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A Additional Tables and Figures

Table A.1: Participant Demographics

(1) (2) (3) (4) (5) (6)

Full

Sample

Any

r “ 0.1

Any

r “ 0.2

Any

r “ 0.3

Any

r “ 0.5

Any

r “ 0.8

Number of Participants 2,102 1,247 1,250 1,246 1,221 1,212

Time Taken (in minutes) 27.3 27.2 27.3 27.3 27.3 27.4

Age 25.2 25.1 25.1 25.4 25.2 25.2

Prolific Score 99.8 99.8 99.8 99.8 99.8 99.8

Number of Approvals 304.9 304.7 298.7 310.5 302.9 305.5

Female 50.0 50.6 50.2 49.9 49.5 50.3

Current Student 41.9 42.0 43.7 41.0 40.1 42.0

College Degree 62.1 62.4 61.8 62.5 62.7 62.5

Working (full- or part-time) 59.3 58.5 59.3 60.8 58.9 60.1

English First Language 57.9 58.9 57.2 59.1 58.9 56.8

Attention Checks

Incentive Question Correct 95.5 95.4 95.8 95.7 95.8 95.6

Passed Attention Check 96.3 96.2 96.6 96.4 96.2 96.5

Comprehension Questions

MPL Question Correct 85.2 84.5 85.5 84.5 85.9 84.7

Bin Question Correct 79.4 79.7 79.7 78.9 78.5 79.9

Both Questions Correct 69.4 69.5 69.7 67.7 69.4 69.3

Current Residency

United States 24.6 25.3 23.2 25.2 26.0 24.6

United Kingdom 38.4 37.9 39.8 39.3 37.3 38.0

Portugal 21.8 21.7 22.5 20.5 21.5 22.9

Spain 5.5 5.3 5.0 5.6 5.2 5.8

Germany 3.1 3.4 2.9 3.0 3.1 2.7

Notes: Column (1): participant demographics for all 2,102 participants. Columns (2) to Column (6): partici-

pant demographics if ever assigned to a given value of r across four possible pp, rq pairs.
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Table A.2: Mean Valuations by p and r

hAB hAB1 hCD h1
CD N h1

AB h1
AB1 N

Panel A: r “ 0.1

p “ 0.3 36.78 23.83 31.10 34.43 406 36.24 24.92 208
p “ 0.5 37.99 27.77 31.50 32.59 421 37.62 28.47 203
p “ 0.8 41.34 36.52 34.91 34.86 422 40.50 35.14 205
p “ 0.9 40.37 35.20 34.37 33.81 430 40.36 36.38 219

Panel B: r “ 0.2

p “ 0.3 35.63 26.35 32.16 32.07 425 34.89 23.95 212
p “ 0.5 38.57 29.17 34.00 32.82 468 39.09 30.35 207
p “ 0.8 39.56 36.36 36.52 36.46 419 38.79 35.59 216
p “ 0.9 39.42 38.71 35.20 35.34 398 40.22 39.68 194

Panel C: r “ 0.3

p “ 0.3 36.48 29.14 34.49 34.25 399 36.50 28.76 211
p “ 0.5 39.65 32.95 35.55 35.65 389 38.74 33.89 194
p “ 0.8 42.18 39.37 35.92 36.44 474 40.88 39.01 249
p “ 0.9 39.32 40.14 37.09 37.62 435 39.00 40.26 213

Panel D: r “ 0.5

p “ 0.3 37.38 30.17 38.23 38.00 426 37.64 31.48 207
p “ 0.5 39.28 34.37 39.51 39.58 412 38.62 35.17 221
p “ 0.8 38.75 37.61 37.82 37.71 388 38.87 36.21 191
p “ 0.9 38.58 38.67 37.43 36.78 425 39.12 37.36 197

Panel E: r “ 0.8

p “ 0.3 37.34 34.54 36.73 36.89 446 36.73 35.07 237
p “ 0.5 38.04 37.45 38.67 38.25 412 38.81 36.98 193
p “ 0.8 40.64 41.25 42.56 42.56 399 40.50 41.84 215
p “ 0.9 38.32 39.48 37.87 38.01 414 38.21 38.71 212

Notes: Table presents mean valuations for each pp, rq combination. Each participant provides a valuation
for four pp, rq combinations subject to the restriction that they see each p exactly once. For two pp, rq pairs,
participants report all six valuations: hAB , hAB1 , hCD, h1

AB , h
1
AB1 , and h1

CD. For the remaining two pp, rq pairs,
participants provide four valuations: hAB , hAB1 , hCD, and h1

CD. We randomly label multiple valuations hXY

or h1
XY , so that it was equally likely that either was presented first.
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Table A.3: Correlations Between hXY and h1
XY by p and r

(1) (2) (3) (4) (5)
r “ 0.1 r “ 0.2 r “ 0.3 r “ 0.5 r “ 0.8

Panel A: ρphAB, h
1
ABq

p “ 0.3 0.256 0.369 0.422 0.372 0.617
p “ 0.5 0.402 0.464 0.540 0.586 0.696
p “ 0.8 0.428 0.545 0.395 0.447 0.641
p “ 0.9 0.314 0.497 0.402 0.519 0.548

Panel B: ρph1
AB, h

1
AB1q

p “ 0.3 0.254 0.492 0.439 0.433 0.545
p “ 0.5 0.320 0.406 0.445 0.619 0.614
p “ 0.8 0.564 0.444 0.461 0.475 0.584
p “ 0.9 0.292 0.514 0.385 0.355 0.483

Panel C: ρphCD, h
1
CDq

p “ 0.3 0.452 0.453 0.570 0.538 0.541
p “ 0.5 0.474 0.512 0.410 0.590 0.583
p “ 0.8 0.435 0.484 0.461 0.389 0.529
p “ 0.9 0.462 0.431 0.485 0.453 0.432

Notes: Table reports correlation coefficients calculated using all valuations for which there are multiple measures
for a given individual and pp, rq. Multiple measures of hCD are available for all observations, and therefore an
average sample of 420 observations is used to compute each ρphCD, h1

CDq. Multiple measures of hAB and hAB1 are
available for only half of observations, and therefore an average sample of 210 observations is used to compute each
ρphAB , h

1
ABq and ρphAB1 , h1

AB1 q. The exact sample sizes for each cell are listed in Appendix Table A.2.



Table A.4: Means and Sign Tests

(1) (2) (3) (4) (5) (6) (7) (8)
Number of Cases

Probability Common ∆ Mean Test
∆ ą 0 ∆ “ 0 ∆ ă 0

Sign Test ∆
(p) Ratio (r) (Mean) (p-value) (p-value) (Median)

Panel A: Test of ∆˚
CR “ 0

0.3 0.1 5.68 0.000 224 65 117 0.000 4
0.3 0.2 3.48 0.000 208 60 157 0.009 0
0.3 0.3 1.99 0.016 186 72 141 0.015 0
0.3 0.5 ´0.85 0.243 160 93 173 0.511 0
0.3 0.8 0.61 0.363 176 79 191 0.465 0
0.5 0.1 6.49 0.000 245 71 105 0.000 5
0.5 0.2 4.57 0.000 249 93 126 0.000 1
0.5 0.3 4.10 0.000 215 52 122 0.000 2
0.5 0.5 ´0.23 0.722 153 97 162 0.652 0
0.5 0.8 ´0.63 0.295 146 112 154 0.686 0
0.8 0.1 6.42 0.000 278 50 94 0.000 6
0.8 0.2 3.04 0.000 239 60 120 0.000 3
0.8 0.3 6.26 0.000 299 62 113 0.000 4
0.8 0.5 0.93 0.214 176 65 147 0.119 0
0.8 0.8 ´1.92 0.004 121 76 202 0.000 ´1
0.9 0.1 6.00 0.000 291 55 84 0.000 3
0.9 0.2 4.22 0.000 236 61 101 0.000 2
0.9 0.3 2.23 0.002 230 74 131 0.000 1
0.9 0.5 1.16 0.112 191 77 157 0.077 0
0.9 0.8 0.45 0.443 177 62 175 0.958 0

Panel B: Test of ∆˚
CC “ 0

0.3 0.1 ´10.60 0.000 93 36 277 0.000 ´8
0.3 0.2 ´5.72 0.000 129 50 246 0.000 ´3
0.3 0.3 ´5.11 0.000 121 59 219 0.000 ´2
0.3 0.5 ´7.83 0.000 96 59 271 0.000 ´6
0.3 0.8 ´2.35 0.002 156 73 217 0.002 0
0.5 0.1 ´4.81 0.000 127 54 240 0.000 ´4
0.5 0.2 ´3.65 0.000 128 69 271 0.000 ´4
0.5 0.3 ´2.70 0.002 119 64 206 0.000 ´1
0.5 0.5 ´5.22 0.000 106 67 239 0.000 ´4
0.5 0.8 ´0.80 0.240 136 85 191 0.003 0
0.8 0.1 1.66 0.062 171 86 165 0.785 0
0.8 0.2 ´0.10 0.894 164 60 195 0.113 0
0.8 0.3 2.93 0.000 216 77 181 0.088 0
0.8 0.5 ´0.11 0.887 155 76 157 0.955 0
0.8 0.8 ´1.31 0.071 149 46 204 0.004 ´1
0.9 0.1 1.39 0.059 170 111 149 0.263 0
0.9 0.2 3.36 0.000 182 81 135 0.010 0
0.9 0.3 2.52 0.002 193 70 172 0.295 0
0.9 0.5 1.89 0.009 170 73 182 0.558 0
0.9 0.8 1.46 0.026 170 72 172 0.957 0

Panel C: Test of ∆˚
MX “ 0

0.3 0.1 11.32 0.000 143 27 38 0.000 9
0.3 0.2 10.94 0.000 161 18 33 0.000 10
0.3 0.3 7.74 0.000 127 43 41 0.000 5
0.3 0.5 6.16 0.000 127 35 45 0.000 5
0.3 0.8 1.67 0.031 114 41 82 0.027 0
0.5 0.1 9.15 0.000 144 30 29 0.000 10
0.5 0.2 8.74 0.000 139 38 30 0.000 6
0.5 0.3 4.85 0.000 113 36 45 0.000 4
0.5 0.5 3.45 0.000 111 48 62 0.000 1
0.5 0.8 1.82 0.048 89 48 56 0.008 0
0.8 0.1 5.36 0.000 132 35 38 0.000 5
0.8 0.2 3.19 0.001 125 35 56 0.000 4
0.8 0.3 1.87 0.049 144 36 69 0.000 2
0.8 0.5 2.66 0.009 107 32 52 0.000 2
0.8 0.8 ´1.34 0.117 70 53 92 0.099 0
0.9 0.1 3.98 0.001 134 37 48 0.000 3
0.9 0.2 0.54 0.634 87 37 70 0.201 0
0.9 0.3 ´1.26 0.218 86 40 87 1.000 0
0.9 0.5 1.76 0.103 95 45 57 0.003 0
0.9 0.8 ´0.50 0.519 79 42 91 0.399 0

Notes: Means test and sign test for ∆CR, ∆CC , and ∆MX for each pp, rq combination. We conduct a two-sided t-test
for the difference in means. We also conduct a two-sided sign test, where we exclude all ties (instances of ∆Z “ 0). See
Appendix C.1 for test descriptions.
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Table A.7: Sensitivity of Results to Experimental Parameters in our Stage-2 Experiments

Panel A. Experimental-Parameter Sensitivity

(1) (2) (3)

CR CC MX

Study Study Study

Probability (p) 26.25 51.32 ´27.65

(7.43) (7.11) (7.09)

Common Ratio (r) ´34.80 ´0.46 ´29.63

(3.20) (3.13) (2.97)

Outcome Mean 10.45 ´5.77 16.00

Experiments 120 120 120

Observations 8,408 8,408 8,408

Panel B. Canonical vs. Non-Canonical Parameters

(4) (5) (6)

Canonical
Non-

Canonical
Difference

(i): KT Parameters

CRE ´ RCRE 17.44 9.57 ´7.35

(8.47) (13.79) [´1.86]

Experiments 12 108 120

(ii): Allais Parameters

CCE ´ RCCE 8.17 ´6.79 ´14.96

(6.04) (12.93) [´2.81]

Experiments 6 114 120

Notes: Panel A presents linear regressions that assess the sensitivity of experimental results from CR, CC, or MX studies

from our stage 2 experiments. The specifications include the probability of the high outcome (p), the common ratio (r)

linearly, and a constant. Column (1) presents the results for the 120 CR experiments that we conducted in stage 2 of our

experiment, where the outcome is the net share of participants displaying a CRE relative to an RCRE, CRE ´ RCRE.

Column (2) presents the results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the

outcome is the net share of participants displaying a CCE relative to an RCCE, CCE´RCCE. Column (3) presents the

results for the 120 CC experiments that we conducted in stage 2 of our experiment, where the outcome is the net share

of participants displaying a MXE relative to an RMXE, MXE ´ RMXE. Standard errors are in parentheses. Panel

B presents the average of these outcomes based on whether our stage 2 experiments were conducted at the canonical

parameters in Kahneman and Tversky (1979) (p “ 0.8, r P t0.2, 0.3u) or Allais (1953) (p “ 0.9, r “ 0.1). Standard

deviations are in parentheses, and t-statistics are in brackets.
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Figure A.1: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 1,296 observations from the parameters r P t0.1, 0.2, 0.3u and p P t0.8, 0.9u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.2: Histogram of Response Patterns for r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 2,908 observations from the parameters r R t0.1, 0.2, 0.3u or p R t0.8, 0.9u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.3: Histogram of Response Patterns for r P t0.1, 0.2, 0.3u and p P t0.3, 0.5u
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Notes: Figure presents histogram of psignp∆CRq, signp∆CCq, signp∆MXqq combinations, where ∆CR “ hAB ´hCD,
∆CC “ hAB1 ´ h1

DE , and ∆MX “ h1
AB ´ h1

AB1 . Each variable can have three potential signs, leading to 27 possible
patterns. These signs correspond to the named patterns (e.g., CR to ∆CR ą 0, RCR to ∆CR ă 0, and �CR to
∆CR “ 0). The histogram covers the 2,508 observations from the parameters r P t0.1, 0.2, 0.3u or p P t0.3, 0.5u for
which we elicit h1

AB and h1
AB1 . Patterns marked in light green are ones with ∆CR ą 0 and ∆CC ą 0.
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Figure A.4: Predicting Stage 2 Choice Probabilities using Stage 1 Valuations
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Panel D: PrpA|tA,Buq
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Panel B: PrpA|tA,B1uq
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Panel E: PrpA|tA,B1uq
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Panel C: PrpC|tC,Duq
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Panel F: PrpC|tC,Duq
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Notes: Figure relates individual stage 1 measures of hXY ´ H to stage 2 choice shares PrpX|tX,Y uq. Panels

A-C use raw stage 1 responses. Panels D-F use the estimated population distribution of preferences from the

decomposition in Section 4.2 combined with a participant’s raw stage 1 valuations to generate a posterior preference

measure Erh˚
XY |stage 1s for that participant. For each x-axis, one hundred equally sized bins are constructed with

approximately 168 observations per bin. Within each bin, the stage 2 choice share is calculated to construct the

y-axis. Due to a large number of observations at some values, there are 94, 93, and 91 unique bins in panels A, B,

and C, respectively. To make valuations comparable across pp, rq, all stage 1 measures are scaled by p to control for

the fact that a fixed value of the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix

C.3 for details).



B Predictions of Existing Non-EU Models (for Table 1)

In this appendix, we derive the predictions presented in Table 1. To review the structure, given

parameters pM,p, rq, h˚
AB, h

˚
AB1 , and h˚

CD are the indifference values that satisfy the following

indifference conditions:

pM, 1q „ ph˚
AB, pq

pM, 1q „ ph˚
AB1 , pr;M, 1 ´ rq

pM, rq „ ph˚
CD, prq

The objects of interest are then:

∆˚
CR ” h˚

AB ´ h˚
CD

∆˚
CC ” h˚

AB1 ´ h˚
CD

∆˚
MX ” h˚

AB ´ h˚
AB1

B.1 Original Prospect Theory (OPT)

Under original prospect theory (OPT) as in Kahneman and Tversky (1979), the indifference values

are determined from:

vpMq “ πppqvph˚
ABq ðñ h˚

AB “ v´1

ˆ

1

πppq
vpMq

˙

vpMq “ πpprqvph˚
AB1q ` πp1 ´ rqvpMq ðñ h˚

AB1 “ v´1

ˆ

1 ´ πp1 ´ rq

πpprq
vpMq

˙

πprqvpMq “ πpprqvph˚
CDq ðñ h˚

CD “ v´1

ˆ

πprq

πpprq
vpMq

˙

Hence:

∆˚
CR ą 0 ðñ h˚

AB ą h˚
CD ðñ

1

πppq
ą

πprq

πpprq

∆˚
CC ą 0 ðñ h˚

AB1 ą h˚
CD ðñ 1 ´ πp1 ´ rq ą πprq

∆˚
MX ą 0 ðñ h˚

AB ą h˚
AB1 ðñ

1

πppq
ą

1 ´ πp1 ´ rq

πpprq

In this formulation, vpxq is a value function defined over experimental gains and losses, but note

that as long as v is monotonically increasing, its form is irrelevant to OPT’s predictions for the

sign of ∆˚
CR, ∆

˚
CC , and ∆˚

MX . In contrast, πpqq is a probability weighting function that transforms

probabilities into decision weights, and its form fully determines those predictions. Here, we derive
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predictions using the functional form from Tversky and Kahneman (1992):

πpqq “
qδ

rqδ ` p1 ´ qqδs
1{δ

This one-parameter functional form nests the EU case of πpqq “ q when δ “ 1. For δ P p0.279, 1q,

it has the inverse-S shape emphasized by Tversky and Kahneman (1992) and the subsequent liter-

ature: It is initially concave and then convex, with overweighting (πpqq ą q) for small q and then

underweighting (πpqq ă q) for larger q.B1 Tversky and Kahneman (1992) suggest a δ of roughly 0.6.

