LCOV - code coverage report
Current view: top level - src/base - bits.h (source / functions) Hit Total Coverage
Test: app.info Lines: 32 32 100.0 %
Date: 2019-01-20 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2014 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_BASE_BITS_H_
       6             : #define V8_BASE_BITS_H_
       7             : 
       8             : #include <stdint.h>
       9             : #include <type_traits>
      10             : 
      11             : #include "src/base/base-export.h"
      12             : #include "src/base/macros.h"
      13             : #if V8_CC_MSVC
      14             : #include <intrin.h>
      15             : #endif
      16             : #if V8_OS_WIN32
      17             : #include "src/base/win32-headers.h"
      18             : #endif
      19             : 
      20             : namespace v8 {
      21             : namespace base {
      22             : 
      23             : namespace internal {
      24             : template <typename T>
      25             : class CheckedNumeric;
      26             : }
      27             : 
      28             : namespace bits {
      29             : 
      30             : // CountPopulation(value) returns the number of bits set in |value|.
      31             : template <typename T>
      32             : constexpr inline
      33             :     typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
      34             :                             unsigned>::type
      35             :     CountPopulation(T value) {
      36             : #if V8_HAS_BUILTIN_POPCOUNT
      37      352298 :   return sizeof(T) == 8 ? __builtin_popcountll(static_cast<uint64_t>(value))
      38     4350038 :                         : __builtin_popcount(static_cast<uint32_t>(value));
      39             : #else
      40             :   constexpr uint64_t mask[] = {0x5555555555555555, 0x3333333333333333,
      41             :                                0x0f0f0f0f0f0f0f0f, 0x00ff00ff00ff00ff,
      42             :                                0x0000ffff0000ffff, 0x00000000ffffffff};
      43             :   value = ((value >> 1) & mask[0]) + (value & mask[0]);
      44             :   value = ((value >> 2) & mask[1]) + (value & mask[1]);
      45             :   value = ((value >> 4) & mask[2]) + (value & mask[2]);
      46             :   if (sizeof(T) > 1)
      47             :     value = ((value >> (sizeof(T) > 1 ? 8 : 0)) & mask[3]) + (value & mask[3]);
      48             :   if (sizeof(T) > 2)
      49             :     value = ((value >> (sizeof(T) > 2 ? 16 : 0)) & mask[4]) + (value & mask[4]);
      50             :   if (sizeof(T) > 4)
      51             :     value = ((value >> (sizeof(T) > 4 ? 32 : 0)) & mask[5]) + (value & mask[5]);
      52             :   return static_cast<unsigned>(value);
      53             : #endif
      54             : }
      55             : 
      56             : // ReverseBits(value) returns |value| in reverse bit order.
      57             : template <typename T>
      58             : T ReverseBits(T value) {
      59             :   DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) ||
      60             :          (sizeof(value) == 8));
      61             :   T result = 0;
      62             :   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
      63             :     result = (result << 1) | (value & 1);
      64             :     value >>= 1;
      65             :   }
      66             :   return result;
      67             : }
      68             : 
      69             : // CountLeadingZeros(value) returns the number of zero bits following the most
      70             : // significant 1 bit in |value| if |value| is non-zero, otherwise it returns
      71             : // {sizeof(T) * 8}.
      72             : template <typename T, unsigned bits = sizeof(T) * 8>
      73             : inline constexpr
      74             :     typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
      75             :                             unsigned>::type
      76             :     CountLeadingZeros(T value) {
      77             :   static_assert(bits > 0, "invalid instantiation");
      78             : #if V8_HAS_BUILTIN_CLZ
      79             :   return value == 0
      80             :              ? bits
      81             :              : bits == 64
      82     1159636 :                    ? __builtin_clzll(static_cast<uint64_t>(value))
      83    13194622 :                    : __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits);
      84             : #else
      85             :   // Binary search algorithm taken from "Hacker's Delight" (by Henry S. Warren,
      86             :   // Jr.), figures 5-11 and 5-12.
      87             :   if (bits == 1) return static_cast<unsigned>(value) ^ 1;
      88             :   T upper_half = value >> (bits / 2);
      89             :   T next_value = upper_half != 0 ? upper_half : value;
      90             :   unsigned add = upper_half != 0 ? 0 : bits / 2;
      91             :   constexpr unsigned next_bits = bits == 1 ? 1 : bits / 2;
      92             :   return CountLeadingZeros<T, next_bits>(next_value) + add;
      93             : #endif
      94             : }
      95             : 
      96             : inline constexpr unsigned CountLeadingZeros32(uint32_t value) {
      97             :   return CountLeadingZeros(value);
      98             : }
      99             : inline constexpr unsigned CountLeadingZeros64(uint64_t value) {
     100             :   return CountLeadingZeros(value);
     101             : }
     102             : 
     103             : // CountTrailingZeros(value) returns the number of zero bits preceding the
     104             : // least significant 1 bit in |value| if |value| is non-zero, otherwise it
     105             : // returns {sizeof(T) * 8}.
