Line data Source code
1 : // Copyright 2012 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/heap/heap-controller.h"
6 : #include "src/isolate-inl.h"
7 :
8 : namespace v8 {
9 : namespace internal {
10 :
11 : // Given GC speed in bytes per ms, the allocation throughput in bytes per ms
12 : // (mutator speed), this function returns the heap growing factor that will
13 : // achieve the target_mutator_utilization_ if the GC speed and the mutator speed
14 : // remain the same until the next GC.
15 : //
16 : // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio
17 : // TM / (TM + TG), where TM is the time spent in the mutator and TG is the
18 : // time spent in the garbage collector.
19 : //
20 : // Let MU be target_mutator_utilization_, the desired mutator utilization for
21 : // the time-frame from the end of the current GC to the end of the next GC.
22 : // Based on the MU we can compute the heap growing factor F as
23 : //
24 : // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed.
25 : //
26 : // This formula can be derived as follows.
27 : //
28 : // F = Limit / Live by definition, where the Limit is the allocation limit,
29 : // and the Live is size of live objects.
30 : // Let’s assume that we already know the Limit. Then:
31 : // TG = Limit / gc_speed
32 : // TM = (TM + TG) * MU, by definition of MU.
33 : // TM = TG * MU / (1 - MU)
34 : // TM = Limit * MU / (gc_speed * (1 - MU))
35 : // On the other hand, if the allocation throughput remains constant:
36 : // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed
37 : // Solving it for TM, we get
38 : // TM = (Limit - Live) / mutator_speed
39 : // Combining the two equation for TM:
40 : // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU))
41 : // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU))
42 : // substitute R = gc_speed / mutator_speed
43 : // (Limit - Live) = Limit * MU / (R * (1 - MU))
44 : // substitute F = Limit / Live
45 : // F - 1 = F * MU / (R * (1 - MU))
46 : // F - F * MU / (R * (1 - MU)) = 1
47 : // F * (1 - MU / (R * (1 - MU))) = 1
48 : // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1
49 : // F = R * (1 - MU) / (R * (1 - MU) - MU)
50 83620 : double MemoryController::GrowingFactor(double gc_speed, double mutator_speed,
51 : double max_factor) {
52 : DCHECK_LE(min_growing_factor_, max_factor);
53 : DCHECK_GE(max_growing_factor_, max_factor);
54 83620 : if (gc_speed == 0 || mutator_speed == 0) return max_factor;
55 :
56 67320 : const double speed_ratio = gc_speed / mutator_speed;
57 :
58 67320 : const double a = speed_ratio * (1 - target_mutator_utilization_);
59 : const double b = speed_ratio * (1 - target_mutator_utilization_) -
60 67320 : target_mutator_utilization_;
61 :
62 : // The factor is a / b, but we need to check for small b first.
63 67320 : double factor = (a < b * max_factor) ? a / b : max_factor;
64 : factor = Min(factor, max_factor);
65 67320 : factor = Max(factor, min_growing_factor_);
66 67320 : return factor;
67 : }
68 :
69 83610 : size_t MemoryController::CalculateAllocationLimit(
70 : size_t curr_size, size_t max_size, double max_factor, double gc_speed,
71 : double mutator_speed, size_t new_space_capacity,
72 : Heap::HeapGrowingMode growing_mode) {
73 83610 : double factor = GrowingFactor(gc_speed, mutator_speed, max_factor);
74 :
75 83610 : if (FLAG_trace_gc_verbose) {
76 : heap_->isolate()->PrintWithTimestamp(
77 : "%s factor %.1f based on mu=%.3f, speed_ratio=%.f "
78 : "(gc=%.f, mutator=%.f)\n",
79 0 : ControllerName(), factor, target_mutator_utilization_,
80 0 : gc_speed / mutator_speed, gc_speed, mutator_speed);
81 : }
82 :
83 83610 : if (growing_mode == Heap::HeapGrowingMode::kConservative ||
84 : growing_mode == Heap::HeapGrowingMode::kSlow) {
85 50 : factor = Min(factor, conservative_growing_factor_);
86 : }
87 :
88 83610 : if (growing_mode == Heap::HeapGrowingMode::kMinimal) {
89 16947 : factor = min_growing_factor_;
90 : }
91 :
92 83610 : if (FLAG_heap_growing_percent > 0) {
93 0 : factor = 1.0 + FLAG_heap_growing_percent / 100.0;
94 : }
95 :
96 83610 : CHECK_LT(1.0, factor);
97 83610 : CHECK_LT(0, curr_size);
98 83610 : uint64_t limit = static_cast<uint64_t>(curr_size * factor);
99 : limit = Max(limit, static_cast<uint64_t>(curr_size) +
100 83610 : MinimumAllocationLimitGrowingStep(growing_mode));
101 83610 : limit += new_space_capacity;
102 : uint64_t halfway_to_the_max =
103 83610 : (static_cast<uint64_t>(curr_size) + max_size) / 2;
104 : size_t result = static_cast<size_t>(Min(limit, halfway_to_the_max));
105 :
106 83610 : if (FLAG_trace_gc_verbose) {
107 : heap_->isolate()->PrintWithTimestamp(
108 : "%s Limit: old size: %" PRIuS " KB, new limit: %" PRIuS " KB (%.1f)\n",
109 0 : ControllerName(), curr_size / KB, result / KB, factor);
110 : }
111 :
112 83610 : return result;
113 : }
114 :
115 18375 : size_t MemoryController::MinimumAllocationLimitGrowingStep(
116 : Heap::HeapGrowingMode growing_mode) {
117 : const size_t kRegularAllocationLimitGrowingStep = 8;
118 : const size_t kLowMemoryAllocationLimitGrowingStep = 2;
119 : size_t limit = (Page::kPageSize > MB ? Page::kPageSize : MB);
120 101985 : return limit * (growing_mode == Heap::HeapGrowingMode::kConservative
121 : ? kLowMemoryAllocationLimitGrowingStep
122 101985 : : kRegularAllocationLimitGrowingStep);
123 : }
124 :
125 83611 : double HeapController::MaxGrowingFactor(size_t curr_max_size) {
126 : const double min_small_factor = 1.3;
127 : const double max_small_factor = 2.0;
128 : const double high_factor = 4.0;
129 :
130 83611 : size_t max_size_in_mb = curr_max_size / MB;
131 : max_size_in_mb = Max(max_size_in_mb, kMinSize);
132 :
133 : // If we are on a device with lots of memory, we allow a high heap
134 : // growing factor.
135 83611 : if (max_size_in_mb >= kMaxSize) {
136 : return high_factor;
137 : }
138 :
139 : DCHECK_GE(max_size_in_mb, kMinSize);
140 : DCHECK_LT(max_size_in_mb, kMaxSize);
141 :
142 : // On smaller devices we linearly scale the factor: (X-A)/(B-A)*(D-C)+C
143 25943 : double factor = (max_size_in_mb - kMinSize) *
144 25943 : (max_small_factor - min_small_factor) /
145 : (kMaxSize - kMinSize) +
146 25943 : min_small_factor;
147 25943 : return factor;
148 : }
149 :
150 : } // namespace internal
151 183867 : } // namespace v8
|