For δ ą 1, this functional form initially yields an S-shape—initially convex and then concave with

underweighting for small q and then overweighting for larger q—but eventually becomes convex

with underweighting for all q P p0, 1q.

OPT Result:

(1) δ P p0.279, 1q implies ∆˚
CR ą 0 and ∆˚

CC ą 0; ∆˚
MX can be positive or negative

depending on pp, rq combination.

(2) δ ą 1 implies ∆˚
CR ă 0, ∆˚

CC ą 0, and ∆˚
MX ă 0.

Proof: Consider first the ∆˚
CR results. Rearranging the condition above yields

∆˚
CR : 0 ðñ

πpprq

πprq
: πppq

which we can write as

pprqδ

rpprqδ ` p1 ´ prqδs
1{δ

“

prqδ ` p1 ´ rqδ
‰1{δ

prqδ
:

ppqδ

rppqδ ` p1 ´ pqδs
1{δ

.

Canceling terms and then taking both sides to the power δ yields

prqδ ` p1 ´ rqδ

pprqδ ` p1 ´ prqδ
:

1

ppqδ ` p1 ´ pqδ

rppqδ ` p1 ´ pqδsrprqδ ` p1 ´ rqδs : pprqδ ` p1 ´ prqδ

pprqδ ` ppp1 ´ rqqδ ` prp1 ´ pqqδ ` pp1 ´ pqp1 ´ rqqδ : pprqδ ` p1 ´ prqδ

ppp1 ´ rqqδ ` prp1 ´ pqqδ ` pp1 ´ pqp1 ´ rqqδ : p1 ´ prqδ

Note that we can rewrite this as

aδ ` bδ ` cδ : dδ

where a “ pp1 ´ rq, b “ rp1 ´ pq, c “ p1 ´ pqp1 ´ rq, and d “ 1 ´ pr, and note that a ` b ` c “ d.

Then because the function fpxq “ xδ is concave when δ ă 1, it follows that a ` b ` c “ d implies

B1For δ P p0, 0.279q, πpqq is nonmonotonic (Ingersoll, 2008).
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fpaq ` fpbq ` fpcq ą fpdq, and thus δ ă 1 implies ∆˚
CR ą 0. Analogously, fpxq is convex when

δ ą 1, so a ` b ` c “ d implies fpaq ` fpbq ` fpcq ă fpdq, and thus δ ą 1 implies ∆˚
CR ă 0.

Next consider the ∆˚
CC results. Rearranging the condition above yields

∆˚
CC : 0 ðñ 1 : πprq ` πp1 ´ rq

which we can write as

1 :
prqδ

rprqδ ` p1 ´ rqδs
1{δ

`
p1 ´ rqδ

rprqδ ` p1 ´ rqδs
1{δ

1 :
”

prqδ ` p1 ´ rqδ
ı1´1{δ

When δ ă 1: r ă 1 and δ ă 1 implies rδ ą r and p1 ´ rqδ ą 1 ´ r and thus prqδ ` p1 ´ rqδ ą 1. In

addition, δ ă 1 implies 1 ´ 1{δ ă 0, and thus
“

prqδ ` p1 ´ rqδ
‰1´1{δ

ă 1 and therefore ∆˚
CC ą 0.

When δ ą 1: r ă 1 and δ ą 1 implies rδ ă r and p1 ´ rqδ ă 1 ´ r and thus prqδ ` p1 ´ rqδ ă 1.

In addition, δ ą 1 implies 1 ´ 1{δ ą 0, and thus
“

prqδ ` p1 ´ rqδ
‰1´1{δ

ă 1 and therefore again

∆˚
CC ą 0.

Finally, when δ ą 1, the combination of ∆˚
CR ă 0 and ∆˚

CC ą 0 implies ∆˚
MX “ ∆˚

CR ´ ∆˚
CC ă 0.

In contrast, for δ ă 1, it is possible for ∆˚
MX to be positive or negative.

■

B.2 Cumulative Prospect Theory (CPT)

Cumulative prospect theory (CPT) as in Tversky and Kahneman (1992) differs from OPT only for

gambles with more than one non-zero outcome. In our context, this means they differ only in the

evaluation of lottery B1. Hence, the h˚
AB and h˚

CD indifference values are as in OPT, but the h˚
AB1

indifference value is now determined from:

vpMq “ πpprqvph˚
AB1q ` pπppr ` 1 ´ rq ´ πpprqqvpMq

ðñ h˚
AB1 “ v´1

ˆ

1 ´ pπppr ` 1 ´ rq ´ πpprqq

πpprq
vpMq

˙

Hence, we now have:

∆˚
CR ą 0 ðñ h˚

AB ą h˚
CD ðñ

1

πppq
ą

πprq

πpprq

∆˚
CC ą 0 ðñ h˚

AB1 ą h˚
CD ðñ 1 ´ pπppr ` 1 ´ rq ´ πpprqq ą πprq

∆˚
MX ą 0 ðñ h˚

AB ą h˚
AB1 ðñ

1

πppq
ą

1 ´ pπppr ` 1 ´ rq ´ πpprqq

πpprq
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As in OPT, the value function v is irrelevant for the model’s predictions for the sign of ∆˚
CR, ∆

˚
CC ,

and ∆˚
MX , which are fully determined by the form of the probability weighting function π. Here,

we again derive predictions using the functional form from Tversky and Kahneman (1992).

CPT Result:

(1) δ P p0.279, 1q implies ∆˚
CR ą 0 and ∆˚

CC ą 0; ∆˚
MX can be positive or negative.

(2) δ ą 1 implies ∆˚
CR ă 0; ∆˚

CC and ∆˚
MX can be positive or negative.

Proof: The ∆˚
CR equations are the same as in OPT, and thus the proof from the OPT Result still

holds. So we just need to prove that δ P p0.279, 1q implies ∆˚
CC ą 0.

We begin with two preliminary results. First, note that for all δ ą 0.279,

πp1{2q “
p1{2qδ

r2p1{2qδs
1{δ

“

ˆ

1

2

˙δ´ δ´1
δ

ă
1

2
because δ ´

δ ´ 1

δ
ą 1.

Second, we prove that

πp1 ´ aq ´ πp1 ´ bq ą πpbq ´ πpaq for any 0 ď a ă b ď 1{2 (B.1)

In words, equation (B.1) says that πpqq is steeper for q above 1{2 than for q below 1{2. To prove

this, we rewrite the inequality in equation (B.1) as πpaq ` πp1 ´ aq ą πpbq ` πp1 ´ bq, which yields

paqδ ` p1 ´ aqδ

rpaqδ ` p1 ´ aqδs
p1{δq

ą
pbqδ ` p1 ´ bqδ

rpbqδ ` p1 ´ bqδs
p1{δq

”

paqδ ` p1 ´ aqδ
ı1´p1{δq

ą

”

pbqδ ` p1 ´ bqδ
ı1´p1{δq

Then because

d
“

pxqδ ` p1 ´ xqδ
‰1´p1{δq

dx
“ p1 ´ p1{δqq

”

pxqδ ` p1 ´ xqδ
ı´p1{δq

δpxδ´1 ´ p1 ´ xqδ´1q

is negative as long as δ ă 1 and x ă 1{2, equation (B.1) follows.

We now prove that δ P p0.279, 1q implies ∆˚
CC ą 0. The ∆˚

CC condition can be written as

∆˚
CC ą 0 ðñ

1 ` πpprq

2
ą

πppr ` 1 ´ rq ` πprq

2

Let’s define z such that mintr, pr`1´ru ” pr`z, and note that this implies that maxtr, pr`1´ru “

1 ´ z (so that prq ` ppr ` 1 ´ rq “ ppr ` zq ` p1 ´ zq “ 1 ` pr). We can then rewrite the ∆˚
CC

condition as

∆˚
CC ą 0 ðñ

1 ` πpprq

2
ą

πppr ` zq ` πp1 ´ zq

2
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The LHS is the y-value for the midpoint of the line segment that connects the points ppr, πpprqq and

p1, 1q, while the RHS is the y-value for the midpoint of the line segment that connects the points

ppr ` z, πppr ` zqq and p1 ´ z, πp1 ´ zqq, where the x-value for both midpoints is p1 ` prq{2. Given

the inverse-S shape of πpqq for δ P p0.279, 1q and the fact that πp1{2q ă 1{2, the LHS line segment

can intersect πpqq for at most one q̄ P ppr, 1q. Moreover, if such a q̄ exists, then pr ă q̄ ă 1{2,

πpprq ą pr and πpq̄q ą q̄.

If such a q̄ does not exist, then the LHS line segment must be everywhere above the RHS line

segment, and thus the ∆˚
CC condition holds.

If such a q̄ exists but pr ` z ą q̄, then again the LHS line segment must be everywhere above the

RHS line segment, and thus the ∆˚
CC condition holds.

Finally, suppose such a q̄ exists but pr ` z ă q̄ ă 1{2. If π is concave at q̄ and thus concave

for all q ă q̄, then πppr ` zq ´ πpprq ă πpzq ă 1 ´ πp1 ´ zq (where the first inequality follows

from the concavity of π for q ă q̄ and the second inequality follows from equation (B.1) with

a “ 0 and b “ z ă 1{2), and thus the ∆˚
CC condition holds. Suppose instead π is convex at q̄

and thus convex for all q ą q̄. Because pr ` z ă q̄ ă 1{2 and thus 1 ´ pr ´ z ą 1{2, we have

πppr ` zq ´ πpprq ă πp1 ´ prq ´ πp1 ´ pr ´ zq ă 1 ´ πp1 ´ zq (where the first inequality follows

from equation (B.1) and the second inequality follows from the fact that π is convex for all q ą q̄).

Hence, again the ∆˚
CC condition holds.

This covers all cases, and hence δ P p0.279, 1q implies ∆˚
CC ą 0.

Finally, we note that a symmetric argument does not work for δ ą 1 because equation (B.1)

does not flip to maintain the symmetry. More precisely, if pr ` z ą q̄, an analogous argument

implies that ∆˚
CC ă 0. But when pr ` z ă q̄, equation (B.1) still implies πppr ` zq ´ πpprq ă

πp1 ´ prq ´ πp1 ´ pr ´ zq, and this creates the possibility that ∆˚
CC ą 0—in fact, it is easy to

generate such examples.

■

B.3 Kőszegi-Rabin Loss Aversion Under CPE

We next consider predictions from the Kőszegi-Rabin 2007 model of loss aversion when we ap-

ply choice-acclimating personal equilibrium (CPE). Under CPE, the utility from a lottery X ”

px, qH ; 0, qLq where x ą 0 and qH ` qL “ 1 is

UpXq “ qHupxq ´ ΛqHqLupxq

and the utility from a lottery Y ” px, qH ; y, qM ; 0, qLq where x ą y ą 0 and qH ` qM ` qL “ 1 is

UpY q “ qHupxq ` qMupyq ´ ΛqHpqM ` qLqupxq ´ ΛqM pqL ´ qHqupyq.
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where the parameter Λ is a measure of loss aversion.B2 Λ ą 0 implies loss aversion (losses loom larger

than gains), and Λ ă 0 implies gain attraction (gains loom larger than losses).In this formulation,

u is the person’s intrinsic utility over outcomes (e.g., that might be used under EU), where we have

normalized up0q “ 0.

Applied to our context, the indifference values are determined from:

upMq “ puph˚
ABq ´ Λpp1 ´ pquph˚

ABq

upMq “ pruph˚
AB1q ` p1 ´ rqupMq ´ Λprp1 ´ prquph˚

AB1q ´ Λp1 ´ rqrp1 ´ 2pqupMq

rupMq ´ Λrp1 ´ rqupMq “ pruph˚
CDq ´ Λprp1 ´ prquph˚

CDq

from which we can derive:

h˚
AB “ u´1

ˆ

1

pp1 ´ Λp1 ´ pqq
upMq

˙

h˚
AB1 “ u´1

ˆ

1 ` Λp1 ´ rqp1 ´ 2pq

pp1 ´ Λp1 ´ prqq
upMq

˙

h˚
CD “ u´1

ˆ

1 ´ Λp1 ´ rq

pp1 ´ Λp1 ´ prqq
upMq

˙

.

To ensure this model is well-behaved, we put two restrictions on the range of Λ. First, if Λ

becomes too positive, utility can be decreasing in h. For instance, the utility from lottery D can

be written as rpr ´Λprp1´ prqsuphq, and this is increasing in h only if Λ ă 1{p1´ prq. To rule out

these perverse cases, we restrict Λ ď 1. Second, if Λ becomes too negative, the indifference values

can be smaller than M . For instance, h˚
AB ą M requires 1{ppp1 ´ Λp1 ´ pqqq ą 1 or Λ ą ´1{p. To

rule out these perverse cases, we restrict Λ ě ´1.

With these restrictions in place:

∆˚
CR ą 0 ðñ h˚

AB ą h˚
CD ðñ

1

pp1 ´ Λp1 ´ pqq
ą

1 ´ Λp1 ´ rq

pp1 ´ Λp1 ´ prqq

∆˚
CC ą 0 ðñ h˚

AB1 ą h˚
CD ðñ 1 ` Λp1 ´ rqp1 ´ 2pq ą 1 ´ Λp1 ´ rq

∆˚
MX ą 0 ðñ h˚

AB ą h˚
AB1 ðñ

1

pp1 ´ Λp1 ´ pqq
ą

1 ` Λp1 ´ rqp1 ´ 2pq

pp1 ´ Λp1 ´ prqq

Note that, much as for the value function under OPT and CPT, the utility function u is

irrelevant for the model’s predictions for the sign of ∆˚
CR, ∆

˚
CC , and ∆˚

MX , where in this model

these are fully determined by the value of the parameter Λ.

Koszegi-Rabin CPE Result:

(1) Λ P p0, 1s implies ∆˚
CR ą 0, ∆˚

CC ą 0, and ∆˚
MX ă 0.

(2) Λ P r´1, 0q implies ∆˚
CR ă 0, ∆˚

CC ă 0, and ∆˚
MX ą 0.

B2The Kőszegi and Rabin (2007) model has two parameters, a parameter η which captures the relative importance
of gain-loss utility versus intrinsic utility, and a parameter λ that captures loss aversion. However, under CPE these
parameters always appear as the product ηpλ ´ 1q and thus cannot be distinguished, so we define Λ ” ηpλ ´ 1q.
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Proof: Consider first the ∆˚
CR condition, which we can write as:

∆˚
CR : 0 ðñ

1

1 ´ Λp1 ´ pq
:
1 ´ Λp1 ´ rq

1 ´ Λp1 ´ prq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“

p1 ´ Λp1 ´ prqqΛ ´ p1 ´ Λp1 ´ rqqΛp

p1 ´ Λp1 ´ prqq2
“

p1 ´ pqpΛ ´ Λ2q

p1 ´ Λp1 ´ prqq2

If Λ P p0, 1s, then Λ ´ Λ2 ą 0 and thus dRHS{dr ą 0, from which it follows that ∆˚
CR ą 0 for all

r ă 1.

If Λ P r´1, 0q, then Λ´Λ2 ă 0 and thus dRHS{dr ă 0, from which it follows that ∆˚
CR ă 0 for all

r ă 1.

Next consider the ∆˚
CC condition, which we can write as:

∆˚
CC : 0 ðñ 1 ` Λp1 ´ rqp1 ´ 2pq : 1 ´ Λp1 ´ rq

ðñ 2Λp1 ´ rqp1 ´ pq : 0

Since the LHS is positive for Λ P p0, 1s and negative for Λ P r´1, 0q, ∆˚
CC ą 0 for any Λ P p0, 1s

and ∆˚
CC ă 0 for any Λ P r´1, 0q.

Finally consider the ∆˚
MX condition, which we can write as:

∆˚
MX : 0 ðñ

1

1 ´ Λp1 ´ pq
:
1 ` Λp1 ´ rqp1 ´ 2pq

1 ´ Λp1 ´ prq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“

p1 ´ Λp1 ´ prqqp´Λp1 ´ 2pqq ´ p1 ` Λp1 ´ rqp1 ´ 2pqqΛp

p1 ´ Λp1 ´ prqq2

“
Λpp ´ 1q ` Λ2p1 ´ 2pqp1 ´ pq

p1 ´ Λp1 ´ prqq2
“

p1 ´ pqΛ r´1 ` Λp1 ´ 2pqs

p1 ´ Λp1 ´ prqq2

For Λ P p0, 1s, p ą 1{2 clearly implies dRHS{dr ă 0, and when p ă 1{2 then Λ ď 1 implies

´1 ` Λp1 ´ 2pq ă 0 and thus again dRHS{dr ă 0. It follows that ∆˚
MX ă 0 for any Λ P p0, 1s.

For Λ P r´1, 0q, p ă 1{2 clearly implies dRHS{dr ą 0, and when p ą 1{2 then Λ ě ´1 implies

´1 ` Λp1 ´ 2pq ă 0 and thus again dRHS{dr ą 0. It follows that ∆˚
MX ą 0 for any Λ P r´1, 0q.

■
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B.4 Bell Disappointment Aversion (Bell DA)

Next, we consider predictions from Bell’s (1985) model of disappointment aversion. Under this

model, the utility from a lottery X ” px1, p1; ...;xN , pN q is

UpXq “

˜

N
ÿ

n“1

pnupxnq

¸

´ β

˜

N
ÿ

n“1

pnI
`

upxnq ă Ū
˘ `

Ū ´ upxnq
˘

¸

,

where up¨q is an intrinsic utility function, and Ū ”
řN

i“1 piupxiq is the expected intrinsic utility.

