Line data Source code
1 : // Copyright 2016 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_CODE_STUB_ASSEMBLER_H_
6 : #define V8_CODE_STUB_ASSEMBLER_H_
7 :
8 : #include <functional>
9 :
10 : #include "src/bailout-reason.h"
11 : #include "src/base/macros.h"
12 : #include "src/compiler/code-assembler.h"
13 : #include "src/frames.h"
14 : #include "src/globals.h"
15 : #include "src/message-template.h"
16 : #include "src/objects.h"
17 : #include "src/objects/arguments.h"
18 : #include "src/objects/bigint.h"
19 : #include "src/objects/shared-function-info.h"
20 : #include "src/objects/smi.h"
21 : #include "src/roots.h"
22 :
23 : #include "torque-generated/builtins-base-from-dsl-gen.h"
24 :
25 : namespace v8 {
26 : namespace internal {
27 :
28 : class CallInterfaceDescriptor;
29 : class CodeStubArguments;
30 : class CodeStubAssembler;
31 : class StatsCounter;
32 : class StubCache;
33 :
34 : enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
35 :
36 : #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
37 : V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
38 : V(PromiseSpeciesProtector, promise_species_protector, \
39 : PromiseSpeciesProtector) \
40 : V(TypedArraySpeciesProtector, typed_array_species_protector, \
41 : TypedArraySpeciesProtector) \
42 : V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector)
43 :
44 : #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \
45 : V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \
46 : V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \
47 : V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \
48 : V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \
49 : AllocationSiteWithoutWeakNextMap) \
50 : V(BooleanMap, boolean_map, BooleanMap) \
51 : V(CodeMap, code_map, CodeMap) \
52 : V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
53 : V(EmptyPropertyDictionary, empty_property_dictionary, \
54 : EmptyPropertyDictionary) \
55 : V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
56 : EmptySlowElementDictionary) \
57 : V(empty_string, empty_string, EmptyString) \
58 : V(FalseValue, false_value, False) \
59 : V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \
60 : V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
61 : V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
62 : V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \
63 : V(FunctionTemplateInfoMap, function_template_info_map, \
64 : FunctionTemplateInfoMap) \
65 : V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
66 : V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
67 : V(HeapNumberMap, heap_number_map, HeapNumberMap) \
68 : V(iterator_symbol, iterator_symbol, IteratorSymbol) \
69 : V(length_string, length_string, LengthString) \
70 : V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
71 : V(MetaMap, meta_map, MetaMap) \
72 : V(MinusZeroValue, minus_zero_value, MinusZero) \
73 : V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \
74 : V(NanValue, nan_value, Nan) \
75 : V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
76 : V(NoFeedbackCellMap, no_feedback_cell_map, NoFeedbackCellMap) \
77 : V(NullValue, null_value, Null) \
78 : V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
79 : V(PreparseDataMap, preparse_data_map, PreparseDataMap) \
80 : V(prototype_string, prototype_string, PrototypeString) \
81 : V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap) \
82 : V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
83 : V(SymbolMap, symbol_map, SymbolMap) \
84 : V(TheHoleValue, the_hole_value, TheHole) \
85 : V(TransitionArrayMap, transition_array_map, TransitionArrayMap) \
86 : V(TrueValue, true_value, True) \
87 : V(Tuple2Map, tuple2_map, Tuple2Map) \
88 : V(Tuple3Map, tuple3_map, Tuple3Map) \
89 : V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map, \
90 : ArrayBoilerplateDescriptionMap) \
91 : V(UncompiledDataWithoutPreparseDataMap, \
92 : uncompiled_data_without_preparse_data_map, \
93 : UncompiledDataWithoutPreparseDataMap) \
94 : V(UncompiledDataWithPreparseDataMap, uncompiled_data_with_preparse_data_map, \
95 : UncompiledDataWithPreparseDataMap) \
96 : V(UndefinedValue, undefined_value, Undefined) \
97 : V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)
98 :
99 : #define HEAP_IMMOVABLE_OBJECT_LIST(V) \
100 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
101 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
102 :
103 : #ifdef DEBUG
104 : #define CSA_CHECK(csa, x) \
105 : (csa)->Check( \
106 : [&]() -> compiler::Node* { \
107 : return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
108 : }, \
109 : #x, __FILE__, __LINE__)
110 : #else
111 : #define CSA_CHECK(csa, x) (csa)->FastCheck(x)
112 : #endif
113 :
114 : #ifdef DEBUG
115 : // Add stringified versions to the given values, except the first. That is,
116 : // transform
117 : // x, a, b, c, d, e, f
118 : // to
119 : // a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
120 : //
121 : // __VA_ARGS__ is ignored to allow the caller to pass through too many
122 : // parameters, and the first element is ignored to support having no extra
123 : // values without empty __VA_ARGS__ (which cause all sorts of problems with
124 : // extra commas).
125 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
126 : v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
127 :
128 : // Stringify the given variable number of arguments. The arguments are trimmed
129 : // to 5 if there are too many, and padded with nullptr if there are not enough.
130 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...) \
131 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
132 : nullptr, nullptr)
133 :
134 : #define CSA_ASSERT_GET_FIRST(x, ...) (x)
135 : #define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
136 :
137 : // CSA_ASSERT(csa, <condition>, <extra values to print...>)
138 :
139 : // We have to jump through some hoops to allow <extra values to print...> to be
140 : // empty.
141 : #define CSA_ASSERT(csa, ...) \
142 : (csa)->Assert( \
143 : [&]() -> compiler::Node* { \
144 : return implicit_cast<compiler::SloppyTNode<Word32T>>( \
145 : EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__))); \
146 : }, \
147 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
148 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
149 :
150 : // CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
151 : // <extra values to print...>)
152 :
153 : #define CSA_ASSERT_BRANCH(csa, ...) \
154 : (csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)), \
155 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
156 : __LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
157 :
158 : #define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
159 : (csa)->Assert( \
160 : [&]() -> compiler::Node* { \
161 : compiler::Node* const argc = \
162 : (csa)->Parameter(Descriptor::kJSActualArgumentsCount); \
163 : return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
164 : }, \
165 : "argc " #op " " #expected, __FILE__, __LINE__, \
166 : SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
167 : "argc")
168 :
169 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
170 : CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
171 :
172 : #define CSA_DEBUG_INFO(name) \
173 : { #name, __FILE__, __LINE__ }
174 : #define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
175 : #define VARIABLE(name, ...) \
176 : Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
177 : #define VARIABLE_CONSTRUCTOR(name, ...) \
178 : name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
179 : #define TYPED_VARIABLE_DEF(type, name, ...) \
180 : TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
181 : #else // DEBUG
182 : #define CSA_ASSERT(csa, ...) ((void)0)
183 : #define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
184 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
185 : #define BIND(label) Bind(label)
186 : #define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
187 : #define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
188 : #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
189 : #endif // DEBUG
190 :
191 : #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
192 :
193 : #ifdef ENABLE_SLOW_DCHECKS
194 : #define CSA_SLOW_ASSERT(csa, ...) \
195 : if (FLAG_enable_slow_asserts) { \
196 : CSA_ASSERT(csa, __VA_ARGS__); \
197 : }
198 : #else
199 : #define CSA_SLOW_ASSERT(csa, ...) ((void)0)
200 : #endif
201 :
202 : // Provides JavaScript-specific "macro-assembler" functionality on top of the
203 : // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
204 : // it's possible to add JavaScript-specific useful CodeAssembler "macros"
205 : // without modifying files in the compiler directory (and requiring a review
206 : // from a compiler directory OWNER).
207 463132 : class V8_EXPORT_PRIVATE CodeStubAssembler
208 : : public compiler::CodeAssembler,
209 : public BaseBuiltinsFromDSLAssembler {
210 : public:
211 : using Node = compiler::Node;
212 : template <class T>
213 : using TNode = compiler::TNode<T>;
214 : template <class T>
215 : using SloppyTNode = compiler::SloppyTNode<T>;
216 :
217 : template <typename T>
218 : using LazyNode = std::function<TNode<T>()>;
219 :
220 : explicit CodeStubAssembler(compiler::CodeAssemblerState* state);
221 :
222 : enum AllocationFlag : uint8_t {
223 : kNone = 0,
224 : kDoubleAlignment = 1,
225 : kPretenured = 1 << 1,
226 : kAllowLargeObjectAllocation = 1 << 2,
227 : };
228 :
229 : enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
230 :
231 : typedef base::Flags<AllocationFlag> AllocationFlags;
232 :
233 : enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
234 :
235 : // On 32-bit platforms, there is a slight performance advantage to doing all
236 : // of the array offset/index arithmetic with SMIs, since it's possible
237 : // to save a few tag/untag operations without paying an extra expense when
238 : // calculating array offset (the smi math can be folded away) and there are
239 : // fewer live ranges. Thus only convert indices to untagged value on 64-bit
240 : // platforms.
241 : ParameterMode OptimalParameterMode() const {
242 2681 : return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
243 : }
244 :
245 : MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
246 : return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
247 885 : : MachineRepresentation::kTaggedSigned;
248 : }
249 :
250 : MachineRepresentation OptimalParameterRepresentation() const {
251 : return ParameterRepresentation(OptimalParameterMode());
252 : }
253 :
254 : TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
255 18277 : if (mode == SMI_PARAMETERS) value = SmiUntag(value);
256 : return UncheckedCast<IntPtrT>(value);
257 : }
258 :
259 : Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
260 5141 : if (mode == SMI_PARAMETERS) return SmiTag(value);
261 : return value;
262 : }
263 :
264 : Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
265 : return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
266 : }
267 :
268 : TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
269 42164 : if (mode != SMI_PARAMETERS) return SmiTag(value);
270 : return UncheckedCast<Smi>(value);
271 : }
272 :
273 : Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
274 24071 : if (mode != SMI_PARAMETERS) return SmiUntag(value);
275 : return value;
276 : }
277 :
278 14292 : bool ToParameterConstant(Node* node, intptr_t* out, ParameterMode mode) {
279 14292 : if (mode == ParameterMode::SMI_PARAMETERS) {
280 1048 : Smi constant;
281 1048 : if (ToSmiConstant(node, &constant)) {
282 10 : *out = static_cast<intptr_t>(constant->value());
283 10 : return true;
284 : }
285 : } else {
286 : DCHECK_EQ(mode, ParameterMode::INTPTR_PARAMETERS);
287 : intptr_t constant;
288 13244 : if (ToIntPtrConstant(node, constant)) {
289 702 : *out = constant;
290 702 : return true;
291 : }
292 : }
293 :
294 : return false;
295 : }
296 :
297 : #if defined(V8_HOST_ARCH_32_BIT)
298 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; }
299 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) {
300 : return SmiToIntPtr(source);
301 : }
302 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; }
303 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) {
304 : return SmiFromIntPtr(source);
305 : }
306 : #elif defined(V8_HOST_ARCH_64_BIT)
307 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); }
308 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; }
309 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); }
310 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; }
311 : #else
312 : #error Unknown architecture.
313 : #endif
314 :
315 1343 : TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
316 2686 : GotoIf(TaggedIsNotSmi(value), fail);
317 1343 : return UncheckedCast<Smi>(value);
318 : }
319 :
320 896 : TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
321 1792 : GotoIfNot(IsNumber(value), fail);
322 896 : return UncheckedCast<Number>(value);
323 : }
324 :
325 6297 : TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
326 12594 : GotoIf(TaggedIsSmi(value), fail);
327 6297 : return UncheckedCast<HeapObject>(value);
328 : }
329 :
330 789 : TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
331 : Label* fail) {
332 1578 : GotoIfNot(IsJSArray(heap_object), fail);
333 789 : return UncheckedCast<JSArray>(heap_object);
334 : }
335 :
336 : TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
337 : TNode<Object> value, Label* fail) {
338 : GotoIf(TaggedIsSmi(value), fail);
339 : TNode<HeapObject> heap_object = CAST(value);
340 : GotoIfNot(IsFastJSArray(heap_object, context), fail);
341 : return UncheckedCast<JSArray>(heap_object);
342 : }
343 :
344 1288 : TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
345 : Label* fail) {
346 2576 : GotoIfNot(IsJSDataView(heap_object), fail);
347 1288 : return CAST(heap_object);
348 : }
349 :
350 504 : TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
351 : Label* fail) {
352 1008 : GotoIfNot(IsCallable(heap_object), fail);
353 504 : return CAST(heap_object);
354 : }
355 :
356 336 : TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) {
357 672 : GotoIfNot(IsString(heap_object), fail);
358 336 : return CAST(heap_object);
359 : }
360 :
361 56 : TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object,
362 : Label* fail) {
363 112 : GotoIfNot(IsConstructor(heap_object), fail);
364 56 : return CAST(heap_object);
365 : }
366 :
367 : Node* MatchesParameterMode(Node* value, ParameterMode mode);
368 :
369 : #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
370 : Node* OpName(Node* a, Node* b, ParameterMode mode) { \
371 : if (mode == SMI_PARAMETERS) { \
372 : return SmiOpName(CAST(a), CAST(b)); \
373 : } else { \
374 : DCHECK_EQ(INTPTR_PARAMETERS, mode); \
375 : return IntPtrOpName(a, b); \
376 : } \
377 : }
378 168 : PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
379 225811 : PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
380 34831 : PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
381 : PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
382 168 : PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
383 : SmiLessThanOrEqual)
384 48429 : PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
385 : PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
386 : SmiGreaterThanOrEqual)
387 : PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
388 47343 : PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
389 : SmiAboveOrEqual)
390 : #undef PARAMETER_BINOP
391 :
392 173 : uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; }
393 : uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; }
394 :
395 : TNode<Object> NoContextConstant();
396 :
397 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
398 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
399 : std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
400 : name##Constant();
401 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
402 : #undef HEAP_CONSTANT_ACCESSOR
403 :
404 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
405 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
406 : std::declval<Heap>().rootAccessorName())>::type>::type> \
407 : name##Constant();
408 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
409 : #undef HEAP_CONSTANT_ACCESSOR
410 :
411 : #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
412 : TNode<BoolT> Is##name(SloppyTNode<Object> value); \
413 : TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
414 : HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
415 : #undef HEAP_CONSTANT_TEST
416 :
417 : Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
418 :
419 : bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
420 : bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
421 : ParameterMode mode);
422 :
423 : // Round the 32bits payload of the provided word up to the next power of two.
424 : TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
425 : // Select the maximum of the two provided IntPtr values.
426 : TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
427 : SloppyTNode<IntPtrT> right);
428 : // Select the minimum of the two provided IntPtr values.
429 : TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
430 : SloppyTNode<IntPtrT> right);
431 :
432 : // Float64 operations.
433 : TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
434 : TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
435 : TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
436 : TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
437 : TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
438 : // Select the minimum of the two provided Number values.
439 : TNode<Number> NumberMax(SloppyTNode<Number> left, SloppyTNode<Number> right);
440 : // Select the minimum of the two provided Number values.
441 : TNode<Number> NumberMin(SloppyTNode<Number> left, SloppyTNode<Number> right);
442 :
443 : // After converting an index to an integer, calculate a relative index: if
444 : // index < 0, max(length + index, 0); else min(index, length)
445 : TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
446 : TNode<Object> index,
447 : TNode<IntPtrT> length);
448 :
449 : // Returns true iff the given value fits into smi range and is >= 0.
450 : TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
451 :
452 : // Tag an IntPtr as a Smi value.
453 : TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
454 : // Untag a Smi value as an IntPtr.
455 : TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
456 :
457 : // Smi conversions.
458 : TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
459 7738 : TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
460 : TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
461 1410 : TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
462 : TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
463 :
464 : // Smi operations.
