 5
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The LHS is the y-value for the midpoint of the line segment that connects the points (pr, 7(pr)) and
(1,1), while the RHS is the y-value for the midpoint of the line segment that connects the points
(pr+ z,m(pr+ z)) and (1 — z,7(1 — z)), where the x-value for both midpoints is (1 + pr)/2. Given
the inverse-S shape of 7(g) for § € (0.279,1) and the fact that w(1/2) < 1/2, the LHS line segment
can intersect 7(q) for at most one ¢ € (pr,1). Moreover, if such a ¢ exists, then pr < ¢ < 1/2,

m(pr) > pr and 7(q) > q.

If such a ¢ does not exist, then the LHS line segment must be everywhere above the RHS line

segment, and thus the Af condition holds.

If such a ¢ exists but pr + z > @, then again the LHS line segment must be everywhere above the
RHS line segment, and thus the Af . condition holds.

Finally, suppose such a ¢ exists but pr + z < ¢ < 1/2. If 7 is concave at ¢ and thus concave
for all ¢ < @, then 7(pr + z) — n(pr) < m(z) < 1 — (1 — z) (where the first inequality follows
from the concavity of m for ¢ < ¢ and the second inequality follows from equation (B.1) with
a=0and b = z < 1/2), and thus the A}~ condition holds. Suppose instead 7 is convex at ¢
and thus convex for all ¢ > ¢q. Because pr + z < ¢ < 1/2 and thus 1 — pr — z > 1/2, we have
w(pr +z) —w(pr) < w(l —pr) —w(l —pr —z) <1 —m(l — z) (where the first inequality follows
from equation (B.1) and the second inequality follows from the fact that 7 is convex for all ¢ > ).

Hence, again the Af,, condition holds.
This covers all cases, and hence § € (0.279,1) implies A%~ > 0.

Finally, we note that a symmetric argument does not work for § > 1 because equation (B.1)
does not flip to maintain the symmetry. More precisely, if pr + z > ¢, an analogous argument
implies that A% < 0. But when pr 4+ z < @, equation (B.1) still implies 7(pr + 2) — 7(pr) <
m(1 —pr) — n(1 — pr — z), and this creates the possibility that A}, > 0—in fact, it is easy to

generate such examples.

B.3 Koszegi-Rabin Loss Aversion Under CPE

We next consider predictions from the Kdészegi-Rabin 2007 model of loss aversion when we ap-
ply choice-acclimating personal equilibrium (CPE). Under CPE, the utility from a lottery X =
(x,qm;0,qr) where x > 0 and qg + qr = 1 is

U(X) = quu(x) — Aqrqru(x)
and the utility from a lottery Y = (z,qm; vy, qur; 0, qr,) where . >y > 0 and gy + gy + g, = 1 is
U(Y) = quu(z) + quu(y) — Agu(qur + qu)w(x) — Aqar (g — qu)u(y).
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where the parameter A is a measure of loss aversion.?? A > 0 implies loss aversion (losses loom larger
than gains), and A < 0 implies gain attraction (gains loom larger than losses).In this formulation,
u is the person’s intrinsic utility over outcomes (e.g., that might be used under EU), where we have
normalized u(0) = 0.

Applied to our context, the indifference values are determined from:

w(M) = pu(hlp) — Ap(1 = p)u(hp)
w(M) = pru(h¥g)+ (1 —r)u(M)— Apr(l —pr)ju(h¥g) — A1 —7)r(1 — 2p)u(M)
ru(M) — Ar(1 —r)u(M) = pru(hlp) — Apr(l —pr)u(hip)

from which we can derive:

T e )

. 1+ A(1—=7)(1-2p)
Mg = v < (1 —A(1—pr)) “<M)>

o= (G a " @0)

To ensure this model is well-behaved, we put two restrictions on the range of A. First, if A

becomes too positive, utility can be decreasing in h. For instance, the utility from lottery D can
be written as [pr — Apr(1 — pr)]u(h), and this is increasing in h only if A < 1/(1 —pr). To rule out
these perverse cases, we restrict A < 1. Second, if A becomes too negative, the indifference values
can be smaller than M. For instance, h¥ z > M requires 1/(p(1 — A(1 —p))) > 1 or A > —1/p. To
rule out these perverse cases, we restrict A > —1.

With these restrictions in place:

1 1—A(1—7)
tp>0 = hip>hip, = >
on Ap T en p(1 = A(l-p)) p(1 = A1 =pr))
te>0 — Mg >hip — 1+A1-r)(1-2p) > 1-A1—-7)

1 1+A(1—7r)(1—2p)

A* o >0 <= h%,>h%, — >
MX AB = TAB p(1—A(1 —p)) p(1 —A(1—pr))

Note that, much as for the value function under OPT and CPT, the utility function u is
irrelevant for the model’s predictions for the sign of Af., A%, and A}, where in this model

these are fully determined by the value of the parameter A.

Koszegi-Rabin CPE Result:

(1) A€ (0,1] implies A}z > 0, A%~ >0, and A}, <O.
(2) A e [—1,0) implies Afp <0, A <0, and A}, > 0.

B2The K6szegi and Rabin (2007) model has two parameters, a parameter n which captures the relative importance
of gain-loss utility versus intrinsic utility, and a parameter A that captures loss aversion. However, under CPE these
parameters always appear as the product n(A — 1) and thus cannot be distinguished, so we define A = n(A — 1).
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Proof: Consider first the Af,, condition, which we can write as:

1 1 A(1—7)

JAT :
or:0 = T RA T T AL pr)

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

dRHS (1—A(1—pr)A—(1—A(L—7)Ap (1 —p)(A—A?)
dr (1= A(1—pr))? (1= A —pr))?

If A e (0,1], then A — A? > 0 and thus dRHS/dr > 0, from which it follows that A%, > 0 for all
r<l1.

If A € [-1,0), then A — A2 < 0 and thus dRHS/dr < 0, from which it follows that A%, < 0 for all
r<l1.

Next consider the Af condition, which we can write as:

A0 = 1+A1—-7)1-2p) : 1—-A(1l—-7r)

— 2A1—r)(1—=p) : O
Since the LHS is positive for A € (0,1] and negative for A € [-1,0), A% > 0 for any A € (0,1]
and A}~ <0 for any A € [—1,0).

Finally consider the A}, condition, which we can write as:

1 1A —7)(1—2p)

A% :
wx 0 = T T T T A=)

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

dRHS (1I-A1—-pr)(-A(1—2p)) —(1+A(1—7)(1—2p))Ap

dr (1—A( —pr))?

CAp—1)+ A1 -2p)(1—p)  (1—p)A[-1+ Al —2p)]

(1—-AQ—pr))? B (1—A(1—pr))?

For A € (0,1], p > 1/2 clearly implies dRHS/dr < 0, and when p < 1/2 then A < 1 implies
—1+ A(1 —2p) < 0 and thus again dRHS/dr < 0. It follows that A%}, < 0 for any A € (0, 1].

For A € [-1,0), p < 1/2 clearly implies dRHS/dr > 0, and when p > 1/2 then A > —1 implies
—1+ A(1 —2p) < 0 and thus again dRHS/dr > 0. It follows that A%, > 0 for any A € [-1,0).
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B.4 Bell Disappointment Aversion (Bell DA)

Next, we consider predictions from Bell’s (1985) model of disappointment aversion. Under this

model, the utility from a lottery X = (z1,p1;...;xNn,pN) is

N N
UX)= (Z pnu(a:n)) -p (Z pnd (w(zn) <U) (U - u(wn))> ,

where u(-) is an intrinsic utility function, and U = YN | p;u(x;) is the expected intrinsic utility.
When the parameter 5 > 0, it reflects a (constant) marginal disutility of disappointment experi-
enced when one’s realized intrinsic utility is below the expected intrinsic utility. If 5 < 0, then —f
effectively reflects a (constant) marginal utility of elation experienced when one’s realized intrinsic
utility is above the expected intrinsic utility.P3

Applied to our context, the indifference values for h% 5 and hf.p are determined from:
w(M) = pu(hlp) — B —p)(pu(hly) —0)

ru(M) = (1 —r)(ru(M) —0) = pru(h¢p) — B — pr)(pru(hép) —0)

and thus

* _ u—l 1 ” an * _ u—l 1-—- 5(1 - T) "
M = <p<1 A=) (M)> 4 e <p<1 ~ A= pr) (M)>

Note that for two-outcome lotteries such as our lotteries B, C', and D, the utilities under Bell
DA are equivalent to those under Koszegi-Rabin CPE, where 3 replaces A. Hence, we need an
analogous restriction that the range of 5 is [—1,1].

For the h%p indifference value, we must carefully assess whether, at the indifference value,
u(M) is larger or smaller than the expected intrinsic utility pru(h¥ ) + (1 — r)u(M) because
that matters for the utility from lottery B’. We can write pru(h¥ ) + (1 — r)u(M) > u(M) as
u(hlyg) > u(M)/p. If we assume that u(h’z) > u(M)/p, then the h¥ 5, is determined from:

u(M) = pra(Pi) + (1= ryu(M) = B —r)(pru(hi) + (1 - ryu(M) — u(M))
—Br(1 —p)(pru(hy) + (1 — r)u(M) — 0)

S 1=Bp(l-7)
h*(12 =y ! ( u(M
A5 o= —pry )
Note that as long as 1 — 3(1 — pr) > 0, u(h¥ z/) > u(M)/p when 1 — Bp(1 —7r) > 1 — (1 —pr),
or 5(1 —p) > 0, which holds as long as 8 > 0. Since 1 — (1 —pr) > 0 for all 5 € [0, 1], it follows

B3Bell (1985) further assumes that u(z) = = and has separate parameters for disappointment (d) and elation (e).
His model is equivalent to the version in the text with 8 = d—e. Loomes and Sugden (1986) also use this formulation,
but they consider nonlinear disappointment and elation.
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that h* 5 = kL) for all B € [0,1].
If we instead assume that u(h% /) < u(M)/p, then the h¥ 5 is determined from:

u(M) = pra(h2) + (1 = ryu(M) — Br(1 — p)(pru(h’2) + (1 — r)u(M) — 0)
#2) 1+8(1-p)(1—r1)

= ’MH‘"fl(pu—ﬁm1—m>“”@>

Note that as long as 1—38r(1—p) > 0, u(h’ z/) < u(M)/p when 1+5(1-p)(1—r) < 1-pr(1—p),
or A(1—p) < 0, which holds as long as 5 < 0. Since 1 — 8r(1 —p) > 0 for all 5 € [—1,0], it follows
that b% 5 = h32) for all B e [—1,0].

Given these indifference values:

1 1—B(1—
Atp>0 <= hip>hip, <= 1—5(1—p)>1—ﬁi(1—1:r>)
At >0 — hyp>hip, — 1-pFpl—r)>1-p(1-r) if B €[0,1]
1+pA—-p)A—r) 1-B1-r) .
1—pr(1—p) T—p—pr) V€ =19
1 1— - .
Aty >0 = hip>hiy < 1_5(1_p)>1_gp1(_p:§ if B e [0,1]
1 1+B8(1—p)(1—7r) .
[—B0-p) ~ 1-pri-p  1Ael=L0

Hence, under Bell DA, the model’s predictions for the sign of A%, A%, and A}, are deter-

mined by the value of the parameter .

Bell DA Result:

(1) B e (0,1) implies Afp > 0, Afo > 0, and A}, < 0.

(2) B e (—1,0) implies A%y <0, AL <0, and A%,y > 0.

Proof: For Af,, the condition is equivalent to that under Koszegi-Rabin CPE, and thus the proof

is the same.
Next consider the A¥ condition.
For g€ [0,1], A >0if1 —Bp(1—7r)>1—p(1 —r)or (1 —r)(1 —p) > 0, which holds for any
B e[0,1].
For g e [-1,0], A{o < 0if

LB -r) _ 1-B0-)

1—pr(1-p) 1—pB(1—pr)
(1+81=p)(A-r)Q-=B1-pr) < (1-B1-7))1-pr(l-p)
B(L=p)1—7) = (1 —pr)) =21 —p)(1 —r)(1—pr) —B(1 —pr) + (1 —p)(1 —7)r
Bl=p)1=r)1=BA—pr+r) < 0

A
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which holds for any 8 € [—1,0].
Finally consider the A%, condition.

For 5 € [0,1]: 1 1—p8p(1—r)
— Bp - T
1-B(—p)  1-B(1—pr)

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

Ayx:0 <

dRHS _ (1— (1 —pr))(Bp) — (1 — Bp(1 —1))(Bp) —3*p(1 —p)

dr (1=pB1—pr)? (1=B@1—pr))?
Hence, f € [0, 1] implies dRHS/dr < 0, and thus A%,y < 0 for any r < 1.