When the parameter β ą 0, it reflects a (constant) marginal disutility of disappointment experi-

enced when one’s realized intrinsic utility is below the expected intrinsic utility. If β ă 0, then ´β

effectively reflects a (constant) marginal utility of elation experienced when one’s realized intrinsic

utility is above the expected intrinsic utility.B3

Applied to our context, the indifference values for h˚
AB and h˚

CD are determined from:

upMq “ puph˚
ABq ´ βp1 ´ pqppuph˚

ABq ´ 0q

rupMq ´ βp1 ´ rqprupMq ´ 0q “ pruph˚
CDq ´ βp1 ´ prqppruph˚

CDq ´ 0q

and thus

h˚
AB “ u´1

ˆ

1

pp1 ´ βp1 ´ pqq
upMq

˙

and h˚
CD “ u´1

ˆ

1 ´ βp1 ´ rq

pp1 ´ βp1 ´ prqq
upMq

˙

Note that for two-outcome lotteries such as our lotteries B, C, and D, the utilities under Bell

DA are equivalent to those under Koszegi-Rabin CPE, where β replaces Λ. Hence, we need an

analogous restriction that the range of β is r´1, 1s.

For the h˚
AB1 indifference value, we must carefully assess whether, at the indifference value,

upMq is larger or smaller than the expected intrinsic utility pruph˚
AB1q ` p1 ´ rqupMq because

that matters for the utility from lottery B1. We can write pruph˚
AB1q ` p1 ´ rqupMq ą upMq as

uph˚
AB1q ą upMq{p. If we assume that uph˚

AB1q ą upMq{p, then the h˚
AB1 is determined from:

upMq “ pruph
˚p1q

AB1q ` p1 ´ rqupMq ´ βp1 ´ rqppruph
˚p1q

AB1q ` p1 ´ rqupMq ´ upMqq

´βrp1 ´ pqppruph
˚p1q

AB1q ` p1 ´ rqupMq ´ 0q

ðñ h
˚p1q

AB1 “ u´1

ˆ

1 ´ βpp1 ´ rq

pp1 ´ βp1 ´ prqq
upMq

˙

Note that as long as 1 ´ βp1 ´ prq ą 0, uph˚
AB1q ą upMq{p when 1 ´ βpp1 ´ rq ą 1 ´ βp1 ´ prq,

or βp1 ´ pq ą 0, which holds as long as β ą 0. Since 1 ´ βp1 ´ prq ą 0 for all β P r0, 1s, it follows

B3Bell (1985) further assumes that upxq “ x and has separate parameters for disappointment (d) and elation (e).
His model is equivalent to the version in the text with β “ d´e. Loomes and Sugden (1986) also use this formulation,
but they consider nonlinear disappointment and elation.
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that h˚
AB1 “ h

˚p1q

AB1 for all β P r0, 1s.

If we instead assume that uph˚
AB1q ă upMq{p, then the h˚

AB1 is determined from:

upMq “ pruph
˚p2q

AB1q ` p1 ´ rqupMq ´ βrp1 ´ pqppruph
˚p2q

AB1q ` p1 ´ rqupMq ´ 0q

ðñ h
˚p2q

AB1 “ u´1

ˆ

1 ` βp1 ´ pqp1 ´ rq

pp1 ´ βrp1 ´ pqq
upMq

˙

Note that as long as 1´βrp1´pq ą 0, uph˚
AB1q ă upMq{p when 1`βp1´pqp1´rq ă 1´βrp1´pq,

or βp1 ´ pq ă 0, which holds as long as β ă 0. Since 1 ´ βrp1 ´ pq ą 0 for all β P r´1, 0s, it follows

that h˚
AB1 “ h

˚p2q

AB1 for all β P r´1, 0s.

Given these indifference values:

∆˚
CR ą 0 ðñ h˚

AB ą h˚
CD ðñ

1

1 ´ βp1 ´ pq
ą

1 ´ βp1 ´ rq

1 ´ βp1 ´ prq

∆˚
CC ą 0 ðñ h˚

AB1 ą h˚
CD ðñ 1 ´ βpp1 ´ rq ą 1 ´ βp1 ´ rq if β P r0, 1s

1 ` βp1 ´ pqp1 ´ rq

1 ´ βrp1 ´ pq
ą

1 ´ βp1 ´ rq

1 ´ βp1 ´ prq
if β P r´1, 0s

∆˚
MX ą 0 ðñ h˚

AB ą h˚
AB1 ðñ

1

1 ´ βp1 ´ pq
ą

1 ´ βpp1 ´ rq

1 ´ βp1 ´ prq
if β P r0, 1s

1

1 ´ βp1 ´ pq
ą

1 ` βp1 ´ pqp1 ´ rq

1 ´ βrp1 ´ pq
if β P r´1, 0s

Hence, under Bell DA, the model’s predictions for the sign of ∆˚
CR, ∆

˚
CC , and ∆˚

MX are deter-

mined by the value of the parameter β.

Bell DA Result:

(1) β P p0, 1q implies ∆˚
CR ą 0, ∆˚

CC ą 0, and ∆˚
MX ă 0.

(2) β P p´1, 0q implies ∆˚
CR ă 0, ∆˚

CC ă 0, and ∆˚
MX ą 0.

Proof: For ∆˚
CR, the condition is equivalent to that under Koszegi-Rabin CPE, and thus the proof

is the same.

Next consider the ∆˚
CC condition.

For β P r0, 1s, ∆˚
CC ą 0 if 1 ´ βpp1 ´ rq ą 1 ´ βp1 ´ rq or βp1 ´ rqp1 ´ pq ą 0, which holds for any

β P r0, 1s.

For β P r´1, 0s, ∆˚
CC ă 0 if

1 ` βp1 ´ pqp1 ´ rq

1 ´ βrp1 ´ pq
ă

1 ´ βp1 ´ rq

1 ´ βp1 ´ prq

p1 ` βp1 ´ pqp1 ´ rqqp1 ´ βp1 ´ prqq ă p1 ´ βp1 ´ rqqp1 ´ βrp1 ´ pqq

βpp1 ´ pqp1 ´ rq ´ p1 ´ prqq ´ β2p1 ´ pqp1 ´ rqp1 ´ prq ă ´βp1 ´ prq ` β2p1 ´ pqp1 ´ rqr

βp1 ´ pqp1 ´ rqp1 ´ βp1 ´ pr ` rqq ă 0
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which holds for any β P r´1, 0s.

Finally consider the ∆˚
MX condition.

For β P r0, 1s:

∆˚
MX : 0 ðñ

1

1 ´ βp1 ´ pq
ą

1 ´ βpp1 ´ rq

1 ´ βp1 ´ prq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“

p1 ´ βp1 ´ prqqpβpq ´ p1 ´ βpp1 ´ rqqpβpq

p1 ´ βp1 ´ prqq2
“

´β2pp1 ´ pq

p1 ´ βp1 ´ prqq2

Hence, β P r0, 1s implies dRHS{dr ă 0, and thus ∆˚
MX ă 0 for any r ă 1.

For β P r´1, 0s:

∆˚
MX : 0 ðñ

1

1 ´ βp1 ´ pq
ą

1 ` βp1 ´ pqp1 ´ rq

1 ´ βrp1 ´ pq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“

p1 ´ βrp1 ´ pqqp´βp1 ´ pqq ´ p1 ´ βp1 ´ pqp1 ´ rqqp´βp1 ´ pqq

p1 ´ βrp1 ´ pqq2
“

β2p1 ´ pq2

p1 ´ βp1 ´ prqq2

Hence, β P r´1, 0s implies dRHS{dr ą 0, and thus ∆˚
MX ą 0 for any r ă 1.

■

B.5 Gul Disappointment Aversion (Gul DA)

We next consider predictions from the Gul (1991) model of disappointment aversion. Under this

model, the utility from a lottery X ” px1, p1; ...;xN , pN q is the UpXq that satisfies

UpXq “

˜

N
ÿ

n“1

pnupxnq

¸

´ β

˜

N
ÿ

n“1

pnI pupxnq ă UpXqq pUpXq ´ upxnqq

¸

,

where upxq is an intrinsic utility function, and a person experiences disappointment when their

realized intrinsic utility is below the overall utility of the lottery UpXq. As in Bell DA, β ą 0 is

disappointment aversion while β ă 0 is elation-loving. Applying this to binary gambles of the form

X ” px, qH ; 0, qLq, this becomes

UpXq “ qHupxq ´ βqLpUpXq ´ 0qq ðñ UpXq “
qH

1 ` βqL
upxq.
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Gul imposes β ą ´1, which guarantees that UpXq is increasing in the payoff x for any qL. This

model does not require an upper bound for β. The indifference values h˚
AB and h˚

CD are given by:

upMq “
p

1 ` βp1 ´ pq
uph˚

ABq ðñ h˚
AB “ u´1

ˆ

1 ` βp1 ´ pq

p
upMq

˙

r
1`βp1´rq

upMq “
pr

1`βp1´prq
uph˚

CDq ðñ h˚
CD “ u´1

ˆ

1 ` βp1 ´ prq

pp1 ` βp1 ´ rqq
upMq

˙

For the h˚
AB1 indifference value, in principle, we must carefully assess whether, at the indifference

value, upMq is larger or smaller than UpB1q (analogous to what we did for Bell DA). However,

because h˚
AB1 is determined by the condition upMq “ UpB1q, we know that upMq “ UpB1q at

H “ h˚
AB1 . It follows that, at H “ h˚

AB1 , we have:

UpB1q “ prupHq ` p1 ´ rqupMq ´ βrp1 ´ pqpUpB1q ´ 0q

or

UpB1q “
pr

1 ` βrp1 ´ pq
upHq `

1 ´ r

1 ` βrp1 ´ pq
upMq.

Then h˚
AB1 is derived from

upMq “
pr

1 ` βrp1 ´ pq
uph˚

AB1q `
1 ´ r

1 ` βrp1 ´ pq
upMq ðñ h˚

AB1 “ u´1

ˆ

1 ` βp1 ´ pq

p
upMq

˙

Notice that h˚
AB1 “ h˚

AB and thus ∆˚
MX “ 0 (a well known property of Gul DA) and thus ∆˚

CR “

∆˚
CC . Hence, there is only one remaining condition to consider:

∆˚
CR “ ∆˚

CC ą 0 ðñ h˚
AB “ h˚

AB1 ą h˚
CD ðñ 1 ` βp1 ´ pq ą

1`βp1´prq

1`βp1´rq

Hence, under Gul DA, the model’s predictions for the sign of ∆˚
CR, ∆

˚
CC , and ∆˚

MX are deter-

mined by the value of the parameter β.

Gul DA Result:

(1) β ą 0 implies ∆˚
CR “ ∆˚

CC ą 0 and ∆˚
MX “ 0.

(2) β P p´1, 0q implies ∆˚
CR “ ∆˚

CC ă 0, and ∆˚
MX “ 0.

Proof: The ∆˚
CR condition is:

∆˚
CR : 0 ðñ 1 ` βp1 ´ pq :

1 ` βp1 ´ prq

1 ` βp1 ´ rq

The LHS is independent of r. The RHS is equal to the LHS when r “ 1, and moreover

dRHS

dr
“

p1 ` βp1 ´ rqqp´βpq ´ p1 ` βp1 ´ prqqp´βq

p1 ` βp1 ´ rqq2
“

pβ ` β2qp1 ´ pq

p1 ` βp1 ´ rqq2

23



Hence, β ą 0 implies dRHS{dr ą 0 and thus ∆˚
CR “ ∆˚

CC ą 0, while β P p´1, 0q implies

dRHS{dr ă 0 and thus ∆˚
CR “ ∆˚

CC ă 0.

■

B.6 Cautious Expected Utility (CEU)

We next consider the implications of the cautious expected utility (CEU) model introduced by

Cerreia-Vioglio et al. (2015). Unlike the models above, their focus is a representation theorem and

not a parameterized model, but firm predictions for our context follow from their axioms.

To illustrate, suppose we fix H “ h˚
AB so that B „ A. Because lottery A is a sure amount, their

key axiom of negative certainty independence (NCI) implies that rB ` p1 ´ rq0 Á rA ` p1 ´ rq0

for any r P p0, 1q. Because rB ` p1 ´ rq0 “ D and rA ` p1 ´ rq0 “ C, CEU permits a CRP (i.e.,

∆˚
CR ą 0) but not an RCRP. NCI also implies (see page 697 of Cerreia-Vioglio et al. (2015)) that

rB ` p1 ´ rqA „ B for any r P p0, 1q. Because rB ` p1 ´ rqA “ B1, CEU implies A „ B „ B1 and

thus ∆˚
MX “ 0. Finally, ∆˚

MX “ 0 implies ∆˚
CC “ ∆˚

CR.

To summarize, when the predictions of CEU differ from EU, those predictions are ∆˚
CC “

∆˚
CR ą 0 and ∆˚

MX “ 0, i.e., the CRP-CCP-�MXP pattern.

B.7 Puri Simplicity Preferences

Finally, we consider the implications of the model of simplicity preferences introduced by Puri

(2024). Under this model, the utility from a lottery X ” px1, p1; ...;xN , pN q is

UpXq “

N
ÿ

n“1

pnupxnq ´ ωpNq.

The first term is a standard EU term, and ωpNq is a complexity cost term that is increasing in

N—i.e., lotteries with more possible outcomes have a larger complexity cost. Here, we derive

predictions for our context under the assumption that ωp1q ă ωp2q ă ωp3q.

To derive predictions, it is convenient to fix the parameters pM,p, rq and then define EUpX|hq

to be the expected utility of lottery X P tB,B1, Du as a function of h. Also, recall that, for any h,

EUpCq ´ EUpD|hq “ EUpAq ´ EUpB1|hq “ rpEUpAq ´ EUpB|hqq.

Under this model, h˚
CD must satisfy EUpCq ´ ωp2q “ EUpD|h˚

CDq ´ ωp2q and therefore

EUpCq “ EUpD|h˚
CDq. This in turn implies EUpAq “ EUpB|h˚

CDq and thus EUpAq ´ ωp1q ą

EUpB|h˚
CDq ´ ωp2q. It follows that h˚

AB ą h˚
CD and thus ∆˚

CR ą 0. Similarly, it also implies

EUpAq “ EUpB1|h˚
CDq and thus EUpAq ´ωp1q ą EUpB1|h˚

CDq ´ωp3q. It follows that h˚
AB1 ą h˚

CD

and thus ∆˚
CC ą 0.
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Under this model, h˚
AB must satisfy EUpAq´ωp1q “ EUpB|h˚

ABq´ωp2q and therefore EUpAq ă

EUpB|h˚
ABq. Since B1 is a mixture of A and B, we must have EUpAq ă EUpB1|h˚

ABq ă EUpB|h˚
ABq

and thus EUpB1|h˚
ABq´ωp3q ă EUpB|h˚

ABq´ωp2q. It follows that EUpAq´ωp1q ą EUpB1|h˚
ABq´

ωp3q and thus h˚
AB1 ą h˚

AB and ∆˚
MX ă 0.

To summarize, if ωp1q ă ωp2q ă ωp3q, then Puri simplicity preferences predict ∆˚
CR ą 0,

∆˚
CC ą 0, and ∆˚

MX ă 0, i.e., the CRP-CCP-RMXP pattern.
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C The Impact of Noise on Valuations and Choices

In Section 2.5, we discuss the impact of noise on valuation tasks and binary choice tasks, and the

inferential challenges that arise as a result. This appendix formalizes the intuition in that section

by replicating and expanding on the theoretical results in McGranaghan et al. (2024).

We assume that the same underlying preferences drive behavior for both valuation tasks and

binary choice tasks. Using the notation from Section 2.2, a person will have three underlying

indifference values h˚
AB, h

˚
AB1 , and h˚

CD for a fixed pp, r,Mq that satisfy:

• Prefer A over B if and only if H ă h˚
AB,

• Prefer A over B1 if and only if H ă h˚
AB1 , and

• Prefer C over D if and only if H ă h˚
CD.

We can then characterize that person’s CR, CC, and MX preferences by ∆˚
CR ” h˚

AB ´ h˚
CD,

∆˚
CC ” h˚

AB1 ´ h˚
CD, and ∆˚

MX ” h˚
AB ´ h˚

AB1 . EU implies ∆˚
CC “ ∆˚

CR “ ∆˚
MX “ 0.

C.1 The Impact of Noise on Valuations

In Section 2.5, we provide an intuitive argument for how paired valuation tasks might yield unbiased

inference even in the presence of noise. Here, we provide a formal argument.

To combine a participant’s underlying preferences with noise to generate their stated valuations,

we begin with an assumption that is more general than the one used in Section 2.5:

Assumption 1v: Impact of Noise on Valuations

A person’s stated valuations phAB, hAB1 , hCDq are hAB ” Γph˚
AB, εABq, hAB1 ” Γph˚

AB1 , εAB1q,

and hCD ” Γph˚
CD, εCDq, where pεAB, εAB1 , εCDq are noise draws from a continuous joint

distribution with convex support, and Γ is increasing in both arguments with Γph, 0q “ h for

all h.

In Assumption 1v, the function Γ permits a variety of models for how a person’s underlying in-

difference points combine with choice noise to generate their stated valuations. We highlight two

special cases of Assumption 1v:

Assumption 2a: Γph, εq “ h ` ε, and EpεABq “ EpεAB1q “ EpεCDq “ 0.

Assumption 2b: Γph, εq is potentially nonlinear in h and ε, but εAB
d
“ kABεCD for some

kAB ą 0, εAB1
d
“ kAB1εCD for some kAB1 ą 0, and εCD is symmetric about 0.