465 : #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \
466 : TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
467 : if (SmiValuesAre32Bits()) { \
468 : return BitcastWordToTaggedSigned( \
469 : IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
470 : } else { \
471 : DCHECK(SmiValuesAre31Bits()); \
472 : if (kSystemPointerSize == kInt64Size) { \
473 : CSA_ASSERT(this, IsValidSmi(a)); \
474 : CSA_ASSERT(this, IsValidSmi(b)); \
475 : } \
476 : return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr( \
477 : Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
478 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))))); \
479 : } \
480 : }
481 83332 : SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
482 33372 : SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
483 4704 : SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
484 176120 : SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
485 : #undef SMI_ARITHMETIC_BINOP
486 56 : TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }
487 :
488 : TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b,
489 : Label* if_overflow);
490 : TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
491 : TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
492 :
493 3640 : TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
494 10920 : return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
495 : }
496 :
497 2749 : TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
498 : return BitcastWordToTaggedSigned(
499 : WordAnd(WordShr(BitcastTaggedToWord(a), shift),
500 10996 : BitcastTaggedToWord(SmiConstant(-1))));
501 : }
502 :
503 280 : TNode<Smi> SmiSar(TNode<Smi> a, int shift) {
504 : return BitcastWordToTaggedSigned(
505 : WordAnd(WordSar(BitcastTaggedToWord(a), shift),
506 1120 : BitcastTaggedToWord(SmiConstant(-1))));
507 : }
508 :
509 : Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
510 : if (mode == SMI_PARAMETERS) {
511 : return SmiShl(CAST(a), shift);
512 : } else {
513 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
514 : return WordShl(a, shift);
515 : }
516 : }
517 :
518 2407 : Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
519 2407 : if (mode == SMI_PARAMETERS) {
520 234 : return SmiShr(CAST(a), shift);
521 : } else {
522 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
523 4580 : return WordShr(a, shift);
524 : }
525 : }
526 :
527 : #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \
528 : TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
529 : if (SmiValuesAre32Bits()) { \
530 : return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
531 : } else { \
532 : DCHECK(SmiValuesAre31Bits()); \
533 : if (kSystemPointerSize == kInt64Size) { \
534 : CSA_ASSERT(this, IsValidSmi(a)); \
535 : CSA_ASSERT(this, IsValidSmi(b)); \
536 : } \
537 : return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
538 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))); \
539 : } \
540 : }
541 113128 : SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
542 3584 : SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
543 9856 : SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
544 896 : SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
545 : Uint32GreaterThanOrEqual)
546 3360 : SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
547 49296 : SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
548 22500 : SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
549 : Int32LessThanOrEqual)
550 23456 : SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
551 16800 : SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
552 : Int32GreaterThanOrEqual)
553 : #undef SMI_COMPARISON_OP
554 : TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
555 : TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
556 : // Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
557 : TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
558 : // Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
559 : TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
560 : // Tries to compute dividend / divisor for Smi inputs; branching to bailout
561 : // if the division needs to be performed as a floating point operation.
562 : TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
563 :
564 : // Compares two Smis a and b as if they were converted to strings and then
565 : // compared lexicographically. Returns:
566 : // -1 iff x < y.
567 : // 0 iff x == y.
568 : // 1 iff x > y.
569 : TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y);
570 :
571 : // Smi | HeapNumber operations.
572 : TNode<Number> NumberInc(SloppyTNode<Number> value);
573 : TNode<Number> NumberDec(SloppyTNode<Number> value);
574 : TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
575 : TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
576 : void GotoIfNotNumber(Node* value, Label* is_not_number);
577 : void GotoIfNumber(Node* value, Label* is_number);
578 : TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
579 :
580 : TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
581 :
582 : // Allocate an object of the given size.
583 : TNode<HeapObject> AllocateInNewSpace(TNode<IntPtrT> size,
584 : AllocationFlags flags = kNone);
585 : TNode<HeapObject> AllocateInNewSpace(int size, AllocationFlags flags = kNone);
586 : TNode<HeapObject> Allocate(TNode<IntPtrT> size,
587 : AllocationFlags flags = kNone);
588 : TNode<HeapObject> Allocate(int size, AllocationFlags flags = kNone);
589 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, int offset);
590 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous,
591 : TNode<IntPtrT> offset);
592 :
593 : TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size);
594 :
595 : typedef std::function<void(Label*, Label*)> BranchGenerator;
596 : typedef std::function<Node*()> NodeGenerator;
597 :
598 : void Assert(const BranchGenerator& branch, const char* message = nullptr,
599 : const char* file = nullptr, int line = 0,
600 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
601 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
602 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
603 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
604 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
605 : void Assert(const NodeGenerator& condition_body,
606 : const char* message = nullptr, const char* file = nullptr,
607 : int line = 0, Node* extra_node1 = nullptr,
608 : const char* extra_node1_name = "", Node* extra_node2 = nullptr,
609 : const char* extra_node2_name = "", Node* extra_node3 = nullptr,
610 : const char* extra_node3_name = "", Node* extra_node4 = nullptr,
611 : const char* extra_node4_name = "", Node* extra_node5 = nullptr,
612 : const char* extra_node5_name = "");
613 : void Check(const BranchGenerator& branch, const char* message = nullptr,
614 : const char* file = nullptr, int line = 0,
615 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
616 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
617 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
618 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
619 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
620 : void Check(const NodeGenerator& condition_body, const char* message = nullptr,
621 : const char* file = nullptr, int line = 0,
622 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
623 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
624 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
625 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
626 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
627 : void FailAssert(
628 : const char* message = nullptr, const char* file = nullptr, int line = 0,
629 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
630 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
631 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
632 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
633 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
634 :
635 : void FastCheck(TNode<BoolT> condition);
636 :
637 : // The following Call wrappers call an object according to the semantics that
638 : // one finds in the EcmaScript spec, operating on an Callable (e.g. a
639 : // JSFunction or proxy) rather than a Code object.
640 : template <class... TArgs>
641 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
642 : TNode<JSReceiver> receiver, TArgs... args) {
643 : return UncheckedCast<Object>(CallJS(
644 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
645 : context, callable, receiver, args...));
646 : }
647 : template <class... TArgs>
648 1008 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
649 : TNode<Object> receiver, TArgs... args) {
650 1008 : if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
651 : return UncheckedCast<Object>(CallJS(
652 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
653 392 : context, callable, receiver, args...));
654 : }
655 : return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
656 616 : callable, receiver, args...));
657 : }
658 :
659 : template <class... TArgs>
660 952 : TNode<JSReceiver> Construct(TNode<Context> context,
661 : TNode<JSReceiver> new_target, TArgs... args) {
662 952 : return CAST(ConstructJS(CodeFactory::Construct(isolate()), context,
663 : new_target, implicit_cast<TNode<Object>>(args)...));
664 : }
665 :
666 : template <class A, class F, class G>
667 38831 : TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
668 : const G& false_body) {
669 : return UncheckedCast<A>(SelectImpl(
670 : condition,
671 42756 : [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
672 48977 : [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
673 116493 : MachineRepresentationOf<A>::value));
674 : }
675 :
676 : template <class A>
677 12008 : TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
678 : TNode<A> false_value) {
679 12008 : return Select<A>(condition, [=] { return true_value; },
680 36024 : [=] { return false_value; });
681 : }
682 :
683 : TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
684 : int true_value, int false_value);
685 : TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
686 : int true_value, int false_value);
687 : TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
688 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
689 : Smi false_value);
690 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
691 : Smi false_value) {
692 : return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
693 : }
694 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
695 : int false_value) {
696 : return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
697 : }
698 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
699 : int false_value) {
700 : return SelectSmiConstant(condition, Smi::FromInt(true_value),
701 4144 : Smi::FromInt(false_value));
702 : }
703 :
704 : TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
705 :
706 : // Check a value for smi-ness
707 : TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
708 : TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
709 : TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
710 : // Check that the value is a non-negative smi.
711 : TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
712 : // Check that a word has a word-aligned address.
713 : TNode<BoolT> WordIsAligned(SloppyTNode<WordT> word, size_t alignment);
714 : TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
715 :
716 : #if DEBUG
717 : void Bind(Label* label, AssemblerDebugInfo debug_info);
718 : #endif // DEBUG
719 : void Bind(Label* label);
720 :
721 : template <class... T>
722 : void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label,
723 : TNode<T>*... phis) {
724 : CodeAssembler::Bind(label, phis...);
725 : }
726 :
727 7784 : void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
728 : Label* if_false) {
729 15568 : Branch(SmiEqual(a, b), if_true, if_false);
730 7784 : }
731 :
732 5376 : void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
733 : Label* if_false) {
734 10752 : Branch(SmiLessThan(a, b), if_true, if_false);
735 5376 : }
736 :
737 3721 : void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
738 : Label* if_false) {
739 7442 : Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
740 3721 : }
741 :
742 1680 : void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
743 3360 : Branch(Float64Equal(value, value), if_false, if_true);
744 1680 : }
745 :
746 : // Branches to {if_true} if ToBoolean applied to {value} yields true,
747 : // otherwise goes to {if_false}.
748 : void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
749 :
750 : void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
751 :
752 : // Branches to {if_true} when --force-slow-path flag has been passed.
753 : // It's used for testing to ensure that slow path implementation behave
754 : // equivalent to corresponding fast paths (where applicable).
755 : //
756 : // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
757 : void GotoIfForceSlowPath(Label* if_true);
758 :
759 : // Branches to {if_true} when Debug::ExecutionMode is DebugInfo::kSideEffect.
760 : void GotoIfDebugExecutionModeChecksSideEffects(Label* if_true);
761 :
762 : // Load value from current parent frame by given offset in bytes.
763 : Node* LoadFromParentFrame(int offset,
764 : MachineType rep = MachineType::AnyTagged());
765 :
766 : // Load an object pointer from a buffer that isn't in the heap.
767 : Node* LoadBufferObject(Node* buffer, int offset,
768 : MachineType rep = MachineType::AnyTagged());
769 : TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) {
770 : return UncheckedCast<RawPtrT>(
771 168 : LoadBufferObject(buffer, offset, MachineType::Pointer()));
772 : }
773 : TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) {
774 168 : return CAST(LoadBufferObject(buffer, offset, MachineType::TaggedSigned()));
775 : }
776 : // Load a field from an object on the heap.
777 : Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
778 : MachineType rep);
779 : template <class T, typename std::enable_if<
780 : std::is_convertible<TNode<T>, TNode<Object>>::value,
781 : int>::type = 0>
782 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
783 12549 : return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
784 : }
785 : template <class T, typename std::enable_if<
786 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
787 : int>::type = 0>
788 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
789 : return UncheckedCast<T>(
790 56247 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
791 : }
792 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
793 : return UncheckedCast<Object>(
794 437152 : LoadObjectField(object, offset, MachineType::AnyTagged()));
795 : }
796 : Node* LoadObjectField(SloppyTNode<HeapObject> object,
797 : SloppyTNode<IntPtrT> offset, MachineType rep);
798 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
799 : SloppyTNode<IntPtrT> offset) {
800 : return UncheckedCast<Object>(
801 4429 : LoadObjectField(object, offset, MachineType::AnyTagged()));
802 : }
803 : template <class T, typename std::enable_if<
804 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
805 : int>::type = 0>
806 280 : TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) {
807 : return UncheckedCast<T>(
808 280 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
809 : }
810 : // Load a SMI field and untag it.
811 : TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
812 : int offset);
813 : // Load a SMI field, untag it, and convert to Word32.
814 : TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
815 : // Load a SMI and untag it.
816 : TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
817 : // Load a SMI root, untag it, and convert to Word32.
818 : TNode<Int32T> LoadAndUntagToWord32Root(RootIndex root_index);
819 :
820 : TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
821 : int offset) {
822 : return UncheckedCast<MaybeObject>(
823 5656 : LoadObjectField(object, offset, MachineType::AnyTagged()));
824 : }
825 :
826 : // Tag a smi and store it.
827 : void StoreAndTagSmi(Node* base, int offset, Node* value);
828 :
829 : // Load the floating point value of a HeapNumber.
830 : TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
831 : // Load the Map of an HeapObject.
832 : TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
833 : // Load the instance type of an HeapObject.
834 : TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
835 : // Compare the instance the type of the object against the provided one.
836 : TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
837 : InstanceType type);
838 : TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
839 : InstanceType type);
840 : TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
841 : InstanceType type);
842 : // Load the properties backing store of a JSObject.
843 : TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
844 : TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
845 : // Load the elements backing store of a JSObject.
846 : TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object) {
847 26268 : return LoadJSObjectElements(object);
848 : }
849 : // Load the length of a JSArray instance.
850 : TNode<Object> LoadJSArgumentsObjectWithLength(
851 : SloppyTNode<JSArgumentsObjectWithLength> array);
852 : // Load the length of a JSArray instance.
853 : TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
854 : // Load the length of a fast JSArray instance. Returns a positive Smi.
855 : TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
856 : // Load the length of a fixed array base instance.
857 : TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
858 : // Load the length of a fixed array base instance.
859 : TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
860 : SloppyTNode<FixedArrayBase> array);
861 : // Load the length of a WeakFixedArray.
862 : TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
863 : TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
864 : SloppyTNode<WeakFixedArray> array);
865 : // Load the number of descriptors in DescriptorArray.
866 : TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array);
867 : // Load the bit field of a Map.
868 : TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
869 : // Load bit field 2 of a map.
870 : TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
871 : // Load bit field 3 of a map.
872 : TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
873 : // Load the instance type of a map.
874 : TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
875 : // Load the ElementsKind of a map.
876 : TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
877 : TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> object);
878 : // Load the instance descriptors of a map.
879 : TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
880 : // Load the prototype of a map.
881 : TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
882 : // Load the prototype info of a map. The result has to be checked if it is a
883 : // prototype info object or not.
884 : TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
885 : Label* if_has_no_proto_info);
886 : // Load the instance size of a Map.
887 : TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
888 : // Load the inobject properties start of a Map (valid only for JSObjects).
889 : TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
890 : // Load the constructor function index of a Map (only for primitive maps).
891 : TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
892 : // Load the constructor of a Map (equivalent to Map::GetConstructor()).
893 : TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
894 : // Load the EnumLength of a Map.
895 : Node* LoadMapEnumLength(SloppyTNode<Map> map);
896 : // Load the back-pointer of a Map.
897 : TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
898 : // Checks that |map| has only simple properties, returns bitfield3.
899 : TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map,
900 : TNode<Int32T> instance_type,
901 : Label* bailout);
902 : // Load the identity hash of a JSRececiver.
903 : TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
904 : Label* if_no_hash = nullptr);
905 :
906 : // This is only used on a newly allocated PropertyArray which
907 : // doesn't have an existing hash.
908 : void InitializePropertyArrayLength(Node* property_array, Node* length,
909 : ParameterMode mode);
910 :
911 : // Check if the map is set for slow properties.
912 : TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
913 :
914 : // Load the hash field of a name as an uint32 value.
915 : TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
916 : // Load the hash value of a name as an uint32 value.
917 : // If {if_hash_not_computed} label is specified then it also checks if
918 : // hash is actually computed.
919 : TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
920 : Label* if_hash_not_computed = nullptr);
921 :
922 : // Load length field of a String object as Smi value.
923 : TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> string);
924 : // Load length field of a String object as intptr_t value.
925 : TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> string);
926 : // Load length field of a String object as uint32_t value.
927 : TNode<Uint32T> LoadStringLengthAsWord32(SloppyTNode<String> string);
928 : // Loads a pointer to the sequential String char array.
929 : Node* PointerToSeqStringData(Node* seq_string);
930 : // Load value field of a JSValue object.
931 : Node* LoadJSValueValue(Node* object);
932 :
933 : // Figures out whether the value of maybe_object is:
934 : // - a SMI (jump to "if_smi", "extracted" will be the SMI value)
935 : // - a cleared weak reference (jump to "if_cleared", "extracted" will be
936 : // untouched)
937 : // - a weak reference (jump to "if_weak", "extracted" will be the object
938 : // pointed to)
939 : // - a strong reference (jump to "if_strong", "extracted" will be the object
940 : // pointed to)
941 : void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
942 : Label* if_cleared, Label* if_weak, Label* if_strong,
943 : TVariable<Object>* extracted);
944 : // See MaybeObject for semantics of these functions.
945 : TNode<BoolT> IsStrong(TNode<MaybeObject> value);
946 : // This variant is for overzealous checking.
947 : TNode<BoolT> IsStrong(TNode<Object> value) {
948 : return IsStrong(ReinterpretCast<MaybeObject>(value));
949 : }
950 : TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value,
951 : Label* if_not_strong);
952 :
953 : TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value);
954 : TNode<BoolT> IsCleared(TNode<MaybeObject> value);
955 : TNode<BoolT> IsNotCleared(TNode<MaybeObject> value);
956 :
957 : // Removes the weak bit + asserts it was set.
958 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value);
959 :
960 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value,
961 : Label* if_cleared);
962 :
963 : TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
964 : TNode<Object> value);
965 : TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
966 : TNode<Object> value);
967 : TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
968 : TNode<Object> value);
969 :
970 : TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
971 :
972 : void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
973 : int additional_offset = 0,
974 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
975 :
976 : // Array is any array-like type that has a fixed header followed by
977 : // tagged elements.