For —1,0]:
el 1 _ 1480 -p(-r)
1-3(1-p) 1 —Br(l—p)

The LHS is independent of ». The RHS is equal to the LHS when r = 1, and moreover

wx:0 =

dRHS _ (1-pr(l—p)(=B(1—p) - (1-B1-p)A-))(-BL-p) _  B(1-p?

dr (1—pr(1—p))? (1—pB(1—pr))?

Hence, § € [—1,0] implies dRHS/dr > 0, and thus A%,y > 0 for any r < 1.

B.5 Gul Disappointment Aversion (Gul DA)

We next consider predictions from the Gul (1991) model of disappointment aversion. Under this

model, the utility from a lottery X = (z1,p1;...;xn,pn) is the U(X) that satisfies

N N
U(X) = (Z pnu(ﬂ?n)> -8 (Z pul (u(zn) < U(X)) (U(X) — U(l'n))> >
n=1 n=1

where u(z) is an intrinsic utility function, and a person experiences disappointment when their
realized intrinsic utility is below the overall utility of the lottery U(X). As in Bell DA, g > 0 is
disappointment aversion while 8 < 0 is elation-loving. Applying this to binary gambles of the form

X = (x,qm;0,qr), this becomes

U(X) = qrru(z) — B (U(X) —0)) < U(X) = —2 _u(a).
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Gul imposes 5 > —1, which guarantees that U(X) is increasing in the payoff x for any ¢r. This

model does not require an upper bound for 5. The indifference values h¥ 5 and hf,, are given by:

B p . « _ 1 (1+8(1-p)
u(M) = m“(%g) = hip=u' <pu(M)>
1 —pr
et = eliien) by =t (i eon)

For the h’ 5, indifference value, in principle, we must carefully assess whether, at the indifference
value, u(M) is larger or smaller than U(B’) (analogous to what we did for Bell DA). However,
because h’ 5 is determined by the condition u(M) = U(B’), we know that u(M) = U(B’) at
H = h¥ . It follows that, at H = h¥ z,, we have:

U(B') = pru(H) + (1 = rju(M) — Br(1 - p)(U(B’) - 0)

or
N pr 1—r
R T A R A
Then h% 5 is derived from
_ pr * l—r * _.—1 1+B(1_p)

Notice that h¥ 5 = h¥ and thus A%,y = 0 (a well known property of Gul DA) and thus A}, =

A, . Hence, there is only one remaining condition to consider:

1+8(1—pr)

Atp=A0c >0 < hijp="hp >htp < 1+B6(1-p) > 55,

Hence, under Gul DA, the model’s predictions for the sign of Af.p, Af, and A}, are deter-

mined by the value of the parameter [.

Gul DA Result:

(1) B > 0 implies Afp = Afo > 0 and A}, = 0.
(2) B e (—1,0) implies A%, = Ao <0, and A%, = 0.

Proof: The Af.; condition is:

1 1-—
Abp:0 e l—i—ﬁ(l—p):m

The LHS is independent of r. The RHS is equal to the LHS when r = 1, and moreover

dRHS _ (1+B(1—7)(=Bp) — (1 + B —pr))(=B) _ (B+5*)(1—p)

dr (14 B(1—r))? (14 8(1—r))?
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Hence, 8 > 0 implies dRHS/dr > 0 and thus A}, = A%~ > 0, while 8 € (—1,0) implies
dRHS/dr <0 and thus A}, = A, < 0.

B.6 Cautious Expected Utility (CEU)

We next consider the implications of the cautious expected utility (CEU) model introduced by
Cerreia-Vioglio et al. (2015). Unlike the models above, their focus is a representation theorem and
not a parameterized model, but firm predictions for our context follow from their axioms.

To illustrate, suppose we fix H = h% 5 so that B ~ A. Because lottery A is a sure amount, their
key axiom of negative certainty independence (NCI) implies that rB + (1 —7)0 X 7A + (1 — )0
for any r € (0,1). Because rB + (1 —r)0 = D and rA + (1 —r)0 = C, CEU permits a CRP (i.e.,
Afp > 0) but not an RCRP. NCI also implies (see page 697 of Cerreia-Vioglio et al. (2015)) that
rB+ (1 —7r)A ~ B for any r € (0,1). Because rB + (1 —r)A = B’, CEU implies A ~ B ~ B’ and
thus A}, x = 0. Finally, A}, = 0 implies Af,~ = Afp.

To summarize, when the predictions of CEU differ from EU, those predictions are Af,. =
Afp > 0and A}, =0, i.e., the CRP-CCP-QOMXP pattern.

B.7 Puri Simplicity Preferences

Finally, we consider the implications of the model of simplicity preferences introduced by Puri

(2024). Under this model, the utility from a lottery X = (x1,p1;...; 2N, pN) 1S

N
U(X) = ) pnulan) — w(N).
n=1

The first term is a standard EU term, and w(N) is a complexity cost term that is increasing in
N—i.e., lotteries with more possible outcomes have a larger complexity cost. Here, we derive
predictions for our context under the assumption that w(l) < w(2) < w(3).

To derive predictions, it is convenient to fix the parameters (M, p,r) and then define EU (X |h)
to be the expected utility of lottery X € {B, B’, D} as a function of h. Also, recall that, for any h,
EU(C)— EU(DI|h) = EU(A) — EU(B'|h) = r(EU(A) — EU(BJh)).

Under this model, hf, must satisfy EU(C) — w(2) = EU(D|h{p) — w(2) and therefore
EU(C) = EU(D|h{p). This in turn implies EU(A) = EU(B|h{ ) and thus EU(A) — w(1) >
EU(B|h{p) —w(2). It follows that h¥; > hfp and thus A%, > 0. Similarly, it also implies
EU(A) = EU(B'|h{ ) and thus EU(A) —w(1) > EU(B'|hE ) —w(3). It follows that h¥ 5 > hfp
and thus A% > 0.
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Under this model, h% 5 must satisfy EU(A)—w(1) = EU(B|h% z)—w(2) and therefore EU(A) <
EU(B|hY ). Since B’ is a mixture of A and B, we must have EU(A) < EU(B'|h% z) < EU(B|h%p)
and thus EU (B'|hY 5) —w(3) < EU(B|hY 5) —w(2). It follows that EU(A) —w(1) > EU(B'|h% ) —
w(3) and thus A% 5 > h¥p and A}, < 0.

To summarize, if w(l) < w(2) < w(3), then Puri simplicity preferences predict A%, > 0,
Afe >0, and Aj,x <0, ie., the CRP-CCP-RMXP pattern.
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C The Impact of Noise on Valuations and Choices

In Section 2.5, we discuss the impact of noise on valuation tasks and binary choice tasks, and the
inferential challenges that arise as a result. This appendix formalizes the intuition in that section
by replicating and expanding on the theoretical results in McGranaghan et al. (2024).

We assume that the same underlying preferences drive behavior for both valuation tasks and
binary choice tasks. Using the notation from Section 2.2, a person will have three underlying

indifference values h¥ g, h% g/, and hlp, for a fixed (p,r, M) that satisfy:
e Prefer A over B if and only if H < h¥ 5,
e Prefer A over B’ if and only if H < h¥ g, and
e Prefer C over D if and only if H < hfp.

We can then characterize that person’s CR, CC, and MX preferences by Afp = hip — hip,
Abe =Wy — hip, and Ay = R g — b 5. EU implies Af = Afp = Ay x = 0.

C.1 The Impact of Noise on Valuations

In Section 2.5, we provide an intuitive argument for how paired valuation tasks might yield unbiased
inference even in the presence of noise. Here, we provide a formal argument.
To combine a participant’s underlying preferences with noise to generate their stated valuations,

we begin with an assumption that is more general than the one used in Section 2.5:

Assumption 1v: Impact of Noise on Valuations

A person’s stated valuations (hap,hap,hcp) are hap =T'(hY5,€4B), hap =T(hi g, eap),
and hep = I'(hfp,ecp), where (eap,eap,ecp) are noise draws from a continuous joint
distribution with convex support, and I' is increasing in both arguments with I'(h,0) = h for
all h.

In Assumption 1v, the function I" permits a variety of models for how a person’s underlying in-
difference points combine with choice noise to generate their stated valuations. We highlight two

special cases of Assumption 1v:

Assumption 2a: I'(h,e) = h+¢, and E(eap) = E(eap) = E(ecp) = 0.

Assumption 2b: T'(h,e) is potentially nonlinear in h and e, but eap 4 kagecp for some

d . .
kap >0, eap = kapecp for some kap > 0, and ecp is symmetric about 0.
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Assumption 2a is the assumption we use in Section 2.5 and represents the simple case in which
stated valuations are given by the true underlying preference plus a mean-zero error term. As-
sumption 2b is less straightforward at first glance, but it is consistent with assumptions researchers
frequently use when analyzing choice data, where they model noise as a symmetric additive per-
turbation of utility in the spirit of McFadden (1974, 1981). To illustrate, consider the following

example:

Example: Expected Utility and Prospect Theory

Suppose that a person evaluates a lottery (z,q) with z > 0 as 7(q)u(z), and evaluates a
lottery (z,q;y,s) with > y > 0 as 7(q)u(x) + w(q, s)u(y). This formulation reduces to EU
when 7(q) = ¢, w(q, s) = s, and u(x) is a Bernoulli utility function. This formulation reduces
to CPT when 7(q) is a probability weighting function, w(q, s) = w(q¢+s) —n(q), and u(x) is a
value function defined over gains and losses. Finally, this formulation reduces to OPT when
7(q) is a probability weighting function, w(q, s) = 7(s), and u(z) is a value function defined

over gains and losses.

With this formulation, the underlying indifference points satisfy

u) = rulhs) = B = (un)
W) = nlpru(h) +wr = run) e ng =t (RS )
AOUOD) = wruhen) = b= (2

Now suppose we incorporate additive utility noise in the spirit of McFadden (1974, 1981) by

assuming that the stated valuations satisfy

u(M) = m(p)u(hap) + ean had hag =u " <U(h23) - 7??;)
0 <) vl 0 i+ b () 52
m(ryu(M) = w(prju(hcp) +ecp < hep=u! (u(hép) - @%)

where €4p, ean, and ecp reflect additive utility noise.°! When applying this approach, it is
common to further assume that ecp has some distribution that is symmetric about 0 (e.g.,
a mean-zero normal or logistic distribution), and that esp 4 k;x pecp and e4pr 4 k:f4 g€cp for
some k' 5 > 0 and £’y 5, > 0 (e.g., when the error terms all have the same distributional form

but are permitted to have different variances). If so, then this formulation fits Assumption

“'The latter equations use (1/r(p))u(M) = u(hip), (I — w(pr,l — r)/x(pr))u(M) = u(W%gy), and
(x(r) /(o) Yu(M) = u(h ).
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2b with I'(h,e) = u=t(u(h) — ), where eap = Kygecp/m(p), eap = kygecp/m(pr), and
ecp = €cp/m(pr). Finally, EU with additive utility noise that is i.i.d. across the AB, AB’,

)
and CD choices (so k/y5 = k5, = 1) implies eap = recp and eap = ecp.

Proposition 1v describes when unbiased tests of the null of A%, = 0, Z € {CR,CC,MX}, are

possible using paired valuation tasks and Assumption 2a or 2b.

Proposition 1v (Paired Valuation Tasks Can Yield Unbiased Tests): Consider a person who

provides stated valuations (hap, hap’, hcp).

(1) Under Assumption 2a, E(Az) = A% for all Z € {CR,CC, M X}.
(2) Under Assumption 2b, Pr(Az > 0) = Pr(Az <0) =1/2 for all Z € {CR,CC, M X}.

The proof and intuition for Proposition 1 are virtually the same as those for Proposition 2 in
McGranaghan et al. (2024), and thus we omit them here. Part (1) establishes that we can test the
null of A% = 0 under Assumption 2a using a means test. Part (2) establishes that we can test the
null of A% = 0 under Assumption 2b using a sign test that tests whether the observed proportions

of Ay >0 and Ay < 0 are the same.©? These are the two tests reported in Table 4.