26



Assumption 2a is the assumption we use in Section 2.5 and represents the simple case in which

stated valuations are given by the true underlying preference plus a mean-zero error term. As-

sumption 2b is less straightforward at first glance, but it is consistent with assumptions researchers

frequently use when analyzing choice data, where they model noise as a symmetric additive per-

turbation of utility in the spirit of McFadden (1974, 1981). To illustrate, consider the following

example:

Example: Expected Utility and Prospect Theory

Suppose that a person evaluates a lottery px, qq with x ą 0 as πpqqupxq, and evaluates a

lottery px, q; y, sq with x ą y ą 0 as πpqqupxq ` wpq, squpyq. This formulation reduces to EU

when πpqq “ q, wpq, sq “ s, and upxq is a Bernoulli utility function. This formulation reduces

to CPT when πpqq is a probability weighting function, wpq, sq “ πpq` sq ´πpqq, and upxq is a

value function defined over gains and losses. Finally, this formulation reduces to OPT when

πpqq is a probability weighting function, wpq, sq “ πpsq, and upxq is a value function defined

over gains and losses.

With this formulation, the underlying indifference points satisfy

upMq “ πppquph˚
ABq ô h˚

AB “ u´1

ˆ

1

πppq
upMq

˙

upMq “ πpprquph˚
AB1q ` wppr, 1 ´ rqupMq ô h˚

AB1 “ u´1

ˆ

1 ´ wppr, 1 ´ rq

πpprq
upMq

˙

πprqupMq “ πpprquph˚
CDq ô h˚

CD “ u´1

ˆ

πprq

πpprq
upMq

˙

Now suppose we incorporate additive utility noise in the spirit of McFadden (1974, 1981) by

assuming that the stated valuations satisfy

upMq “ πppquphABq ` ϵAB ô hAB “ u´1

ˆ

uph˚
ABq ´

ϵAB

πppq

˙

upMq “ πpprquphAB1q ` wppr, 1 ´ rqupMq ` ϵAB1 ô hAB1 “ u´1

ˆ

uph˚
AB1q ´

ϵAB1

πpprq

˙

πprqupMq “ πpprquphCDq ` ϵCD ô hCD “ u´1

ˆ

uph˚
CDq ´

ϵCD

πpprq

˙

where ϵAB, ϵAB1 , and ϵCD reflect additive utility noise.C1 When applying this approach, it is

common to further assume that ϵCD has some distribution that is symmetric about 0 (e.g.,

a mean-zero normal or logistic distribution), and that ϵAB
d
“ k1

ABϵCD and ϵAB1
d
“ k1

AB1ϵCD for

some k1
AB ą 0 and k1

AB1 ą 0 (e.g., when the error terms all have the same distributional form

but are permitted to have different variances). If so, then this formulation fits Assumption

C1The latter equations use p1{πppqqupMq “ uph˚
ABq, pp1 ´ wppr, 1 ´ rqq{πpprqqupMq “ uph˚

AB1 q, and
pπprq{πpprqqupMq “ uph˚

CDq.
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2b with Γph, εq “ u´1puphq ´ εq, where εAB “ k1
ABϵCD{πppq, εAB1 “ k1

AB1ϵCD{πpprq, and

εCD “ ϵCD{πpprq. Finally, EU with additive utility noise that is i.i.d. across the AB, AB1,

and CD choices (so k1
AB “ k1

AB1 “ 1) implies εAB “ rεCD and εAB1 “ εCD.

Proposition 1v describes when unbiased tests of the null of ∆˚
Z “ 0, Z P tCR,CC,MXu, are

possible using paired valuation tasks and Assumption 2a or 2b.

Proposition 1v (Paired Valuation Tasks Can Yield Unbiased Tests): Consider a person who

provides stated valuations (hAB, hAB1 , hCDq.

(1) Under Assumption 2a, Ep∆Zq “ ∆˚
Z for all Z P tCR,CC,MXu.

(2) Under Assumption 2b, Prp∆Z ą 0q “ Prp∆Z ă 0q “ 1{2 for all Z P tCR,CC,MXu.

The proof and intuition for Proposition 1 are virtually the same as those for Proposition 2 in

McGranaghan et al. (2024), and thus we omit them here. Part (1) establishes that we can test the

null of ∆˚
Z “ 0 under Assumption 2a using a means test. Part (2) establishes that we can test the

null of ∆˚
Z “ 0 under Assumption 2b using a sign test that tests whether the observed proportions

of ∆Z ą 0 and ∆Z ă 0 are the same.C2 These are the two tests reported in Table 4.

C.2 The Impact of Noise on Choices

In Section 2.5, we describe how noise can make it problematic to infer preferences when comparing

behavior across binary choice tasks. We provide a formal argument here. To model how a par-

ticipant’s underlying preferences combine with noise to generate their choices in the three binary

choice tasks, we use the following alternative to Assumption 1v:

Assumption 1c: Impact of Noise on Choices

A person’s realized indifference points are the phAB, hAB1 , hCDq described in Assumption 1v.

Then:

• In an AB choice task, the person chooses A ” pM, 1q over B ” pH, pq if and only if

H ď hAB ” Γph˚
AB, εABq,

• In an AB1 choice task, the person chooses A ” pM, 1q over B1 ” pH, p;M, 1 ´ rq if and

only if H ď hAB1 ” Γph˚
AB1 , εAB1q,

C2Our formal test uses the following logic. If Prp∆Z ą 0q “ Prp∆Z ă 0q “ 1{2 for every observation, the
likelihood of observing at most n instances of ∆Z ą 0 out of N observations is equal to Gpn,Nq, where G denotes
the cumulative distribution function for a binomial distribution with a 50 percent success rate. Hence, if we observe
n` instances of ∆Z ą 0 and n´ instances of ∆Z ă 0, the p-value for a two-sided sign test under the null of ∆˚

Z “ 0
is 2 ˚ Gpmintn`, n´u, n` ` n´q.

28



• In a CD choice task, the person chooses C ” pM, rq over D ” pH, prq if and only if

H ď hCD ” Γph˚
CD, εCDq.

In a choice task, the observed data comes in the form of the proportion of participants who

choose each option. Under Assumption 1c, the relevant proportions are:

PrpA|ABq “ PrpH ă hABq, PrpA|AB1q “ PrpH ă hAB1q, and PrpC|CDq “ PrpH ă hCDq.

Proposition 2 establishes conditions under which paired choice tasks yield biased tests of the null

of ∆˚
Z “ 0, Z P tCR,CC,MXu.

Proposition 2 (Paired Choice Tasks Can Yield Biased Tests): Consider a person who has h˚
AB “

h˚
AB1 “ h˚

CD ” h˚ and thus ∆˚
CR “ ∆˚

CC “ ∆˚
MX “ 0. Suppose that εAB

d
“ kABεCD and

εAB1
d
“ kAB1εCD for some kAB ą 0 and kAB1 ą 0, and define χ ” PrpεAB ă 0q “ PrpεAB1 ă

0q “ PrpεCD ă 0q.

(1) If h˚ ´ H ą 0 and thus the person has A ą B, A ą B1, and C ą D, then:

(a) kAB ă 1 implies PrpA|ABq ą PrpC|CDq ą χ (CRE); kAB ą 1 implies PrpC|CDq ą

PrpA|ABq ą χ (RCRE); and kAB “ 1 implies PrpA|ABq “ PrpC|CDq “ χ (�CRE);

(b) kAB1 ă 1 implies PrpA|AB1q ą PrpC|CDq ą χ (CCE); kAB1 ą 1 implies PrpC|CDq ą

PrpA|AB1q ą χ (RCCE); and kAB1 “ 1 implies PrpA|AB1q “ PrpC|CDq “ χ (�CCE);

and

(c) kAB ă kAB1 implies PrpA|ABq ą PrpA|AB1q ą χ (MXE); kAB ą kAB1 implies PrpA|AB1q ą

PrpA|ABq ą χ (RMXE); and kAB “ kAB1 implies PrpA|ABq “ PrpA|AB1q “ χ

(�MXE).

(2) If h˚ ´ H ă 0 and thus the person has B ą A, B1 ą A, and D ą C, then:

(a) kAB ă 1 implies PrpA|ABq ă PrpC|CDq ă χ (RCRE); kAB ą 1 implies PrpC|CDq ă

PrpA|ABq ă χ (CRE); and kAB “ 1 implies PrpA|ABq “ PrpC|CDq “ χ (�CRE);

(b) kAB1 ă 1 implies PrpA|AB1q ă PrpC|CDq ă χ (RCCE); kAB1 ą 1 implies PrpC|CDq ă

PrpA|AB1q ă χ (CCE); and kAB1 “ 1 implies PrpA|AB1q “ PrpC|CDq “ χ (�CCE);

and

(c) kAB ă kAB1 implies PrpA|ABq ă PrpA|AB1q ă χ (RMXE); kAB ą kAB1 implies

PrpA|AB1q ă PrpA|ABq ă χ (MXE); and kAB “ kAB1 implies PrpA|ABq “ PrpA|AB1q “

χ (�MXE).

(3) If h˚ ´ H “ 0 and thus the person has A „ B „ B1 and C „ D, then PrpA|ABq “

PrpA|AB1q “ PrpC|CDq “ χ for all kAB and kAB1 .

Again, the proof and intuition for Proposition 2 are virtually the same as the proof and intuition

for Proposition 1 in McGranaghan et al. (2024), and thus we omit them here. Also, note that
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Proposition 2 holds under Assumption 2b, and it would also hold under Assumption 2a if in

addition to EpεABq “ EpεAB1q “ EpεCDq “ 0 we also have εAB
d
“ kABεCD and εAB1

d
“ kAB1εCD

for some kAB ą 0 and kAB1 ą 0. Hence, paralleling Corollary 1 in McGranaghan et al., paired

choice tasks can yield biased tests while paired valuation tasks yield unbiased tests under the same

assumptions about noise.

Beyond replicating the CRE result from Proposition 1 in McGranaghan et al. (2024) and ex-

tending it the CCE and MXE experiments, Proposition 2 also illustrates that the potential for

misleading conclusions is even greater when attempting to identify preference patterns by compar-

ing behavior across three binary choices. In particular, even when the true underlying preferences

involve �CRP, �CCP, and �MXP, many different patterns can emerge across the three choice

tasks depending on the values for kAB and kAB1 and the experimenter-chosen parameter H. For

instance, if kAB1 ă kAB ă 1, then H ă h˚ would lead to pattern CRE-CCE-RMXE, while H ą h˚

would lead to pattern RCRE-RCCE-MXE. Alternatively, if kAB ă 1 ă kAB1 , then H ă h˚ would

lead to pattern CRE-RCCE-MXE, while H ą h˚ would lead to pattern RCRE-CCE-RMXE. Many

other patterns are possible, and the only cases where the prediction would be the pattern �CRE-

�CCE-�MXE that corresponds to underlying preferences are the knife-edge cases where either

distance to indifference is zero, h˚ ´ H “ 0, or differential noise is absent, kAB “ kAB1 “ 1.

Proposition 2 establishes that choice tasks can yield a wide set of patterns when the true

underlying preferences are �CRP-�CCP-�MXP. The same can hold even when people have

different underlying preferences. To illustrate, consider behavior under Assumption 2a with the

additional assumption of εAB
d
“ kABεCD and εAB1

d
“ kAB1εCD for some kAB ą 0 and kAB1 ą 0.

Under these assumptions, we can write the choice proportions as follows:

PrpA|ABq “ PrpH ă h˚
AB ` εABq “ Pr

´

´εCD ă 1
kAB

ph˚
AB ´ Hq

¯

PrpA|AB1q “ PrpH ă h˚
AB1 ` εAB1q “ Pr

´

´εCD ă 1
kAB1

ph˚
AB1 ´ Hq

¯

PrpC|CDq “ PrpH ă h˚
CD ` εCDq “ Pr p´εCD ă h˚

CD ´ Hq

We next define h̄˚
CR ” ph˚

AB ` h˚
CDq{2, h̄˚

CC ” ph˚
AB1 ` h˚

CDq{2, and h̄˚
MX ” ph˚

AB ` h˚
AB1q{2, which

are the average indifference values for the three paired valuations. Using these, and recalling for

choices that CRE ´ RCRE “ PrpA|ABq ´ PrpC|CDq, CCE ´ RCCE “ PrpA|AB1q ´ PrpC|CDq,

and MXE ´ RMXE “ PrpA|ABq ´ PrpA|AB1q, we can derive predicted behavior in choice tasks:

CRE ´ RCRE “ Pr p´εCD ă h˚
CD ´ H ` ΨCRq ´ Pr p´εCD ă h˚

CD ´ Hq

CCE ´ RCCE “ Pr p´εCD ă h˚
CD ´ H ` ΨCCq ´ Pr p´εCD ă h˚

CD ´ Hq

MXE ´ RMXE “ Pr
`

´εAB1 ă h˚
AB1 ´ H ` ΨMX

˘

´ Pr
`

´εAB1 ă h˚
AB1 ´ H

˘

(C.1)
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where
ΨCR “ 0.5

´

1
kAB

` 1
¯

∆˚
CR `

´

1
kAB

´ 1
¯

ph̄˚
CR ´ Hq

ΨCC “ 0.5
´

1
kAB1

` 1
¯

∆˚
CC `

´

1
kAB1

´ 1
¯

ph̄˚
CC ´ Hq

ΨMX “ 0.5
´

kAB1

kAB
` 1

¯

∆˚
MX `

´

kAB1

kAB
´ 1

¯

ph̄˚
MX ´ Hq

(C.2)

Hence, whether one’s choices exhibit a CRE, CCE, or MXE depends on whether ΨCR, ΨCC , or

ΨMX are positive or negative. In the the knife-edge cases where h̄˚
Z ´H “ 0 for Z P tCR,CC,MXu

or kAB “ kAB1 “ 1, ΨCR9∆˚
CR, ΨCC9∆˚

CC , and ΨMX9∆˚
MX . Generalizing our earlier conclusion,

in these knife-edge cases, choices will reveal the qualitative direction of underlying preferences.

In contrast, when h̄˚
Z ´ H ‰ 0 for Z P tCR,CC,MXu and kAB and kAB1 are not equal to

one, then we have differential noise, and whether one exhibits a CRE, CCE, or MXE also depend

on the relevant distance to indifference, i.e., h̄˚
CR ´ H, h̄˚

CC ´ H, or h̄˚
MX ´ H. Indeed, if we fix

the experimental parameters pM,p, rq and the associated underlying preferences ph˚
AB, h

˚
AB1 , h˚

CDq,

we can use equation (C.2) to derive predicted behavior as a function of the experimenter-chosen

parameter H:

CRE ´ RCRE ą 0 ô ΨCR ą 0 ô

$

’

’

’

’

&

’

’

’

’

%

H ą h̄˚
CR ´

kAB ` 1

2pkAB ´ 1q
∆˚

CR if kAB ą 1

H ă h̄˚
CR `

kAB ` 1

2p1 ´ kABq
∆˚

CR if kAB ă 1

∆˚
CR ą 0 if kAB “ 1

CCE ´ RCCE ą 0 ô ΨCC ą 0 ô

$

’

’

’

’

&

’

’

’

’

%

H ą h̄˚
CC ´

kAB1 ` 1

2pkAB1 ´ 1q
∆˚

CC if kAB1 ą 1

H ă h̄˚
CC `

kAB1 ` 1

2p1 ´ kAB1q
∆˚

CC if kAB1 ă 1

∆˚
CC ą 0 if kAB1 “ 1

MXE ´ RMXE ą 0 ô ΨMX ą 0 ô

$

’

’

’

’

&

’

’

’

’

%

H ă h̄˚
MX `

kAB1 ` kAB

2pkAB1 ´ kABq
∆˚

MX if kAB ă kAB1

H ą h̄˚
MX ´

kAB1 ` kAB

2pkAB ´ kAB1q
∆˚

MX if kAB ą kAB1

∆˚
MX ą 0 if kAB “ kAB1

Note that if the experimenter chooses H “ h̄˚
CR, then participants’ CRE ´ RCRE will reveal the

sign of their underlying ∆˚
CR. An analogous point holds when the experimenter chooses H “ h̄˚

CC

or H “ h̄˚
MX . However, without observing valuations, it is hard for the experimenter to select these

H’s. Moreover, if the experimenter is trying to use choices to identify patterns across the three

preferences, a single H may not be sufficient to accurately infer all three preferences.

Finally, we highlight how, as the experimenter varies the experimental parameter H, a variety

of biased patterns can emerge. For example, suppose h˚
AB “ 36, h˚

AB1 “ 34, and h˚
CD “ 30, in

which case underlying preferences have the pattern CRP, CCP, MXP. If in addition kAB “ 0.5

while kAB1 “ 1.5, participants would exhibit a CRE for H ă 42, a CCE for H ą 22, and an
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MXE for H ă 37. Hence, for H P p22, 37q, participants would exhibit the CRE-CCE-MXE pattern

consistent with their underlying preferences. However, for H outside of this range we might observe

the patterns CRE-RCCE-MXE, CRE-CCE-RMXE, or RCRE-CCE-RMXE.

The message is clear: If one wants to learn about patterns of CR-CC-MX preferences so as to be

able to assess models of risk preferences, then using choice tasks will be problematic. In contrast,

under the same assumptions as the analysis here, valuation tasks can be used to get unbiased

measures of the underlying preferences ∆˚
CR, ∆

˚
CC , and ∆˚

MX .

C.3 Connecting Stage 1 Valuations and Stage 2 Choices

Our discussion in Appendix Sections C.1 and C.2 assumes that the same underlying preferences

drive behavior for both valuation tasks and choice tasks, and thus there should be a strong con-

nection between the two. In Section 4.3 of the main paper, we provide some evidence on that

connection. Here, we provide the underlying theory on which that evidence is based. Again, this

follows a similar treatment in McGranaghan et al. (2024).

Specifically, we consider Assumption 2a with the additional assumptions that εAB
d
“ kABεCD and

εAB1
d
“ kAB1εCD for some kAB ą 0 and kAB1 ą 0. In this case, equations C.1 and C.2 characterize

the predictions for stage 2 choices as a function of underlying indifference values h˚
AB, h

˚
AB1 , and

h˚
CD. At the same time, Proposition 1 part 1 establishes that a participant’s stage 1 valuations

hAB, hAB1 , and hCD are unbiased measures of those underlying indifference values.

