LCOV - code coverage report
Current view: top level - src/regexp - jsregexp.h (source / functions) Hit Total Coverage
Test: app.info Lines: 144 169 85.2 %
Date: 2019-01-20 Functions: 25 59 42.4 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_REGEXP_JSREGEXP_H_
       6             : #define V8_REGEXP_JSREGEXP_H_
       7             : 
       8             : #include "src/allocation.h"
       9             : #include "src/isolate.h"
      10             : #include "src/objects/js-regexp.h"
      11             : #include "src/regexp/regexp-ast.h"
      12             : #include "src/regexp/regexp-macro-assembler.h"
      13             : 
      14             : namespace v8 {
      15             : namespace internal {
      16             : 
      17             : class NodeVisitor;
      18             : class RegExpCompiler;
      19             : class RegExpMacroAssembler;
      20             : class RegExpNode;
      21             : class RegExpTree;
      22             : class BoyerMooreLookahead;
      23             : 
      24             : inline bool IgnoreCase(JSRegExp::Flags flags) {
      25             :   return (flags & JSRegExp::kIgnoreCase) != 0;
      26             : }
      27             : 
      28             : inline bool IsUnicode(JSRegExp::Flags flags) {
      29       87386 :   return (flags & JSRegExp::kUnicode) != 0;
      30             : }
      31             : 
      32             : inline bool IsSticky(JSRegExp::Flags flags) {
      33       85705 :   return (flags & JSRegExp::kSticky) != 0;
      34             : }
      35             : 
      36             : inline bool IsGlobal(JSRegExp::Flags flags) {
      37       85705 :   return (flags & JSRegExp::kGlobal) != 0;
      38             : }
      39             : 
      40             : inline bool DotAll(JSRegExp::Flags flags) {
      41             :   return (flags & JSRegExp::kDotAll) != 0;
      42             : }
      43             : 
      44             : inline bool Multiline(JSRegExp::Flags flags) {
      45             :   return (flags & JSRegExp::kMultiline) != 0;
      46             : }
      47             : 
      48             : inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) {
      49             :   // Both unicode and ignore_case flags are set. We need to use ICU to find
      50             :   // the closure over case equivalents.
      51      419756 :   return IsUnicode(flags) && IgnoreCase(flags);
      52             : }
      53             : 
      54             : class RegExpImpl {
      55             :  public:
      56             :   // Whether V8 is compiled with native regexp support or not.
      57             :   static bool UsesNativeRegExp() {
      58             : #ifdef V8_INTERPRETED_REGEXP
      59             :     return false;
      60             : #else
      61             :     return true;
      62             : #endif
      63             :   }
      64             : 
      65             :   // Returns a string representation of a regular expression.
      66             :   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
      67             :   // This function calls the garbage collector if necessary.
      68             :   static Handle<String> ToString(Handle<Object> value);
      69             : 
      70             :   // Parses the RegExp pattern and prepares the JSRegExp object with
      71             :   // generic data and choice of implementation - as well as what
      72             :   // the implementation wants to store in the data field.
      73             :   // Returns false if compilation fails.
      74             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Compile(
      75             :       Isolate* isolate, Handle<JSRegExp> re, Handle<String> pattern,
      76             :       JSRegExp::Flags flags);
      77             : 
      78             :   // See ECMA-262 section 15.10.6.2.
      79             :   // This function calls the garbage collector if necessary.
      80             :   V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Exec(
      81             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
      82             :       int index, Handle<RegExpMatchInfo> last_match_info);
      83             : 
      84             :   // Prepares a JSRegExp object with Irregexp-specific data.
      85             :   static void IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re,
      86             :                                  Handle<String> pattern, JSRegExp::Flags flags,
      87             :                                  int capture_register_count);
      88             : 
      89             :   static void AtomCompile(Isolate* isolate, Handle<JSRegExp> re,
      90             :                           Handle<String> pattern, JSRegExp::Flags flags,
      91             :                           Handle<String> match_pattern);
      92             : 
      93             :   static int AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
      94             :                          Handle<String> subject, int index, int32_t* output,
      95             :                          int output_size);
      96             : 
      97             :   static Handle<Object> AtomExec(Isolate* isolate, Handle<JSRegExp> regexp,
      98             :                                  Handle<String> subject, int index,
      99             :                                  Handle<RegExpMatchInfo> last_match_info);
     100             : 
     101             :   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
     102             : 
     103             :   // Prepare a RegExp for being executed one or more times (using
     104             :   // IrregexpExecOnce) on the subject.