978 : template <typename Array>
979 : TNode<IntPtrT> LoadArrayLength(TNode<Array> array);
980 :
981 : // Array is any array-like type that has a fixed header followed by
982 : // tagged elements.
983 : template <typename Array>
984 : TNode<MaybeObject> LoadArrayElement(
985 : TNode<Array> array, int array_header_size, Node* index,
986 : int additional_offset = 0,
987 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
988 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
989 :
990 : TNode<Object> LoadFixedArrayElement(
991 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
992 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
993 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
994 :
995 : TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
996 : TNode<IntPtrT> index,
997 : LoadSensitivity needs_poisoning) {
998 : return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
999 8592 : needs_poisoning);
1000 : }
1001 :
1002 33261 : TNode<Object> LoadFixedArrayElement(
1003 : TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
1004 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1005 : return LoadFixedArrayElement(object, index, additional_offset,
1006 43329 : INTPTR_PARAMETERS, needs_poisoning);
1007 : }
1008 :
1009 38252 : TNode<Object> LoadFixedArrayElement(
1010 : TNode<FixedArray> object, int index, int additional_offset = 0,
1011 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1012 38252 : return LoadFixedArrayElement(object, IntPtrConstant(index),
1013 : additional_offset, INTPTR_PARAMETERS,
1014 76504 : needs_poisoning);
1015 : }
1016 672 : TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
1017 : TNode<Smi> index) {
1018 3136 : return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
1019 : }
1020 :
1021 : TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object,
1022 : SloppyTNode<IntPtrT> index);
1023 : TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
1024 :
1025 : // Load an element from an array and untag it and return it as Word32.
1026 : // Array is any array-like type that has a fixed header followed by
1027 : // tagged elements.
1028 : template <typename Array>
1029 : TNode<Int32T> LoadAndUntagToWord32ArrayElement(
1030 : TNode<Array> array, int array_header_size, Node* index,
1031 : int additional_offset = 0,
1032 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1033 :
1034 : // Load an array element from a FixedArray, untag it and return it as Word32.
1035 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1036 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1037 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1038 :
1039 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1040 : TNode<FixedArray> object, int index, int additional_offset = 0) {
1041 : return LoadAndUntagToWord32FixedArrayElement(
1042 : object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
1043 : }
1044 :
1045 : // Load an array element from a WeakFixedArray.
1046 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1047 : TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
1048 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1049 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1050 :
1051 4928 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1052 : TNode<WeakFixedArray> object, int index, int additional_offset = 0,
1053 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1054 4928 : return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
1055 : additional_offset, INTPTR_PARAMETERS,
1056 9856 : needs_poisoning);
1057 : }
1058 :
1059 : // Load an array element from a FixedDoubleArray.
1060 : TNode<Float64T> LoadFixedDoubleArrayElement(
1061 : SloppyTNode<FixedDoubleArray> object, Node* index,
1062 : MachineType machine_type, int additional_offset = 0,
1063 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1064 : Label* if_hole = nullptr);
1065 :
1066 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1067 : TNode<Smi> index,
1068 : Label* if_hole = nullptr) {
1069 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1070 : SMI_PARAMETERS, if_hole);
1071 : }
1072 :
1073 112 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1074 : TNode<IntPtrT> index,
1075 : Label* if_hole = nullptr) {
1076 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1077 224 : INTPTR_PARAMETERS, if_hole);
1078 : }
1079 :
1080 : // Load an array element from a FixedArray, FixedDoubleArray or a
1081 : // NumberDictionary (depending on the |elements_kind|) and return
1082 : // it as a tagged value. Assumes that the |index| passed a length
1083 : // check before. Bails out to |if_accessor| if the element that
1084 : // was found is an accessor, or to |if_hole| if the element at
1085 : // the given |index| is not found in |elements|.
1086 : TNode<Object> LoadFixedArrayBaseElementAsTagged(
1087 : TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
1088 : TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
1089 :
1090 : // Load a feedback slot from a FeedbackVector.
1091 : TNode<MaybeObject> LoadFeedbackVectorSlot(
1092 : Node* object, Node* index, int additional_offset = 0,
1093 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1094 :
1095 : TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
1096 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1097 : TNode<Smi> index,
1098 : Label* if_hole = nullptr);
1099 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1100 : TNode<IntPtrT> index,
1101 : Label* if_hole = nullptr);
1102 :
1103 : // Load Float64 value by |base| + |offset| address. If the value is a double
1104 : // hole then jump to |if_hole|. If |machine_type| is None then only the hole
1105 : // check is generated.
1106 : TNode<Float64T> LoadDoubleWithHoleCheck(
1107 : SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
1108 : MachineType machine_type = MachineType::Float64());
1109 : TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
1110 : TNode<FixedTypedArrayBase> typed_array);
1111 : Node* LoadFixedTypedArrayElementAsTagged(
1112 : Node* data_pointer, Node* index_node, ElementsKind elements_kind,
1113 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1114 : TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
1115 : TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
1116 : // Parts of the above, factored out for readability:
1117 : Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
1118 : Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
1119 : Node* offset);
1120 : // 64-bit platforms only:
1121 : TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value);
1122 : TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value);
1123 : // 32-bit platforms only:
1124 : TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high);
1125 : TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high);
1126 :
1127 : void StoreFixedTypedArrayElementFromTagged(
1128 : TNode<Context> context, TNode<FixedTypedArrayBase> elements,
1129 : TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
1130 : ParameterMode parameter_mode);
1131 :
1132 : // Context manipulation
1133 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1134 : int slot_index);
1135 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1136 : SloppyTNode<IntPtrT> slot_index);
1137 : TNode<Object> LoadContextElement(TNode<Context> context,
1138 : TNode<Smi> slot_index);
1139 : void StoreContextElement(SloppyTNode<Context> context, int slot_index,
1140 : SloppyTNode<Object> value);
1141 : void StoreContextElement(SloppyTNode<Context> context,
1142 : SloppyTNode<IntPtrT> slot_index,
1143 : SloppyTNode<Object> value);
1144 : void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
1145 : int slot_index,
1146 : SloppyTNode<Object> value);
1147 : TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
1148 : // Calling this is only valid if there's a module context in the chain.
1149 : TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
1150 :
1151 : void GotoIfContextElementEqual(Node* value, Node* native_context,
1152 : int slot_index, Label* if_equal) {
1153 : GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
1154 : if_equal);
1155 : }
1156 :
1157 : TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
1158 : SloppyTNode<Context> native_context);
1159 : TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
1160 : SloppyTNode<Context> native_context);
1161 :
1162 : TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
1163 : TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
1164 : void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
1165 : TNode<Map> map, Label* runtime);
1166 : // Load the "prototype" property of a JSFunction.
1167 : Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
1168 :
1169 : TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray(
1170 : SloppyTNode<SharedFunctionInfo> shared);
1171 :
1172 168 : TNode<Int32T> LoadSharedFunctionInfoFormalParameterCount(
1173 : TNode<SharedFunctionInfo> function) {
1174 : return TNode<Int32T>::UncheckedCast(LoadObjectField(
1175 : function, SharedFunctionInfo::kFormalParameterCountOffset,
1176 168 : MachineType::Uint16()));
1177 : }
1178 :
1179 : void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
1180 : TNode<Word32T> value);
1181 :
1182 : // Store the floating point value of a HeapNumber.
1183 : void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
1184 : SloppyTNode<Float64T> value);
1185 : void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
1186 : SloppyTNode<Float64T> value);
1187 : // Store a field to an object on the heap.
1188 : void StoreObjectField(Node* object, int offset, Node* value);
1189 : void StoreObjectField(Node* object, Node* offset, Node* value);
1190 : void StoreObjectFieldNoWriteBarrier(
1191 : Node* object, int offset, Node* value,
1192 : MachineRepresentation rep = MachineRepresentation::kTagged);
1193 : void StoreObjectFieldNoWriteBarrier(
1194 : Node* object, Node* offset, Node* value,
1195 : MachineRepresentation rep = MachineRepresentation::kTagged);
1196 :
1197 : template <class T = Object>
1198 : void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
1199 : TNode<IntPtrT> offset, TNode<T> value) {
1200 728 : StoreObjectFieldNoWriteBarrier(object, offset, value,
1201 : MachineRepresentationOf<T>::value);
1202 : }
1203 :
1204 : // Store the Map of an HeapObject.
1205 : void StoreMap(Node* object, Node* map);
1206 : void StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index);
1207 : void StoreMapNoWriteBarrier(Node* object, Node* map);
1208 : void StoreObjectFieldRoot(Node* object, int offset, RootIndex root);
1209 : // Store an array element to a FixedArray.
1210 21839 : void StoreFixedArrayElement(
1211 : TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1212 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1213 21839 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1214 43678 : barrier_mode);
1215 : }
1216 4848 : void StoreFixedArrayElement(TNode<FixedArray> object, int index,
1217 : TNode<Smi> value) {
1218 4848 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1219 9696 : SKIP_WRITE_BARRIER);
1220 : }
1221 :
1222 : void StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
1223 : void StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);
1224 :
1225 : void StoreFixedArrayOrPropertyArrayElement(
1226 : Node* array, Node* index, Node* value,
1227 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1228 : int additional_offset = 0,
1229 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1230 :
1231 24142 : void StoreFixedArrayElement(
1232 : TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1233 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1234 : int additional_offset = 0,
1235 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1236 24142 : FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
1237 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1238 39149 : additional_offset, parameter_mode);
1239 24142 : }
1240 :
1241 : void StorePropertyArrayElement(
1242 : TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
1243 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1244 : int additional_offset = 0,
1245 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1246 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1247 728 : additional_offset, parameter_mode);
1248 : }
1249 :
1250 : void StoreFixedArrayElementSmi(
1251 : TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
1252 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1253 : StoreFixedArrayElement(array, index, value, barrier_mode, 0,
1254 1064 : SMI_PARAMETERS);
1255 : }
1256 : void StoreFixedArrayElement(TNode<FixedArray> array, TNode<IntPtrT> index,
1257 : TNode<Smi> value) {
1258 896 : StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0);
1259 : }
1260 :
1261 : void StoreFixedDoubleArrayElement(
1262 : TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1263 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1264 :
1265 : void StoreFixedDoubleArrayElementSmi(TNode<FixedDoubleArray> object,
1266 : TNode<Smi> index,
1267 : TNode<Float64T> value) {
1268 56 : StoreFixedDoubleArrayElement(object, index, value, SMI_PARAMETERS);
1269 : }
1270 :
1271 : void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, Node* index,
1272 : ParameterMode mode = INTPTR_PARAMETERS);
1273 : void StoreFixedDoubleArrayHoleSmi(TNode<FixedDoubleArray> array,
1274 : TNode<Smi> index) {
1275 56 : StoreFixedDoubleArrayHole(array, index, SMI_PARAMETERS);
1276 : }
1277 :
1278 : void StoreFeedbackVectorSlot(
1279 : Node* object, Node* index, Node* value,
1280 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1281 : int additional_offset = 0,
1282 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1283 :
1284 : void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);
1285 :
1286 : // EnsureArrayPushable verifies that receiver with this map is:
1287 : // 1. Is not a prototype.
1288 : // 2. Is not a dictionary.
1289 : // 3. Has a writeable length property.
1290 : // It returns ElementsKind as a node for further division into cases.
1291 : TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);
1292 :
1293 : void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
1294 : Label* bailout, Node* elements, Node* index,
1295 : Node* value);
1296 : // Consumes args into the array, and returns tagged new length.
1297 : TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
1298 : CodeStubArguments* args,
1299 : TVariable<IntPtrT>* arg_index, Label* bailout);
1300 : // Pushes value onto the end of array.
1301 : void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
1302 : Label* bailout);
1303 :
1304 : void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
1305 : Node* value);
1306 :
1307 : Node* AllocateCellWithValue(Node* value,
1308 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1309 : Node* AllocateSmiCell(int value = 0) {
1310 : return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
1311 : }
1312 :
1313 : Node* LoadCellValue(Node* cell);
1314 :
1315 : void StoreCellValue(Node* cell, Node* value,
1316 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1317 :
1318 : // Allocate a HeapNumber without initializing its value.
1319 : TNode<HeapNumber> AllocateHeapNumber();
1320 : // Allocate a HeapNumber with a specific value.
1321 : TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
1322 : TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
1323 : return AllocateHeapNumberWithValue(Float64Constant(value));
1324 : }
1325 :
1326 : // Allocate a MutableHeapNumber with a specific value.
1327 : TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
1328 : SloppyTNode<Float64T> value);
1329 :
1330 : // Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
1331 : // Does not initialize the digits.
1332 : TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
1333 : // Like above, but allowing custom bitfield initialization.
1334 : TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
1335 : void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield);
1336 : void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
1337 : TNode<UintPtrT> digit);
1338 : TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint);
1339 : TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
1340 :
1341 : // Allocate a SeqOneByteString with the given length.
1342 : TNode<String> AllocateSeqOneByteString(uint32_t length,
1343 : AllocationFlags flags = kNone);
1344 : TNode<String> AllocateSeqOneByteString(Node* context, TNode<Uint32T> length,
1345 : AllocationFlags flags = kNone);
1346 : // Allocate a SeqTwoByteString with the given length.
1347 : TNode<String> AllocateSeqTwoByteString(uint32_t length,
1348 : AllocationFlags flags = kNone);
1349 : TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Uint32T> length,
1350 : AllocationFlags flags = kNone);
1351 :
1352 : // Allocate a SlicedOneByteString with the given length, parent and offset.
1353 : // |length| and |offset| are expected to be tagged.
1354 :
1355 : TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length,
1356 : TNode<String> parent,
1357 : TNode<Smi> offset);
1358 : // Allocate a SlicedTwoByteString with the given length, parent and offset.
1359 : // |length| and |offset| are expected to be tagged.
1360 : TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length,
1361 : TNode<String> parent,
1362 : TNode<Smi> offset);
1363 :
1364 : // Allocate a one-byte ConsString with the given length, first and second
1365 : // parts. |length| is expected to be tagged, and |first| and |second| are
1366 : // expected to be one-byte strings.
1367 : TNode<String> AllocateOneByteConsString(TNode<Uint32T> length,
1368 : TNode<String> first,
1369 : TNode<String> second,
1370 : AllocationFlags flags = kNone);
1371 : // Allocate a two-byte ConsString with the given length, first and second
1372 : // parts. |length| is expected to be tagged, and |first| and |second| are
1373 : // expected to be two-byte strings.
1374 : TNode<String> AllocateTwoByteConsString(TNode<Uint32T> length,
1375 : TNode<String> first,
1376 : TNode<String> second,
1377 : AllocationFlags flags = kNone);
1378 :
1379 : // Allocate an appropriate one- or two-byte ConsString with the first and
1380 : // second parts specified by |left| and |right|.
1381 : TNode<String> NewConsString(TNode<Uint32T> length, TNode<String> left,
1382 : TNode<String> right,
1383 : AllocationFlags flags = kNone);
1384 :
1385 : TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
1386 : TNode<NameDictionary> AllocateNameDictionary(
1387 : TNode<IntPtrT> at_least_space_for);
1388 : TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
1389 : TNode<IntPtrT> capacity);
1390 : TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
1391 : Label* large_object_fallback);
1392 :
1393 : template <typename CollectionType>
1394 : Node* AllocateOrderedHashTable();
1395 :
1396 : // Builds code that finds OrderedHashTable entry for a key with hash code
1397 : // {hash} with using the comparison code generated by {key_compare}. The code
1398 : // jumps to {entry_found} if the key is found, or to {not_found} if the key
1399 : // was not found. In the {entry_found} branch, the variable
1400 : // entry_start_position will be bound to the index of the entry (relative to
1401 : // OrderedHashTable::kHashTableStartIndex).