Hence, we conduct the following empirical analyses. First, we either (i) use each participant’s

stage 1 stated valuations hAB, hAB1 , and hCD to directly generate (noisy) empirical measures

∆CR, ∆CC , ∆MX , h̄CR, h̄CC , and h̄MX , or (ii) use each participant’s stage 1 stated valuations

hAB, hAB1 , and hCD combined with our decomposition from Section 4.2 to generate posterior mea-

sures of an individual’s underlying preferences Er∆˚
CR|stage1s, Er∆˚

CC |stage1s, Er∆˚
MX |stage1s,

Erh̄˚
CR|stage 1s, Erh̄˚

CC |stage 1s, and Erh̄˚
MX |stage 1s (see Appendix D.4 for details). We then test

the following predictions from equations C.1 and C.2:

(1) A person’s observed CRE ´RCRE, CCE ´RCCE, and MXE ´RMXE at stage 2 should

depend positively on their associated stage 1 value difference ∆CR, ∆CC , ∆MX .

(2) With one caveat, a person’s observed CRE´RCRE, CCE´RCCE, and MXE´RMXE at

stage 2 should depend positively on their associated distance to indifference h̄CR´H, h̄CC´H,

h̄MX ´H when the noise is more impactful for the second choice (the CD choice for CRE and

CCE, the AB1 choice for MXE), and should depend negatively on their associated distance

to indifference when the noise is more impactful for the first choice. The caveat is that, while

this prediction holds when the magnitude of the relevant distance to indifference is not too

large, when that magnitude gets large enough (positive or negative), the relationship reverses

because Pr p´εZ ă h˚
Z ´ Hq approaches zero (as in Figure 7 of McGranaghan et al. (2024)).

32



When we test these predictions, we increase power by combining data across different combi-

nations of pp, rq. Because for each preference the impact of the value difference or the distance to

indifference is larger for larger p, in our empirical analyses we multiply these terms by p to make

them more comparable across different values for p.

We visually assess prediction (1) in Figure 6 and we visually assess prediction (2) in Appendix

Figure C.1. Panels A-C of Appendix Table C.1 provide corresponding formal tests via regressions

of CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE from stage 2 on the corresponding

values of ∆Z and h̄Z ´ H from stage 1 (in both cases normalized by p). In each panel, four

different specifications are provided: (1) ordinary least squares using the full sample of 8408 stage

2 observations; (2) ordinary least squares using samples of 4204 stage 2 observations for which

multiple elicitations of relevant h valuations were conducted at stage 1; (3) two-stage least squares

using samples of 4204 stage 2 observations for which multiple elicitations of relevant h valuations

were conducted at stage 1 and instrumenting for ∆Z and h̄Z ´ H with the alternate elicitation’s

values, which accounts for potential measurement error in ∆Z and h̄Z ´ H; (4) ordinary least

squares using the full sample of 8408 stage 2 observations, but replacing ∆Z and h̄Z ´ H with the

posterior expectations of preference given stage 1 behavior (i.e., Er∆˚
Z |stage 1s Erh̄˚

Z ´H|stage 1s.

Figure 6 and Appendix Table C.1 show substantial support for prediction (1) with significant

linkages between values of ∆Z and corresponding differences in choice probabilities for CR, CC,

and MX problems across all specifications. Appendix Figure C.1 and Appendix Table C.1 also

document the relevance of prediction (2) for all three problems. For CR problems, the data show

a significant positive relationship between h̄CR ´ H and CRE ´ RCRE across all specifications,

indicating that noise is more impactful for the CD choice than the AB choice. For CC problems the

data using raw valuations in columns (1) through (3) show limited relationship between h̄CC ´ H

and CCE ´ RCCE. However, when using the posterior expectation of preferences in column (4),

the data show a significant negative relationship between Erh̄˚
CC |stage 1s ´H and CCE ´RCCE,

indicating that noise is more impactful for the AB1 choice than the CD choice. For MX problems

the data show a significant positive relationship between h̄MX ´H and MXE ´RMXE across all

specifications, indicating that noise is more impactful for the AB1 choice than the AB choice. All

three problems show the hallmarks of differential noise and the combined data suggest that noise

has the most impact on AB1 choices, followed by CD choices, followed by AB choices.

Interestingly, these conclusions differ from the predictions of EU with additive i.i.d utility noise.

In particular, Example 1 from Appendix C.1 derives that, under EU with additive i.i.d. utility

noise, εAB “ rεCD and εAB1 “ εCD. In words, under EU with additive i.i.d utility noise, the

impact of noise on the AB1 and CD choices should be the same, and both should be larger than

the impact of noise on the AB choice.
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Figure C.1: Predicting Stage 2 Results using Stage 1 Distance to Indifference

Panel A: CRE ´ RCRE
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Stage 1 Distance to Indifference: p(hC̅R – H)

Panel D: CRE ´ RCRE
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Decomposed Preferences: p(E[h*̅CR|stage 1] – H)

Panel B: CCE ´ RCCE
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Stage 1 Distance to Indifference: p(hC̅C – H)

Panel E: CCE ´ RCCE
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Decomposed Preferences: p(E[h*̅CC|stage 1] – H)

Panel C: MXE ´ RMXE
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Panel F: MXE ´ RMXE
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Notes: Figure relates individual stage 1 measures of h̄CR ´ H, h̄CC ´ H, and h̄MX ´ H to stage 2 measures of

CRE ´ RCRE, CCE ´ RCCE, and MXE ´ RMXE, respectively. Panels A-C use raw stage 1 responses. Panels

D-F use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with

a participant’s raw stage 1 valuations to generate posterior preference measures Erh̄˚
CR|stage 1s, Erh̄˚

CC |stage 1s,

and Erh̄˚
MX |stage 1s for that participant. For each x-axis, one hundred equally sized bins are constructed with

approximately 84 observations per bin for the CR and CC panels and approximately 42 observations for the MX

panels. Within each bin, the value of stage 2 choice differences is calculated to construct the y-axes. Due to a large

of observations at some values, there are 94, 93, and 91 unique bins in panels A, B, and C, respectively. To make

valuations comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed value of

the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix C.3 for details).
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Table C.1: Regressions Predicting Stage 2 Binary Choices Using Stage 1 Valuations

(1) (2) (3) (4)

Full Sample
Multiple

Observations
Available

2SLS
Decomposed
Preferences

Panel A. CRE ´ RCRE P t´1, 0, 1u

p∆CR 1.07 1.08 2.60 2.77
(0.07) (0.09) (0.26) (0.16)

pph̄CR ´ Hq 0.40 0.30 0.20 0.32
(0.07) (0.09) (0.12) (0.08)

Outcome Mean 10.45 10.04 10.04 10.45

Panel B. CCE ´ RCCE P t´1, 0, 1u

p∆CC 0.96 0.87 2.92 3.26
(0.07) (0.09) (0.36) (0.18)

pph̄CC ´ Hq ´0.03 ´0.01 ´0.16 ´0.46
(0.07) (0.09) (0.14) (0.08)

Outcome Mean ´5.77 ´4.69 ´4.69 ´5.77

Panel C. MXE ´ RMXE P t´1, 0, 1u

p∆MX 0.80 0.93 3.17 3.00
(0.07) (0.10) (0.44) (0.23)

pph̄MX ´ Hq 0.39 0.43 0.62 0.65
(0.06) (0.07) (0.11) (0.07)

Outcome Mean 16.00 15.91 15.91 16.00

Individuals 2102 1051 1051 2102
Observations 8,408 4,204 4,204 8,408

Notes: Table presents linear regressions of individuals’ stage 2 decisions on stage 1 measures of their ∆Z and h̄Z´H
for Z P tCR,CC,MXu. Panel A presents results for CR experiments, where the outcome is 1 if the participant
chose A and D (CRE), ´1 if they chose B and C (RCRE), and zero otherwise. Panel B presents results for CC
experiments, where the outcome is 1 if the participant chose A and D (CCE), ´1 if they chose B1 and C (RCRE),
and zero otherwise. Panel C presents results for MX experiments, where the outcome is 1 if the participant chose A
and B1 (MXE), ´1 if they chose B and A (RMXE), and zero otherwise. Columns (1)-(3) use raw stage 1 responses.
Column (1) presents the full sample results for all four pp, rq combinations that participants saw. For panel C, we
use the valuations h1

AB or h1
AB1 for the half of pp, rq that they exist for, and hAB or hAB1 otherwise. Column (2)

restricts the sample to only the half of pp, rq conditions for which which we have multiple measures of all three
valuations. Column (3) leverages these multiple observations to implement instrumental variable regressions using
two-stage least squares, where we instrument for p∆ and pph̄´Hq with their duplicate measures. For Column (4),
we use the estimated population distribution of preferences from the decomposition in Section 4.2 combined with
a participant’s raw stage 1 valuations to generate posterior preference measures Er∆˚

Z |stage 1s and Erh̄˚
Z |stage 1s.

To make valuations comparable across pp, rq, all stage 1 measures are scaled by p to control for the fact that a fixed
value of the measure is predicted to yield a larger stage 2 effect the larger is p (see Appendix C.3 for details).



D Further Details on Decomposing Preference and Noise

In this appendix, we provide further details for the decomposition exercise in Section 4.2. In this

exercise, we derive an estimate for the population distribution of underlying preferences along with

the magnitude of decision noise. We then use these estimates for three purposes. First, we assess

how much of the variability in our data is due to heterogeneity in preferences versus noise. Second,

we derive what the histogram of response patterns from Figure 4 would look like if we were to

remove the decision noise. Third, we construct refined measures of individual preferences that

attempt to remove some of the noise.

D.1 Underlying Model and Estimating Its Parameters

For a fixed pp, r,Mq, let h˚ ” ph˚
AB, h

˚
AB1 , h˚

CDq be a vector of underlying indifference values.

The population distribution of h˚ has expectation Eph˚q ” pµ˚
AB, µ

˚
AB1 , µ˚

CDq ” µ˚ and variance-

covariance matrix

V

¨

˚

˚

˝

h˚
AB

h˚
AB1

h˚
CD

˛

‹

‹

‚

”

¨

˚

˚

˝

θ2AB θAB,AB1 θAB,CD

θAB,AB1 θ2AB1 θAB1,CD

θAB,CD θAB1,CD θ2CD

˛

‹

‹

‚

” Σ˚. (D.1)

For XY P tAB,AB1, CDu, we assume a person’s two elicited XY valuations are

hXY “ h˚
XY ` εXY and h1

XY “ h˚
XY ` ε1

XY ,

where EpεXY q “ Epε1
XY q “ 0, varpεXY q “ varpε1

XY q “ σ2
XY , and εXY and ε1

XY are independent

of each other, of the underlying preferences, and of all other noise draws. Note that this model has

twelve parameters: three µ˚
XY terms, three θ2XY terms, three θXY,WZ terms, and three σ2

XY terms.

Now let h ” phAB, hAB1 , hCD, h
1
AB, h

1
AB1 , h1

CDq denote a vector of observed valuations.D1 Un-

der these assumptions, we can derive the predicted mean and variance-covariance matrix for the

observed h as a function of the 12 parameters of the underlying model:

Ephq “ pµ˚
AB, µ

˚
AB1 , µ˚

CD, µ
˚
AB, µ

˚
AB1 , µ˚

CDq ” µ

D1Recall that each participant faces four pp, rq combinations. For two of those, the participant provides all six
valuations, while for the other two, they provide only phAB , hAB1 , hCD, h1

CDq. Although we write everything in this
appendix based on the former case, we use all of our data in the analysis, making the appropriate adjustments when
only the CD response has multiple elicitations.
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Vphq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

θ2AB ` σ2
AB θAB,AB1 θAB,CD θ2AB θAB,AB1 θAB,CD

θAB,AB1 θ2AB1 ` σ2
AB1 θAB1,CD θAB,AB1 θ2AB1 θAB1,CD

θAB,CD θAB1,CD θ2CD ` σ2
CD θAB,CD θAB1,CD θ2CD

θ2AB θAB,AB1 θAB,CD θ2AB ` σ2
AB θAB,AB1 θAB,CD

θAB,AB1 θ2AB1 θAB1,CD θAB,AB1 θ2AB1 ` σ2
AB1 θAB1,CD

θAB,CD θAB1,CD θ2CD θAB,CD θAB1,CD θ2CD ` σ2
CD

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

” Σ

Each entry inVphq is a theoretical prediction for an empirical moment. For instance, varphABq “

θ2AB `σ2
AB, and covphAB, h

1
ABq “ θ2AB. Hence, we can obtain estimates for the 12 model parameters

by calculating the relevant sample moments or combination of sample moments. Specifically, using

“hats” to denote estimates and the subscript s to denote sample moments, we can derive estimates

for the model’s 12 parameters using:

pµ˚
XY “ EsphXY q

pθ2XY “ covsphXY , h
1
XY q

pθXY,WZ “ covsphXY , hWZq

pσ2
XY “ varsphXY q ´ covsphXY , h

1
XY q

Using this approach, Appendix Table A.5 reports estimates for the model’s 12 parameters for each

of the 20 pp, rq combinations.D2

Appendix D.5 describes a more sophisticated estimation approach using MLE. Because that

approach requires additional distributional assumptions, is more time-consuming, and is sensitive

to starting values and other estimation details, we prefer the approach described here. We note,

however, that the MLE approach yields very similar estimates.

D.2 Assessing the Role of Heterogeneity versus Noise

Given these estimates, we can assess how much of the variability in our data is due to hetero-

geneity in preferences versus noise. Consider first variability in the elicited indifference values

hAB, hAB1 , and hCD. The last three columns of Appendix Table A.5 report the estimated propor-

tion of the variability for each elicited indifference value that is due to preferences—i.e., the ratio

yvarph˚
XY q{yvarphXY q “ θ̂2XY {pθ̂2XY ` σ̂2

XY q for each XY P tAB,AB1, CDu. Averaging across the 20

pp, rq combinations, preference heterogeneity accounts for 61 percent of the variation in hAB, 58

percent of the variation in hAB1 , and 48 percent of the variation in hCD.

Next consider variability in the preference measures ∆CR, ∆CC , and ∆MX . For ∆CR ” hAB ´

D2In Appendix Table A.5, we use observations from both hXY and h1
XY to calculate EsphXY q and varsphXY q.

Similarly, we treat an individual participant’s phXY , hWZq and their ph1
XY , h1

WZq as two separate observations when
calculating covsphXY , hWZq.
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hCD, it is straightforward to derive that

varp∆CRq “ varp∆˚
CRq ` σ2

AB ` σ2
CD

and varp∆˚
CRq “ θ2AB ` θ2CD ´ 2θAB,CD.

One can perform analogous derivations for ∆CC and ∆MX . Appendix Table A.6 uses the estimates

in Appendix Table A.5 to calculate these six variances for each pp, rq combination.D3 The last

three columns of Appendix Table A.6 report the proportion of the variability for each preference

measure that is due to preferences—i.e., the ratio yvarp∆˚
Zq{yvarp∆Zq for each Z P tCR,CC,MXu.

Averaging across the 20 pp, rq combinations, preference heterogeneity accounts for 31 percent of

the variation in ∆CR, 31 percent of the variation in ∆CC , and 25 percent of the variation in ∆MX .

D.3 Simulating Preference Patterns

We next investigate what the histogram of response patterns from Figure 4 would look like if we

were to remove the decision noise. To do so, we make the additional assumption that the underlying

preferences have a joint normal distribution:

h˚ „ N pµ˚,Σ˚q .

For each pp, rq combination, we use the estimated parameters in Appendix Table A.5 to generate

100,000 draws from a joint normal distribution for h˚. We then convert each h˚
XY draw into the

midpoint of its two closest integers (e.g., any draw strictly between $2 and $3 is converted to

$2.50). This approach is consistent with the valuations response scales in our experiment, since the

switching rows for anyone with an underlying h˚
XY strictly between $2 and $3 would be the $2 and

$3 rows, in which case we would assign them a valuation of $2.50. We then use these converted

h˚
XY terms to generate the ∆˚

Z terms.D4 Figure 5 presents the distribution of preference patterns

when we aggregate across all 20 pp, rq combinations.

Note that this approach permits null preference patterns, including EU consistency. However,

it does not permit preference patterns which would imply intransitivities between h˚
AB, h

˚
AB1 , and

h˚
CD. Of the 27 possible preference patterns in Figures 4 and 5, only 13 can therefore emerge

from our simulation of preferences. The remaining 14 patterns can still emerge in the data due to

decision noise (and the fact that we have independent measures of the three preferences).

D3When calculating things in this way, nothing guarantees that the calculated varp∆˚
Zq ą 0, and indeed there is

one instance where this problem arises (for ∆MX when pp, rq “ p0.3, 0.5q). We ignore this case and focus on the other
59 cases.

D4When carrying out this exercise, we do not impose the upper and lower bounds of our experimental price lists.
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D.4 Using the Decomposition to Refine Measures of Individual Preferences

In Section 4.3 and Appendix Section C.3, we link an individual’s stage 1 valuations to their stage

2 choices. Specifically, we create measures of individual preferences using stage 1 valuations, and

then use those measures to predict stage 2 choice patterns. The simplest way to create measures

of individual preferences is to take their stage 1 valuations at face value; for example, a measure

of their underlying ∆˚
CR is simply ∆CR “ hAB ´ hCD. An alternative approach is to combine

a participant’s stage 1 valuations with our decomposition estimates to generate refined measures

of their individual preferences. Intuitively, the decomposition provides us with a prior for each

participant’s ph˚
AB, h

˚
AB1 , h˚

CDq, and a participant’s valuations provide a signal that we can use to

generate the corresponding posterior.