C.2 The Impact of Noise on Choices

In Section 2.5, we describe how noise can make it problematic to infer preferences when comparing
behavior across binary choice tasks. We provide a formal argument here. To model how a par-
ticipant’s underlying preferences combine with noise to generate their choices in the three binary

choice tasks, we use the following alternative to Assumption 1v:

Assumption 1lc: Impact of Noise on Choices

A person’s realized indifference points are the (hap,hap, hop) described in Assumption 1v.
Then:

e In an AB choice task, the person chooses A = (M,1) over B = (H,p) if and only if
H < hap =T(hY5,caB),

e In an AB’ choice task, the person chooses A = (M, 1) over B’ = (H,p; M,1 — r) if and
only if H < hap =T'(hYp,cam),

“20ur formal test uses the following logic. If Pr(Az > 0) = Pr(Az < 0) = 1/2 for every observation, the
likelihood of observing at most n instances of Az > 0 out of N observations is equal to G(n, N), where G denotes
the cumulative distribution function for a binomial distribution with a 50 percent success rate. Hence, if we observe
n4 instances of Az > 0 and n_ instances of Az < 0, the p-value for a two-sided sign test under the null of A% =0
is 2% G(min{n4,n_},ny +n_).
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e In a CD choice task, the person chooses C = (M,r) over D = (H,pr) if and only if
H < hgp = F(héD;ECD)-

In a choice task, the observed data comes in the form of the proportion of participants who

choose each option. Under Assumption 1lc, the relevant proportions are:
Pr(A|AB) = Pr(H < hag), Pr(A|AB’) = Pr(H < hup/), and Pr(C|CD) = Pr(H < hep).

Proposition 2 establishes conditions under which paired choice tasks yield biased tests of the null
of A%, =0, Ze {CR,CC,MX}.

Proposition 2 (Paired Choice Tasks Can Yield Biased Tests): Consider a person who has h¥ 5 =
Mg = hip = h* and thus AL, = AL, = Al;x = 0. Suppose that EABi/{ABECD and
5AB’ikAB/5CD for some kap > 0 and kap > 0, and define x = Pr(eap < 0) = Pr(eap <
0) = Pr(ecp < 0).

(1) If h* — H > 0 and thus the person has A > B, A > B’, and C' > D, then:

(a) kap < 1 implies Pr(A|AB) > Pr(C|CD) > x (CRE); kap > 1 implies Pr(C|CD) >
Pr(A|AB) > x (RCRE); and kap = 1 implies Pr(A|AB) = Pr(C|CD) = x (OCRE);

(b) kap < 1 implies Pr(A4|AB’) > Pr(C|CD) > x (CCE); kap > 1 implies Pr(C|CD) >
Pr(A|AB’) > x (RCCE); and kap = 1 implies Pr(A|AB’) = Pr(C|CD) = x (OCCE);
and

(¢) kap < kap implies Pr(A|AB) > Pr(A|AB’) > x (MXE); kap > kap implies Pr(A|AB’) >
Pr(A|AB) > x (RMXE); and kap = kap implies Pr(A4|AB) = Pr(A|AB') = x
(SMXE).

(2) If h* — H < 0 and thus the person has B > A, B’ > A, and D > C, then:

(a) kap < 1 implies Pr(A|AB) < Pr(C|CD) < x (RCRE); kap > 1 implies Pr(C|CD) <
Pr(A|AB) < x (CRE); and kap = 1 implies Pr(A|AB) = Pr(C|CD) = x (OCRE);

(b) kap < 1 implies Pr(A|AB’) < Pr(C|CD) < x (RCCE); kap > 1 implies Pr(C|CD) <
Pr(A|AB’) < x (CCE); and ksp = 1 implies Pr(4|AB’) = Pr(C|CD) = x (OCCE);
and

(¢) kap < kap implies Pr(A|AB) < Pr(A|AB’) < x (RMXE); kap > kap implies
Pr(A|AB’) < Pr(A|AB) < x (MXE); and kap = kap implies Pr(A|AB) = Pr(A|AB’) =
X (OMXE).

(3) If h* — H = 0 and thus the person has A ~ B ~ B’ and C ~ D, then Pr(A|AB) =
Pr(A|AB’) = Pr(C|CD) = x for all kap and kap.

Again, the proof and intuition for Proposition 2 are virtually the same as the proof and intuition

for Proposition 1 in McGranaghan et al. (2024), and thus we omit them here. Also, note that
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Proposition 2 holds under Assumption 2b, and it would also hold under Assumption 2a if in
addition to E(eap) = E(eap) = E(ecp) = 0 we also have EABikABECD and e4p il{AB/zscp
for some kap > 0 and k4p > 0. Hence, paralleling Corollary 1 in McGranaghan et al., paired
choice tasks can yield biased tests while paired valuation tasks yield unbiased tests under the same
assumptions about noise.

Beyond replicating the CRE result from Proposition 1 in McGranaghan et al. (2024) and ex-
tending it the CCE and MXE experiments, Proposition 2 also illustrates that the potential for
misleading conclusions is even greater when attempting to identify preference patterns by compar-
ing behavior across three binary choices. In particular, even when the true underlying preferences
involve QCRP, QCCP, and OMXP, many different patterns can emerge across the three choice
tasks depending on the values for k4p and k4p and the experimenter-chosen parameter H. For
instance, if kop < kap < 1, then H < h* would lead to pattern CRE-CCE-RMXE, while H > h*
would lead to pattern RCRE-RCCE-MXE. Alternatively, if kap < 1 < kap/, then H < h™ would
lead to pattern CRE-RCCE-MXE, while H > h* would lead to pattern RCRE-CCE-RMXE. Many
other patterns are possible, and the only cases where the prediction would be the pattern O CRE-
OCCE-OMXE that corresponds to underlying preferences are the knife-edge cases where either
distance to indifference is zero, h* — H = 0, or differential noise is absent, kap = kap = 1.

Proposition 2 establishes that choice tasks can yield a wide set of patterns when the true
underlying preferences are QCRP-QCCP-OMXP. The same can hold even when people have
different underlying preferences. To illustrate, consider behavior under Assumption 2a with the
additional assumption of €4p ikABecD and cap ikAB/ECD for some kap > 0 and kyp > 0.

Under these assumptions, we can write the choice proportions as follows:

Pr(A|AB) = Pr(H <h¥z+ecap) = Pr (—scD <mphip—H ))
Pr(A|AB') = Pr(H <h%, +eap) = Pr (—5@ < (W - H))
Pr(C|CD) = Pr(H <hip+ecp) = Pr(—ecp < hip — H)

We next define b, = (b5 + hip)/2, hic = (Wi + hiép)/2, and b, = (hY 5 + h% 5)/2, which
are the average indifference values for the three paired valuations. Using these, and recalling for
choices that CRE — RCRE = Pr(A|AB) — Pr(C|CD), CCE — RCCE = Pr(A|AB') — Pr(C|CD),
and MXFE — RMXFE = Pr(A|AB) — Pr(A|AB'’), we can derive predicted behavior in choice tasks:

CRE — RCRE = Pr(—ecp <hép—H +Veop) —Pr(—ecp < hip — H)
CCE — RCCFE Pr(—ecp <héD—H+\Ifcc)—Pr(—€(1D <hz«D—H) (C.1)
MXE — RMXE Pr(—eap <h%p — H+ Uyx) — Pr(—eap < h¥yz — H)
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where

Vor =05 (g + 1) Ak + (ﬁ - 1) (R — H)
Voo =05 (ko +1) Mg+ (ks — 1) (b — H) (C.2)
Uax =05 (F2 + 1) Ay + (32 - 1) (Byx — H)

Hence, whether one’s choices exhibit a CRE, CCE, or MXE depends on whether or, Ve, or
W x are positive or negative. In the the knife-edge cases where E} —H =0for Ze {CR,CC,MX}
orkap = kap =1, Yoro AL, Yoo Af e, and Vyrxoc Al . Generalizing our earlier conclusion,
in these knife-edge cases, choices will reveal the qualitative direction of underlying preferences.

In contrast, when hy — H # 0 for Z € {CR,CC,MX} and kap and kap are not equal to
one, then we have differential noise, and whether one exhibits a CRE, CCE, or MXE also depend
on the relevant distance to indifference, i.e., BéR - H, ﬁéc — H, or EX/IX — H. Indeed, if we fix
the experimental parameters (M, p,r) and the associated underlying preferences (h% g, h¥ g/, hép),
we can use equation (C.2) to derive predicted behavior as a function of the experimenter-chosen

parameter H:

- kap +1 .
H>h*CR_2(k:AB—1) e ifkap>1
_ 1
CRE — RCRE >0 < Uep > 0 < H<hz‘R+2(k1ABZAB)A3R if kap <1
Abp>0 itkap =1
_ k /—|—1 .
H>h50‘zkﬁ/f1>“00 if kap > 1
B _ L+ 1 .
CCE-RCCE>0<%oc>0< 9 [ <px. + 2(1Af k:AB/)A*CC if kag <1
AZ‘C’>0 ifk’AB/:1
H < hi + MA%X if kap < kap
Q(kk’AB/ _k:kAB)
MXE—-RMXE>0o Uyy >0 H>hj4x—mNMx if kap > kap
AB — NADB/
Aty >0 if kap = kap

Note that if the experimenter chooses H = 71(”} - then participants’ CRE — RCRE will reveal the
sign of their underlying A% . An analogous point holds when the experimenter chooses H = ?LEC
or H = B}kw - However, without observing valuations, it is hard for the experimenter to select these
H’s.

preferences, a single H may not be sufficient to accurately infer all three preferences.

Moreover, if the experimenter is trying to use choices to identify patterns across the three

Finally, we highlight how, as the experimenter varies the experimental parameter H, a variety
of biased patterns can emerge. For example, suppose h%p = 36, h% 5 = 34, and hf, = 30, in
which case underlying preferences have the pattern CRP, CCP, MXP. If in addition ka5 = 0.5
while k4p = 1.5, participants would exhibit a CRE for H < 42, a CCE for H > 22, and an
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MXE for H < 37. Hence, for H € (22, 37), participants would exhibit the CRE-CCE-MXE pattern
consistent with their underlying preferences. However, for H outside of this range we might observe
the patterns CRE-RCCE-MXE, CRE-CCE-RMXE, or RCRE-CCE-RMXE.

The message is clear: If one wants to learn about patterns of CR-CC-MX preferences so as to be
able to assess models of risk preferences, then using choice tasks will be problematic. In contrast,
under the same assumptions as the analysis here, valuation tasks can be used to get unbiased

measures of the underlying preferences Al p, Af o, and A%, .

C.3 Connecting Stage 1 Valuations and Stage 2 Choices

Our discussion in Appendix Sections C.1 and C.2 assumes that the same underlying preferences
drive behavior for both valuation tasks and choice tasks, and thus there should be a strong con-
nection between the two. In Section 4.3 of the main paper, we provide some evidence on that
connection. Here, we provide the underlying theory on which that evidence is based. Again, this
follows a similar treatment in McGranaghan et al. (2024).

Specifically, we consider Assumption 2a with the additional assumptions that e 4p Ly ABECD and
EAB 4 kapecp for some kap > 0 and kyp > 0. In this case, equations C.1 and C.2 characterize
the predictions for stage 2 choices as a function of underlying indifference values h¥ 5, h% 5/, and

¢:p- At the same time, Proposition 1 part 1 establishes that a participant’s stage 1 valuations
hap, hap', and hop are unbiased measures of those underlying indifference values.

Hence, we conduct the following empirical analyses. First, we either (i) use each participant’s
stage 1 stated valuations hap, hap, and hop to directly generate (noisy) empirical measures
Acr, Acc, Aux, her, heo, and hyyx, or (ii) use each participant’s stage 1 stated valuations
hap, hap, and hop combined with our decomposition from Section 4.2 to generate posterior mea-
sures of an individual’s underlying preferences E[Af p|stagel], E[Afq|stagel], E[A%, x|stagel],
E[h% p|stage 1], E[h§o|stage 1], and E[h%, y|stage 1] (see Appendix D.4 for details). We then test

the following predictions from equations C.1 and C.2:

(1) A person’s observed CRE — RCRE, CCE — RCCE, and MXE — RMXFE at stage 2 should
depend positively on their associated stage 1 value difference Acgr, Acco, Anrx.

(2) With one caveat, a person’s observed CRE— RCRE, CCE—RCCE, and MXE—RMXEF at
stage 2 should depend positively on their associated distance to indifference hor—H, hoc—H,
harx —H when the noise is more impactful for the second choice (the C'D choice for CRE and
CCE, the AB’ choice for MXE), and should depend negatively on their associated distance
to indifference when the noise is more impactful for the first choice. The caveat is that, while
this prediction holds when the magnitude of the relevant distance to indifference is not too
large, when that magnitude gets large enough (positive or negative), the relationship reverses

because Pr(—ez < h} — H) approaches zero (as in Figure 7 of McGranaghan et al. (2024)).
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When we test these predictions, we increase power by combining data across different combi-
nations of (p,r). Because for each preference the impact of the value difference or the distance to
indifference is larger for larger p, in our empirical analyses we multiply these terms by p to make
them more comparable across different values for p.