1402 : //
1403 : // The {CollectionType} template parameter stands for the particular instance
1404 : // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
1405 : template <typename CollectionType>
1406 : void FindOrderedHashTableEntry(
1407 : Node* table, Node* hash,
1408 : const std::function<void(Node*, Label*, Label*)>& key_compare,
1409 : Variable* entry_start_position, Label* entry_found, Label* not_found);
1410 :
1411 : template <typename CollectionType>
1412 : TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);
1413 :
1414 : Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
1415 : void InitializeStructBody(Node* object, Node* map, Node* size,
1416 : int start_offset = Struct::kHeaderSize);
1417 :
1418 : Node* AllocateJSObjectFromMap(
1419 : Node* map, Node* properties = nullptr, Node* elements = nullptr,
1420 : AllocationFlags flags = kNone,
1421 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1422 :
1423 : void InitializeJSObjectFromMap(
1424 : Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
1425 : Node* elements = nullptr,
1426 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1427 :
1428 : void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
1429 : Node* instance_size);
1430 : void InitializeJSObjectBodyNoSlackTracking(
1431 : Node* object, Node* map, Node* instance_size,
1432 : int start_offset = JSObject::kHeaderSize);
1433 :
1434 : TNode<BoolT> IsValidFastJSArrayCapacity(Node* capacity,
1435 : ParameterMode capacity_mode);
1436 :
1437 : // Allocate a JSArray without elements and initialize the header fields.
1438 : TNode<JSArray> AllocateUninitializedJSArrayWithoutElements(
1439 : TNode<Map> array_map, TNode<Smi> length, Node* allocation_site = nullptr);
1440 : //
1441 : // Allocate and return a JSArray with initialized header fields and its
1442 : // uninitialized elements.
1443 : // The ParameterMode argument is only used for the capacity parameter.
1444 : std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
1445 : AllocateUninitializedJSArrayWithElements(
1446 : ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
1447 : Node* allocation_site, Node* capacity,
1448 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1449 : AllocationFlags allocation_flags = kNone);
1450 :
1451 : // Allocate a JSArray and fill elements with the hole.
1452 : // The ParameterMode argument is only used for the capacity parameter.
1453 : TNode<JSArray> AllocateJSArray(
1454 : ElementsKind kind, TNode<Map> array_map, Node* capacity,
1455 : TNode<Smi> length, Node* allocation_site = nullptr,
1456 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1457 : AllocationFlags allocation_flags = kNone);
1458 :
1459 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1460 : TNode<Smi> capacity, TNode<Smi> length) {
1461 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1462 224 : SMI_PARAMETERS);
1463 : }
1464 :
1465 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1466 : TNode<IntPtrT> capacity, TNode<Smi> length) {
1467 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1468 336 : INTPTR_PARAMETERS);
1469 : }
1470 :
1471 : enum class HoleConversionMode { kDontConvert, kConvertToUndefined };
1472 : // Clone a fast JSArray |array| into a new fast JSArray.
1473 : // |convert_holes| tells the function to convert holes into undefined or not.
1474 : // If |convert_holes| is set to kConvertToUndefined, but the function did not
1475 : // find any hole in |array|, the resulting array will have the same elements
1476 : // kind as |array|. If the function did find a hole, it will convert holes in
1477 : // |array| to undefined in the resulting array, who will now have
1478 : // PACKED_ELEMENTS kind.
1479 : // If |convert_holes| is set kDontConvert, holes are also copied to the
1480 : // resulting array, who will have the same elements kind as |array|. The
1481 : // function generates significantly less code in this case.
1482 : Node* CloneFastJSArray(
1483 : Node* context, Node* array, ParameterMode mode = INTPTR_PARAMETERS,
1484 : Node* allocation_site = nullptr,
1485 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert);
1486 :
1487 : Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
1488 : ParameterMode mode = INTPTR_PARAMETERS,
1489 : Node* capacity = nullptr,
1490 : Node* allocation_site = nullptr);
1491 :
1492 : TNode<FixedArrayBase> AllocateFixedArray(
1493 : ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
1494 : AllocationFlags flags = kNone,
1495 : SloppyTNode<Map> fixed_array_map = nullptr);
1496 :
1497 : TNode<FixedArrayBase> AllocateFixedArray(
1498 : ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
1499 : SloppyTNode<Map> fixed_array_map = nullptr) {
1500 : return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
1501 2087 : fixed_array_map);
1502 : }
1503 :
1504 1023 : TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
1505 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1506 : AllocateFixedArray(PACKED_ELEMENTS, capacity,
1507 : AllocationFlag::kAllowLargeObjectAllocation));
1508 1023 : FillFixedArrayWithSmiZero(result, capacity);
1509 1023 : return result;
1510 : }
1511 :
1512 56 : TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
1513 : TNode<IntPtrT> capacity) {
1514 : TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1515 : AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity,
1516 : AllocationFlag::kAllowLargeObjectAllocation));
1517 56 : FillFixedDoubleArrayWithZero(result, capacity);
1518 56 : return result;
1519 : }
1520 :
1521 280 : TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity,
1522 : AllocationFlags flags) {
1523 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1524 : AllocateFixedArray(PACKED_ELEMENTS, capacity, flags));
1525 280 : FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0),
1526 560 : capacity, RootIndex::kTheHoleValue);
1527 280 : return result;
1528 : }
1529 :
1530 : Node* AllocatePropertyArray(Node* capacity,
1531 : ParameterMode mode = INTPTR_PARAMETERS,
1532 : AllocationFlags flags = kNone);
1533 :
1534 : // Perform CreateArrayIterator (ES #sec-createarrayiterator).
1535 : TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
1536 : TNode<Object> object,
1537 : IterationKind mode);
1538 :
1539 : Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
1540 : Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
1541 :
1542 : TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context,
1543 : TNode<Object> originalArray,
1544 : TNode<Number> len);
1545 :
1546 : void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
1547 : Node* to_index, RootIndex value_root_index,
1548 : ParameterMode mode = INTPTR_PARAMETERS);
1549 :
1550 : // Uses memset to effectively initialize the given FixedArray with zeroes.
1551 : void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
1552 : TNode<IntPtrT> length);
1553 : void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
1554 : TNode<IntPtrT> length);
1555 :
1556 : void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
1557 : Node* to_index,
1558 : ParameterMode mode = INTPTR_PARAMETERS);
1559 :
1560 : enum class DestroySource { kNo, kYes };
1561 :
1562 : // Specify DestroySource::kYes if {from_array} is being supplanted by
1563 : // {to_array}. This offers a slight performance benefit by simply copying the
1564 : // array word by word. The source may be destroyed at the end of this macro.
1565 : //
1566 : // Otherwise, specify DestroySource::kNo for operations where an Object is
1567 : // being cloned, to ensure that MutableHeapNumbers are unique between the
1568 : // source and cloned object.
1569 : void CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* length,
1570 : WriteBarrierMode barrier_mode,
1571 : ParameterMode mode,
1572 : DestroySource destroy_source);
1573 :
1574 : // Copies all elements from |from_array| of |length| size to
1575 : // |to_array| of the same size respecting the elements kind.
1576 336 : void CopyFixedArrayElements(
1577 : ElementsKind kind, Node* from_array, Node* to_array, Node* length,
1578 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1579 : ParameterMode mode = INTPTR_PARAMETERS) {
1580 : CopyFixedArrayElements(kind, from_array, kind, to_array,
1581 : IntPtrOrSmiConstant(0, mode), length, length,
1582 336 : barrier_mode, mode);
1583 336 : }
1584 :
1585 : // Copies |element_count| elements from |from_array| starting from element
1586 : // zero to |to_array| of |capacity| size respecting both array's elements
1587 : // kinds.
1588 5589 : void CopyFixedArrayElements(
1589 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1590 : Node* to_array, Node* element_count, Node* capacity,
1591 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1592 : ParameterMode mode = INTPTR_PARAMETERS) {
1593 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1594 : IntPtrOrSmiConstant(0, mode), element_count,
1595 5589 : capacity, barrier_mode, mode);
1596 5589 : }
1597 :
1598 : // Copies |element_count| elements from |from_array| starting from element
1599 : // |first_element| to |to_array| of |capacity| size respecting both array's
1600 : // elements kinds.
1601 : // |convert_holes| tells the function whether to convert holes to undefined.
1602 : // |var_holes_converted| can be used to signify that the conversion happened
1603 : // (i.e. that there were holes). If |convert_holes_to_undefined| is
1604 : // HoleConversionMode::kConvertToUndefined, then it must not be the case that
1605 : // IsDoubleElementsKind(to_kind).
1606 : void CopyFixedArrayElements(
1607 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1608 : Node* to_array, Node* first_element, Node* element_count, Node* capacity,
1609 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1610 : ParameterMode mode = INTPTR_PARAMETERS,
1611 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1612 : TVariable<BoolT>* var_holes_converted = nullptr);
1613 :
1614 : void CopyFixedArrayElements(
1615 : ElementsKind from_kind, TNode<FixedArrayBase> from_array,
1616 : ElementsKind to_kind, TNode<FixedArrayBase> to_array,
1617 : TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
1618 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1619 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1620 : first_element, element_count, capacity, barrier_mode,
1621 : SMI_PARAMETERS);
1622 : }
1623 :
1624 : void JumpIfPointersFromHereAreInteresting(TNode<Object> object,
1625 : Label* interesting);
1626 :
1627 : // Efficiently copy elements within a single array. The regions
1628 : // [src_index, src_index + length) and [dst_index, dst_index + length)
1629 : // can be overlapping.
1630 : void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements,
1631 : TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index,
1632 : TNode<IntPtrT> length);
1633 :
1634 : // Efficiently copy elements from one array to another. The ElementsKind
1635 : // needs to be the same. Copy from src_elements at
1636 : // [src_index, src_index + length) to dst_elements at
1637 : // [dst_index, dst_index + length).
1638 : // The function decides whether it can use memcpy. In case it cannot,
1639 : // |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is
1640 : // only safe when copying to new space, or when copying to old space and the
1641 : // array does not contain object pointers.
1642 : void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements,
1643 : TNode<IntPtrT> dst_index,
1644 : TNode<FixedArrayBase> src_elements,
1645 : TNode<IntPtrT> src_index, TNode<IntPtrT> length,
1646 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER);
1647 :
1648 : TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
1649 : Label* cast_fail);
1650 :
1651 448 : TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
1652 : Label* cast_fail) {
1653 : GotoIf(
1654 1344 : WordNotEqual(LoadMap(base), LoadRoot(RootIndex::kFixedDoubleArrayMap)),
1655 448 : cast_fail);
1656 448 : return UncheckedCast<FixedDoubleArray>(base);
1657 : }
1658 :
1659 56 : TNode<FixedArray> HeapObjectToSloppyArgumentsElements(TNode<HeapObject> base,
1660 : Label* cast_fail) {
1661 : GotoIf(WordNotEqual(LoadMap(base),
1662 168 : LoadRoot(RootIndex::kSloppyArgumentsElementsMap)),
1663 56 : cast_fail);
1664 56 : return UncheckedCast<FixedArray>(base);
1665 : }
1666 :
1667 : TNode<Int32T> ConvertElementsKindToInt(TNode<Int32T> elements_kind) {
1668 : return UncheckedCast<Int32T>(elements_kind);
1669 : }
1670 :
1671 : enum class ExtractFixedArrayFlag {
1672 : kFixedArrays = 1,
1673 : kFixedDoubleArrays = 2,
1674 : kDontCopyCOW = 4,
1675 : kNewSpaceAllocationOnly = 8,
1676 : kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
1677 : kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
1678 : };
1679 :
1680 : typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
1681 :
1682 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1683 : // array, including special appropriate handling for empty arrays and COW
1684 : // arrays. The result array will be of the same type as the original array.
1685 : //
1686 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1687 : // elements.
1688 : // * |first| is the starting element index to copy from, if nullptr is passed
1689 : // then index zero is used by default.
1690 : // * |count| is the number of elements to copy out of the source array
1691 : // starting from and including the element indexed by |start|. If |count| is
1692 : // nullptr, then all of the elements from |start| to the end of |source| are
1693 : // copied.
1694 : // * |capacity| determines the size of the allocated result array, with
1695 : // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
1696 : // the destination array's capacity.
1697 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1698 : // are detected and copied. Although it's always correct to pass
1699 : // kAllFixedArrays, the generated code is more compact and efficient if the
1700 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1701 : // passed as the |source| parameter.
1702 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1703 : // |capacity|.
1704 : // * If |var_holes_converted| is given, any holes will be converted to
1705 : // undefined and the variable will be set according to whether or not there
1706 : // were any hole.
1707 : // * If |source_elements_kind| is given, the function will try to use the
1708 : // runtime elements kind of source to make copy faster. More specifically, it
1709 : // can skip write barriers.
1710 : TNode<FixedArrayBase> ExtractFixedArray(
1711 : Node* source, Node* first, Node* count = nullptr,
1712 : Node* capacity = nullptr,
1713 : ExtractFixedArrayFlags extract_flags =
1714 : ExtractFixedArrayFlag::kAllFixedArrays,
1715 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1716 : TVariable<BoolT>* var_holes_converted = nullptr,
1717 : Node* source_elements_kind = nullptr);
1718 :
1719 : TNode<FixedArrayBase> ExtractFixedArray(
1720 : TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
1721 : TNode<Smi> capacity,
1722 : ExtractFixedArrayFlags extract_flags =
1723 : ExtractFixedArrayFlag::kAllFixedArrays) {
1724 : return ExtractFixedArray(source, first, count, capacity, extract_flags,
1725 392 : SMI_PARAMETERS);
1726 : }
1727 :
1728 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1729 : // FixedArray, including special appropriate handling for COW arrays.
1730 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1731 : // elements. |source| is assumed to be non-empty.
1732 : // * |first| is the starting element index to copy from.
1733 : // * |count| is the number of elements to copy out of the source array
1734 : // starting from and including the element indexed by |start|.
1735 : // * |capacity| determines the size of the allocated result array, with
1736 : // |capacity| >= |count|.
1737 : // * |source_map| is the map of the |source|.
1738 : // * |from_kind| is the elements kind that is consistent with |source| being
1739 : // a FixedArray or FixedDoubleArray. This function only cares about double vs.
1740 : // non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does
1741 : // not care about holeyness. For example, when |source| is a FixedArray,
1742 : // PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS.
1743 : // * |allocation_flags| and |extract_flags| influence how the target
1744 : // FixedArray is allocated.
1745 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1746 : // |capacity|.
1747 : // * |convert_holes| is used to signify that the target array should use
1748 : // undefined in places of holes.
1749 : // * If |convert_holes| is true and |var_holes_converted| not nullptr, then
1750 : // |var_holes_converted| is used to signal whether any holes were found and
1751 : // converted. The caller should use this information to decide which map is
1752 : // compatible with the result array. For example, if the input was of
1753 : // HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be
1754 : // compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS.
1755 : TNode<FixedArray> ExtractToFixedArray(
1756 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1757 : ElementsKind from_kind = PACKED_ELEMENTS,
1758 : AllocationFlags allocation_flags = AllocationFlag::kNone,
1759 : ExtractFixedArrayFlags extract_flags =
1760 : ExtractFixedArrayFlag::kAllFixedArrays,
1761 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1762 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1763 : TVariable<BoolT>* var_holes_converted = nullptr,
1764 : Node* source_runtime_kind = nullptr);
1765 :
1766 : // Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case
1767 : // where the source array has a hole, produce a FixedArray instead where holes
1768 : // are replaced with undefined.
1769 : // * |source| is a FixedDoubleArray from which to copy elements.
1770 : // * |first| is the starting element index to copy from.
1771 : // * |count| is the number of elements to copy out of the source array
1772 : // starting from and including the element indexed by |start|.
1773 : // * |capacity| determines the size of the allocated result array, with
1774 : // |capacity| >= |count|.
1775 : // * |source_map| is the map of |source|. It will be used as the map of the
1776 : // target array if the target can stay a FixedDoubleArray. Otherwise if the
1777 : // target array needs to be a FixedArray, the FixedArrayMap will be used.
1778 : // * |var_holes_converted| is used to signal whether a FixedAray
1779 : // is produced or not.
1780 : // * |allocation_flags| and |extract_flags| influence how the target array is
1781 : // allocated.
1782 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1783 : // |capacity|.
1784 : TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles(
1785 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1786 : TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags,
1787 : ExtractFixedArrayFlags extract_flags =
1788 : ExtractFixedArrayFlag::kAllFixedArrays,
1789 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1790 :
1791 : // Copy the entire contents of a FixedArray or FixedDoubleArray to a new
1792 : // array, including special appropriate handling for empty arrays and COW
1793 : // arrays.
1794 : //
1795 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1796 : // elements.
1797 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1798 : // are detected and copied. Although it's always correct to pass
1799 : // kAllFixedArrays, the generated code is more compact and efficient if the
1800 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1801 : // passed as the |source| parameter.