If h˚, the εXY terms, and the ε1
XY terms are all jointly normally distributed, then ph˚,h) is

also jointly normally distributed, specifically:

˜

h˚

h

¸

„ N

˜˜

µ˚

µ

¸

,

˜

Σ˚ Σ12

Σ21 Σ

¸¸

,

where

Σ12 “

¨

˚

˚

˝

θ2AB θAB,AB1 θAB,CD θ2AB θAB,AB1 θAB,CD

θAB,AB1 θ2AB1 θAB1,CD θAB,AB1 θ2AB1 θAB1,CD

θAB,CD θAB1,CD θ2CD θAB,CD θAB1,CD θ2CD

˛

‹

‹

‚

.

Hence, if participant i provides a set of valuations hi, the conditional distribution of h˚ given

h “ hi is h
˚|h“hi

„ Npµ˚
post,Σ

˚
postq where

µ˚
post “ µ˚ ` Σ12Σ

´1phi ´ µq

Σ˚
post “ Σ˚ ´ Σ12Σ

´1Σ21.

Again, our goal is to obtain more precise measures of a participant’s ∆˚
Z terms (for Figure 6)

and h̄˚
Z terms (for Appendix Figure C.1). It is straightforward to use the parameter estimates

in Appendix Table A.5 to generate µ˚
post for each participant.D5 We denote the components of

µ˚
post by Erh˚

AB|stage 1s, Erh˚
AB1 |stage 1s, and Erh˚

CD|stage 1s. These represent our more refined

measure of the participant’s h˚ terms. We then use these define the following more refined measures

for the ∆˚
Z terms and h̄˚

XY terms.

D5Recall that each participant provides all six valuations for two of their pp, rq combinations, but only four valuations
for their remaining two pp, rq combinations. For the latter instances, everything above is adjusted appropriately.
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Er∆˚
CR|stage 1s ” Erh˚

AB|stage 1s ´ Erh˚
CD|stage 1s

Er∆˚
CC |stage 1s ” Erh˚

AB1 |stage 1s ´ Erh˚
CD|stage 1s

Er∆˚
MX |stage 1s ” Erh˚

AB|stage 1s ´ Erh˚
AB1 |stage 1s

Erh̄˚
CR|stage 1s ” pErh˚

AB|stage 1s ` Erh˚
CD|stage 1sq{2

Erh̄˚
CC |stage 1s ” pErh˚

AB1 |stage 1s ` Erh˚
CD|stage 1sq{2

Erh̄˚
MX |stage 1s ” pErh˚

AB|stage 1s ` Erh˚
AB1 |stage 1sq{2

The refined measures Erh˚
AB|stage 1s, Erh˚

AB1 |stage 1s, and Erh˚
CD|stage 1s are all tightly cor-

related with their respective raw measures hAB, hAB1 , and hCD, with correlations of 0.89, 0.88,

0.83, respectively. Similarly, Er∆˚
CR|stage 1s, Er∆˚

CC |stage 1s, and Er∆˚
MX |stage 1s are tightly

correlated with ∆CR, ∆CC , and ∆MX , with correlations of 0.79, 0.79, 0.69, respectively. Finally,

Erh̄˚
CR|stage 1s, Erh̄˚

CC |stage 1s, and Erh̄˚
MX |stage 1s are tightly correlated with h̄CR, h̄CC , and

h̄MX , with correlations of 0.91, 0.91, 0.92, respectively. In Figure 6 and Appendix Figure C.1, we

predict stage 2 choices using both the raw measures and the refined measures. The qualitative

conclusions are much the same, although the refined measures make the link between stages more

precise.

D.5 Decomposition Using MLE

Our analysis in Appendix Sections D.1 through D.4 estimates the model parameters using the

relevant sample moments or combination of sample moments. The advantage of this approach is

that it requires fewer distributional assumptions and implementation assumptions. For example,

our assessment of the relative contributions of preference heterogeneity versus noise in Appendix

D.2 does not require any distributional assumptions.

Here we describe an alternative approach to estimate the parameters via MLE. We assume

as in Appendix Section D.4 that h˚, the εXY terms, and the ε1
XY terms are all jointly normally

distributed, and therefore, h „ N pµ,Σq. Recognizing the interval nature of our valuation tasks,

an observation provides both a lower bound (ζ) and an upper bound (υ) on the participant’s h

valuations:

ζphq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ζphABq

ζphAB1q

ζphCDq

ζph1
ABq

ζph1
AB1q

ζph1
CDq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and υphq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

υphABq

υphAB1q

υphCDq

υph1
ABq

υph1
AB1q

υph1
CDq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

For instance, if for an hXY valuation task the person switches between the row with H “ $32 and

H “ $33, then ζphXY q “ 32 and υphXY q “ 33. For observations censored at the lower bound (i.e.,

the person always chooses the right-hand option, even when H “ p ¨$30), we set ζphXY q “ ´8 and
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υphXY q “ p ¨ $30, whereas for observations censored at the upper bound (i.e., the person always

chooses the left-hand option even when H “ p ¨ $30 ` $50), we set ζphXY q “ p ¨ $30 ` $50 and

υphXY q “ 8. Finally, recall that we only collect h1
AB and h1

AB1 for half of observations; all missing

valuations are treated as uninformative and assigned ζphXY q “ ´8 and υphXY q “ 8. Missing

valuations therefore play no role in the estimation of the parameters as they have a likelihood of 1

(and log-likelihood zero) for all pµ,Σq.

Given a participant’s observed ζphq and υphq, the model-implied likelihood of that observation

as a function of the parameters in pµ,Σq is F pυphq;µ,Σq ´ F pζphq;µ,Σq, where F p¨;µ,Σq is

the CDF for h given parameters pµ,Σq. From here, it is straightforward to set up the sample

log-likelihood summing over all participants.

We run this estimation separately for each of the 20 pp, rq combinations. Appendix Tables D.1

and D.2 provide MLE results analogous to those of Appendix Tables A.5 and A.6, where Appendix

Table D.2 is constructed from Appendix Table D.1 in exactly the same way that Appendix Table

A.6 is constructed from Appendix Table A.5 (see Appendix D.2).

The message from the MLE estimation is much the same as that for our simpler estimation

based on sample moments. Figure D.1 compares the MLE estimates from Appendix Table D.1 to

the estimates from Appendix Table A.5. For the most part, the estimated parameters are close to

each other, although the MLE approach yields slightly more variability for both noise and preference

heterogeneity, which reflects that the MLE approach recognizes the interval nature of the data and

the noise implications of censoring. The central conclusion that preference heterogeneity accounts

for roughly half of the variation in the hXY measures and one third of the variation in the ∆Z

measures remains the same.
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Figure D.1: Comparison of Decomposition Results (Direct Calculation vs. MLE)

Notes: Figure relates calculated quantities from Table A.5 to MLE estimates from Appendix Table D.1. Correlation

reported for all observations in each panel.



E Upside-Potential Model Predictions and Estimation

E.1 Predictions for the Upside-Potential Model

In this section, we provide a Proof of Proposition 1 and derive the additional model predictions

discussed in Section 5.2 of the main text. For completeness, we replicate the model assumptions

here. Given a lottery pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q, a person evaluates the lottery using decision

utility function:

U “ rqHH ` qMM s ` pqH ` qM q rqHκpHq ` qMκpMqs (E.1)

where κpxq is strictly increasing in x. For binary lotteries with qM “ 0, this formulation reduces to

U “ qHH ` q2HκpHq,

and for certain payments with qM “ 1, it reduces to

U “ M ` κpMq.

It is worth highlighting that this model respects first order stochastic dominance on its domain,

pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q. Consider two lotteries f “ pH, qH ;M, qM ; 0, 1 ´ qH ´ qM q and

g “ pH 1, q1
H ;M 1, q1

M ; 0, 1 ´ q1
H ´ q1

M q and suppose f first order stochastically dominates (fosd) g.

One implication of f fosd g is that qM ` qH ě q1
M ` q1

H ; otherwise f would have higher probability

of zero. Standard results from EU with a monotonic utility function imply rqHH ` qMM s ě

rq1
HH 1 ` q1

MM 1s which in turn implies rqHκpHq ` qMκpMqs ě rq1
HκpH 1q ` q1

MκpM 1qs for increasing

κp¨q. Combining these two properties with qM ` qH ě q1
M ` q1

H implies

rqHH ` qMM s`pqH`qM q rqHκpHq ` qMκpMqs ě
“

q1
HH 1 ` q1

MM 1
‰

`pq1
H`q1

M q
“

q1
HκpH 1q ` q1

MκpM 1q
‰

and hence Upfq ě Upgq.

Applying this model to the context of our experiment, the triplet ph˚
AB, h

˚
AB1 , h˚

CDq solves

M ` κpMq “ ph˚
AB ` p2κph˚

ABq (E.2)

M ` κpMq “ prh˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprκph˚

AB1q ` p1 ´ rqκpMqs (E.3)

rM ` r2κpMq “ prh˚
CD ` pprq2κph˚

CDq. (E.4)

We then characterize behavior in this model in Proposition 1:

Proposition A1. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (E.2), (E.3), and (E.4).

For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in X:

(1) A person’s ∆˚
CR, ∆

˚
CC , and ∆˚

MX satisfy:
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(a) ∆˚
CR ą 0 if and only if κpMq ą p2κph˚

ABq ą p2κph˚
CDq;

∆˚
CR ă 0 if and only if κpMq ă p2κph˚

ABq ă p2κph˚
CDq; and

∆˚
CR “ 0 if and only if κpMq “ p2κph˚

ABq “ p2κph˚
CDq.

(b) ∆˚
CC ą 0 if and only if κpMq ą

´

p
2´p

¯

κph˚
AB1q ą

´

p
2´p

¯

κph˚
CDq;

∆˚
CC ă 0 if and only if κpMq ă

´

p
2´p

¯

κph˚
AB1q ă

´

p
2´p

¯

κph˚
CDq; and

∆˚
CC “ 0 if and only if κpMq “

´

p
2´p

¯

κph˚
AB1q “

´

p
2´p

¯

κph˚
CDq.

(c) ∆˚
MX ą 0 if and only if κpMq ă pκph˚

AB1q ă pκph˚
ABq;

∆˚
MX ă 0 if and only if κpMq ą pκph˚

AB1q ą pκph˚
ABq; and

∆˚
MX “ 0 if and only if κpMq “ pκph˚

AB1q “ pκph˚
ABq.

(2) ∆˚
CR ď 0 implies ∆˚

CC ă 0 and ∆˚
MX ą 0, and ∆˚

CC ď 0 implies ∆˚
MX ą 0. (Equivalently,

∆˚
MX ď 0 implies ∆˚

CR ą 0 and ∆˚
CC ą 0, and ∆˚

CC ě 0 implies ∆˚
CR ą 0.)

(3) The person must exhibit one of the following seven patterns of behavior:

P1: 0 ą ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (RCRP´RCCP´MXP)

P12: 0 “ ∆˚
CR ą ∆˚

CC and ∆˚
MX ą 0 (�CRP´RCCP´MXP)

P2: ∆˚
CR ą 0 ą ∆˚

CC and ∆˚
MX ą 0 (CRP´RCCP´MXP)

P23: ∆˚
CR ą ∆˚

CC “ 0 and ∆˚
MX ą 0 (CRP´�CCP´MXP)

P3: ∆˚
CR ą ∆˚

CC ą 0 and ∆˚
MX ą 0 (CRP´CCP´MXP)

P34: ∆˚
CR “ ∆˚

CC ą 0 and ∆˚
MX “ 0 (CRP´CCP´ �MXP)

P4: ∆˚
CC ą ∆˚

CR ą 0 and ∆˚
MX ă 0 (CRP´CCP´RMXP).

Proof:

(1a) Recall that ∆˚
CR “ h˚

AB ´ h˚
CD, where h˚

AB and h˚
CD are derived from equations (E.2) and

(E.4). We can rewrite equation (E.4) as

M ` κpMq “ ph˚
CD ` p2κph˚

CDq ` p1 ´ rq
`

κpMq ´ p2κph˚
CDq

˘

,

and combining this equation with equation (E.2) yields

ph˚
AB ` p2κph˚

ABq “ ph˚
CD ` p2κph˚

CDq ` p1 ´ rq
`

κpMq ´ p2κph˚
CDq

˘

.

Proof of CD condition: Because ph ` p2κphq is strictly increasing in h, this equation implies

h˚
AB ą h˚

CD if and only if κpMq ą p2κph˚
CDq, h˚

AB ă h˚
CD if and only if κpMq ă p2κph˚

CDq, and

h˚
AB “ h˚

CD if and only if κpMq “ p2κph˚
CDq.

Proof of AB condition: Define fphq “ ph ` p2κphq ` p1 ´ rqpκpMq ´ p2κphqq, so h˚
CD is defined by

fph˚
CDq “ M ` κpMq. Because f is strictly increasing in h, h˚

AB ą h˚
CD if and only if fph˚

ABq ą

M ` κpMq, which based on equation (E.2) holds if and only if κpMq ą p2κph˚
ABq. Analogously,

46



h˚
AB ă h˚

CD if and only if fph˚
ABq ă M ` κpMq or κpMq ă p2κph˚

ABq, and h˚
AB “ h˚

CD if and only

if fph˚
ABq “ M ` κpMq or κpMq “ p2κph˚

ABq.

Finally, note that when ∆˚
CR ą 0 and thus h˚

AB ą h˚
CD, κ strictly increasing implies p2κph˚

ABq ą

p2κph˚
CDq. Analogously, ∆˚

CR ă 0 implies p2κph˚
ABq ă p2κph˚

CDq, and ∆˚
CR “ 0 implies p2κph˚

ABq “

p2κph˚
CDq. The result follows.

(1b) Recall that ∆˚
CC “ h˚

AB1 ´ h˚
CD, where h˚

AB1 and h˚
CD are derived from equations (E.3) and

(E.4). We can rewrite equation (E.3) as

rM ` r2κpMq “ prh˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq ,

and combining this equation with equation (E.4) yields

prh˚
CD ` pprq2κph˚

CDq “ prh˚
AB1 ` pprq2κph˚

AB1q ` p1 ´ rqr ppκph˚
AB1q ´ p2 ´ pqκpMqq .

Proof of AB1 condition: Because prh ` pprq2κphq is strictly increasing in h, this equation im-

plies h˚
AB1 ą h˚

CD if and only if κpMq ą

´

p
2´p

¯

κph˚
AB1q, h˚

AB1 ă h˚
CD if and only if κpMq ă

´

p
2´p

¯

κph˚
AB1q, and h˚

AB1 “ h˚
CD if and only if κpMq “

´

p
2´p

¯

κph˚
AB1q.

Proof of CD condition: Define fphq “ prh ` pprq2κphq ` p1 ´ rqr ppκphq ´ p2 ´ pqκpMqq, so h˚
AB1

is defined by fph˚
AB1q “ rM ` r2κpMq. Because f is strictly increasing in h, h˚

AB1 ą h˚
CD if and

only if fph˚
CDq ă rM ` r2κpMq, which holds if and only if κpMq ą

´

p
2´p

¯

κph˚
CDq. Analogously,

h˚
AB1 ă h˚

CD if and only if fph˚
CDq ą rM ` r2κpMq or κpMq ă

´

p
2´p

¯

κph˚
CDq, and h˚

AB1 “ h˚
CD if

and only if fph˚
CDq “ rM ` r2κpMq or κpMq “

´

p
2´p

¯

κph˚
CDq.

Finally, note that when ∆˚
CC ą 0 and thus h˚

AB1 ą h˚
CD, κ strictly increasing implies

´

p
2´p

¯

κph˚
AB1q ą

´

p
2´p

¯

κph˚
CDq. Analogously, ∆˚

CC ă 0 implies
´

p
2´p

¯

κph˚
AB1q ă

´

p
2´p

¯

κph˚
CDq, and ∆˚

CC “ 0 im-

plies
´

p
2´p

¯

κph˚
AB1q “

´

p
2´p

¯

κph˚
CDq.

(1c) Recall that ∆˚
MX “ h˚

AB ´ h˚
AB1 , where h˚

AB and h˚
AB1 are derived from equations (E.2) and

(E.3). We can rewrite equation (E.3) as

M ` κpMq “ ph˚
AB1 ` p2κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq ,

and combining this equation with equation (E.2) yields

ph˚
AB ` p2κph˚

ABq “ ph˚
AB1 ` p2κph˚

AB1q ` p1 ´ rqp1 ´ pq ppκph˚
AB1q ´ κpMqq .

Proof of AB1 condition: Because ph ` p2κphq is strictly increasing in h, this equation implies
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h˚
AB ą h˚

AB1 if and only if κpMq ă pκph˚
AB1q, h˚

AB ă h˚
AB1 if and only if κpMq ą pκph˚

AB1q, and

h˚
AB “ h˚

AB1 if and only if κpMq “ pκph˚
AB1q.

Proof of AB condition: Define fphq “ ph ` p2κphq ` p1 ´ rqp1 ´ pqppκphq ´ κpMqq, so h˚
AB1 is

defined by fph˚
AB1q “ M ` κpMq. Because f is strictly increasing in h, h˚

AB ą h˚
AB1 if and only if

fph˚
ABq ą M `κpMq, which holds if and only if κpMq ă pκph˚

ABq. Analogously, h˚
AB ă h˚

AB1 if and

only if fph˚
ABq ă M`κpMq or κpMq ą pκph˚

ABq, and h˚
AB “ h˚

AB1 if and only if fph˚
ABq “ M`κpMq

or κpMq “ pκph˚
ABq.

Finally, note that when ∆˚
MX ą 0 and thus h˚

AB ą h˚
AB1 , κ strictly increasing implies pκph˚

AB1q ă

pκph˚
ABq. Analogously, ∆˚

MX ă 0 implies pκph˚
AB1q ą pκph˚

ABq, and ∆˚
MX “ 0 implies pκph˚

AB1q “

pκph˚
ABq. The result follows.

(2) From 1a, ∆˚
CR ď 0 if and only if κpMq ď p2κph˚

ABq ď p2κph˚
CDq. Because p2 ă

p
2´p for any

p P p0, 1q, it follows that κpMq ă
p

2´pκph˚
CDq, and thus from 1b it follows that ∆˚

CC ă 0. Similarly,

because p2 ă p for any p P p0, 1q, it follows that κpMq ă pκph˚
ABq, and thus from 1c it follows that

∆˚
MX ą 0.