We visually assess prediction (1) in Figure 6 and we visually assess prediction (2) in Appendix
Figure C.1. Panels A-C of Appendix Table C.1 provide corresponding formal tests via regressions
of CRE — RCRE, CCE — RCCE, and MXFE — RMXFE from stage 2 on the corresponding
values of Az and hy — H from stage 1 (in both cases normalized by p). In each panel, four
different specifications are provided: (1) ordinary least squares using the full sample of 8408 stage
2 observations; (2) ordinary least squares using samples of 4204 stage 2 observations for which
multiple elicitations of relevant h valuations were conducted at stage 1; (3) two-stage least squares
using samples of 4204 stage 2 observations for which multiple elicitations of relevant h valuations
were conducted at stage 1 and instrumenting for Ay and hy — H with the alternate elicitation’s
values, which accounts for potential measurement error in Ay and hy — H; (4) ordinary least
squares using the full sample of 8408 stage 2 observations, but replacing Az and hy — H with the
posterior expectations of preference given stage 1 behavior (i.e., E[A}|stage 1] E[h} — H|stage 1].

Figure 6 and Appendix Table C.1 show substantial support for prediction (1) with significant
linkages between values of Az and corresponding differences in choice probabilities for CR, CC,
and M X problems across all specifications. Appendix Figure C.1 and Appendix Table C.1 also
document the relevance of prediction (2) for all three problems. For C'R problems, the data show
a significant positive relationship between hcr — H and CRE — RCRE across all specifications,
indicating that noise is more impactful for the C'D choice than the AB choice. For CC problems the
data using raw valuations in columns (1) through (3) show limited relationship between hoc — H
and CCE — RCCE. However, when using the posterior expectation of preferences in column (4),
the data show a significant negative relationship between E[h¥|stage 1] — H and CCE — RCCE,
indicating that noise is more impactful for the AB’ choice than the C'D choice. For M X problems
the data show a significant positive relationship between hy;x — H and MXE — RM X E across all
specifications, indicating that noise is more impactful for the AB’ choice than the AB choice. All
three problems show the hallmarks of differential noise and the combined data suggest that noise
has the most impact on AB’ choices, followed by C'D choices, followed by AB choices.

Interestingly, these conclusions differ from the predictions of EU with additive i.i.d utility noise.
In particular, Example 1 from Appendix C.1 derives that, under EU with additive i.i.d. utility
noise, eap = 1écp and €ap = €cp. In words, under EU with additive i.i.d utility noise, the
impact of noise on the AB’ and C'D choices should be the same, and both should be larger than

the impact of noise on the AB choice.
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Figure C.1: Predicting Stage 2 Results using Stage 1 Distance to Indifference

Panel A: CRE — RCRE
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Panel C: MXE — RMXE
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Notes: Figure relates individual stage 1 measures of hor — H, hce — H, and hux — H to stage 2 measures of
CRE — RCRE, CCE — RCCE, and MXFE — RMXE, respectively. Panels A-C use raw stage 1 responses. Panels

D-F use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with

a participant’s raw stage 1 valuations to generate posterior preference measures E[h{g|stage 1], E[hEo|stage 1],

and E[h¥, y|stage 1] for that participant. For each z-axis, one hundred equally sized bins are constructed with

approximately 84 observations per bin for the CR and CC panels and approximately 42 observations for the MX

panels. Within each bin, the value of stage 2 choice differences is calculated to construct the y-axes. Due to a large

of observations at some values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make

valuations comparable across (p,r), all stage 1 measures are scaled by p to control for the fact that a fixed value of

the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix C.3 for details).
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Table C.1: Regressions Predicting Stage 2 Binary Choices Using Stage 1 Valuations

Multiple
Full Sample Observations 2SLS Decomposed
; Preferences

Available

Panel A. CRE — RCRE € {—1,0,1}

pAcr 1.07 1.08 2.60 2.77
- (0.07) (0.09) (0.26) (0.16)
plher — H) 0.40 0.30 0.20 0.32
(0.07) (0.09) (0.12) (0.08)

Outcome Mean 10.45 10.04 10.04 10.45

Panel B. CCE — RCCFE € {-1,0,1}

pAcc 0.96 0.87 2.92 3.26
B (0.07) (0.09) (0.36) (0.18)
plhce — H) -0.03 —-0.01 —0.16 —0.46
(0.07) (0.09) (0.14) (0.08)

Outcome Mean —5.77 —4.69 —4.69 —5.77

Panel C. MXE — RMXE € {—1,0,1}

PANx 0.80 0.93 3.17 3.00
- (0.07) (0.10) (0.44) (0.23)
plhyx — H) 0.39 0.43 0.62 0.65
(0.06) (0.07) (0.11) (0.07)

Outcome Mean 16.00 15.91 15.91 16.00
Individuals 2102 1051 1051 2102
Observations 8,408 4,204 4,204 8,408

Notes: Table presents linear regressions of individuals’ stage 2 decisions on stage 1 measures of their Az and hz —H
for Z € {CR,CC,MX}. Panel A presents results for CR experiments, where the outcome is 1 if the participant
chose A and D (CRE), —1 if they chose B and C (RCRE), and zero otherwise. Panel B presents results for CC
experiments, where the outcome is 1 if the participant chose A and D (CCE), —1 if they chose B’ and C (RCRE),
and zero otherwise. Panel C presents results for MX experiments, where the outcome is 1 if the participant chose A
and B’ (MXE), —1 if they chose B and A (RMXE), and zero otherwise. Columns (1)-(3) use raw stage 1 responses.
Column (1) presents the full sample results for all four (p,r) combinations that participants saw. For panel C, we
use the valuations h/y5 or ks for the half of (p,r) that they exist for, and hap or haps otherwise. Column (2)
restricts the sample to only the half of (p,r) conditions for which which we have multiple measures of all three
valuations. Column (3) leverages these multiple observations to implement instrumental variable regressions using
two-stage least squares, where we instrument for pA and p(h — H) with their duplicate measures. For Column (4),
we use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures E[A% |stage 1] and E[h%|stage 1].
To make valuations comparable across (p, ), all stage 1 measures are scaled by p to control for the fact that a fixed
value of the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix C.3 for details).



D Further Details on Decomposing Preference and Noise

In this appendix, we provide further details for the decomposition exercise in Section 4.2. In this
exercise, we derive an estimate for the population distribution of underlying preferences along with
the magnitude of decision noise. We then use these estimates for three purposes. First, we assess
how much of the variability in our data is due to heterogeneity in preferences versus noise. Second,
we derive what the histogram of response patterns from Figure 4 would look like if we were to
remove the decision noise. Third, we construct refined measures of individual preferences that

attempt to remove some of the noise.

D.1 Underlying Model and Estimating Its Parameters

For a fixed (p,r,M), let h* = (k¥ g, h¥% g, hip) be a vector of underlying indifference values.
The population distribution of h* has expectation E(h*) = (1 g, g p&p) = p* and variance-

covariance matrix

2
B 045  0apap OaBcp
— 2 _ *
v th/ = GAB,AB’ GAB’ GAB/,CD = X" (D'l)
2
) Oacp Oapcp  9op

For XY € {AB, AB’,CD}, we assume a person’s two elicited XY valuations are
hxy = h}((y +exy and h/XY = hé}y + elXY’

where E(exy) = E(e'yy) = 0, var(exy) = var(éyy) = 0%y, and exy and €y are independent
of each other, of the underlying preferences, and of all other noise draws. Note that this model has
twelve parameters: three p%y terms, three Hg(y terms, three 0xy wz terms, and three Jgﬂf terms.

Now let h = (hap,hap,hcp,byg, My5, hep) denote a vector of observed valuations.P! Un-
der these assumptions, we can derive the predicted mean and variance-covariance matrix for the

observed h as a function of the 12 parameters of the underlying model:

E(h) = (Wap, Wap s HODs AR WA HED) = 1

DlRecall that each participant faces four (p,r) combinations. For two of those, the participant provides all six
valuations, while for the other two, they provide only (hag,hap/,hcp,hep). Although we write everything in this
appendix based on the former case, we use all of our data in the analysis, making the appropriate adjustments when
only the C'D response has multiple elicitations.
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045+ 0% Oapap OaB,cD 0% 5 OaB.AB’ OaB,cD

Oapap  O4p +04p  Oap.cp OaB,AB 0% 5 4B cD
V(R = OaB,cD Oapcp  Obp+oép  Oapcp Y4B ,cD 02 _5
0% 5 OaB,AB Oapcp 045+ 04 Oapap O4B,cD
0AB,AB 0% 5 Oap,cD Oapap  Oip +0%  bam.cp
YaB,cD Oap.cD 02, YaB,cD Oapcp  Oip+oép

Each entry in V(h) is a theoretical prediction for an empirical moment. For instance, var(hap) =
9?4 gt 0124 g» and cov(hap, hyg) = 931 p- Hence, we can obtain estimates for the 12 model parameters
by calculating the relevant sample moments or combination of sample moments. Specifically, using
“hats” to denote estimates and the subscript s to denote sample moments, we can derive estimates

for the model’s 12 parameters using:

ﬁBF(Y = Es(hXY)
0%y = covs(hxy, hxy)
§XY7WZ = covs(hxy,hwz)
a-g(Y = Uars(hXY) - CO’Us(hxy, hfxy)

Using this approach, Appendix Table A.5 reports estimates for the model’s 12 parameters for each
of the 20 (p,r) combinations.P?

Appendix D.5 describes a more sophisticated estimation approach using MLE. Because that
approach requires additional distributional assumptions, is more time-consuming, and is sensitive
to starting values and other estimation details, we prefer the approach described here. We note,

however, that the MLE approach yields very similar estimates.

D.2 Assessing the Role of Heterogeneity versus Noise

Given these estimates, we can assess how much of the variability in our data is due to hetero-
geneity in preferences versus noise. Consider first variability in the elicited indifference values
hap, hap', and hop. The last three columns of Appendix Table A.5 report the estimated propor-
tion of the variability for each elicited indifference value that is due to preferences—i.e., the ratio
var (hy ) /var(hxy) = 0%y /(0%y + 6%y ) for each XY € {AB, AB',CD}. Averaging across the 20
(p, ) combinations, preference heterogeneity accounts for 61 percent of the variation in hap, 58
percent of the variation in h4p/, and 48 percent of the variation in h¢op.

Next consider variability in the preference measures Acgr, Acc, and Aprx. For Acr = hap —

D2In Appendix Table A.5, we use observations from both hxy and h’yy to calculate Es(hxy) and vars(hxy).
Similarly, we treat an individual participant’s (hxy,hwz) and their (h'xy, hiy ) as two separate observations when
calculating covs(hxy, hwz).
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hep, it is straightforward to derive that

var(Acr) = var(ALR) + 045 + 02
and wvar(Afg) = 9,243 + Q%D —204B,cD-

One can perform analogous derivations for Agc and Ajrx. Appendix Table A.6 uses the estimates
in Appendix Table A.5 to calculate these six variances for each (p,r) combination.”® The last
three columns of Appendix Table A.6 report the proportion of the variability for each preference
measure that is due to preferences—i.e., the ratio var(A%)/var(Ayz) for each Z € {CR,CC, M X}.
Averaging across the 20 (p,r) combinations, preference heterogeneity accounts for 31 percent of

the variation in Acg, 31 percent of the variation in Ac¢, and 25 percent of the variation in Apsx.

D.3 Simulating Preference Patterns

We next investigate what the histogram of response patterns from Figure 4 would look like if we
were to remove the decision noise. To do so, we make the additional assumption that the underlying

preferences have a joint normal distribution:
h* ~ N (pu*,3%).

For each (p,r) combination, we use the estimated parameters in Appendix Table A.5 to generate
100,000 draws from a joint normal distribution for h*. We then convert each h%, draw into the
midpoint of its two closest integers (e.g., any draw strictly between $2 and $3 is converted to
$2.50). This approach is consistent with the valuations response scales in our experiment, since the
switching rows for anyone with an underlying h% strictly between $2 and $3 would be the $2 and
$3 rows, in which case we would assign them a valuation of $2.50. We then use these converted
h%y terms to generate the A7 terms.P* Figure 5 presents the distribution of preference patterns
when we aggregate across all 20 (p,r) combinations.
Note that this approach permits null preference patterns, including EU consistency. However,
it does not permit preference patterns which would imply intransitivities between h% 5, h¥ 5/, and
t:p- Of the 27 possible preference patterns in Figures 4 and 5, only 13 can therefore emerge
from our simulation of preferences. The remaining 14 patterns can still emerge in the data due to

decision noise (and the fact that we have independent measures of the three preferences).

D3When calculating things in this way, nothing guarantees that the calculated var(A%) > 0, and indeed there is
one instance where this problem arises (for Aysx when (p,r) = (0.3,0.5)). We ignore this case and focus on the other
59 cases.