1802 351 : Node* CloneFixedArray(Node* source,
1803 : ExtractFixedArrayFlags flags =
1804 : ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
1805 : ParameterMode mode = OptimalParameterMode();
1806 : return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
1807 702 : nullptr, flags, mode);
1808 : }
1809 :
1810 : // Copies |character_count| elements from |from_string| to |to_string|
1811 : // starting at the |from_index|'th character. |from_string| and |to_string|
1812 : // can either be one-byte strings or two-byte strings, although if
1813 : // |from_string| is two-byte, then |to_string| must be two-byte.
1814 : // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
1815 : // |from_index| <= |from_index| + |character_count| <= from_string.length and
1816 : // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
1817 : void CopyStringCharacters(Node* from_string, Node* to_string,
1818 : TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
1819 : TNode<IntPtrT> character_count,
1820 : String::Encoding from_encoding,
1821 : String::Encoding to_encoding);
1822 :
1823 : // Loads an element from |array| of |from_kind| elements by given |offset|
1824 : // (NOTE: not index!), does a hole check if |if_hole| is provided and
1825 : // converts the value so that it becomes ready for storing to array of
1826 : // |to_kind| elements.
1827 : Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
1828 : ElementsKind from_kind,
1829 : ElementsKind to_kind, Label* if_hole);
1830 :
1831 : Node* CalculateNewElementsCapacity(Node* old_capacity,
1832 : ParameterMode mode = INTPTR_PARAMETERS);
1833 :
1834 : TNode<Smi> CalculateNewElementsCapacity(TNode<Smi> old_capacity) {
1835 112 : return CAST(CalculateNewElementsCapacity(old_capacity, SMI_PARAMETERS));
1836 : }
1837 :
1838 : // Tries to grow the |elements| array of given |object| to store the |key|
1839 : // or bails out if the growing gap is too big. Returns new elements.
1840 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1841 : Node* key, Label* bailout);
1842 :
1843 : // Tries to grow the |capacity|-length |elements| array of given |object|
1844 : // to store the |key| or bails out if the growing gap is too big. Returns
1845 : // new elements.
1846 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1847 : Node* key, Node* capacity, ParameterMode mode,
1848 : Label* bailout);
1849 :
1850 : // Grows elements capacity of given object. Returns new elements.
1851 : Node* GrowElementsCapacity(Node* object, Node* elements,
1852 : ElementsKind from_kind, ElementsKind to_kind,
1853 : Node* capacity, Node* new_capacity,
1854 : ParameterMode mode, Label* bailout);
1855 :
1856 : // Given a need to grow by |growth|, allocate an appropriate new capacity
1857 : // if necessary, and return a new elements FixedArray object. Label |bailout|
1858 : // is followed for allocation failure.
1859 : void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
1860 : Node* array, Node* length,
1861 : Variable* var_elements, Node* growth,
1862 : Label* bailout);
1863 :
1864 : // Allocation site manipulation
1865 : void InitializeAllocationMemento(Node* base_allocation,
1866 : Node* base_allocation_size,
1867 : Node* allocation_site);
1868 :
1869 : Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
1870 : Node* TruncateTaggedToFloat64(Node* context, Node* value);
1871 : Node* TruncateTaggedToWord32(Node* context, Node* value);
1872 : void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
1873 : Variable* var_word32, Label* if_bigint,
1874 : Variable* var_bigint);
1875 : void TaggedToWord32OrBigIntWithFeedback(
1876 : Node* context, Node* value, Label* if_number, Variable* var_word32,
1877 : Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
1878 :
1879 : // Truncate the floating point value of a HeapNumber to an Int32.
1880 : Node* TruncateHeapNumberValueToWord32(Node* object);
1881 :
1882 : // Conversions.
1883 : void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
1884 : Label* if_smi);
1885 : void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
1886 : Label* if_smi);
1887 : TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
1888 : TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
1889 : TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
1890 : TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value);
1891 : TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
1892 : TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
1893 : TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value);
1894 :
1895 : void TaggedToNumeric(Node* context, Node* value, Label* done,
1896 : Variable* var_numeric);
1897 : void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
1898 : Variable* var_numeric,
1899 : Variable* var_feedback);
1900 :
1901 : TNode<WordT> TimesSystemPointerSize(SloppyTNode<WordT> value);
1902 : TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) {
1903 448 : return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
1904 : }
1905 : TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) {
1906 : return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
1907 : }
1908 :
1909 : TNode<WordT> TimesTaggedSize(SloppyTNode<WordT> value);
1910 : TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) {
1911 392 : return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
1912 : }
1913 : TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) {
1914 : return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
1915 : }
1916 :
1917 : TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
1918 : TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
1919 : return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
1920 : }
1921 : TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
1922 : return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
1923 : }
1924 :
1925 : // Type conversions.
1926 : // Throws a TypeError for {method_name} if {value} is not coercible to Object,
1927 : // or returns the {value} converted to a String otherwise.
1928 : TNode<String> ToThisString(Node* context, Node* value,
1929 : char const* method_name);
1930 : // Throws a TypeError for {method_name} if {value} is neither of the given
1931 : // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
1932 : // returns the {value} (or wrapped value) otherwise.
1933 : Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
1934 : char const* method_name);
1935 :
1936 : // Throws a TypeError for {method_name} if {value} is not of the given
1937 : // instance type. Returns {value}'s map.
1938 : Node* ThrowIfNotInstanceType(Node* context, Node* value,
1939 : InstanceType instance_type,
1940 : char const* method_name);
1941 : // Throws a TypeError for {method_name} if {value} is not a JSReceiver.
1942 : // Returns the {value}'s map.
1943 : Node* ThrowIfNotJSReceiver(Node* context, Node* value,
1944 : MessageTemplate msg_template,
1945 : const char* method_name = nullptr);
1946 :
1947 : void ThrowRangeError(Node* context, MessageTemplate message,
1948 : Node* arg0 = nullptr, Node* arg1 = nullptr,
1949 : Node* arg2 = nullptr);
1950 : void ThrowTypeError(Node* context, MessageTemplate message,
1951 : char const* arg0 = nullptr, char const* arg1 = nullptr);
1952 : void ThrowTypeError(Node* context, MessageTemplate message, Node* arg0,
1953 : Node* arg1 = nullptr, Node* arg2 = nullptr);
1954 :
1955 : // Type checks.
1956 : // Check whether the map is for an object with special properties, such as a
1957 : // JSProxy or an object with interceptors.
1958 : TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
1959 : TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
1960 : TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
1961 : TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
1962 : TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
1963 : TNode<BoolT> IsNoElementsProtectorCellInvalid();
1964 : TNode<BoolT> IsArrayIteratorProtectorCellInvalid();
1965 : TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
1966 : TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
1967 : TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
1968 : TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
1969 : TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
1970 : TNode<BoolT> TaggedIsCallable(TNode<Object> object);
1971 : TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
1972 : TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
1973 : TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
1974 : TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
1975 : TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
1976 : TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
1977 : TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
1978 : TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
1979 : TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
1980 : TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map);
1981 : TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
1982 : TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
1983 : TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
1984 : TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
1985 : TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
1986 : TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
1987 : TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
1988 : ElementsKind kind);
1989 : TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
1990 : ElementsKind kind);
1991 : TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
1992 : TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
1993 : TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
1994 : TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
1995 : TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
1996 : TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
1997 : TNode<BoolT> IsHeapNumberInstanceType(SloppyTNode<Int32T> instance_type);
1998 : TNode<BoolT> IsOddball(SloppyTNode<HeapObject> object);
1999 : TNode<BoolT> IsOddballInstanceType(SloppyTNode<Int32T> instance_type);
2000 : TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
2001 : TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
2002 : TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
2003 : TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
2004 : TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
2005 : TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
2006 : TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
2007 : TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
2008 : TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
2009 : TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
2010 : TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
2011 : TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
2012 : TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
2013 : TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
2014 : TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
2015 : TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
2016 : TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
2017 : TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
2018 : TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
2019 : TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
2020 : TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
2021 : TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
2022 : TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
2023 : TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
2024 : TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
2025 : TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
2026 : TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
2027 : TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
2028 : TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
2029 : TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
2030 : TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
2031 : TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
2032 : TNode<BoolT> IsNameInstanceType(SloppyTNode<Int32T> instance_type);
2033 : TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
2034 : TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
2035 : TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
2036 : TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
2037 : TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
2038 : TNode<BoolT> HasOnlyOneByteChars(TNode<Int32T> instance_type);
2039 : TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
2040 : TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
2041 : TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
2042 : TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
2043 : TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
2044 : TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
2045 : SloppyTNode<Map> map);
2046 : TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
2047 : SloppyTNode<Map> map);
2048 :
2049 : TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context,
2050 : TNode<Map> map);
2051 : TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context,
2052 : TNode<Map> map);
2053 : TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map);
2054 : TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map);
2055 :
2056 : TNode<BoolT> IsSequentialStringInstanceType(
2057 : SloppyTNode<Int32T> instance_type);
2058 : TNode<BoolT> IsUncachedExternalStringInstanceType(
2059 : SloppyTNode<Int32T> instance_type);
2060 : TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
2061 : TNode<BoolT> IsCustomElementsReceiverInstanceType(
2062 : TNode<Int32T> instance_type);
2063 : TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
2064 : // Returns true if the map corresponds to non-special fast or dictionary
2065 : // object.
2066 : TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
2067 : TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
2068 : TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
2069 : TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
2070 : TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
2071 : TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
2072 : TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
2073 : TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);
2074 :
2075 : inline Node* IsSharedFunctionInfo(Node* object) {
2076 : return IsSharedFunctionInfoMap(LoadMap(object));
2077 : }
2078 :
2079 : TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
2080 : TNode<BoolT> IsPromiseThenProtectorCellInvalid();
2081 : TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
2082 : TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
2083 : TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid();
2084 : TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();
2085 :
2086 : // True iff |object| is a Smi or a HeapNumber.
2087 : TNode<BoolT> IsNumber(SloppyTNode<Object> object);
2088 : // True iff |object| is a Smi or a HeapNumber or a BigInt.
2089 : TNode<BoolT> IsNumeric(SloppyTNode<Object> object);
2090 :
2091 : // True iff |number| is either a Smi, or a HeapNumber whose value is not
2092 : // within Smi range.
2093 : TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
2094 : TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
2095 : TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);
2096 :
2097 : // True iff {number} is non-negative and less or equal than 2**53-1.
2098 : TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);
2099 :
2100 : // True iff {number} represents an integer value.
2101 : TNode<BoolT> IsInteger(TNode<Object> number);
2102 : TNode<BoolT> IsInteger(TNode<HeapNumber> number);
2103 :
2104 : // True iff abs({number}) <= 2**53 -1
2105 : TNode<BoolT> IsSafeInteger(TNode<Object> number);
2106 : TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);
2107 :
2108 : // True iff {number} represents a valid uint32t value.
2109 : TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);
2110 :
2111 : // True iff {number} is a positive number and a valid array index in the range
2112 : // [0, 2^32-1).
2113 : TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);
2114 :
2115 : Node* FixedArraySizeDoesntFitInNewSpace(
2116 : Node* element_count, int base_size = FixedArray::kHeaderSize,
2117 : ParameterMode mode = INTPTR_PARAMETERS);
2118 :
2119 : // ElementsKind helpers:
2120 : TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
2121 2856 : return Word32Equal(a, b);
2122 : }
2123 : bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
2124 : Node* IsFastElementsKind(Node* elements_kind);
2125 : bool IsFastElementsKind(ElementsKind kind) {
2126 : return v8::internal::IsFastElementsKind(kind);
2127 : }
2128 : TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
2129 : return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
2130 : }
2131 : TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
2132 : bool IsDoubleElementsKind(ElementsKind kind) {
2133 : return v8::internal::IsDoubleElementsKind(kind);
2134 : }
2135 : Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
2136 : Node* IsFastSmiElementsKind(Node* elements_kind);
2137 : Node* IsHoleyFastElementsKind(Node* elements_kind);
2138 : Node* IsElementsKindGreaterThan(Node* target_kind,
2139 : ElementsKind reference_kind);
2140 : TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind,
2141 : ElementsKind reference_kind);
2142 :
2143 : // String helpers.
2144 : // Load a character from a String (might flatten a ConsString).
2145 : TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
2146 : SloppyTNode<IntPtrT> index);
2147 : // Return the single character string with only {code}.
2148 : TNode<String> StringFromSingleCharCode(TNode<Int32T> code);
2149 :
2150 : // Return a new string object which holds a substring containing the range
2151 : // [from,to[ of string.
2152 : TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
2153 : TNode<IntPtrT> to);
2154 :
2155 : // Return a new string object produced by concatenating |first| with |second|.
2156 : TNode<String> StringAdd(Node* context, TNode<String> first,
2157 : TNode<String> second, AllocationFlags flags = kNone);
2158 :
2159 : // Check if |string| is an indirect (thin or flat cons) string type that can
2160 : // be dereferenced by DerefIndirectString.
2161 : void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
2162 : Label* can_deref, Label* cannot_deref);
2163 : // Unpack an indirect (thin or flat cons) string type.
2164 : void DerefIndirectString(Variable* var_string, Node* instance_type);
2165 : // Check if |var_string| has an indirect (thin or flat cons) string type,
2166 : // and unpack it if so.
2167 : void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
2168 : Label* did_deref, Label* cannot_deref);
2169 : // Check if |var_left| or |var_right| has an indirect (thin or flat cons)
2170 : // string type, and unpack it/them if so. Fall through if nothing was done.
2171 : void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
2172 : Variable* var_right, Node* right_instance_type,
2173 : Label* did_something);
2174 : Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
2175 : Label* cannot_deref);
2176 :
2177 : TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
2178 : UnicodeEncoding encoding);
2179 :
2180 : // Type conversion helpers.
2181 : enum class BigIntHandling { kConvertToNumber, kThrow };
2182 : // Convert a String to a Number.
2183 : TNode<Number> StringToNumber(TNode<String> input);
2184 : // Convert a Number to a String.
2185 : TNode<String> NumberToString(TNode<Number> input);
2186 : // Convert a Non-Number object to a Number.
2187 : TNode<Number> NonNumberToNumber(
2188 : SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
2189 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2190 : // Convert a Non-Number object to a Numeric.
2191 : TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
2192 : SloppyTNode<HeapObject> input);
2193 : // Convert any object to a Number.
2194 : // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
2195 : // With {bigint_handling} == kConvertToNumber, matches behavior of
2196 : // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
2197 : TNode<Number> ToNumber(
2198 : SloppyTNode<Context> context, SloppyTNode<Object> input,
2199 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2200 : TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
2201 : SloppyTNode<Object> input);
2202 :
2203 : // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
2204 : // https://tc39.github.io/proposal-bigint/#sec-to-bigint
2205 : TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
2206 : SloppyTNode<Object> input);
2207 :
2208 : // Converts |input| to one of 2^32 integer values in the range 0 through
2209 : // 2^32-1, inclusive.
2210 : // ES#sec-touint32
2211 : TNode<Number> ToUint32(SloppyTNode<Context> context,
2212 : SloppyTNode<Object> input);
2213 :
2214 : // Convert any object to a String.
2215 : TNode<String> ToString(SloppyTNode<Context> context,
2216 : SloppyTNode<Object> input);
2217 : TNode<String> ToString_Inline(SloppyTNode<Context> context,
2218 : SloppyTNode<Object> input);
2219 :
2220 : // Convert any object to a Primitive.
2221 : Node* JSReceiverToPrimitive(Node* context, Node* input);
2222 :
2223 : TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
2224 : SloppyTNode<Object> input);
2225 :
2226 : // Same as ToObject but avoids the Builtin call if |input| is already a
2227 : // JSReceiver.
2228 : TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
2229 : TNode<Object> input);
2230 :
2231 : enum ToIntegerTruncationMode {
2232 : kNoTruncation,
2233 : kTruncateMinusZero,
2234 : };
2235 :
2236 : // ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
2237 : TNode<Smi> ToSmiIndex(TNode<Object> input, TNode<Context> context,
2238 : Label* range_error);
2239 :
2240 : // ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
2241 : TNode<Smi> ToSmiLength(TNode<Object> input, TNode<Context> context,
2242 : Label* range_error);
2243 :
2244 : // ES6 7.1.15 ToLength, but with inlined fast path.