From 1b, ∆˚
CC ď 0 if and only if p

2´pκph˚
AB1q. Because p

2´p ă p for any p P p0, 1q, it follows that

κpMq ă pκph˚
AB1q, and thus from 1c it follows that ∆˚

MX ą 0. The result follows (and note that

the “equivalently” sentence follows directly from the initial sentence).

(3) First, recall that ∆˚
MX “ ∆˚

CR ´ ∆˚
CC , and thus ∆˚

MX ą 0 implies ∆˚
CR ą ∆˚

CC , ∆
˚
MX “ 0

implies ∆˚
CR “ ∆˚

CC , and ∆˚
MX ă 0 implies ∆˚

CR ă ∆˚
CC . The result follows directly from this

observation combined with part 2. Specifically, when ∆˚
CR ď 0, we must have ∆˚

CC ă 0 and

∆˚
MX ą 0, and thus ∆˚

CR ą ∆˚
CC , yielding patterns P1 and P12. When ∆˚

CR ą 0 but ∆˚
CC ď 0,

we must have ∆˚
MX ą 0 and thus ∆˚

CR ą ∆˚
CC , yielding patterns P2 and P23. When ∆˚

CR ą 0

and ∆˚
CC ą 0 but ∆˚

MX ě 0, we must have ∆˚
CR ě ∆˚

CC , yielding patterns P3 and P34. Finally,

When ∆˚
CR ą 0, ∆˚

CC ą 0, and ∆˚
MX ă 0, we must have ∆˚

CR ă ∆˚
CC , yielding pattern P4. This

completes all possibilities consistent with part 2.

■

In the main text, we discuss the importance of the special case of our model where the function

κ is linear (i.e., κpxq “ ϕx for some ϕ ą 0). This case highlights that MXP emerges in our model

due to the way that probabilities enter, and not because the function κ has some special structure.

Proposition A2. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (E.2), (E.3), and (E.4),

and further suppose that κpxq “ ϕx for some ϕ ą 0. For any pp, rq P p0, 1q2, we must have:

(1) ∆˚
CR ą 0;
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(2) ∆˚
MX ą 0; and

(3) ∆˚
CC could be positive, negative, or zero.

Proof: When κpzq “ ϕz, equation (E.2) becomes

M ` ϕM “ ph˚
AB ` p2ϕh˚

AB ðñ h˚
AB “

1 ` ϕ

1 ` pϕ

M

p
,

equation (E.3) becomes

M ` ϕM “ prh˚
AB1 ` p1 ´ rqM ` ppr ` 1 ´ rq rprϕh˚

AB1 ` p1 ´ rqϕM s

ðñ h˚
AB1 “

1 ` p2 ´ p ´ r ` prqϕ

1 ` p1 ´ r ` prqϕ

M

p
,

and equation (E.4) becomes

rM ` r2ϕM “ prh˚
CD ` pprq2ϕh˚

CD ðñ h˚
CD “

1 ` rϕ

1 ` prϕ

M

p
.

We have ∆˚
CR ą 0 if and only if h˚

AB ą h˚
CD, which holds if and only if

1 ` ϕ

1 ` pϕ
ą

1 ` rϕ

1 ` prϕ
ðñ p1 ` ϕqp1 ` prϕq ą p1 ` rϕqp1 ` pϕq

ðñ 1 ` ϕ ` prϕ ` prϕ2 ą 1 ` rϕ ` pϕ ` prϕ2 ðñ ϕp1 ´ rqp1 ´ pq ą 0.

Since this inequality holds for any pp, rq P p0, 1q2, ∆˚
CR ą 0 for any pp, rq P p0, 1q2.

Next, we have ∆˚
MX ą 0 if and only if h˚

AB ą h˚
AB1 , which holds if and only if

1 ` ϕ

1 ` pϕ
ą

1 ` p2 ´ p ´ r ` prqϕ

1 ` p1 ´ r ` prqϕ
ðñ p1`ϕqp1`p1´r`prqϕq ą p1`p2´p´r`prqϕqp1`pϕq

ðñ 1 ` p2 ´ r ` prqϕ ` p1 ´ r ` prqϕ2 ą 1 ` p2 ´ r ` prqϕ ` p2p ´ p2 ´ pr ` p2rqϕ2

ðñ 1 ´ r ´ 2p ` 2pr ` p2 ´ p2r ą 0 ðñ p1 ´ rqp1 ´ pq2 ą 0.

Since this inequality holds for any pp, rq P p0, 1q2, it follows that ∆˚
MX ą 0 for any pp, rq P p0, 1q2.

Finally, it is straightforward to construct examples where ∆˚
CC is positive, zero, or negative.

■

According to Proposition A2, our model with a linear κ function predicts behavior must take

on one of patterns P2, P23, or P3. While a linear κ function can generate our model pattern P2,
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we describe in Section 5.1 how a linear κ cannot explain all instances of pattern P2. We provide

the details in the following example.

Example: Explaining Mean Valuations when pp “ 0.5, r “ 0.2q with a κ Function

In our stage 1 data, when p “ 0.5 and r “ 0.2, the mean responses are hAB “ 38, hAB1 “ 29

and hCD “ 33. Hence, part 1 of Proposition 1 implies that κ must satisfy:

1

2
κp29q ą

1

3
κp29q ą κp15q ą

1

4
κp38q.

We show here that one can combine the second and third inequalities to derive that:

κp29q ´ κp15q

14
ą

κp15q ´ κp0q

15
and

κp29q ´ κp15q

14
ą

κp38q ´ κp29q

9
.

The second inequality implies κp29q ą 3κp15q, from which it is straightforward to derive

κp29q ´ κp15q

14
ą

κp29q ´ κp15q

15
ą 2

κp15q ´ κp0q

15
ą

κp15q ´ κp0q

15
.

The third inequality implies κp38q ă 4κp15q, which when combined with κp29q ą 3κp15q from

the middle inequality yields κp38q ´ κp29q ă κp15q ´ κp0q. From this, we can derive

κp38q ´ κp29q

9
ă

κp15q ´ κp0q

9
ă 2

κp15q ´ κp0q

15
ă

κp29q ´ κp15q

14
.

In Section 5.2.1, we describe the relationship predicted by our model between whether a person

exhibits a CRP and their risk aversion in their AB valuation—where a person is risk-averse in the

AB valuation when h˚
AB ą M{p, and risk-loving when h˚

AB ă M{p. That exploration is based on

the following proposition:

Proposition A3. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from equations (E.2), (E.3), and (E.4).

For any pp, rq P p0, 1q2 and κpxq that is strictly increasing in x:

(1) A person’s h˚
AB satisfies:

(a) h˚
AB ą M{p if and only if κpMq ą p2κph˚

ABq;

(b) h˚
AB ă M{p if and only if κpMq ă p2κph˚

ABq; and

(c) h˚
AB “ M{p if and only if κpMq “ p2κph˚

ABq.

(2) The relationship between a person’s h˚
AB and ∆˚

CR satisfies:

(a) h˚
AB ą M{p if and only if ∆˚

CR ą 0;

(b) h˚
AB ă M{p if and only if ∆˚

CR ă 0; and
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(c) h˚
AB “ M{p if and only if ∆˚

CR “ 0.

Proof: (1) From equation (E.2), h˚
AB is derived from

M ` κpMq “ ph˚
AB ` p2κph˚

ABq.

Applying this equation, κpMq ą p2κph˚
ABq if and only if M ă ph˚

AB or h˚
AB ą M{p; κpMq ă

p2κph˚
ABq if and only if M ą ph˚

AB or h˚
AB ă M{p; and κpMq “ p2κph˚

ABq if and only if M “ ph˚
AB

or h˚
AB “ M{p. (2) Follows directly from part 1 combined with Proposition A1 part 1a.

■

Finally, in Section 6, we discuss the implications of our model for event splits—that is, how

people feel when choosing between a lottery pH, pq versus a lottery pH ` z, p{2;H ´ z, p{2q. Note

that the second lottery is obtained from the first by splitting the “event” of a probability p of

winning H into two “events”, each with probability p{2, that maintain the expected value of the

lottery. Several recent papers have found evidence that people dislike such splits, and one might

wonder whether such evidence is inconsistent with our finding of mixture-loving preferences.

In our model, a person’s preferences for or against event splitting can be determined separately

from their preferences for or against mixtures. In particular, Proposition A2 demonstrated that

an MXP emerges in our model due to the way that probabilities enter our model. In contrast, the

following proposition establishes that preferences for or against event splitting depend on the local

curvature of the function κ.

Proposition A4. Suppose a person is presented with a choice between lottery pH, pq and lottery

pH ` z, p{2;H ´ z, p{2q, and the person chooses based on the decision utility in equation (E.1). For

any pp, rq P p0, 1q2:

(1) If κ is linear on domain rH ´ z,H ` zs, then pH, pq „ pH ` z, p{2;H ´ z, p{2q;

(2) If κ is concave on domain rH ´ z,H ` zs, then pH, pq ą pH ` z, p{2;H ´ z, p{2q; and

(3) If κ is convex on domain rH ´ z,H ` zs, then pH, pq ă pH ` z, p{2;H ´ z, p{2q.

Proof: Applying equation (E.1), the decision-utility comparison is

pH ` p2κpHq :
p

2
pH ` zq `

p

2
pH ´ zq ` p

”p

2
κpH ` zq `

p

2
κpH ´ zq

ı

or

pH ` p2 rκpHqs : pH ` p2
„

1

2
κpH ` zq `

1

2
κpH ´ zq

ȷ
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or

κpHq :
1

2
κpH ` zq `

1

2
κpH ´ zq.

The result follows directly.

■

E.2 Details of Structural Estimation

In this section, we describe the details of the structural estimations described in Sections 5.2.3

and 5.3 of the main text, that is, the structural estimation of our upside-potential model and the

structural estimation of various prospect-theory models.

E.2.1 Data and General Approach

Our goal is to assess how different models perform in explaining the broad patterns in our data, and

in particular how the empirical valuations hAB, hAB1 , and hCD react to changes in the experimental

parameters pp, r,Mq. To do so in a tractable and concrete way, we take the data to be the average

responses for hAB, hAB1 , and hCD across the 20 different pp, rq combinations for which we collect

responses. Hence, the data consist of 60 observations, and these are presented together in the first

three columns of Appendix Table A.2.

Our general approach starts with the specification of a model with parameter vector Θ. Given

a specified model, we derive the model-predicted h˚
XY ’s, XY P tAB,AB1, CDu, as a function of the

experimental parameters pp, r,Mq and the model parameter vector Θ. We denote these predictions

by h˚
XY pp, r,M ;Θq. We then use the 60 observations in the data to estimate Θ using non-linear

least squares—i.e., estimating the equation hXY “ h˚
XY pp, r,M ;Θq ` ε. Finally, we assess the

performance of each model using (i) its mean-squared error (MSE), (ii) its internal R2, (iii) the

correlation between the model-predicted h˚
XY ’s and the observed hXY ’s, and (iv) the correlation

between the model-predicted ∆˚’s and the observed ∆’s.

E.2.2 Estimating the Upside-Potential Model

We estimate the upside potential model in equation (E.1), where the model predictions for h˚
AB,

h˚
AB1 , and h˚

CD are defined by equations (E.2), (E.3), and (E.4). In this model, the sole object to

estimate is the function κpxq.

It is important to note that our data are not optimal for estimating the shape of κ. Recall

that we designed our experiment to study connected CR-CC-MX problems across a broad range

of the parameter space. The upside-potential model is our post-hoc attempt to explain the broad

patterns that emerged in our data that are inconsistent with existing prominent non-EU models.

We did not have this model in mind when we designed our experiment, and the data from our
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experiment do not have the ideal variation one might want if the goal had been to estimate this

model. Nonetheless, this estimation gives some initial indication of what shape of κ may be to

rationalize our data.

Because we have no a priori sense of the shape of κ, we begin with a flexible functional form.

Within our design, M takes on the values 9, 15, 24, and 27, while Appendix Table A.2 reveals that

h takes on values 23.83, 26.35, 27.77 and then various larger values up to 42.56. Hence, we use the

following functional form that has Θ ” pθ1, θ2, θ3, θ4, θ5, θ6q:

κpx;Θq ”

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

θ1x if x P r0, 9s

κp9;Θq ` θ2px ´ 9q if x P r9, 15s

κp15;Θq ` θ3px ´ 15q if x P r15, 24s

κp24;Θq ` θ4px ´ 24q if x P r24, 27s

κp27;Θq ` θ5px ´ 27q if x P r27, 36s

κp36;Θq ` θ6px ´ 36q if x ě 36

In our data, there are 15 instances each of κ getting evaluated at x “ 9, x “ 15, x “ 24, and

x “ 27 (i.e., for each of the four values of M). In contrast, based on the mean h values we observe,

there are no x P p0, 9q or x P p9, 15q, and only one instance each of x P p15, 24q and x P p24, 27q.

Hence, θ1, θ2, θ3, and θ4 primarily capture κp9q, κp15q, κp24q, and κp27q—i.e., the values of κ at

the four values of M . The remaining 58 values for the h’s lie in x P p27, 43q. We permit κ to be

either linear (i.e., θ5 “ θ6) or two-part-linear over this range, where for the latter case we put the

kink at x “ 36 based on wanting similar instances of x above and below the kink.

In Appendix Table E.1, column (1) reports estimates when we assume κ is two-part linear above

x “ 27, while column (2) reports estimates when we assume κ is linear above x “ 27. In addition,

Appendix Figures E.1 and E.2 depict for each estimated model (i) the estimated κ function, (ii)

the actual hXY valuations against their model-predicted values, and (iii) the actual ∆ measures

against their model-predicted values.

Both the six and five parameter κ functions fit the data well in-sample, delivering R2 values

above 0.75, correlations between predicted and actual hXY valuations around 0.9, and correlations

between predicted and actual ∆ measures also around 0.9. Though the six-parameter model pro-

vides a slightly better in-sample fit for the levels of response, the five-parameter model performs

slightly better in terms of correlation with the key preference measures, ∆CR,∆CC , and ∆MX . The

six-parameter model also exhibits a slight non-monotonicity in the estimated κ function between

27 and 36 with θ5 estimated to be negative. We believe this, and the slightly worse match to the

∆ measures is due to overfitting and lack of variability for all types of hXY in the data. As can be

observed in Figure E.1, Panel B, the majority of observations between x “ 27 and x “ 36 are hCD

responses, while those above x “ 36 also include hAB and hAB1 . The six-parameter model can thus

effectively dedicate a parameter to fit a single type of data in the x P p27, 36q region. This yields

a slightly better fit of the levels but compromises on fitting differences. Due to this possibility of
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overfitting, our preferred estimates are those of the five-parameter model.

Within our preferred model, our estimates suggest that κ has an S-shape. In an attempt

to capture this shape using a functional form with fewer parameters, we next consider a three-

parameter sigmoid function with Θ ” pθ1, θ2, θ3q:

κpz,Θq “ θ1 ˚

„

1

1 ` exppθ2pz ´ θ3qq

ȷ

´ θ1 ˚

„

1

1 ` exppθ2p0 ´ θ3qq

ȷ

.

In this formulation, the first bracketed term is a classic two-parameter sigmoid function (with

parameters θ2 and θ3) that goes from zero (as x Ñ ´8) to one (as x Ñ 8). The third parameter

(θ1) is a multiplier on the bracketed term that makes the first term instead go from zero to θ1.

Finally, the second term subtracts off the value of the first term when it is evaluated at x “ 0 to

ensure that κp0q “ 0.

Column (3) of Appendix Table E.1 presents estimates for this functional form, while Appendix

Figure E.3 provides a corresponding illustration of model fit. Again, substantial non-linearity of the

κ function emerges in estimation. Imposing this functional form, however, does lead to a substantial

reduction in explanatory power for the levels of the hXY valuations. Interestingly, however, this

three-parameter functional form delivers correlations between predicted and actual ∆ measures

close to that of our preferred five-parameter model and exceeding that of the six-parameter model

noted above. Panel C of Figure E.3 makes clear that if one’s primary objective is to predict ∆CR,

∆CC , and ∆MX , this three-parameter functional matches the 60 differences in the data well.

E.2.3 Estimating Prospect-Theory Models

As a point of comparison for the fit of our upside potential model, we also estimate several variants

of prospect-theory models using the same 60 data points. As in Appendix B.1, under original

prospect theory (OPT) as in Kahneman and Tversky (1979), a person’s valuations are given by

hAB “ v´1

ˆ

1

πppq
vpMq

˙

, hAB1 “ v´1

ˆ

1 ´ πp1 ´ rq

πpprq
vpMq

˙

, and hCD “ v´1

ˆ

πprq

πpprq
vpMq

˙

.

As in Appendix B.2, under cumulative prospect theory (CPT) as in Tversky and Kahneman (1992),

a person’s hAB and hCD valuations are as above, while there hAB1 valuation is:

hAB1 “ v´1

ˆ

1 ´ pπppr ` 1 ´ rq ´ πpprqq

πpprq
vpMq

˙

.

For either version, the objects to estimate are the probability weighting function πpqq and the value

function vpxq.

We first estimate these models using functional forms frequently used in the literature. Specif-

ically, we assume the value function is vpxq “ xα, and we consider both the one-parameter proba-
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bility weighting function from Tversky and Kahneman (1992),

πpqq “
qδ

rqδ ` p1 ´ qqδs
1{δ

,

and the two-parameter probability weighting function from Lattimore et al. (1992),

πpqq “
γqδ

γqδ ` p1 ´ qqδ
.