D4When carrying out this exercise, we do not impose the upper and lower bounds of our experimental price lists.
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D.4 Using the Decomposition to Refine Measures of Individual Preferences

In Section 4.3 and Appendix Section C.3, we link an individual’s stage 1 valuations to their stage
2 choices. Specifically, we create measures of individual preferences using stage 1 valuations, and
then use those measures to predict stage 2 choice patterns. The simplest way to create measures
of individual preferences is to take their stage 1 valuations at face value; for example, a measure
of their underlying Af  is simply Acr = hap — hcp. An alternative approach is to combine
a participant’s stage 1 valuations with our decomposition estimates to generate refined measures
of their individual preferences. Intuitively, the decomposition provides us with a prior for each
participant’s (h¥ g, h¥ g/, hép), and a participant’s valuations provide a signal that we can use to
generate the corresponding posterior.

If h*, the exy terms, and the ¢’y terms are all jointly normally distributed, then (h*, h) is

also jointly normally distributed, specifically:
h* * > X
N n , 12 7
h |22 221 b

0%  Oapap Oapcp 045  Oapap Oapcp

where

_ 2 2
a2 = |0apanr Oip Oap.cp Oapap U4 Oam.cp
Oapcp Oapcp 0ip  Oapcp Oapcp  Oip

Hence, if participant ¢ provides a set of valuations h;, the conditional distribution of h* given
h = hz‘ is h*|h:hi ~ N(I"’Eost? Z;OSt) where

Whost = 1 + 1237 (h; — p)
Dot = BF — B1aX ' 3ay.

Again, our goal is to obtain more precise measures of a participant’s A% terms (for Figure 6)
and ﬁ} terms (for Appendix Figure C.1). It is straightforward to use the parameter estimates
in Appendix Table A.5 to generate py, for each participant.”?> We denote the components of
Hyost by E[RYglstage 1], E[hY g /|stage 1], and E[h{p|stage 1]. These represent our more refined
measure of the participant’s h* terms. We then use these define the following more refined measures

for the A% terms and B}Y terms.

D5Recall that each participant provides all six valuations for two of their (p, ) combinations, but only four valuations
for their remaining two (p,r) combinations. For the latter instances, everything above is adjusted appropriately.
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E[hY g|stage 1] — E[h{p|stage 1]
E[hY 5/|stage 1] — E[h¢p|stage 1]
E[h% g|stage 1] — E[h% 5 [stage 1]
E[hY glstage 1] + E[h{p|stage 1])/2
E[hY g |stage 1] + E[h¢p|stage 1])/2
E[hY glstage 1] + E[Rh% g/|stage 1])/2

E[A} p|stage 1]
E[A}|stage 1]
E[A}, ¢ |stage 1]
E[h} lstage 1] =
E[h%|stage 1]
E[h%, y|stage 1] =

—~ o~ o~

The refined measures E[h% g|stage 1], E[hY g |stage 1], and E[h{ |stage 1] are all tightly cor-
related with their respective raw measures hap, hap/, and hop, with correlations of 0.89, 0.88,
0.83, respectively. Similarly, E[A}g|stage 1], E[A}|stage 1], and E[A}, ¢ |stage 1] are tightly
correlated with Acgr, Acc, and Ajrx, with correlations of 0.79, 0.79, 0.69, respectively. Finally,
E[h% sstage 1], E[hE|stage 1], and E[h%, y|stage 1] are tightly correlated with hcr, hoe, and
harx, with correlations of 0.91, 0.91, 0.92, respectively. In Figure 6 and Appendix Figure C.1, we
predict stage 2 choices using both the raw measures and the refined measures. The qualitative
conclusions are much the same, although the refined measures make the link between stages more

precise.

D.5 Decomposition Using MLE

Our analysis in Appendix Sections D.1 through D.4 estimates the model parameters using the
relevant sample moments or combination of sample moments. The advantage of this approach is
that it requires fewer distributional assumptions and implementation assumptions. For example,
our assessment of the relative contributions of preference heterogeneity versus noise in Appendix
D.2 does not require any distributional assumptions.

Here we describe an alternative approach to estimate the parameters via MLE. We assume
as in Appendix Section D.4 that h*, the exy terms, and the €'y, terms are all jointly normally
distributed, and therefore, h ~ N (u,X). Recognizing the interval nature of our valuation tasks,

an observation provides both a lower bound ({) and an upper bound (v) on the participant’s h

valuations:
C(haB) v(haB)
C(hap) v(hap)
((hep) v(hep)
h) = and v(h) =
= ) W= )
C(Wyp) v(hlyp)
C(hep) v(hep)

For instance, if for an hxy valuation task the person switches between the row with H = $32 and
H = $33, then ((hxy) = 32 and v(hxy) = 33. For observations censored at the lower bound (i.e.,
the person always chooses the right-hand option, even when H = p-$30), we set ((hxy) = —o0 and
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v(hxy) = p- $30, whereas for observations censored at the upper bound (i.e., the person always
chooses the left-hand option even when H = p - $30 + $50), we set ((hxy) = p - $30 + $50 and
v(hxy) = co. Finally, recall that we only collect 1y and ', 5, for half of observations; all missing
valuations are treated as uninformative and assigned ((hxy) = —o0 and v(hxy) = . Missing
valuations therefore play no role in the estimation of the parameters as they have a likelihood of 1
(and log-likelihood zero) for all (u, ).

Given a participant’s observed ((h) and v(h), the model-implied likelihood of that observation
as a function of the parameters in (p,X) is F(v(h); u,2) — F(¢(h); p, X), where F(-;p,3X) is
the CDF for h given parameters (u,X). From here, it is straightforward to set up the sample
log-likelihood summing over all participants.

We run this estimation separately for each of the 20 (p,r) combinations. Appendix Tables D.1
and D.2 provide MLE results analogous to those of Appendix Tables A.5 and A.6, where Appendix
Table D.2 is constructed from Appendix Table D.1 in exactly the same way that Appendix Table
A.6 is constructed from Appendix Table A.5 (see Appendix D.2).

The message from the MLE estimation is much the same as that for our simpler estimation
based on sample moments. Figure D.1 compares the MLE estimates from Appendix Table D.1 to
the estimates from Appendix Table A.5. For the most part, the estimated parameters are close to
each other, although the MLE approach yields slightly more variability for both noise and preference
heterogeneity, which reflects that the MLE approach recognizes the interval nature of the data and
the noise implications of censoring. The central conclusion that preference heterogeneity accounts
for roughly half of the variation in the hxy measures and one third of the variation in the Ay

measures remains the same.
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Figure D.1: Comparison of Decomposition Results (Direct Calculation vs. MLE)

Notes: Figure relates calculated quantities from Table A.5 to MLE estimates from Appendix Table D.1. Correlation

reported for all observations in each panel.



E Upside-Potential Model Predictions and Estimation

E.1 Predictions for the Upside-Potential Model

In this section, we provide a Proof of Proposition 1 and derive the additional model predictions
discussed in Section 5.2 of the main text. For completeness, we replicate the model assumptions
here. Given a lottery (H,qm; M, qn; 0,1 — g — qar), a person evaluates the lottery using decision

utility function:

U =lquH + quM] + (qu + qm) [qas(H) + qur(M)] (E.1)

where k(z) is strictly increasing in . For binary lotteries with ¢y = 0, this formulation reduces to

U =qpH + qik(H),

and for certain payments with q;; = 1, it reduces to
U= M+ r(M).

It is worth highlighting that this model respects first order stochastic dominance on its domain,
(H,qm; M, qr;0,1 — qg — qar). Consider two lotteries f = (H,qm; M, qn; 0,1 — gy — qar) and
g = (H,q¢y; M, q,;;0,1 —qy — q),) and suppose f first order stochastically dominates (fosd) g.
One implication of f fosd g is that gar + g = ¢ + ¢y; otherwise f would have higher probability
of zero. Standard results from EU with a monotonic utility function imply [gpH + qp M| =
¢y H' + ¢y, M'] which in turn implies [ggr(H) + qur(M)] = [¢yr(H') + ¢ x(M')] for increasing

£(-). Combining these two properties with qas + g = ¢}, + ¢} implies
lar H + ape M1+ (a+aur) [ars(H) + qus(M)] = [qg H' + ¢y M|+ (g +dby) [dar(H') + dyr(M)]

and hence U(f) = U(g).
Applying this model to the context of our experiment, the triplet (k% g, h% g/, hip) solves

M s(M) = phip + pPe(iis) (8.2)
M+ k(M) = prhfg +Q—r)M+ (pr+1—7) [pre(hiyp)+ (1 —r)k(M)] (E.3)
rM + r2k(M) = prhgp + (pr)*k(hEp). (E.4)

We then characterize behavior in this model in Proposition 1:

Proposition Al. Suppose that (h% 5, h% 5/, hEp) is derived from equations (E.2), (E.3), and (E.4).
For any (p,r) € (0,1)% and k(z) that is strictly increasing in X:

(1) A person’s Afp, Afq, and A}y satisfy:
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(a) Afp > 0if and only if k(M) >
Al < 0if and only if k(M) <
Afp = 0if and only if k(M) =

(b) A% > 0if and only if &(
Afe < 0if and only if k(M) <
Al = 0if and only if k(M) =

(c) A%y > 0if and only if k(M) < /{( ) <
A% x <0 if and only if (M) > pr(h%5) > (hAB) and
A% x = 0if and only if k(M) = pr(h¥ ) = p/ﬁ(hZB).

(2) Abr

< 0 implies A}, < 0 and A%, > 0, and A}, < 0 implies A}, > 0. (Equivalently,
A% x <0 implies Afp > 0 and Af, > 0, and Af = 0 implies A%, > 0.)

(3) The person must exhibit one of the following seven patterns of behavior:

Pl: 0> Afp > Ay and A}, x >0 (RCRP-RCCP-MXP)

P12: 0= Ak, > Ak, and A%, >0 (QCRP-RCCP—MXP)

P2:  Afp>0> A}, and A}y >0 (CRP—RCCP-MXP)

P23: Abp > Afs=0and A}, >0 (CRP—QCCP-MXP)

P3:  Afp>Afs>0and A}y >0 (CRP—CCP-MXP)

P34: Abp=Afs>0and A}, =0 (CRP-CCP— QOMXP)

P4 A%y, > AL, >0and A%, <0 (CRP—CCP—RMXP).

Proof:
(la) Recall that A%, = bz — hip, where h¥ 5 and b, are derived from equations (E.2) and
(E.4). We can rewrite equation (E.4) as

M + k(M) = phi:p + p*k(hEp) + (1= 1) (k(M) = p*r(hEp))
and combining this equation with equation (E.2) yields
phip + p°R(Wg) = phép + PPr(hép) + (1 —1) (k(M) — p*k(hEp)) -

Proof of CD condition: Because ph + p?k(h) is strictly increasing in h, this equation implies
hi g > hép if and only if k(M) > p?k(hEp), hg < hip if and only if k(M) < p*s(hip), and
b g = h¥p if and only if k(M) = p?k(hE ).

Proof of AB condition: Define f(h) = ph + p?k(h) + (1 —r)(k(M) — p*k(h)), so hEp, is defined by
f(hé&p) = M + k(M). Because f is strictly increasing in h, h¥z > hfp if and only if f(h%5) >
M + k(M), which based on equation (E.2) holds if and only if k(M) > p?k(h%z). Analogously,
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“p < hip if and only if f(h%p) < M + k(M) or k(M) < p*k(h% ), and h¥% 5 = h¥, if and only
i (1) = M+ k(M) or (M) = pPr(h ).
Finally, note that when A¥p > 0 and thus h¥ 5 > h{p, £ strictly increasing implies pk(h% ) >
p’(hEp). Analogously, A%, < 0 implies p?k(h¥ 5) < p*k(hE ), and A%, = 0 implies p?k(h 5) =
p*r(hEp). The result follows.

(1b) Recall that Af. = h¥ g — hip, where b5, and hf., are derived from equations (E.3) and
(E.4). We can rewrite equation (E.3) as

rM + 12 6(M) = privyg + (pr)*s(hap) + (1= 1)r (pr(hp) — (2 = p)s(M)),

and combining this equation with equation (E.4) yields

prigp + (pr)*k(hép) = privip + (pr)*s(hiap) + (1= )7 (pr(hfp) — (2 = p)r(M)).