     106             : template <typename T, unsigned bits = sizeof(T) * 8>
     107             : inline constexpr
     108             :     typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8,
     109             :                             unsigned>::type
     110             :     CountTrailingZeros(T value) {
     111             : #if V8_HAS_BUILTIN_CTZ
     112             :   return value == 0 ? bits
     113             :                     : bits == 64 ? __builtin_ctzll(static_cast<uint64_t>(value))
     114   874252275 :                                  : __builtin_ctz(static_cast<uint32_t>(value));
     115             : #else
     116             :   // Fall back to popcount (see "Hacker's Delight" by Henry S. Warren, Jr.),
     117             :   // chapter 5-4. On x64, since is faster than counting in a loop and faster
     118             :   // than doing binary search.
     119             :   using U = typename std::make_unsigned<T>::type;
     120             :   U u = value;
     121             :   return CountPopulation(static_cast<U>(~u & (u - 1u)));
     122             : #endif
     123             : }
     124             : 
     125             : inline constexpr unsigned CountTrailingZeros32(uint32_t value) {
     126             :   return CountTrailingZeros(value);
     127             : }
     128             : inline constexpr unsigned CountTrailingZeros64(uint64_t value) {
     129             :   return CountTrailingZeros(value);
     130             : }
     131             : 
     132             : // Returns true iff |value| is a power of 2.
     133             : template <typename T,
     134             :           typename = typename std::enable_if<std::is_integral<T>::value ||
     135             :                                              std::is_enum<T>::value>::type>
     136             : constexpr inline bool IsPowerOfTwo(T value) {
     137    55915021 :   return value > 0 && (value & (value - 1)) == 0;
     138             : }
     139             : 
     140             : // RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
     141             : // greater than or equal to |value|. If you pass in a |value| that is already a
     142             : // power of two, it is returned as is. |value| must be less than or equal to
     143             : // 0x80000000u. Uses computation based on leading zeros if we have compiler
     144             : // support for that. Falls back to the implementation from "Hacker's Delight" by
     145             : // Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2.
     146             : V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value);
     147             : // Same for 64 bit integers. |value| must be <= 2^63
     148             : V8_BASE_EXPORT uint64_t RoundUpToPowerOfTwo64(uint64_t value);
     149             : // Same for size_t integers.
     150             : inline size_t RoundUpToPowerOfTwo(size_t value) {
     151             :   if (sizeof(size_t) == sizeof(uint64_t)) {
     152       20288 :     return RoundUpToPowerOfTwo64(value);
     153             :   } else {
     154             :     return RoundUpToPowerOfTwo32(value);
     155             :   }
     156             : }
     157             : 
     158             : // RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
     159             : // less than or equal to |value|. If you pass in a |value| that is already a
     160             : // power of two, it is returned as is.
     161             : inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
     162          32 :   if (value > 0x80000000u) return 0x80000000u;
     163          34 :   uint32_t result = RoundUpToPowerOfTwo32(value);
     164          34 :   if (result > value) result >>= 1;
     165             :   return result;
     166             : }
     167             : 
     168             : 
     169             : // Precondition: 0 <= shift < 32
     170             : inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
     171       58704 :   if (shift == 0) return value;
     172       56916 :   return (value >> shift) | (value << (32 - shift));
     173             : }
     174             : 
     175             : // Precondition: 0 <= shift < 32
     176             : inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
     177        1020 :   if (shift == 0) return value;
     178         975 :   return (value << shift) | (value >> (32 - shift));
     179             : }
     180             : 
     181             : // Precondition: 0 <= shift < 64
     182             : inline uint64_t RotateRight64(uint64_t value, uint64_t shift) {
     183       98415 :   if (shift == 0) return value;
     184       74115 :   return (value >> shift) | (value << (64 - shift));
     185             : }
     186             : 
     187             : // Precondition: 0 <= shift < 64
     188             : inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
     189       99690 :   if (shift == 0) return value;
     190       75330 :   return (value << shift) | (value >> (64 - shift));
     191             : }
     192             : 
     193             : 
     194             : // SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
     195             : // |rhs| and stores the result into the variable pointed to by |val| and
     196             : // returns true if the signed summation resulted in an overflow.