2245 : TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
2246 : SloppyTNode<Object> input);
2247 :
2248 : // ES6 7.1.4 ToInteger ( argument )
2249 : TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
2250 : SloppyTNode<Object> input,
2251 : ToIntegerTruncationMode mode = kNoTruncation);
2252 : TNode<Number> ToInteger(SloppyTNode<Context> context,
2253 : SloppyTNode<Object> input,
2254 : ToIntegerTruncationMode mode = kNoTruncation);
2255 :
2256 : // Returns a node that contains a decoded (unsigned!) value of a bit
2257 : // field |BitField| in |word32|. Returns result as an uint32 node.
2258 : template <typename BitField>
2259 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
2260 33431 : return DecodeWord32(word32, BitField::kShift, BitField::kMask);
2261 : }
2262 :
2263 : // Returns a node that contains a decoded (unsigned!) value of a bit
2264 : // field |BitField| in |word|. Returns result as a word-size node.
2265 : template <typename BitField>
2266 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
2267 19620 : return DecodeWord(word, BitField::kShift, BitField::kMask);
2268 : }
2269 :
2270 : // Returns a node that contains a decoded (unsigned!) value of a bit
2271 : // field |BitField| in |word32|. Returns result as a word-size node.
2272 : template <typename BitField>
2273 6684 : TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
2274 13368 : return DecodeWord<BitField>(ChangeUint32ToWord(word32));
2275 : }
2276 :
2277 : // Returns a node that contains a decoded (unsigned!) value of a bit
2278 : // field |BitField| in |word|. Returns result as an uint32 node.
2279 : template <typename BitField>
2280 56 : TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
2281 : return UncheckedCast<Uint32T>(
2282 56 : TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
2283 : }
2284 :
2285 : // Decodes an unsigned (!) value from |word32| to an uint32 node.
2286 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
2287 : uint32_t mask);
2288 :
2289 : // Decodes an unsigned (!) value from |word| to a word-size node.
2290 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
2291 : uint32_t mask);
2292 :
2293 : // Returns a node that contains the updated values of a |BitField|.
2294 : template <typename BitField>
2295 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
2296 392 : return UpdateWord(word, value, BitField::kShift, BitField::kMask);
2297 : }
2298 :
2299 : // Returns a node that contains the updated {value} inside {word} starting
2300 : // at {shift} and fitting in {mask}.
2301 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
2302 : uint32_t mask);
2303 :
2304 : // Returns true if any of the |T|'s bits in given |word32| are set.
2305 : template <typename T>
2306 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
2307 47014 : return IsSetWord32(word32, T::kMask);
2308 : }
2309 :
2310 : // Returns true if any of the mask's bits in given |word32| are set.
2311 60978 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2312 121956 : return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
2313 243912 : Int32Constant(0));
2314 : }
2315 :
2316 : // Returns true if none of the mask's bits in given |word32| are set.
2317 392 : TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2318 784 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2319 1568 : Int32Constant(0));
2320 : }
2321 :
2322 : // Returns true if all of the mask's bits in a given |word32| are set.
2323 3981 : TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2324 3981 : TNode<Int32T> const_mask = Int32Constant(mask);
2325 7962 : return Word32Equal(Word32And(word32, const_mask), const_mask);
2326 : }
2327 :
2328 : // Returns true if any of the |T|'s bits in given |word| are set.
2329 : template <typename T>
2330 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
2331 6832 : return IsSetWord(word, T::kMask);
2332 : }
2333 :
2334 : // Returns true if any of the mask's bits in given |word| are set.
2335 10757 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
2336 43028 : return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2337 : }
2338 :
2339 : // Returns true if any of the mask's bit are set in the given Smi.
2340 : // Smi-encoding of the mask is performed implicitly!
2341 280 : TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
2342 280 : intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
2343 : return WordNotEqual(
2344 840 : WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
2345 840 : IntPtrConstant(0));
2346 : }
2347 :
2348 : // Returns true if all of the |T|'s bits in given |word32| are clear.
2349 : template <typename T>
2350 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
2351 504 : return IsClearWord32(word32, T::kMask);
2352 : }
2353 :
2354 : // Returns true if all of the mask's bits in given |word32| are clear.
2355 3650 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2356 7300 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2357 14600 : Int32Constant(0));
2358 : }
2359 :
2360 : // Returns true if all of the |T|'s bits in given |word| are clear.
2361 : template <typename T>
2362 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
2363 : return IsClearWord(word, T::kMask);
2364 : }
2365 :
2366 : // Returns true if all of the mask's bits in given |word| are clear.
2367 616 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
2368 2464 : return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2369 : }
2370 :
2371 : void SetCounter(StatsCounter* counter, int value);
2372 : void IncrementCounter(StatsCounter* counter, int delta);
2373 : void DecrementCounter(StatsCounter* counter, int delta);
2374 :
2375 : void Increment(Variable* variable, int value = 1,
2376 : ParameterMode mode = INTPTR_PARAMETERS);
2377 : void Decrement(Variable* variable, int value = 1,
2378 : ParameterMode mode = INTPTR_PARAMETERS) {
2379 56 : Increment(variable, -value, mode);
2380 : }
2381 :
2382 : // Generates "if (false) goto label" code. Useful for marking a label as
2383 : // "live" to avoid assertion failures during graph building. In the resulting
2384 : // code this check will be eliminated.
2385 : void Use(Label* label);
2386 :
2387 : // Various building blocks for stubs doing property lookups.
2388 :
2389 : // |if_notinternalized| is optional; |if_bailout| will be used by default.
2390 : void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
2391 : Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
2392 : Label* if_notinternalized = nullptr);
2393 :
2394 : // Performs a hash computation and string table lookup for the given string,
2395 : // and jumps to:
2396 : // - |if_index| if the string is an array index like "123"; |var_index|
2397 : // will contain the intptr representation of that index.
2398 : // - |if_internalized| if the string exists in the string table; the
2399 : // internalized version will be in |var_internalized|.
2400 : // - |if_not_internalized| if the string is not in the string table (but
2401 : // does not add it).
2402 : // - |if_bailout| for unsupported cases (e.g. uncachable array index).
2403 : void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
2404 : Label* if_internalized, Variable* var_internalized,
2405 : Label* if_not_internalized, Label* if_bailout);
2406 :
2407 : // Calculates array index for given dictionary entry and entry field.
2408 : // See Dictionary::EntryToIndex().
2409 : template <typename Dictionary>
2410 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index);
2411 : template <typename Dictionary>
2412 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
2413 32151 : return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
2414 : }
2415 :
2416 : // Loads the details for the entry with the given key_index.
2417 : // Returns an untagged int32.
2418 : template <class ContainerType>
2419 2861 : TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
2420 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2421 : "Use the non-templatized version for DescriptorArray");
2422 : const int kKeyToDetailsOffset =
2423 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2424 : kTaggedSize;
2425 : return Unsigned(LoadAndUntagToWord32FixedArrayElement(
2426 4541 : CAST(container), key_index, kKeyToDetailsOffset));
2427 : }
2428 :
2429 : // Loads the value for the entry with the given key_index.
2430 : // Returns a tagged value.
2431 : template <class ContainerType>
2432 2805 : TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
2433 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2434 : "Use the non-templatized version for DescriptorArray");
2435 : const int kKeyToValueOffset =
2436 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2437 : kTaggedSize;
2438 3477 : return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
2439 : }
2440 :
2441 : // Stores the details for the entry with the given key_index.
2442 : // |details| must be a Smi.
2443 : template <class ContainerType>
2444 : void StoreDetailsByKeyIndex(TNode<ContainerType> container,
2445 : TNode<IntPtrT> key_index, TNode<Smi> details) {
2446 : const int kKeyToDetailsOffset =
2447 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2448 : kTaggedSize;
2449 56 : StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
2450 : kKeyToDetailsOffset);
2451 : }
2452 :
2453 : // Stores the value for the entry with the given key_index.
2454 : template <class ContainerType>
2455 : void StoreValueByKeyIndex(
2456 : TNode<ContainerType> container, TNode<IntPtrT> key_index,
2457 : TNode<Object> value,
2458 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
2459 : const int kKeyToValueOffset =
2460 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2461 : kTaggedSize;
2462 616 : StoreFixedArrayElement(container, key_index, value, write_barrier,
2463 : kKeyToValueOffset);
2464 : }
2465 :
2466 : // Calculate a valid size for the a hash table.
2467 : TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);
2468 :
2469 : template <class Dictionary>
2470 1176 : TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
2471 1176 : return CAST(
2472 : LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
2473 : }
2474 :
2475 : TNode<Smi> GetNumberDictionaryNumberOfElements(
2476 : TNode<NumberDictionary> dictionary) {
2477 112 : return GetNumberOfElements<NumberDictionary>(dictionary);
2478 : }
2479 :
2480 : template <class Dictionary>
2481 : void SetNumberOfElements(TNode<Dictionary> dictionary,
2482 : TNode<Smi> num_elements_smi) {
2483 840 : StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
2484 : num_elements_smi, SKIP_WRITE_BARRIER);
2485 : }
2486 :
2487 : template <class Dictionary>
2488 840 : TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
2489 840 : return CAST(LoadFixedArrayElement(
2490 : dictionary, Dictionary::kNumberOfDeletedElementsIndex));
2491 : }
2492 :
2493 : template <class Dictionary>
2494 : void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
2495 : TNode<Smi> num_deleted_smi) {
2496 56 : StoreFixedArrayElement(dictionary,
2497 : Dictionary::kNumberOfDeletedElementsIndex,
2498 : num_deleted_smi, SKIP_WRITE_BARRIER);
2499 : }
2500 :
2501 : template <class Dictionary>
2502 8776 : TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
2503 8776 : return CAST(LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
2504 : }
2505 :
2506 : template <class Dictionary>
2507 784 : TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
2508 784 : return CAST(LoadFixedArrayElement(dictionary,
2509 : Dictionary::kNextEnumerationIndexIndex));
2510 : }
2511 :
2512 : template <class Dictionary>
2513 : void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
2514 : TNode<Smi> next_enum_index_smi) {
2515 784 : StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
2516 : next_enum_index_smi, SKIP_WRITE_BARRIER);
2517 : }
2518 :
2519 : // Looks up an entry in a NameDictionaryBase successor. If the entry is found
2520 : // control goes to {if_found} and {var_name_index} contains an index of the
2521 : // key field of the entry found. If the key is not found control goes to
2522 : // {if_not_found}.
2523 : static const int kInlinedDictionaryProbes = 4;
2524 : enum LookupMode { kFindExisting, kFindInsertionIndex };
2525 :
2526 : template <typename Dictionary>
2527 : TNode<HeapObject> LoadName(TNode<HeapObject> key);
2528 :
2529 : template <typename Dictionary>
2530 : void NameDictionaryLookup(TNode<Dictionary> dictionary,
2531 : TNode<Name> unique_name, Label* if_found,
2532 : TVariable<IntPtrT>* var_name_index,
2533 : Label* if_not_found,
2534 : int inlined_probes = kInlinedDictionaryProbes,
2535 : LookupMode mode = kFindExisting);
2536 :
2537 : Node* ComputeUnseededHash(Node* key);
2538 : Node* ComputeSeededHash(Node* key);
2539 :
2540 : void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
2541 : TNode<IntPtrT> intptr_index, Label* if_found,
2542 : TVariable<IntPtrT>* var_entry,
2543 : Label* if_not_found);
2544 :
2545 : TNode<Object> BasicLoadNumberDictionaryElement(
2546 : TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
2547 : Label* not_data, Label* if_hole);
2548 : void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
2549 : TNode<IntPtrT> intptr_index,
2550 : TNode<Object> value, Label* not_data,
2551 : Label* if_hole, Label* read_only);
2552 :
2553 : template <class Dictionary>
2554 : void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2555 : TVariable<IntPtrT>* var_key_index);
2556 :
2557 : template <class Dictionary>
2558 : void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2559 : TNode<Object> value, TNode<IntPtrT> index,
2560 : TNode<Smi> enum_index);
2561 :
2562 : template <class Dictionary>
2563 : void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
2564 : Label* bailout);
2565 :
2566 : // Tries to check if {object} has own {unique_name} property.
2567 : void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
2568 : Node* unique_name, Label* if_found,
2569 : Label* if_not_found, Label* if_bailout);
2570 :
2571 : // Operating mode for TryGetOwnProperty and CallGetterIfAccessor
2572 : // kReturnAccessorPair is used when we're only getting the property descriptor
2573 : enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
2574 : // Tries to get {object}'s own {unique_name} property value. If the property
2575 : // is an accessor then it also calls a getter. If the property is a double
2576 : // field it re-wraps value in an immutable heap number.
2577 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2578 : Node* instance_type, Node* unique_name,
2579 : Label* if_found, Variable* var_value,
2580 : Label* if_not_found, Label* if_bailout);
2581 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2582 : Node* instance_type, Node* unique_name,
2583 : Label* if_found, Variable* var_value,
2584 : Variable* var_details, Variable* var_raw_value,
2585 : Label* if_not_found, Label* if_bailout,
2586 : GetOwnPropertyMode mode);
2587 :
2588 8624 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2589 : SloppyTNode<Object> receiver, Handle<Name> name) {
2590 17248 : return GetProperty(context, receiver, HeapConstant(name));
2591 : }
2592 :
2593 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2594 : SloppyTNode<Object> receiver,
2595 : SloppyTNode<Object> name) {
2596 11984 : return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
2597 : }
2598 :
2599 : TNode<Object> SetPropertyStrict(TNode<Context> context,
2600 : TNode<Object> receiver, TNode<Object> key,
2601 : TNode<Object> value) {
2602 1680 : return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
2603 : }
2604 :
2605 : TNode<Object> SetPropertyInLiteral(TNode<Context> context,
2606 : TNode<JSObject> receiver,
2607 : TNode<Object> key, TNode<Object> value) {
2608 : return CallBuiltin(Builtins::kSetPropertyInLiteral, context, receiver, key,
2609 56 : value);
2610 : }
2611 :
2612 : Node* GetMethod(Node* context, Node* object, Handle<Name> name,
2613 : Label* if_null_or_undefined);
2614 :
2615 : template <class... TArgs>
2616 78155 : TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2617 : TArgs... args) {
2618 : return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
2619 78155 : args...);
2620 : }
2621 :
2622 : template <class... TArgs>
2623 2912 : void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2624 : TArgs... args) {
2625 2912 : return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
2626 : }
2627 :
2628 : void LoadPropertyFromFastObject(Node* object, Node* map,
2629 : TNode<DescriptorArray> descriptors,
2630 : Node* name_index, Variable* var_details,
2631 : Variable* var_value);
2632 :
2633 : void LoadPropertyFromFastObject(Node* object, Node* map,
2634 : TNode<DescriptorArray> descriptors,
2635 : Node* name_index, Node* details,
2636 : Variable* var_value);
2637 :
2638 : void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
2639 : Variable* var_details,
2640 : Variable* var_value);
2641 :
2642 : void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
2643 : Variable* var_details,
2644 : Variable* var_value, Label* if_deleted);
2645 :
2646 : // Generic property lookup generator. If the {object} is fast and
2647 : // {unique_name} property is found then the control goes to {if_found_fast}
2648 : // label and {var_meta_storage} and {var_name_index} will contain
2649 : // DescriptorArray and an index of the descriptor's name respectively.
2650 : // If the {object} is slow or global then the control goes to {if_found_dict}
2651 : // or {if_found_global} and the {var_meta_storage} and {var_name_index} will
2652 : // contain a dictionary and an index of the key field of the found entry.
2653 : // If property is not found or given lookup is not supported then
2654 : // the control goes to {if_not_found} or {if_bailout} respectively.
2655 : //
2656 : // Note: this code does not check if the global dictionary points to deleted
2657 : // entry! This has to be done by the caller.
2658 : void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
2659 : SloppyTNode<Int32T> instance_type,
2660 : SloppyTNode<Name> unique_name, Label* if_found_fast,
2661 : Label* if_found_dict, Label* if_found_global,
2662 : TVariable<HeapObject>* var_meta_storage,
2663 : TVariable<IntPtrT>* var_name_index,
2664 : Label* if_not_found, Label* if_bailout);
2665 :
2666 : // This is a building block for TryLookupProperty() above. Supports only
2667 : // non-special fast and dictionary objects.
2668 : void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
2669 : TNode<Name> unique_name,
2670 : Label* if_found_fast,
2671 : Label* if_found_dict,
2672 : TVariable<HeapObject>* var_meta_storage,
2673 : TVariable<IntPtrT>* var_name_index,
2674 : Label* if_not_found);
2675 :
2676 : // This method jumps to if_found if the element is known to exist. To
2677 : // if_absent if it's known to not exist. To if_not_found if the prototype
2678 : // chain needs to be checked. And if_bailout if the lookup is unsupported.