Columns (4) and (5) of Appendix Table E.1 present estimates for CPT for these two functional

forms for πpqq, and columns (7) and (8) does the same for OPT. Appendix Figures E.5, E.4, E.8,

and E.7 depict for each estimated model (i) the estimated probability weighting function, (ii) the

actual hXY valuations against their model-predicted values, and (iii) the actual ∆ measures against

their model-predicted values.

All four specifications have poor in-sample fit and substantially underperform our three-parameter

model of upside potential. The best fitting version of prospect theory is CPT with the two-

parameter πpqq which has an MSE of 18.03, an R-squared of ´0.23, a correlation between predicted

and actual hXY valuations of 0.55, and a correlation between predicted and actual ∆ measures of

0.7. The negative R2 value implies that a researcher would be more accurate if they predicted the

mean outcome for every response rather than using the model prediction.

Though these PT estimates do not fit our data well, the estimated parameters for the one-

parameter probability weighting function are close to those in the existing literature. Using data on

certainty equivalents for binary lotteries, Tversky and Kahneman (1992) provide median estimates

of α “ 0.88 and θ1 “ 0.61. Using similar data, Bernheim and Sprenger (2020) estimate α “ 0.94

and θ1 “ 0.72. In Table E.1, our estimates are α “ 0.80 and θ1 “ 0.84 for CPT, and α “ 0.75 and

θ1 “ 0.79 for OPT.

It is perhaps not surprising that these prominent functional forms for probability weighting

perform poorly in explaining our data since they were developed to generate a global CRP and

CCP. Hence, it is worth assessing now much better CPT and OPT might perform with a more

flexible functional form. Specifically, we consider the following six-part piecewise-linear functional

form for probability weighting:
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πpq;Θq ”

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 if q “ 0

θ0 ` θ1q if q P p0, q̄1s

πpq̄1;Θq ` θ2pq ´ q̄1q if q P rq̄1, q̄2s

πpq̄2;Θq ` θ3pq ´ q̄2q if q P rq̄2, q̄3s

πpq̄3;Θq ` θ4pq ´ q̄3q if q P rq̄3, q̄4s

πpq̄4;Θq ` θ5pq ´ q̄4q if q P rq̄4, q̄5s

πpq̄5;Θq ` θ6pq ´ q̄5q if q P rq̄5, 1q

1 if q “ 1

Note that to provide OPT and CPT with extra flexibility, this piecewise-linear function permits

(but does not require) discontinuities at q “ 0 and q “ 1. We selected the five kink points (i.e.,

the q̄i’s) ex ante based on where πpqq would need to be evaluated in each model—putting kinks at

q’s where π is frequently evaluated while also trying to have similar numbers of instances within

each segment. For the OPT model, we chose pq̄1, q̄2, q̄3, q̄4, q̄5q “ p0.15, 0.3, 0.5, 0.7, 0.8q, whereas for

CPT we chose pq̄1, q̄2, q̄3, q̄4, q̄5q “ p0.15, 0.3, 0.5, 0.8, 0.9q. Also, note that this specification nests

expected utility, θ “ p0, 1, 1, 1, 1, 1, 1q.

Columns (6) and (9) of Appendix Table E.1 present these flexible estimates for CPT and OPT,

respectively. Appendix Figures E.6 and E.9 depict for each estimated model (i) the estimated

probability weighting function, (ii) the actual hXY valuations against their model-predicted values,

and (iii) the actual ∆ measures against their model-predicted values. For OPT, this additional

flexibility does relatively little to improve fit, and a researcher would remain more accurate predict-

ing the mean for every observation rather than using the model prediction. In contrast, for CPT,

this extra flexibility leads to qualitative fit improvements, roughly halving the MSE to 11.02 and

delivering a positive R2 value. Importantly, however, the MSE of this best-performing CPT model

is still around three times larger than that of our preferred upside-potential model, while the R2

value is approximately three times smaller. This worse fit is particularly notable given that the

flexible CPT model has access to three more degrees of freedom than our preferred specification of

upside potential.

E.3 Distinguishing Upside Potential from Probability Weighting

In Appendix E.2, we show that our model of upside potential provides a substantially better

quantitative fit of our aggregate data than either CPT or OPT even when permitting flexible

functional forms for probability weighting. In this section, we consider what properties of our

model are fundamentally distinct from formulations of probability weighting which permit this

improved fit.E1

E1We emphasize that a comparison of prospect theory to our model on our data is apt in the sense that the
probability weighting function in prospect theory was developed specifically to speak to anomalies in CR and CC
problems.
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We focus on the different ways that probabilities enter into the models. Hence, throughout this

section, we assume a linear κ function for our model (i.e., κpzq “ ϕz) and a linear value function

for CPT or OPT (i.e., vpzq “ z).E2

We first assess whether either OPT or CPT with a flexible functional form for π could replicate

the predictions from our upside-potential model. Using the conditions from Appendix B.1 combined

with a linear value function, under OPT the indifference values ph˚
AB, h

˚
AB1 , h˚

CDq are determined

from:
M “ πppqh˚

AB

M “ πpprqh˚
AB1 ` πp1 ´ rqM

πprqM “ πpprqh˚
CD

Using the conditions from Appendix B.2 combined with a linear value function, under CPT the

indifference values are determined from:

M “ πppqh˚
AB

M “ πpprqh˚
AB1 ` rπppr ` 1 ´ rq ´ πpprqsM

πprqM “ πpprqh˚
CD

As discussed above, OPT and CPT coincide for binary lotteries, but not for the trinary lottery B1.

When κpzq “ ϕz, under our upside-potential model, rearranging the conditions from the proof

of Proposition A.2, the indifference values are determined from

M “
p ` p2ϕ

1 ` ϕ
h˚
AB (E.5)

M “
pr ` ppr ` 1 ´ rqpprqϕ

1 ` ϕ
h˚
AB1 `

p1 ´ rq ` ppr ` 1 ´ rqp1 ´ rqϕ

1 ` ϕ
M (E.6)

r ` r2ϕ

1 ` ϕ
M “

pr ` pprq2ϕ

1 ` ϕ
h˚
CD (E.7)

If we were making predictions for decisions that involve only sure amounts or binary lotteries

with one winning outcome, then either OPT or CPT with probability weighting function πpqq “

pq ` q2ϕq{p1 ` ϕq will generate the same predictions as our upside-potential model. This general

point is reflected in the equations above by the fact that the h˚
AB and h˚

CD conditions would be the

same in all three models. Hence, for decisions that involve only sure amounts or binary lotteries

with one winning outcome, our upside-potential model is a special case of either OPT or CPT, and

thus if we had data on only such decisions, our model could not outperform OPT or CPT.

It is for decisions that involve trinary lotteries with two winning outcomes that neither OPT

nor CPT can replicate the predictions of our model. To see this under OPT, note that it would

need to be the case that the weight on h˚
AB1 in equation (E.6) can be expressed purely as a function

of pr, the weight on M in equation (E.6) can be expressed purely as a function of p1 ´ rq, and

E2For CPT or OPT, adding a slope parameter to the value function would not change predictions.
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those two functions would need to be the same. Neither of the first two conditions holds, and thus

clearly the third does not as well.

To see this under CPT, note that we can rewrite the CPT condition for h˚
AB1 as

M “ πpprq rh˚
AB1 ´ M s ` πppr ` 1 ´ rqM

and the upside-potential condition for h˚
AB1 as

M “
pr ` ppr ` 1 ´ rqpprqϕ

1 ` ϕ
rh˚

AB1 ´ M s `
ppr ` 1 ´ rq ` ppr ` 1 ´ rq2ϕ

1 ` ϕ
M.

Here, we can match the weight on M if we use πpqq “ pq ` q2ϕq{p1 ` ϕq, but there is no way to

express the weight on ph˚
AB1 ´ Mq purely as a function of pr. For decisions that involve trinary

lotteries, our upside-potential model is therefore distinct from OPT and CPT even when we assume

a linear κ function.

This analysis highlights a key difference between our model and OPT or CPT. For trinary

lotteries, both CPT and OPT require that the weight applied to each outcome depend only on that

outcome’s probability (or cumulative probability in the case of CPT). For lottery B1 this means

the weight on the highest outcome h˚
AB1 must be a function solely of that outcome’s probability,

in this case pr. In contrast, under the upside-potential model, the weight applied to outcome

h˚
AB1 is a function both of pr and the total probability of winning, in this case pr ` 1 ´ r. This

fundamental distinction derives from the central psychology of the upside potential model: that

winning probabilities can matter more the greater is the total chance of winning.

We can obtain further insights on the differences between the models by comparing the quali-

tative predictions for our experimental tasks of the upside-potential model to the those of OPT or

CPT when we assume probability weighting function πpqq “ pq ` q2ϕq{p1 ` ϕq.

Proposition A2 establishes that for linear κ, the upside potential model predicts both CRP and

MXP, with no prediction for the CC preference. As described above, with probability weighting

function πpqq “ pq ` q2ϕq{p1 ` ϕq, OPT and CPT both replicate the predictions of the upside-

potential model for the AB and CD tasks and thus both predict a CRP. Proposition A5 below

establishes that OPT and CPT with this weighting function both further predict a CCP and an

RMXP. In other words, the two models would disagree on the MX preference, and might disagree

on the CC preference.

Proposition A5. Suppose that ph˚
AB, h

˚
AB1 , h˚

CDq is derived from OPT or CPT with a linear value

function and probability weighting function πpqq “
q`q2ϕ
1`ϕ . For any pp, rq P p0, 1q2, we must have:

(1) ∆˚
CR ą 0;

(2) ∆˚
CC ą 0; and

(3) ∆˚
MX ă 0.
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Proof: First note that part (1) follows from part (1) of Proposition A2 combined with the logic

in the text that, when using πpqq “
q`q2ϕ
1`ϕ , both OPT and CPT replicate the predictions from the

upside-potential model for the AB task and the CD task.

Next, note that under both OPT and CPT, the condition for h˚
AB is M “

p`p2ϕ
1`ϕ h˚

AB, and thus

for any r P p0, 1q,

M “ r

ˆ

p ` p2ϕ

1 ` ϕ

˙

h˚
AB`p1´rqpMq “

ˆ

pr ` p2rϕ

1 ` ϕ

˙

ph˚
AB´Mq`

ˆ

p1 ´ r ` prq ` p1 ´ r ` p2rqϕ

1 ` ϕ

˙

M.

Consider the condition for h˚
AB1 under OPT. Define fphq ”

pr`pprq2ϕ
1`ϕ h `

p1´rq`p1´rq2ϕ
1`ϕ M , so

under OPT, h˚
AB1 is defined by M “ fph˚

AB1q. Because for any r P p0, 1q, r
´

p`p2ϕ
1`ϕ

¯

ą
pr`pprq2ϕ

1`ϕ

and p1 ´ rq ą
p1´rq`p1´rq2ϕ

1`ϕ , we must have M ą fph˚
ABq. Since f is increasing in h, it follows that

h˚
AB1 ą h˚

AB and thus ∆˚
MX ă 0. Finally, the combination of ∆˚

CR ą 0 and ∆˚
MX ă 0 implies

∆˚
CC ą 0.

Now consider the condition for h˚
AB1 under CPT. Define

gphq ”

ˆ

pr ` pprq2ϕ

1 ` ϕ

˙

ph ´ Mq `

ˆ

p1 ´ r ` prq ` p1 ´ r ` prq2ϕ

1 ` ϕ

˙

M,

so under CPT, h˚
AB1 is defined by M “ gph˚

AB1q. Because for any r P p0, 1q,
´

pr`p2rϕ
1`ϕ

¯

ą
pr`pprq2ϕ

1`ϕ

and
´

p1´r`prq`p1´r`p2rqϕ
1`ϕ

¯

ą

´

p1´r`prq`p1´r`prq2ϕ
1`ϕ

¯

, we must have M ą gph˚
ABq. Since g is increas-

ing in h, it follows that h˚
AB1 ą h˚

AB and thus ∆˚
MX ă 0. Finally, the combination of ∆˚

CR ą 0 and

∆˚
MX ă 0 implies ∆˚

CC ą 0.

■

Although it is not relevant for our analysis in this paper, we highlight one further distinction

between our upside-potential model and CPT. Under CPT, the weights attached to outcomes

depend on their relative ranks, whereas under our upside-potential model, they do not. To illustrate,

consider a trinary lottery px1, q1;x2, q2q. Under CPT, if x1 ą x2 ą 0, this lottery is evaluated using

πpq1qx1 ` rπpq1 ` q2q ´ πpq1qsx2, whereas if x2 ą x1 ą 0, it is evaluated using πpq2qx2 ` rπpq1 `

q2q ´πpq2qsx1. Under our model with a linear κ function, for any x1 ą 0 and x2 ą 0, it is evaluated

using r1 ` pq1 ` q2qϕsq1x1 ` r1 ` pq1 ` q2qϕsq2x2. The weights that are applied to outcomes x1 and

x2 under upside potential are symmetric—depending only on each outcome’s probability and the

total probability of winning—regardless of whether x1 ą x2 or x2 ą x1. This symmetry may be a

valuable feature of the upside potential model given recent evidence of rank-independence in choice

(Bernheim and Sprenger (2020); Bernheim et al. (2022)).
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Table E.1: Estimates of Upside Potential and Probability Weighting

Upside Potential CPT Probability Weighting OPT Probability Weighting

Flexible Flexible Parametric Parametric Parametric Flexible Parametric Parametric Flexible

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Utility Curvature

α 0.80 0.43 0.35 0.75 0.73 0.70

p0.02q p0.05q p0.04q p0.02q p0.03q p0.03q

Upside Potential/Weighting Parameters

θ1 1.58 1.76 135.34 0.84 1.84 0.20 0.79 0.93 0.04

p0.26q p0.32q p37.59q p0.03q p0.22q p0.04q p0.02q p0.02q p0.01q

θ2 3.73 4.41 0.19 0.63 1.85 0.75 1.17

p0.67q p0.88q p0.00q p0.03q p0.13q p0.03q p0.13q

θ3 6.43 6.86 19.36 1.07 0.94

p1.04q p1.36q p0.39q p0.05q p0.06q

θ4 6.68 7.70 0.62 0.73

p1.63q p1.63q p0.07q p0.09q

θ5 ´0.25 1.72 0.29 0.51

p0.41q p0.54q p0.10q p0.13q

θ6 6.95 0.54 1.32

p1.68q p0.11q p0.21q

θ7 0.69 0.98

p0.16q p0.16q

Observations 60 60 60 60 60 60 60 60 60

Degrees of Freedom 54 55 57 58 57 52 58 57 52

hXY -MSE 2.71 3.53 7.72 33.88 18.03 11.02 26.85 26.17 21.71

hXY -R
2 0.82 0.76 0.47 ´1.31 ´0.23 0.25 ´0.83 ´0.78 ´0.48

ρphXY , ĥXY q 0.92 0.91 0.83 ´0.20 0.55 0.71 0.22 0.30 0.45

∆-MSE 6.15 7.58 7.51 41.48 24.01 19.92 32.51 31.39 29.31

∆-R2 0.66 0.58 0.59 ´1.28 ´0.32 ´0.10 ´0.79 ´0.73 ´0.61

ρp∆, ∆̂q 0.88 0.90 0.89 ´0.51 0.70 0.72 0.22 0.39 0.49

Note: Non-linear least squares regressions using 60 mean values of hAB , hAB1 , hCD as observations. Standard errors in parentheses. R2 values calculated as 1 ´ RSS{TSS, where TSS is sum of

squared deviations to the average value among the 60 observations, and RSS is the sum of squared residuals between the estimated model and the data. Negative values indicate that predicting

the mean for every observation would yield better fit than the estimated model. MSE values, R2 values, and correlation between predicted and actual values, ρ, provided for both levels, hXY ’s,

and differences, ∆’s.

60



0 5 10 15 20 25 30 35 40

z

0

20

40

60

80

100

120

140

160
5
(z

;3
)

Upside Potential - Flexible 2

MSE: 2.71

R2: 0.82

20 25 30 35 40 45

Predicted

20

25

30

35

40

45

A
ct

u
al

In-Sample Fit - Levels
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Figure E.1: Upside Potential Estimates - Flexible Six Parameter Model
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;(h; ĥ) = 0.91

hAB

hAB0

hCD

-10 -5 0 5 10 15 20

Predicted

-10

-5

0

5

10

15

20

A
ct

u
al

In-Sample Fit - Di,erences

;("; "̂) = 0.9

"CR

"CC

"MX

Figure E.2: Upside Potential Estimates - Flexible Five Parameter Model
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Figure E.3: Upside Potential Estimates - Parametric Functional Form
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Figure E.4: CPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure E.5: CPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure E.6: CPT Probability Weighting Estimates - Flexible Functional Form
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;(h; ĥ) = 0.22

hAB

hAB0

hCD

-10 -5 0 5 10 15 20

Predicted

-10

-5

0

5

10

15

20

A
ct
u
a
l

In-Sample Fit - Di,erences

;("; "̂) = 0.22

"CR

"CC

"MX

Figure E.7: OPT Probability Weighting Estimates - Parametric One Parameter Weighting Function
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Figure E.8: OPT Probability Weighting Estimates - Parametric Two Parameter Weighting Function
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Figure E.9: OPT Probability Weighting Estimates - Flexible Functional Form
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F Screenshots from the Online Experiment

Figure F.1: Example Price List for Stage 1 AB1 Valuation Task with p “ 0.8 and r “ 0.1
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Figure F.2: Example Price List for Stage 1 AB Valuation Task with p “ 0.8 and r “ 0.1

65



Figure F.3: Example Price List for Stage 1 CD Valuation Task with p “ 0.8 and r “ 0.1
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Figure F.4: Example AB1 Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 39

Figure F.5: Example AB Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 49

Figure F.6: Example CD Binary Choice from Stage 2 with p “ 0.8, r “ 0.1, and H “ 49
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Figure F.7: Incentivized Comprehension Check #1
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Figure F.8: Incentivized Comprehension Check #2
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Figure F.9: Example Visual Search Task
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