Proof of AB’ condition: Because prh + (pr)?s(h) is strictly increasing in h, this equation im-

plies h¥ 5 > hEp if and only if s( < p) k(hyp), Pig < hip if and only if k(M) <
(25) A(htp), and By = by if and only if s(M) = (525) (R ),

Proof of CD condition: Define f(h) = prh + (pr)*s(h) + (1 — r)r (pr(h) — (2 — p)s(M)), so h* 5
is defined by f(h¥ ) = rM + r’x(M). Because f is strictly increasing in h, h¥% g > h¥, if and
only if f(h{p) < rM + r?k(M), which holds if and only if k(M) > (2%)) x(hEp). Analogously,

Wig < hp if and only if f(hp) > rM +12k(M) or w(M) < (25 ) w(hEp), and W g = R if
and only if f(hE ) =rM + r?k(M) or k(M) = (ﬁ) k(hEp)-

Finally, note that when A%~ > 0 and thus h% 5 > h{p, & strictly increasing implies <2 p) k(W) >
(fp) k(h&p). Analogously, A%~ < 0 implies <ﬂ> k(W) < (ﬂ> k(hip), and Ak, = 0 im-
plies (325) k(W) = (225) K(hEp):

(1c) Recall that A%,y = h¥%p — h¥ g, where h% 5 and h% 5 are derived from equations (E.2) and
(E.3). We can rewrite equation (E.3) as

M + k(M) = php + p*s(Rap) + (1= 1)(1 = p) (pa(hip) — K(M)),

and combining this equation with equation (E.2) yields

phiap + p*R(hp) = Pl + pa(Rip) + (1= 1) (1 —p) (pr(Rp) — £(M)).

Proof of AB’ condition: Because ph + p?k(h) is strictly increasing in h, this equation implies
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s > hip if and only if k(M) < pr(hip ), Mg < hhp if and only if k(M) > pr(h%p), and
hi g = Wi if and only if k(M) = pr(h¥ 5).

Proof of AB condition: Define f(h) = ph + p?k(h) + (1 — r)(1 — p)(pr(h) — K(M)), so h¥z is
defined by f(h% ) = M + k(M). Because f is strictly increasing in h, h¥ 5 > h¥ g if and only if
f(hig) > M + k(M), which holds if and only if (M) < pr(h¥ ). Analogously, h¥ 5 < h¥ g if and
only if f(h%5) < M+r(M) or k(M) > pr(h¥ ), and b5 = h% 5 if and only if f(h5) = M +k(M)
or K(M) = pr(h' ).

Finally, note that when A}, > 0 and thus A%z > h% 5/, k strictly increasing implies pr(h¥ /) <
pr(h¥ ). Analogously, A%,y < 0 implies pr(h% 5) > pr(h¥ ), and A}, = 0 implies pr(h5) =
pr(h* ). The result follows.

(2) From la, A%, < 0 if and only if k(M) < p*k(h%p) < p?k(hE ). Because p? < 37, for any

p € (0,1), it follows that k(M) < 32 K(h¢.p), and thus from 1b it follows that Af. < 0. Similarly,
because p? < p for any p € (0,1), it follows that k(M) < pr(h* ), and thus from 1c it follows that

Ayrx > 0.

From 1b, A%~ < 0 if and only if f%pm(th,). Because ﬁ < p for any p € (0,1), it follows that
k(M) < pr(h’ ), and thus from lc it follows that A%}y > 0. The result follows (and note that

the “equivalently” sentence follows directly from the initial sentence).

(3) First, recall that A}, = Afp — Aée, and thus A}, > 0 implies Afp > Afo, Ay =0
implies Af.p = Af, and A}, < 0 implies Af.p < Af. The result follows directly from this
observation combined with part 2. Specifically, when Af, < 0, we must have Af < 0 and
Alsx > 0, and thus Al > Af, yielding patterns P1 and P12. When Af, > 0 but Af, <0,
we must have A}, > 0 and thus Afp > Af-, yielding patterns P2 and P23. When A, > 0
and A} > 0 but A}, > 0, we must have Afp > A%, yielding patterns P3 and P34. Finally,
When Afp > 0, Afo > 0, and A}, < 0, we must have Af, < Af, yielding pattern P4. This

completes all possibilities consistent with part 2.

In the main text, we discuss the importance of the special case of our model where the function
k is linear (i.e., k(x) = ¢z for some ¢ > 0). This case highlights that MXP emerges in our model

due to the way that probabilities enter, and not because the function k has some special structure.

Proposition A2. Suppose that (k% g, h% 5/, hip) is derived from equations (E.2), (E.3), and (E.4),

and further suppose that x(z) = ¢z for some ¢ > 0. For any (p,7) € (0,1)2, we must have:

(1) Afgr>0;
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(2) A%;x > 0; and
(3) A& could be positive, negative, or zero.
Proof: When r(z) = ¢z, equation (E.2) becomes
M + M = phiyp + p*dhip = Wap = T
equation (E.3) becomes

M + ¢M = prijyg + (1 —r)M + (pr + 1 — ) [prohig + (1 —r)pM]

1+ (2—p—r+pr)¢ M
1+(1—r+pr)p p’

< th/ =
and equation (E.4) becomes

_l4+ro M
S l4prép’

rM +r*¢M = prhfp + (pr)’ohép — hép

We have Afp > 0 if and only if h% ; > h{, which holds if and only if

1+¢ - 1+rg
1+pp 1+pro

= (1+¢)(1 +pro) > (1+1r9)(1+po)

= l+otpro+pre’ >1+ré+pp+pre’ = ¢(1-r)(1-p)>0.
Since this inequality holds for any (p,r) € (0,1)%, A%y > 0 for any (p,r) € (0,1)2.
Next, we have A}, > 0 if and only if h% 5 > h’ 5/, which holds if and only if

1+¢ - 1+2—-p—r+pr)o
1+ po 1+(1=r+pr)o

= (14+9)A+1—r+pr)¢) > (1+(2—p—r+pr)¢)(1+pg)

= 1+ Q@-rtp)+ (L —r+pr)dt > 1+ (2—r+pr)o+ (20 —p° —pr+p’r)e?
— 1—r—2p+2pr+p?—p°r>0 — (1—7“)(1—p)2>0.
Since this inequality holds for any (p,r) € (0,1)2, it follows that A%,y > 0 for any (p,r) € (0,1)2.

Finally, it is straightforward to construct examples where A~ is positive, zero, or negative.

According to Proposition A2, our model with a linear s function predicts behavior must take

on one of patterns P2, P23, or P3. While a linear k function can generate our model pattern P2,

49



we describe in Section 5.1 how a linear x cannot explain all instances of pattern P2. We provide

the details in the following example.

Example: Explaining Mean Valuations when (p = 0.5, = 0.2) with a x Function

In our stage 1 data, when p = 0.5 and r = 0.2, the mean responses are hap = 38, hap = 29

and hop = 33. Hence, part 1 of Proposition 1 implies that x must satisfy:
1 1 1
5/4(29) > gﬁ(29) > k(15) > 15(38).

We show here that one can combine the second and third inequalities to derive that:

k(29) — k(15)  k(15) — K(0) k(29) — k(15)  k(38) — k(29)
u 15 and 7 9

The second inequality implies x£(29) > 3k(15), from which it is straightforward to derive

k(29) — k(15) - k(29) — k(15) - 2/£(15) — k(0) - k(15) — K(O)‘
14 15 15 15

The third inequality implies £(38) < 4k(15), which when combined with £(29) > 3k(15) from
the middle inequality yields x(38) — k(29) < k(15) — k(0). From this, we can derive

k(38) — k(29) k(15) — k(0) - 2/-@(15) — k(0) - k(29) — /{(15)‘

9 = 9 15 14

In Section 5.2.1, we describe the relationship predicted by our model between whether a person
exhibits a CRP and their risk aversion in their AB valuation—where a person is risk-averse in the
AB valuation when h%; > M /p, and risk-loving when h%¥ 5 < M /p. That exploration is based on

the following proposition:

Proposition A3. Suppose that (h% 5, h% 5/, hEp) is derived from equations (E.2), (E.3), and (E.4).
For any (p,r) € (0,1)% and «(z) that is strictly increasing in z:
(1) A person’s h* ;5 satisfies:
(a) h%p > M/p if and only if k(M) > p?k(h¥5);
(b) h¥g < M/p if and only if k(M) < p*k(h%z); and
(c) h¥g = M/pif and only if k(M) = p*k(h¥z).
(2) The relationship between a person’s h¥ 5 and Af, satisfies:
(a) hYp > M/pif and only if A%, > 0;
(b) h%p < M/pif and only if A%, < 0; and
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(c) hip = M/pif and only if A%, = 0.

Proof: (1) From equation (E.2), h¥ 5 is derived from
M + k(M) = php + pP*R(Rp).

Applying this equation, k(M) > p*k(h% ) if and only if M < ph¥, or hYp > M/p; k(M) <
p*k(h%g) if and only if M > ph¥ 5 or h% 5 < M/p; and k(M) = p*k(h%g) if and only if M = ph¥ 4
or by = M/p. (2) Follows directly from part 1 combined with Proposition Al part la.

Finally, in Section 6, we discuss the implications of our model for event splits—that is, how
people feel when choosing between a lottery (H,p) versus a lottery (H + z,p/2; H — z,p/2). Note
that the second lottery is obtained from the first by splitting the “event” of a probability p of
winning H into two “events”, each with probability p/2, that maintain the expected value of the
lottery. Several recent papers have found evidence that people dislike such splits, and one might
wonder whether such evidence is inconsistent with our finding of mixture-loving preferences.

In our model, a person’s preferences for or against event splitting can be determined separately
from their preferences for or against mixtures. In particular, Proposition A2 demonstrated that
an MXP emerges in our model due to the way that probabilities enter our model. In contrast, the
following proposition establishes that preferences for or against event splitting depend on the local

curvature of the function k.

Proposition A4. Suppose a person is presented with a choice between lottery (H,p) and lottery
(H+z,p/2; H—z,p/2), and the person chooses based on the decision utility in equation (E.1). For

any (p,r) € (0,1)*
(1) If  is linear on domain [H — z, H + z|, then (H,p) ~ (H + z,p/2; H — z,p/2);
(2) If k is concave on domain [H — z, H + z|, then (H,p) > (H + z,p/2; H — z,p/2); and

(3) If K is convex on domain [H — z, H + z|, then (H,p) < (H + z,p/2; H — z,p/2).

Proof: Applying equation (E.1), the decision-utility comparison is

pH+pn(H)  :+ B(H+2)+ b (H-2)+p [gn(H +2) + Sw(H — 2|
pH + 2 [s(H)]  ©  pH+p? [;ﬁ(ﬂ L)+ %R(H _ z)}
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f(H) %H(H + )+ %H(H ).

The result follows directly.

E.2 Details of Structural Estimation

In this section, we describe the details of the structural estimations described in Sections 5.2.3
and 5.3 of the main text, that is, the structural estimation of our upside-potential model and the

structural estimation of various prospect-theory models.

E.2.1 Data and General Approach

Our goal is to assess how different models perform in explaining the broad patterns in our data, and
in particular how the empirical valuations hap, hap/, and hop react to changes in the experimental
parameters (p,r, M). To do so in a tractable and concrete way, we take the data to be the average
responses for hap, hap, and hop across the 20 different (p,r) combinations for which we collect
responses. Hence, the data consist of 60 observations, and these are presented together in the first
three columns of Appendix Table A.2.

Our general approach starts with the specification of a model with parameter vector ®. Given
a specified model, we derive the model-predicted h%’s, XY € {AB, AB’, CD}, as a function of the
experimental parameters (p,r, M) and the model parameter vector @. We denote these predictions
by hiy (p,7, M;®). We then use the 60 observations in the data to estimate ® using non-linear
least squares—i.e., estimating the equation hxy = h%y (p,r,M;®) + . Finally, we assess the
performance of each model using (i) its mean-squared error (MSE), (ii) its internal R?, (iii) the
correlation between the model-predicted h%,’s and the observed hxy’s, and (iv) the correlation
between the model-predicted A*’s and the observed A’s.

E.2.2 Estimating the Upside-Potential Model

We estimate the upside potential model in equation (E.1), where the model predictions for A%z,
h* g, and hl.p are defined by equations (E.2), (E.3), and (E.4). In this model, the sole object to
estimate is the function k(z).

It is important to note that our data are not optimal for estimating the shape of k. Recall
that we designed our experiment to study connected CR-CC-MX problems across a broad range
of the parameter space. The upside-potential model is our post-hoc attempt to explain the broad
patterns that emerged in our data that are inconsistent with existing prominent non-EU models.

We did not have this model in mind when we designed our experiment, and the data from our

52



experiment do not have the ideal variation one might want if the goal had been to estimate this
model. Nonetheless, this estimation gives some initial indication of what shape of k may be to
rationalize our data.