2679 : void TryLookupElement(Node* object, Node* map,
2680 : SloppyTNode<Int32T> instance_type,
2681 : SloppyTNode<IntPtrT> intptr_index, Label* if_found,
2682 : Label* if_absent, Label* if_not_found,
2683 : Label* if_bailout);
2684 :
2685 : // This is a type of a lookup in holder generator function. In case of a
2686 : // property lookup the {key} is guaranteed to be an unique name and in case of
2687 : // element lookup the key is an Int32 index.
2688 : typedef std::function<void(Node* receiver, Node* holder, Node* map,
2689 : Node* instance_type, Node* key, Label* next_holder,
2690 : Label* if_bailout)>
2691 : LookupInHolder;
2692 :
2693 : // For integer indexed exotic cases, check if the given string cannot be a
2694 : // special index. If we are not sure that the given string is not a special
2695 : // index with a simple check, return False. Note that "False" return value
2696 : // does not mean that the name_string is a special index in the current
2697 : // implementation.
2698 : void BranchIfMaybeSpecialIndex(TNode<String> name_string,
2699 : Label* if_maybe_special_index,
2700 : Label* if_not_special_index);
2701 :
2702 : // Generic property prototype chain lookup generator.
2703 : // For properties it generates lookup using given {lookup_property_in_holder}
2704 : // and for elements it uses {lookup_element_in_holder}.
2705 : // Upon reaching the end of prototype chain the control goes to {if_end}.
2706 : // If it can't handle the case {receiver}/{key} case then the control goes
2707 : // to {if_bailout}.
2708 : // If {if_proxy} is nullptr, proxies go to if_bailout.
2709 : void TryPrototypeChainLookup(Node* receiver, Node* key,
2710 : const LookupInHolder& lookup_property_in_holder,
2711 : const LookupInHolder& lookup_element_in_holder,
2712 : Label* if_end, Label* if_bailout,
2713 : Label* if_proxy = nullptr);
2714 :
2715 : // Instanceof helpers.
2716 : // Returns true if {object} has {prototype} somewhere in it's prototype
2717 : // chain, otherwise false is returned. Might cause arbitrary side effects
2718 : // due to [[GetPrototypeOf]] invocations.
2719 : Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
2720 : // ES6 section 7.3.19 OrdinaryHasInstance (C, O)
2721 : Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
2722 :
2723 : // Load type feedback vector from the stub caller's frame.
2724 : TNode<FeedbackVector> LoadFeedbackVectorForStub();
2725 :
2726 : // Load type feedback vector for the given closure.
2727 : TNode<FeedbackVector> LoadFeedbackVector(SloppyTNode<JSFunction> closure,
2728 : Label* if_undefined = nullptr);
2729 :
2730 : // Load the object from feedback vector cell for the given closure.
2731 : // The returned object could be undefined if the closure does not have
2732 : // a feedback vector associated with it.
2733 : TNode<Object> LoadFeedbackVectorUnchecked(SloppyTNode<JSFunction> closure);
2734 :
2735 : // Update the type feedback vector.
2736 : void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
2737 :
2738 : // Returns the stricter of the Context::ScopeInfo::LanguageMode and
2739 : // the language mode on the SFI.
2740 : Node* GetLanguageMode(TNode<SharedFunctionInfo> sfi, Node* context);
2741 : Node* GetLanguageMode(TNode<JSFunction> closure, Node* context);
2742 : Node* GetLanguageMode(TNode<FeedbackVector> vector, Node* context);
2743 :
2744 : // Report that there was a feedback update, performing any tasks that should
2745 : // be done after a feedback update.
2746 : void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
2747 : SloppyTNode<IntPtrT> slot_id, const char* reason);
2748 :
2749 : // Combine the new feedback with the existing_feedback. Do nothing if
2750 : // existing_feedback is nullptr.
2751 : void CombineFeedback(Variable* existing_feedback, int feedback);
2752 : void CombineFeedback(Variable* existing_feedback, Node* feedback);
2753 :
2754 : // Overwrite the existing feedback with new_feedback. Do nothing if
2755 : // existing_feedback is nullptr.
2756 : void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
2757 :
2758 : // Check if a property name might require protector invalidation when it is
2759 : // used for a property store or deletion.
2760 : void CheckForAssociatedProtector(Node* name, Label* if_protector);
2761 :
2762 : TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);
2763 :
2764 : // Emits keyed sloppy arguments load. Returns either the loaded value.
2765 : Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
2766 56 : return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
2767 : }
2768 :
2769 : // Emits keyed sloppy arguments store.
2770 : void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
2771 : Label* bailout) {
2772 : DCHECK_NOT_NULL(value);
2773 224 : EmitKeyedSloppyArguments(receiver, key, value, bailout);
2774 : }
2775 :
2776 : // Loads script context from the script context table.
2777 : TNode<Context> LoadScriptContext(TNode<Context> context,
2778 : TNode<IntPtrT> context_index);
2779 :
2780 : Node* Int32ToUint8Clamped(Node* int32_value);
2781 : Node* Float64ToUint8Clamped(Node* float64_value);
2782 :
2783 : Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
2784 : ElementsKind elements_kind,
2785 : TNode<Context> context);
2786 :
2787 : // Store value to an elements array with given elements kind.
2788 : void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
2789 : ParameterMode mode);
2790 :
2791 : void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
2792 : TNode<FixedTypedArrayBase> elements,
2793 : TNode<IntPtrT> intptr_key,
2794 : TNode<Object> value,
2795 : TNode<Context> context,
2796 : Label* opt_if_detached);
2797 : // Part of the above, refactored out to reuse in another place.
2798 : void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
2799 : TNode<RawPtrT> backing_store,
2800 : TNode<IntPtrT> offset,
2801 : TNode<BigInt> bigint_value);
2802 : // Implements the BigInt part of
2803 : // https://tc39.github.io/proposal-bigint/#sec-numbertorawbytes,
2804 : // including truncation to 64 bits (i.e. modulo 2^64).
2805 : // {var_high} is only used on 32-bit platforms.
2806 : void BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low,
2807 : TVariable<UintPtrT>* var_high);
2808 :
2809 : void EmitElementStore(Node* object, Node* key, Node* value,
2810 : ElementsKind elements_kind,
2811 : KeyedAccessStoreMode store_mode, Label* bailout,
2812 : Node* context);
2813 :
2814 : Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
2815 : Node* length, Node* key, ParameterMode mode,
2816 : Label* bailout);
2817 :
2818 : Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
2819 : Node* length, ParameterMode mode, Label* bailout);
2820 :
2821 : void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
2822 : ElementsKind to_kind, Label* bailout);
2823 :
2824 : void TrapAllocationMemento(Node* object, Label* memento_found);
2825 :
2826 : TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);
2827 :
2828 : // Store a weak in-place reference into the FeedbackVector.
2829 : TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
2830 : SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
2831 : SloppyTNode<HeapObject> value, int additional_offset = 0,
2832 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
2833 :
2834 : // Create a new AllocationSite and install it into a feedback vector.
2835 : TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
2836 : SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);
2837 :
2838 : // TODO(ishell, cbruni): Change to HasBoilerplate.
2839 : TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
2840 : TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
2841 : TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
2842 : TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);
2843 :
2844 : enum class IndexAdvanceMode { kPre, kPost };
2845 :
2846 : typedef std::function<void(Node* index)> FastLoopBody;
2847 :
2848 : Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
2849 : Node* end_index, const FastLoopBody& body, int increment,
2850 : ParameterMode parameter_mode,
2851 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
2852 :
2853 8893 : Node* BuildFastLoop(Node* start_index, Node* end_index,
2854 : const FastLoopBody& body, int increment,
2855 : ParameterMode parameter_mode,
2856 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
2857 : return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
2858 17786 : increment, parameter_mode, advance_mode);
2859 : }
2860 :
2861 : enum class ForEachDirection { kForward, kReverse };
2862 :
2863 : typedef std::function<void(Node* fixed_array, Node* offset)>
2864 : FastFixedArrayForEachBody;
2865 :
2866 : void BuildFastFixedArrayForEach(
2867 : const CodeStubAssembler::VariableList& vars, Node* fixed_array,
2868 : ElementsKind kind, Node* first_element_inclusive,
2869 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2870 : ParameterMode mode = INTPTR_PARAMETERS,
2871 : ForEachDirection direction = ForEachDirection::kReverse);
2872 :
2873 17815 : void BuildFastFixedArrayForEach(
2874 : Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
2875 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2876 : ParameterMode mode = INTPTR_PARAMETERS,
2877 : ForEachDirection direction = ForEachDirection::kReverse) {
2878 17815 : CodeStubAssembler::VariableList list(0, zone());
2879 : BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
2880 17815 : last_element_exclusive, body, mode, direction);
2881 17815 : }
2882 :
2883 : TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
2884 : ParameterMode mode, int header_size) {
2885 17932 : return ElementOffsetFromIndex(element_count, kind, mode, header_size);
2886 : }
2887 :
2888 : TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
2889 : ElementsKind kind,
2890 : ParameterMode mode) {
2891 : return GetArrayAllocationSize(element_count, kind, mode,
2892 : FixedArray::kHeaderSize);
2893 : }
2894 :
2895 : TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
2896 : ParameterMode mode) {
2897 : return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
2898 : PropertyArray::kHeaderSize);
2899 : }
2900 :
2901 : void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
2902 : Label* doesnt_fit, int base_size,
2903 : ParameterMode mode);
2904 :
2905 : void InitializeFieldsWithRoot(Node* object, Node* start_offset,
2906 : Node* end_offset, RootIndex root);
2907 :
2908 : Node* RelationalComparison(Operation op, Node* left, Node* right,
2909 : Node* context,
2910 : Variable* var_type_feedback = nullptr);
2911 :
2912 : void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
2913 : Label* if_true, Label* if_false);
2914 :
2915 : void BranchIfNumberEqual(TNode<Number> left, TNode<Number> right,
2916 : Label* if_true, Label* if_false) {
2917 : BranchIfNumberRelationalComparison(Operation::kEqual, left, right, if_true,
2918 280 : if_false);
2919 : }
2920 :
2921 : void BranchIfNumberNotEqual(TNode<Number> left, TNode<Number> right,
2922 : Label* if_true, Label* if_false) {
2923 : BranchIfNumberEqual(left, right, if_false, if_true);
2924 : }
2925 :
2926 : void BranchIfNumberLessThan(TNode<Number> left, TNode<Number> right,
2927 : Label* if_true, Label* if_false) {
2928 : BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
2929 2744 : if_true, if_false);
2930 : }
2931 :
2932 : void BranchIfNumberLessThanOrEqual(TNode<Number> left, TNode<Number> right,
2933 : Label* if_true, Label* if_false) {
2934 : BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
2935 : if_true, if_false);
2936 : }
2937 :
2938 : void BranchIfNumberGreaterThan(TNode<Number> left, TNode<Number> right,
2939 : Label* if_true, Label* if_false) {
2940 : BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
2941 2128 : if_true, if_false);
2942 : }
2943 :
2944 : void BranchIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right,
2945 : Label* if_true, Label* if_false) {
2946 : BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
2947 336 : right, if_true, if_false);
2948 : }
2949 :
2950 168 : void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
2951 : Label* if_not_accessor_pair) {
2952 336 : GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
2953 336 : Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
2954 168 : }
2955 :
2956 : void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
2957 :
2958 : Node* Equal(Node* lhs, Node* rhs, Node* context,
2959 : Variable* var_type_feedback = nullptr);
2960 :
2961 : Node* StrictEqual(Node* lhs, Node* rhs,
2962 : Variable* var_type_feedback = nullptr);
2963 :
2964 : // ECMA#sec-samevalue
2965 : // Similar to StrictEqual except that NaNs are treated as equal and minus zero
2966 : // differs from positive zero.
2967 : void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);
2968 :
2969 : enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
2970 :
2971 : TNode<Oddball> HasProperty(SloppyTNode<Context> context,
2972 : SloppyTNode<Object> object,
2973 : SloppyTNode<Object> key,
2974 : HasPropertyLookupMode mode);
2975 :
2976 : // Due to naming conflict with the builtin function namespace.
2977 112 : TNode<Oddball> HasProperty_Inline(TNode<Context> context,
2978 : TNode<JSReceiver> object,
2979 : TNode<Object> key) {
2980 : return HasProperty(context, object, key,
2981 112 : HasPropertyLookupMode::kHasProperty);
2982 : }
2983 :
2984 : Node* Typeof(Node* value);
2985 :
2986 : TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
2987 : SloppyTNode<JSFunction> active_function);
2988 :
2989 : TNode<JSReceiver> SpeciesConstructor(
2990 : SloppyTNode<Context> context, SloppyTNode<Object> object,
2991 : SloppyTNode<JSReceiver> default_constructor);
2992 :
2993 : Node* InstanceOf(Node* object, Node* callable, Node* context);
2994 :
2995 : // Debug helpers
2996 : Node* IsDebugActive();
2997 :
2998 : TNode<BoolT> IsRuntimeCallStatsEnabled();
2999 :
3000 : // JSArrayBuffer helpers
3001 : TNode<Uint32T> LoadJSArrayBufferBitField(TNode<JSArrayBuffer> array_buffer);
3002 : TNode<RawPtrT> LoadJSArrayBufferBackingStore(
3003 : TNode<JSArrayBuffer> array_buffer);
3004 : Node* IsDetachedBuffer(Node* buffer);
3005 : void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
3006 : TNode<JSArrayBuffer> array_buffer,
3007 : const char* method_name);
3008 :
3009 : // JSArrayBufferView helpers
3010 : TNode<JSArrayBuffer> LoadJSArrayBufferViewBuffer(
3011 : TNode<JSArrayBufferView> array_buffer_view);
3012 : TNode<UintPtrT> LoadJSArrayBufferViewByteLength(
3013 : TNode<JSArrayBufferView> array_buffer_view);
3014 : TNode<UintPtrT> LoadJSArrayBufferViewByteOffset(
3015 : TNode<JSArrayBufferView> array_buffer_view);
3016 : void ThrowIfArrayBufferViewBufferIsDetached(
3017 : SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
3018 : const char* method_name);
3019 :
3020 : // JSTypedArray helpers
3021 : TNode<Smi> LoadJSTypedArrayLength(TNode<JSTypedArray> typed_array);
3022 :
3023 : TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
3024 : ParameterMode mode, int base_size = 0);
3025 :
3026 : // Check that a field offset is within the bounds of the an object.
3027 : TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
3028 : SloppyTNode<IntPtrT> length, int header_size,
3029 : ElementsKind kind = HOLEY_ELEMENTS);
3030 :
3031 : // Load a builtin's code from the builtin array in the isolate.
3032 : TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);
3033 :
3034 : // Figure out the SFI's code object using its data field.
3035 : // If |if_compile_lazy| is provided then the execution will go to the given
3036 : // label in case of an CompileLazy code object.
3037 : TNode<Code> GetSharedFunctionInfoCode(
3038 : SloppyTNode<SharedFunctionInfo> shared_info,
3039 : Label* if_compile_lazy = nullptr);
3040 :
3041 : Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
3042 : Node* context);
3043 :
3044 : // Promise helpers
3045 : Node* IsPromiseHookEnabled();
3046 : Node* HasAsyncEventDelegate();
3047 : Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();
3048 : Node* IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate();
3049 :
3050 : // Helpers for StackFrame markers.