     197             : inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
     198             : #if V8_HAS_BUILTIN_SADD_OVERFLOW
     199             :   return __builtin_sadd_overflow(lhs, rhs, val);
     200             : #else
     201    38938017 :   uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
     202        1278 :   *val = bit_cast<int32_t>(res);
     203    38938017 :   return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
     204             : #endif
     205             : }
     206             : 
     207             : 
     208             : // SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
     209             : // |rhs| and stores the result into the variable pointed to by |val| and
     210             : // returns true if the signed subtraction resulted in an overflow.
     211             : inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
     212             : #if V8_HAS_BUILTIN_SSUB_OVERFLOW
     213             :   return __builtin_ssub_overflow(lhs, rhs, val);
     214             : #else
     215      115431 :   uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
     216        1277 :   *val = bit_cast<int32_t>(res);
     217      115431 :   return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
     218             : #endif
     219             : }
     220             : 
     221             : // SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs|
     222             : // and |rhs| and stores the result into the variable pointed to by |val| and
     223             : // returns true if the signed multiplication resulted in an overflow.
     224             : V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val);
     225             : 
     226             : // SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
     227             : // |rhs| and stores the result into the variable pointed to by |val| and
     228             : // returns true if the signed summation resulted in an overflow.
     229             : inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
     230      164025 :   uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
     231             :   *val = bit_cast<int64_t>(res);
     232      164025 :   return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
     233             : }
     234             : 
     235             : 
     236             : // SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
     237             : // |rhs| and stores the result into the variable pointed to by |val| and
     238             : // returns true if the signed subtraction resulted in an overflow.
     239             : inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
     240      164025 :   uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
     241             :   *val = bit_cast<int64_t>(res);
     242      164025 :   return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
     243             : }
     244             : 
     245             : // SignedMulOverflow64(lhs,rhs,val) performs a signed multiplication of |lhs|
     246             : // and |rhs| and stores the result into the variable pointed to by |val| and
     247             : // returns true if the signed multiplication resulted in an overflow.
     248             : V8_BASE_EXPORT bool SignedMulOverflow64(int64_t lhs, int64_t rhs, int64_t* val);
     249             : 
     250             : // SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
     251             : // |rhs|, extracts the most significant 32 bits of the result, and returns
     252             : // those.
     253             : V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);
     254             : 
     255             : // SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
     256             : // |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
     257             : // adds the accumulate value |acc|.
     258             : V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs,
     259             :                                              int32_t acc);
     260             : 
     261             : // SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
     262             : // truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
     263             : // is minint and |rhs| is -1, it returns minint.
     264             : V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs);
     265             : 
     266             : // SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
     267             : // truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
     268             : // is -1, it returns zero.
     269             : V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs);
     270             : 
     271             : // UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
     272             : // and |rhs| and stores the result into the variable pointed to by |val| and
     273             : // returns true if the unsigned summation resulted in an overflow.
     274             : inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
     275             : #if V8_HAS_BUILTIN_SADD_OVERFLOW
     276             :   return __builtin_uadd_overflow(lhs, rhs, val);
     277             : #else
     278   150037702 :   *val = lhs + rhs;
     279   150037700 :   return *val < (lhs | rhs);
     280             : #endif
     281             : }
     282             : 
     283             : 
     284             : // UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
     285             : // truncated to uint32. If |rhs| is zero, then zero is returned.
     286             : inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
     287       28108 :   return rhs ? lhs / rhs : 0u;
     288             : }
     289             : 
     290             : 
     291             : // UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
     292             : // truncated to uint32. If |rhs| is zero, then zero is returned.
     293             : inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
     294       28155 :   return rhs ? lhs % rhs : 0u;
     295             : }
     296             : 
     297             : 
     298             : // Clamp |value| on overflow and underflow conditions.
     299             : V8_BASE_EXPORT int64_t
     300             : FromCheckedNumeric(const internal::CheckedNumeric<int64_t> value);
     301             : 
     302             : // SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|,
     303             : // checks and returns the result.
     304             : V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs);
     305             : 
     306             : // SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|,
     307             : // checks and returns the result.
     308             : V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs);
     309             : 
     310             : }  // namespace bits
     311             : }  // namespace base
     312             : }  // namespace v8
     313             : 
     314             : #endif  // V8_BASE_BITS_H_

Generated by: LCOV version 1.10