Because we have no a priori sense of the shape of k, we begin with a flexible functional form.
Within our design, M takes on the values 9, 15, 24, and 27, while Appendix Table A.2 reveals that
h takes on values 23.83, 26.35, 27.77 and then various larger values up to 42.56. Hence, we use the
following functional form that has ® = (61, 09,603,604, 05,06):

-

b1z if x € [0,9]
K(9;0) + 0x(z —9)  ifxzel9,15]
(2: ©) = 4 k(15; @) + O3(x —15)  if x € [15,24]
T /{(24 ©) + Oy(x —24)  if z e [24,27]
K(2T;©) + O5(x —27)  if z € [27, 36]
5(36 ®) + bs(x — 36) if x > 36

In our data, there are 15 instances each of k getting evaluated at x = 9, x = 15, x = 24, and
x = 27 (i.e., for each of the four values of M). In contrast, based on the mean h values we observe,
there are no x € (0,9) or = € (9,15), and only one instance each of x € (15,24) and = € (24, 27).
Hence, 61, 03, 03, and 6,4 primarily capture £(9), x(15), x(24), and k(27)—i.e., the values of k at
the four values of M. The remaining 58 values for the h’s lie in x € (27,43). We permit x to be
either linear (i.e., 5 = 6g) or two-part-linear over this range, where for the latter case we put the
kink at = 36 based on wanting similar instances of x above and below the kink.

In Appendix Table E.1, column (1) reports estimates when we assume « is two-part linear above
x = 27, while column (2) reports estimates when we assume & is linear above x = 27. In addition,
Appendix Figures E.1 and E.2 depict for each estimated model (i) the estimated s function, (ii)
the actual hyy valuations against their model-predicted values, and (iii) the actual A measures
against their model-predicted values.

Both the six and five parameter s functions fit the data well in-sample, delivering R? values
above 0.75, correlations between predicted and actual hxy valuations around 0.9, and correlations
between predicted and actual A measures also around 0.9. Though the six-parameter model pro-
vides a slightly better in-sample fit for the levels of response, the five-parameter model performs
slightly better in terms of correlation with the key preference measures, Acgr, Acc, and Ayrx. The
six-parameter model also exhibits a slight non-monotonicity in the estimated x function between
27 and 36 with 05 estimated to be negative. We believe this, and the slightly worse match to the
A measures is due to overfitting and lack of variability for all types of hxy in the data. As can be
observed in Figure E.1, Panel B, the majority of observations between x = 27 and = = 36 are hgp
responses, while those above x = 36 also include hap and h4p/. The six-parameter model can thus
effectively dedicate a parameter to fit a single type of data in the z € (27,36) region. This yields
a slightly better fit of the levels but compromises on fitting differences. Due to this possibility of
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overfitting, our preferred estimates are those of the five-parameter model.
Within our preferred model, our estimates suggest that x has an S-shape. In an attempt
to capture this shape using a functional form with fewer parameters, we next consider a three-

parameter sigmoid function with @ = (6,02, 63):

1 1
1+ exp(fa2(z — 03))] A [1 + exp(f2(0 — 93))] '

K(z, ©) :91*[

In this formulation, the first bracketed term is a classic two-parameter sigmoid function (with
parameters 6 and #3) that goes from zero (as x — —0) to one (as x — ). The third parameter
(A1) is a multiplier on the bracketed term that makes the first term instead go from zero to 6;.
Finally, the second term subtracts off the value of the first term when it is evaluated at x = 0 to
ensure that x(0) = 0.

Column (3) of Appendix Table E.1 presents estimates for this functional form, while Appendix
Figure E.3 provides a corresponding illustration of model fit. Again, substantial non-linearity of the
k function emerges in estimation. Imposing this functional form, however, does lead to a substantial
reduction in explanatory power for the levels of the hxy valuations. Interestingly, however, this
three-parameter functional form delivers correlations between predicted and actual A measures
close to that of our preferred five-parameter model and exceeding that of the six-parameter model
noted above. Panel C of Figure E.3 makes clear that if one’s primary objective is to predict A¢g,

Acc, and Ajrx, this three-parameter functional matches the 60 differences in the data well.

E.2.3 Estimating Prospect-Theory Models

As a point of comparison for the fit of our upside potential model, we also estimate several variants
of prospect-theory models using the same 60 data points. As in Appendix B.1, under original

prospect theory (OPT) as in Kahneman and Tversky (1979), a person’s valuations are given by

U(M)> g — vt <WU(M)> Cand hop — v (7222)@(1\4)) .

1
m(p)

hap = vt (

As in Appendix B.2, under cumulative prospect theory (CPT) as in Tversky and Kahneman (1992),

a person’s hap and hop valuations are as above, while there h4p valuation is:

(1=l =) ()
hap = ( (o) (M)>‘

For either version, the objects to estimate are the probability weighting function 7(¢) and the value
function v(z).
We first estimate these models using functional forms frequently used in the literature. Specif-

ically, we assume the value function is v(z) = %, and we consider both the one-parameter proba-
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bility weighting function from Tversky and Kahneman (1992),

q(S

[¢° + (1 —q)°]""

m(q) =

and the two-parameter probability weighting function from Lattimore et al. (1992),

vq°

(@) = ¢ + (1 —q)°°

Columns (4) and (5) of Appendix Table E.1 present estimates for CPT for these two functional
forms for 7(q), and columns (7) and (8) does the same for OPT. Appendix Figures E.5, E.4, E.8,
and E.7 depict for each estimated model (i) the estimated probability weighting function, (ii) the
actual hxy valuations against their model-predicted values, and (iii) the actual A measures against
their model-predicted values.

All four specifications have poor in-sample fit and substantially underperform our three-parameter
model of upside potential. The best fitting version of prospect theory is CPT with the two-
parameter 7(q) which has an MSE of 18.03, an R-squared of —0.23, a correlation between predicted
and actual hxy valuations of 0.55, and a correlation between predicted and actual A measures of
0.7. The negative R? value implies that a researcher would be more accurate if they predicted the
mean outcome for every response rather than using the model prediction.

Though these PT estimates do not fit our data well, the estimated parameters for the one-
parameter probability weighting function are close to those in the existing literature. Using data on
certainty equivalents for binary lotteries, Tversky and Kahneman (1992) provide median estimates
of a = 0.88 and 6; = 0.61. Using similar data, Bernheim and Sprenger (2020) estimate o = 0.94
and #; = 0.72. In Table E.1, our estimates are o = 0.80 and 6; = 0.84 for CPT, and « = 0.75 and
601 = 0.79 for OPT.

It is perhaps not surprising that these prominent functional forms for probability weighting
perform poorly in explaining our data since they were developed to generate a global CRP and
CCP. Hence, it is worth assessing now much better CPT and OPT might perform with a more
flexible functional form. Specifically, we consider the following six-part piecewise-linear functional

form for probability weighting;:
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0 ifg=0
0o + O1q if ¢ € (0, q1]
m(q1;0) +62(¢g—q1) ifge[q1,q]
2:0) + 05— @) ifqe @
(q:©) = | W(?z, ) +03(q 72) if ge [72,73]
(q3;0) +04(¢—q3)  if g€ [q3,q4]
m(q1;©) +05(q — q1)  if g €[4, G5]
(q5;0) + 06(q — q5) if g€ [gs,1)
1 if g =

Note that to provide OPT and CPT with extra flexibility, this piecewise-linear function permits
(but does not require) discontinuities at ¢ = 0 and ¢ = 1. We selected the five kink points (i.e.,
the g;’s) ex ante based on where 7(q) would need to be evaluated in each model—putting kinks at
q’s where 7 is frequently evaluated while also trying to have similar numbers of instances within
each segment. For the OPT model, we chose (G1, ¢2, @3, G4, G5) = (0.15,0.3,0.5,0.7,0.8), whereas for
CPT we chose (q1,G2,G3,q4,G5) = (0.15,0.3,0.5,0.8,0.9). Also, note that this specification nests
expected utility, = (0,1,1,1,1,1,1).

Columns (6) and (9) of Appendix Table E.1 present these flexible estimates for CPT and OPT,
respectively. Appendix Figures E.6 and E.9 depict for each estimated model (i) the estimated
probability weighting function, (ii) the actual hxy valuations against their model-predicted values,
and (iii) the actual A measures against their model-predicted values. For OPT, this additional
flexibility does relatively little to improve fit, and a researcher would remain more accurate predict-
ing the mean for every observation rather than using the model prediction. In contrast, for CPT,
this extra flexibility leads to qualitative fit improvements, roughly halving the MSE to 11.02 and
delivering a positive R? value. Importantly, however, the MSE of this best-performing CPT model
is still around three times larger than that of our preferred upside-potential model, while the R?
value is approximately three times smaller. This worse fit is particularly notable given that the
flexible CPT model has access to three more degrees of freedom than our preferred specification of

upside potential.

E.3 Distinguishing Upside Potential from Probability Weighting

In Appendix E.2, we show that our model of upside potential provides a substantially better
quantitative fit of our aggregate data than either CPT or OPT even when permitting flexible
functional forms for probability weighting. In this section, we consider what properties of our
model are fundamentally distinct from formulations of probability weighting which permit this

improved fit.F!

ElWe emphasize that a comparison of prospect theory to our model on our data is apt in the sense that the
probability weighting function in prospect theory was developed specifically to speak to anomalies in CR and CC
problems.
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We focus on the different ways that probabilities enter into the models. Hence, throughout this
section, we assume a linear x function for our model (i.e., k(z) = ¢z) and a linear value function
for CPT or OPT (i.e., v(z) = 2).F2

We first assess whether either OPT or CPT with a flexible functional form for 7 could replicate
the predictions from our upside-potential model. Using the conditions from Appendix B.1 combined
with a linear value function, under OPT the indifference values (h% 5, h% 5/, hEp) are determined

from:
M = =(p)hip
M = 7(pr)hig +7(l—r)M
n(r)M = 7w(pr)hip

Using the conditions from Appendix B.2 combined with a linear value function, under CPT the

indifference values are determined from:

M = =(p)hip
M = n(prihhy + [nor + 1 1) — a(er)]M
n(r)M = 7(pr)hip

As discussed above, OPT and CPT coincide for binary lotteries, but not for the trinary lottery B’.
When k(z) = ¢z, under our upside-potential model, rearranging the conditions from the proof

of Proposition A.2, the indifference values are determined from

_ p+p*o,,
A (E.5)
_prt(pr+1-r)(pr)e . (I=r)+(@r+1-r)1-r)
M = 1o Rag + o M (E.6)
r+ri. o pr+(pr)’e,,
o M = Tagg oo (E7)

If we were making predictions for decisions that involve only sure amounts or binary lotteries
with one winning outcome, then either OPT or CPT with probability weighting function 7(q) =
(¢ + ¢%>¢)/(1 + ¢) will generate the same predictions as our upside-potential model. This general
point is reflected in the equations above by the fact that the h% 5 and A}, conditions would be the
same in all three models. Hence, for decisions that involve only sure amounts or binary lotteries
with one winning outcome, our upside-potential model is a special case of either OPT or CPT, and
thus if we had data on only such decisions, our model could not outperform OPT or CPT.

It is for decisions that involve trinary lotteries with two winning outcomes that neither OPT
nor CPT can replicate the predictions of our model. To see this under OPT, note that it would
need to be the case that the weight on h% 5, in equation (E.6) can be expressed purely as a function

of pr, the weight on M in equation (E.6) can be expressed purely as a function of (1 — r), and

E2For CPT or OPT, adding a slope parameter to the value function would not change predictions.
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those two functions would need to be the same. Neither of the first two conditions holds, and thus
clearly the third does not as well.

To see this under CPT, note that we can rewrite the CPT condition for h% 5 as
M =n(pr)[hig — M| +w(pr+1—r)M
and the upside-potential condition for A% 5 as

(pr+1—7)+(r+1-r)3¢
1+¢

_prt(pr+1-r)(pr)d

M
1+¢

M.

[P — M| +

Here, we can match the weight on M if we use 7(q) = (¢ + ¢*¢)/(1 + ¢), but there is no way to
express the weight on (h% 5 — M) purely as a function of pr. For decisions that involve trinary
lotteries, our upside-potential model is therefore distinct from OPT and CPT even when we assume
a linear x function.

This analysis highlights a key difference between our model and OPT or CPT. For trinary
lotteries, both CPT and OPT require that the weight applied to each outcome depend only on that
outcome’s probability (or cumulative probability in the case of CPT). For lottery B’ this means
the weight on the highest outcome A% must be a function solely of that outcome’s probability,
in this case pr. In contrast, under the upside-potential model, the weight applied to outcome
h* g is a function both of pr and the total probability of winning, in this case pr + 1 —r. This
fundamental distinction derives from the central psychology of the upside potential model: that
winning probabilities can matter more the greater is the total chance of winning.