3051 : Node* MarkerIsFrameType(Node* marker_or_function,
3052 : StackFrame::Type frame_type);
3053 : Node* MarkerIsNotFrameType(Node* marker_or_function,
3054 : StackFrame::Type frame_type);
3055 :
3056 : // for..in helpers
3057 : void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
3058 : Label* if_fast, Label* if_slow);
3059 : Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
3060 :
3061 : TNode<IntPtrT> GetArgumentsLength(CodeStubArguments* args);
3062 : TNode<Object> GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index);
3063 :
3064 : // Support for printf-style debugging
3065 : void Print(const char* s);
3066 : void Print(const char* prefix, Node* tagged_value);
3067 : inline void Print(SloppyTNode<Object> tagged_value) {
3068 : return Print(nullptr, tagged_value);
3069 : }
3070 : inline void Print(TNode<MaybeObject> tagged_value) {
3071 : return Print(nullptr, tagged_value);
3072 : }
3073 :
3074 : template <class... TArgs>
3075 504 : Node* MakeTypeError(MessageTemplate message, Node* context, TArgs... args) {
3076 : STATIC_ASSERT(sizeof...(TArgs) <= 3);
3077 : Node* const make_type_error = LoadContextElement(
3078 1512 : LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
3079 : return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
3080 1512 : UndefinedConstant(), SmiConstant(message), args...);
3081 : }
3082 :
3083 112 : void Abort(AbortReason reason) {
3084 336 : CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
3085 112 : Unreachable();
3086 112 : }
3087 :
3088 5 : bool ConstexprBoolNot(bool value) { return !value; }
3089 :
3090 : bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }
3091 : uint32_t ConstexprUint32Add(uint32_t a, uint32_t b) { return a + b; }
3092 :
3093 : void PerformStackCheck(TNode<Context> context);
3094 :
3095 : void SetPropertyLength(TNode<Context> context, TNode<Object> array,
3096 : TNode<Number> length);
3097 :
3098 : // Checks that {object_map}'s prototype map is the {initial_prototype_map} and
3099 : // makes sure that the field with name at index {descriptor} is still
3100 : // constant. If it is not, go to label {if_modified}.
3101 : //
3102 : // To make the checks robust, the method also asserts that the descriptor has
3103 : // the right key, the caller must pass the root index of the key
3104 : // in {field_name_root_index}.
3105 : //
3106 : // This is useful for checking that given function has not been patched
3107 : // on the prototype.
3108 : void GotoIfInitialPrototypePropertyModified(TNode<Map> object_map,
3109 : TNode<Map> initial_prototype_map,
3110 : int descfriptor,
3111 : RootIndex field_name_root_index,
3112 : Label* if_modified);
3113 : struct DescriptorIndexAndName {
3114 : DescriptorIndexAndName() {}
3115 : DescriptorIndexAndName(int descriptor_index, RootIndex name_root_index)
3116 : : descriptor_index(descriptor_index),
3117 392 : name_root_index(name_root_index) {}
3118 :
3119 : int descriptor_index;
3120 : RootIndex name_root_index;
3121 : };
3122 : void GotoIfInitialPrototypePropertiesModified(
3123 : TNode<Map> object_map, TNode<Map> initial_prototype_map,
3124 : Vector<DescriptorIndexAndName> properties, Label* if_modified);
3125 :
3126 : // Implements DescriptorArray::Search().
3127 : void DescriptorLookup(SloppyTNode<Name> unique_name,
3128 : SloppyTNode<DescriptorArray> descriptors,
3129 : SloppyTNode<Uint32T> bitfield3, Label* if_found,
3130 : TVariable<IntPtrT>* var_name_index,
3131 : Label* if_not_found);
3132 :
3133 : // Implements TransitionArray::SearchName() - searches for first transition
3134 : // entry with given name (note that there could be multiple entries with
3135 : // the same name).
3136 : void TransitionLookup(SloppyTNode<Name> unique_name,
3137 : SloppyTNode<TransitionArray> transitions,
3138 : Label* if_found, TVariable<IntPtrT>* var_name_index,
3139 : Label* if_not_found);
3140 :
3141 : // Implements generic search procedure like i::Search<Array>().
3142 : template <typename Array>
3143 : void Lookup(TNode<Name> unique_name, TNode<Array> array,
3144 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3145 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3146 :
3147 : // Implements generic linear search procedure like i::LinearSearch<Array>().
3148 : template <typename Array>
3149 : void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
3150 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3151 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3152 :
3153 : // Implements generic binary search procedure like i::BinarySearch<Array>().
3154 : template <typename Array>
3155 : void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
3156 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3157 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3158 :
3159 : // Converts [Descriptor/Transition]Array entry number to a fixed array index.
3160 : template <typename Array>
3161 : TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);
3162 :
3163 : // Implements [Descriptor/Transition]Array::ToKeyIndex.
3164 : template <typename Array>
3165 : TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);
3166 :
3167 : // Implements [Descriptor/Transition]Array::GetKey.
3168 : template <typename Array>
3169 : TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);
3170 :
3171 : // Implements DescriptorArray::GetDetails.
3172 : TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
3173 : TNode<Uint32T> descriptor_number);
3174 :
3175 : typedef std::function<void(TNode<IntPtrT> descriptor_key_index)>
3176 : ForEachDescriptorBodyFunction;
3177 :
3178 : void DescriptorArrayForEach(VariableList& variable_list,
3179 : TNode<Uint32T> start_descriptor,
3180 : TNode<Uint32T> end_descriptor,
3181 : const ForEachDescriptorBodyFunction& body);
3182 :
3183 : // Descriptor array accessors based on key_index, which is equal to
3184 : // DescriptorArray::ToKeyIndex(descriptor).
3185 : TNode<Name> LoadKeyByKeyIndex(TNode<DescriptorArray> container,
3186 : TNode<IntPtrT> key_index);
3187 : TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
3188 : TNode<IntPtrT> key_index);
3189 : TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
3190 : TNode<IntPtrT> key_index);
3191 : TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
3192 : TNode<IntPtrT> key_index);
3193 :
3194 : TNode<IntPtrT> DescriptorEntryToIndex(TNode<IntPtrT> descriptor);
3195 :
3196 : // Descriptor array accessors based on descriptor.
3197 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3198 : TNode<IntPtrT> descriptor);
3199 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3200 : int descriptor);
3201 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3202 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3203 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3204 : TNode<DescriptorArray> descriptors, int descriptor);
3205 : TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors,
3206 : int descriptor);
3207 : TNode<MaybeObject> LoadFieldTypeByDescriptorEntry(
3208 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3209 :
3210 : typedef std::function<void(TNode<Name> key, TNode<Object> value)>
3211 : ForEachKeyValueFunction;
3212 :
3213 : // For each JSObject property (in DescriptorArray order), check if the key is
3214 : // enumerable, and if so, load the value from the receiver and evaluate the
3215 : // closure.
3216 : void ForEachEnumerableOwnProperty(TNode<Context> context, TNode<Map> map,
3217 : TNode<JSObject> object,
3218 : const ForEachKeyValueFunction& body,
3219 : Label* bailout);
3220 :
3221 : TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
3222 : Node* receiver, Label* if_bailout,
3223 : GetOwnPropertyMode mode = kCallJSGetter);
3224 :
3225 : TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
3226 :
3227 : void BranchIfPrototypesHaveNoElements(Node* receiver_map,
3228 : Label* definitely_no_elements,
3229 : Label* possibly_elements);
3230 :
3231 : void InitializeFunctionContext(Node* native_context, Node* context,
3232 : int slots);
3233 :
3234 : TNode<JSArray> ArrayCreate(TNode<Context> context, TNode<Number> length);
3235 :
3236 : // Allocate a clone of a mutable primitive, if {object} is a
3237 : // MutableHeapNumber.
3238 : TNode<Object> CloneIfMutablePrimitive(TNode<Object> object);
3239 :
3240 : private:
3241 : friend class CodeStubArguments;
3242 :
3243 : void HandleBreakOnNode();
3244 :
3245 : TNode<HeapObject> AllocateRawDoubleAligned(TNode<IntPtrT> size_in_bytes,
3246 : AllocationFlags flags,
3247 : TNode<RawPtrT> top_address,
3248 : TNode<RawPtrT> limit_address);
3249 : TNode<HeapObject> AllocateRawUnaligned(TNode<IntPtrT> size_in_bytes,
3250 : AllocationFlags flags,
3251 : TNode<RawPtrT> top_address,
3252 : TNode<RawPtrT> limit_address);
3253 : TNode<HeapObject> AllocateRaw(TNode<IntPtrT> size_in_bytes,
3254 : AllocationFlags flags,
3255 : TNode<RawPtrT> top_address,
3256 : TNode<RawPtrT> limit_address);
3257 :
3258 : // Allocate and return a JSArray of given total size in bytes with header
3259 : // fields initialized.
3260 : TNode<JSArray> AllocateUninitializedJSArray(TNode<Map> array_map,
3261 : TNode<Smi> length,
3262 : Node* allocation_site,
3263 : TNode<IntPtrT> size_in_bytes);
3264 :
3265 : TNode<BoolT> IsValidSmi(TNode<Smi> smi);
3266 : Node* SmiShiftBitsConstant();
3267 :
3268 : // Emits keyed sloppy arguments load if the |value| is nullptr or store
3269 : // otherwise. Returns either the loaded value or |value|.
3270 : Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
3271 : Label* bailout);
3272 :
3273 : TNode<String> AllocateSlicedString(RootIndex map_root_index,
3274 : TNode<Uint32T> length,
3275 : TNode<String> parent, TNode<Smi> offset);
3276 :
3277 : TNode<String> AllocateConsString(RootIndex map_root_index,
3278 : TNode<Uint32T> length, TNode<String> first,
3279 : TNode<String> second, AllocationFlags flags);
3280 :
3281 : // Allocate a MutableHeapNumber without initializing its value.
3282 : TNode<MutableHeapNumber> AllocateMutableHeapNumber();
3283 :
3284 : Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
3285 : const NodeGenerator& false_body, MachineRepresentation rep);
3286 :
3287 : // Implements [Descriptor/Transition]Array::number_of_entries.
3288 : template <typename Array>
3289 : TNode<Uint32T> NumberOfEntries(TNode<Array> array);
3290 :
3291 : // Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
3292 : template <typename Array>
3293 : TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
3294 : TNode<Uint32T> entry_index);
3295 :
3296 : TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
3297 : void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
3298 : Variable* var_type_feedback = nullptr);
3299 : TNode<String> AllocAndCopyStringCharacters(Node* from,
3300 : Node* from_instance_type,
3301 : TNode<IntPtrT> from_index,
3302 : TNode<IntPtrT> character_count);
3303 :
3304 : static const int kElementLoopUnrollThreshold = 8;
3305 :
3306 : // {convert_bigint} is only meaningful when {mode} == kToNumber.
3307 : Node* NonNumberToNumberOrNumeric(
3308 : Node* context, Node* input, Object::Conversion mode,
3309 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
3310 :
3311 : void TaggedToNumeric(Node* context, Node* value, Label* done,
3312 : Variable* var_numeric, Variable* var_feedback);
3313 :
3314 : template <Object::Conversion conversion>
3315 : void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
3316 : Variable* var_word32,
3317 : Label* if_bigint = nullptr,
3318 : Variable* var_bigint = nullptr,
3319 : Variable* var_feedback = nullptr);
3320 :
3321 : private:
3322 : // Low-level accessors for Descriptor arrays.
3323 : TNode<MaybeObject> LoadDescriptorArrayElement(TNode<DescriptorArray> object,
3324 : Node* index,
3325 : int additional_offset = 0);
3326 : };
3327 :
3328 : class CodeStubArguments {
3329 : public:
3330 : typedef compiler::Node Node;
3331 : template <class T>
3332 : using TNode = compiler::TNode<T>;
3333 : template <class T>
3334 : using SloppyTNode = compiler::SloppyTNode<T>;
3335 : enum ReceiverMode { kHasReceiver, kNoReceiver };
3336 :
3337 : // |argc| is an intptr value which specifies the number of arguments passed
3338 : // to the builtin excluding the receiver. The arguments will include a
3339 : // receiver iff |receiver_mode| is kHasReceiver.
3340 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
3341 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
3342 : : CodeStubArguments(assembler, argc, nullptr,
3343 6495 : CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
3344 : }
3345 :
3346 : // |argc| is either a smi or intptr depending on |param_mode|. The arguments
3347 : // include a receiver iff |receiver_mode| is kHasReceiver.
3348 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
3349 : CodeStubAssembler::ParameterMode param_mode,
3350 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
3351 :
3352 : TNode<Object> GetReceiver() const;
3353 : // Replaces receiver argument on the expression stack. Should be used only
3354 : // for manipulating arguments in trampoline builtins before tail calling
3355 : // further with passing all the JS arguments as is.
3356 : void SetReceiver(TNode<Object> object) const;
3357 :
3358 : TNode<RawPtr<Object>> AtIndexPtr(
3359 : Node* index, CodeStubAssembler::ParameterMode mode =
3360 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3361 :
3362 : // |index| is zero-based and does not include the receiver
3363 : TNode<Object> AtIndex(Node* index,
3364 : CodeStubAssembler::ParameterMode mode =
3365 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3366 :
3367 : TNode<Object> AtIndex(int index) const;
3368 :
3369 4256 : TNode<Object> GetOptionalArgumentValue(int index) {
3370 8512 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3371 : }
3372 : TNode<Object> GetOptionalArgumentValue(int index,
3373 : TNode<Object> default_value);
3374 :
3375 : Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
3376 : DCHECK_EQ(mode, argc_mode_);
3377 : return argc_;
3378 : }
3379 :
3380 4480 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
3381 8960 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3382 : }
3383 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
3384 : TNode<Object> default_value);
3385 : TNode<IntPtrT> GetLength() const {
3386 : DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
3387 : return assembler_->UncheckedCast<IntPtrT>(argc_);
3388 : }
3389 :
3390 : typedef std::function<void(Node* arg)> ForEachBodyFunction;
3391 :
3392 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3393 112 : void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
3394 : Node* last = nullptr,
3395 : CodeStubAssembler::ParameterMode mode =
3396 : CodeStubAssembler::INTPTR_PARAMETERS) {
3397 112 : CodeStubAssembler::VariableList list(0, assembler_->zone());
3398 112 : ForEach(list, body, first, last);
3399 112 : }
3400 :
3401 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3402 : void ForEach(const CodeStubAssembler::VariableList& vars,
3403 : const ForEachBodyFunction& body, Node* first = nullptr,
3404 : Node* last = nullptr,
3405 : CodeStubAssembler::ParameterMode mode =
3406 : CodeStubAssembler::INTPTR_PARAMETERS);
3407 :
3408 : void PopAndReturn(Node* value);
3409 :
3410 : private:
3411 : Node* GetArguments();
3412 :
3413 : CodeStubAssembler* assembler_;
3414 : CodeStubAssembler::ParameterMode argc_mode_;
3415 : ReceiverMode receiver_mode_;
3416 : Node* argc_;
3417 : TNode<RawPtr<Object>> arguments_;
3418 : Node* fp_;
3419 : };
3420 :
3421 8736 : class ToDirectStringAssembler : public CodeStubAssembler {
3422 : private:
3423 : enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
3424 :
3425 : public:
3426 : enum Flag {
3427 : kDontUnpackSlicedStrings = 1 << 0,
3428 : };
3429 : typedef base::Flags<Flag> Flags;
3430 :
3431 : ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
3432 : Flags flags = Flags());
3433 :
3434 : // Converts flat cons, thin, and sliced strings and returns the direct
3435 : // string. The result can be either a sequential or external string.
3436 : // Jumps to if_bailout if the string if the string is indirect and cannot
3437 : // be unpacked.
3438 : TNode<String> TryToDirect(Label* if_bailout);
3439 :
3440 : // Returns a pointer to the beginning of the string data.
3441 : // Jumps to if_bailout if the external string cannot be unpacked.
3442 : TNode<RawPtrT> PointerToData(Label* if_bailout) {
3443 3752 : return TryToSequential(PTR_TO_DATA, if_bailout);
3444 : }
3445 :
3446 : // Returns a pointer that, offset-wise, looks like a String.
3447 : // Jumps to if_bailout if the external string cannot be unpacked.
3448 : TNode<RawPtrT> PointerToString(Label* if_bailout) {
3449 448 : return TryToSequential(PTR_TO_STRING, if_bailout);
3450 : }
3451 :
3452 56 : Node* string() { return var_string_.value(); }
3453 4592 : Node* instance_type() { return var_instance_type_.value(); }
3454 : TNode<IntPtrT> offset() {
3455 4704 : return UncheckedCast<IntPtrT>(var_offset_.value());
3456 : }
3457 4816 : Node* is_external() { return var_is_external_.value(); }
3458 :
3459 : private:
3460 : TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
3461 :
3462 : Variable var_string_;
3463 : Variable var_instance_type_;
3464 : Variable var_offset_;
3465 : Variable var_is_external_;
3466 :
3467 : const Flags flags_;
3468 : };
3469 :
3470 : DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);
3471 :
3472 : } // namespace internal
3473 : } // namespace v8
3474 : #endif // V8_CODE_STUB_ASSEMBLER_H_
|