We can obtain further insights on the differences between the models by comparing the quali-
tative predictions for our experimental tasks of the upside-potential model to the those of OPT or
CPT when we assume probability weighting function 7(q) = (¢ + ¢?¢)/(1 + ¢).

Proposition A2 establishes that for linear k, the upside potential model predicts both CRP and
MXP, with no prediction for the CC preference. As described above, with probability weighting
function 7(q) = (¢ + ¢%>¢)/(1 + ¢), OPT and CPT both replicate the predictions of the upside-
potential model for the AB and CD tasks and thus both predict a CRP. Proposition A5 below
establishes that OPT and CPT with this weighting function both further predict a CCP and an
RMXP. In other words, the two models would disagree on the MX preference, and might disagree

on the CC preference.

Proposition A5. Suppose that (k% g, h% 5, hip) is derived from OPT or CPT with a linear value

function and probability weighting function 7(q) = qffz)d’. For any (p,r) € (0,1)2, we must have:

(1) Agr > 0;
(2) A% > 0; and

(3) Ajx <0.
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Proof: First note that part (1) follows from part (1) of Proposition A2 combined with the logic

in the text that, when using 7(q) = qffz)(ﬁ, both OPT and CPT replicate the predictions from the

upside-potential model for the AB task and the C'D task.

Next, note that under both OPT and CPT, the condition for A% 5 is M = pffzd’ % g» and thus

for any r € (0,1),

2 2 1-— 1— 2
Mo <p1++p¢¢> BE 4 (1) (M) = <pr1++p¢r¢> (hj‘B_M)Jr(( r +p7")1++(¢ r+p 7“)<75> M

Consider the condition for A%z under OPT. Define f(h) = pTJ“l(f:;)%h + (1_T)IZ%_T)2¢M, so

under OPT, h%p, is defined by M = f(h% /). Because for any r € (0,1), r (pff:z‘i’) > pTJrl(f:;)%

and (1 —71) > W, we must have M > f(h% ). Since f is increasing in h, it follows that
h% g > h%p and thus A%,y < 0. Finally, the combination of A%, > 0 and A}y < 0 implies
Afe > 0.

Now consider the condition for hj‘:1 g under CPT. Define

_ (pr+ (pr)*¢ (I=r+pr)+Q—r+pr)e
o) = (P ) -+ i+o )

so under CPT, h¥ 5 is defined by M = g(h% /). Because for any r € (0, 1), (pT+p2T¢> > P

i+¢ T+¢
and ((I_HPT)IFJE;_H])%W) > <(1_r+pr);&_r+pr)2¢>, we must have M > g(h% ). Since g is increas-

ing in h, it follows that h% 5 > h%p and thus A}, < 0. Finally, the combination of A%, > 0 and

Alyx < 0 implies A%~ > 0.

Although it is not relevant for our analysis in this paper, we highlight one further distinction
between our upside-potential model and CPT. Under CPT, the weights attached to outcomes
depend on their relative ranks, whereas under our upside-potential model, they do not. To illustrate,
consider a trinary lottery (x1, q1;z2,q2). Under CPT, if 21 > z9 > 0, this lottery is evaluated using
m(q1)x1 + [7(q1 + q2) — 7(q1)]z2, whereas if zo > x; > 0, it is evaluated using 7(g2)z2 + [7(q1 +
g2) — m(q2)]z1. Under our model with a linear x function, for any 1 > 0 and x5 > 0, it is evaluated
using [1 + (q1 + ¢2)¢]q1x1 + [1 + (1 + q2)@]gaz2. The weights that are applied to outcomes x; and
x9 under upside potential are symmetric—depending only on each outcome’s probability and the
total probability of winning—regardless of whether x1 > x9 or x9 > z1. This symmetry may be a
valuable feature of the upside potential model given recent evidence of rank-independence in choice
(Bernheim and Sprenger (2020); Bernheim et al. (2022)).
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Table E.1: Estimates of Upside Potential and Probability Weighting

Upside Potential CPT Probability Weighting OPT Probability Weighting
Flexible Flexible Parametric Parametric Parametric Flexible Parametric Parametric Flexible
(1) 2 ®3) (4) (5) (6) (7 (8) (9)
Utility Curvature
@ 0.80 0.43 0.35 0.75 0.73 0.70
(0.02) (0.05) (0.04) (0.02) (0.03) (0.03)
Upside Potential/Weighting Parameters
01 1.58 1.76 135.34 0.84 1.84 0.20 0.79 0.93 0.04
(0.26) (0.32) (37.59) (0.03) (0.22) (0.04) (0.02) (0.02) (0.01)
0 3.73 4.41 0.19 0.63 1.85 0.75 1.17
(0.67) (0.88) (0.00) (0.03) (0.13) (0.03) (0.13)
03 6.43 6.86 19.36 1.07 0.94
(1.04) (1.36) (0.39) (0.05) (0.06)
04 6.68 7.70 0.62 0.73
(1.63) (1.63) (0.07) (0.09)
05 —0.25 1.72 0.29 0.51
(0.41) (0.54) (0.10) (0.13)
O 6.95 0.54 1.32
(1.68) (0.11) (0.21)
07 0.69 0.98
(0.16) (0.16)
Observations 60 60 60 60 60 60 60 60 60
Degrees of Freedom 54 55 57 58 57 52 58 57 52
hxy-MSE 2.71 3.53 7.72 33.88 18.03 11.02 26.85 26.17 21.71
hxy-R? 0.82 0.76 0.47 —1.31 —0.23 0.25 —0.83 —0.78 —0.48
plhxy, ﬁxy) 0.92 0.91 0.83 —0.20 0.55 0.71 0.22 0.30 0.45
A-MSE 6.15 7.58 7.51 41.48 24.01 19.92 32.51 31.39 29.31
A-R? 0.66 0.58 0.59 —1.28 —0.32 —0.10 —0.79 —0.73 —0.61
p(A,A) 0.88 0.90 0.89 —0.51 0.70 0.72 0.22 0.39 0.49

Note: Non-linear least squares regressions using 60 mean values of hap, hap/,hcp as observations. Standard errors in parentheses. R? values calculated as 1 — RSS/T'SS, where T'SS is sum of
squared deviations to the average value among the 60 observations, and RSS is the sum of squared residuals between the estimated model and the data. Negative values indicate that predicting
the mean for every observation would yield better fit than the estimated model. MSE values, R? values, and correlation between predicted and actual values, p, provided for both levels, hxy’s,

and differences, A’s.
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Figure E.1: Upside Potential Estimates - Flexible Six Parameter Model
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Figure E.3: Upside Potential Estimates - Parametric Functional Form
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Figure E.4: CPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure E.5: CPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure E.6: CPT Probability Weighting Estimates - Flexible Functional Form
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Figure E.7: OPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure E.8: OPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure E.9: OPT Probability Weighting Estimates - Flexible Functional Form
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F Screenshots from the Online Experiment

OPTION A: OPTION B:

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $24

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $25

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $26

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $27

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $28

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $29

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $30

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $31

2% CHANCE OF $0
OR 90% CHANCE OF $24
8% CHANCE OF $32

100% CHANCE OF $24 OR

100% CHANCE OF $24 OR

Figure F.1: Example Price List for Stage 1 AB’ Valuation Task with p = 0.8 and r = 0.1
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OPTION A: OPTION B:

OR 20% CHANCE OF §0

80% CHANCE OF $24

OR 20% CHANCE OF §0

80% CHANCE OF $25

OR 20% CHANCE OF $0

80% CHANCE OF $26

OR 20% CHANCE OF $0

80% CHANCE OF $27

OR 20% CHANCE OF §0

80% CHANCE OF $28

OR 20% CHANCE OF §0

80% CHANCE OF $29

OR 20% CHANCE OF §0

80% CHANCE OF $30
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR
100% CHANCE OF $24 OR

Figure F.2: Example Price List for Stage 1 AB Valuation Task with p = 0.8 and r = 0.1
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OPTION A: OPTION B:

OR 92% CHANCE OF §0
8% CHANCE OF $24
OR 92% CHANCE OF §0
8% CHANCE OF $25
OR 92% CHANCE OF $0
8% CHANCE OF $26
OR 92% CHANCE OF $0
8% CHANCE OF $27
OR 92% CHANCE OF §0
8% CHANCE OF $28
OR 92% CHANCE OF §0
8% CHANCE OF $29
OR 92% CHANCE OF §0
8% CHANCE OF $30
OR 92% CHANCE OF §0
8% CHANCE OF $31
OR 92% CHANCE OF §0
8% CHANCE OF $32
OR 92% CHANCE OF §0
8% CHANCE OF $33
OR 92% CHANCE OF $0
8% CHANCE OF $34
90% CHANCE OF $0 OR
10% CHANCE OF $24
90% CHANCE OF $0 OR
10% CHANCE OF $24
90% CHANCE OF $0 OR
10% CHANCE OF $24

Figure F.3: Example Price List for Stage 1 C'D Valuation Task with p = 0.8 and r = 0.1
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Option A

Option B

100% chance of $24

2% chance of $0
90% chance of $24

8% chance of $39

Option A

Option B

Figure F.4: Example AB’ Binary Choice from Stage 2 with p = 0.8, r = 0.1, and H = 39

Option A

Option B

100% chance of $24

20% chance of $0

80% chance of $49

Option A

Option B

Figure F.5: Example AB Binary Choice from Stage 2 with p = 0.8, » = 0.1, and H = 49

Option A

Option B

90% chance of $0

10% chance of $24

92% chance of $0

8% chance of $49

Option A

Option B

Figure F.6: Example C'D Binary Choice from Stage 2 with p = 0.8, r = 0.1, and H = 49
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Cluiz Question #1:

Imagine a person who values the lottery shown in Option A below at exactly $24.50.
That is, he would rather have the lottery than any sure amount less than $24.50, but
would rather have the sure amount for any amount greater than $24.50.

How would this person fill out the list below?

OPTION A: OPTION B:

25% CHANCE OF %0, OR
75% CHANCE OF %30

100% CHANCE OF $0

25% CHANCE OF %0,

oy
75% CHANCE OF §30 OR 100% CHANCE OF $1

(! N
25% CHANCE OF 30, OR

.
75% CHANCE OF $30 100% CHANCE OF $2

[ N
25% CHANCE OF 30, OR

75% CHAMCE OF $30 100% CHANCE OF §3

[ N
25% CHANCE OF 30, OR

o
75% CHANCE OF $30 sl B S LE

K N
25% CHANCE OF 30, OR

75% CHANCE OF $30 100% CHANGE OF $22

[ N
25% CHANCE OF 30, OR

75% CHAMCE OF $30 100% CHANCE OF $23

25% CHAMCE OF %0, 0y

B ]
25% CHANCE OF %0, OR

75% CHANCE OF §30 100% CHANCE OF $25

25% CHANCE OF %0, OR

75% CHANCE OF $30 100% CHANCE OF $26

25% CHAMCE OF 50, By
75% CHAMNCE OF 3‘:“:' ':'R 100% CHANCE OF §2T

[ N
25% CHANCE OF 30, OR

75% CHAMCE OF $30 100% CHANCE OF $28

(L N
25% CHANCE OF %0, OR

75% CHANGCE OF $30 100% CHANCE OF $29

25% CHAMNCE OF 50, L

Figure F.7: Incentivized Comprehension Check #1
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Quiz Question #2:

Imagine a person who filled out the list like shown below.

a0% CHANCE OF 50
50% CHANCE OF $10

50% CHANCE OF 50
50% CHANCE OF 811

50% CHANCE OF 50
50% CHANCE OF $12

50% CHANCE OF 50
50% CHANCE OF $13

a0% CHANCE OF 50
50% CHANCE OF §14

60% CHANCE OF %0,
40% CHAMCE OF %30

60% CHAMNCE OF &0,
40% CHANCE OF 830

0% CHAMNCE OF %0,
40% CHANCE OF §30

60% CHANCE OF 30,
40% CHAMNCE OF $30

60% CHANCE OF 50,
40% CHANCE OF 830

B0% CHAMCE OF 50,
40% CHANCE OF 330

60% CHANCE QOF %0,
40% CHAMNGE OF $30

]
Pl

G60% CHANCE OF %0,
40% CHANCE OF $30

]
o

B T

50% CHANCE OF 50
50% CHANCE OF $13

T EE
| manags |
| manmsn
- | mapssan |
a

Given these responses in the list, what would this person choose in the single decision

below?

50% chance of $0
50% chance of $27

60% chance of $0
40% chance of 530

Figure F.8: Incentivized Comprehension Check #2

69



Just for fun to take a little break: Can you spot the animal camouflaged below? Please
click on the image where you think the animal is.

Figure F.9: Example Visual Search Task
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