     105             :   // This ensures that the regexp is compiled for the subject, and that
     106             :   // the subject is flat.
     107             :   // Returns the number of integer spaces required by IrregexpExecOnce
     108             :   // as its "registers" argument.  If the regexp cannot be compiled,
     109             :   // an exception is set as pending, and this function returns negative.
     110             :   static int IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp,
     111             :                              Handle<String> subject);
     112             : 
     113             :   // Execute a regular expression on the subject, starting from index.
     114             :   // If matching succeeds, return the number of matches.  This can be larger
     115             :   // than one in the case of global regular expressions.
     116             :   // The captures and subcaptures are stored into the registers vector.
     117             :   // If matching fails, returns RE_FAILURE.
     118             :   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
     119             :   static int IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
     120             :                              Handle<String> subject, int index, int32_t* output,
     121             :                              int output_size);
     122             : 
     123             :   // Execute an Irregexp bytecode pattern.
     124             :   // On a successful match, the result is a JSArray containing
     125             :   // captured positions.  On a failure, the result is the null value.
     126             :   // Returns an empty handle in case of an exception.
     127             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> IrregexpExec(
     128             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
     129             :       int index, Handle<RegExpMatchInfo> last_match_info);
     130             : 
     131             :   // Set last match info.  If match is nullptr, then setting captures is
     132             :   // omitted.
     133             :   static Handle<RegExpMatchInfo> SetLastMatchInfo(
     134             :       Isolate* isolate, Handle<RegExpMatchInfo> last_match_info,
     135             :       Handle<String> subject, int capture_count, int32_t* match);
     136             : 
     137             :   class GlobalCache {
     138             :    public:
     139             :     GlobalCache(Handle<JSRegExp> regexp,
     140             :                 Handle<String> subject,
     141             :                 Isolate* isolate);
     142             : 
     143             :     V8_INLINE ~GlobalCache();
     144             : 
     145             :     // Fetch the next entry in the cache for global regexp match results.
     146             :     // This does not set the last match info.  Upon failure, nullptr is
     147             :     // returned. The cause can be checked with Result().  The previous result is
     148             :     // still in available in memory when a failure happens.
     149             :     V8_INLINE int32_t* FetchNext();
     150             : 
     151             :     V8_INLINE int32_t* LastSuccessfulMatch();
     152             : 
     153             :     V8_INLINE bool HasException() { return num_matches_ < 0; }
     154             : 
     155             :    private:
     156             :     int AdvanceZeroLength(int last_index);
     157             : 
     158             :     int num_matches_;
     159             :     int max_matches_;
     160             :     int current_match_index_;
     161             :     int registers_per_match_;
     162             :     // Pointer to the last set of captures.
     163             :     int32_t* register_array_;
     164             :     int register_array_size_;
     165             :     Handle<JSRegExp> regexp_;
     166             :     Handle<String> subject_;
     167             :     Isolate* isolate_;
     168             :   };
     169             : 
     170             :   // For acting on the JSRegExp data FixedArray.
     171             :   static int IrregexpMaxRegisterCount(FixedArray re);
     172             :   static void SetIrregexpMaxRegisterCount(FixedArray re, int value);
     173             :   static void SetIrregexpCaptureNameMap(FixedArray re,
     174             :                                         Handle<FixedArray> value);
     175             :   static int IrregexpNumberOfCaptures(FixedArray re);
     176             :   static int IrregexpNumberOfRegisters(FixedArray re);
     177             :   static ByteArray IrregexpByteCode(FixedArray re, bool is_one_byte);
     178             :   static Code IrregexpNativeCode(FixedArray re, bool is_one_byte);
     179             : 
     180             :   // Limit the space regexps take up on the heap.  In order to limit this we
     181             :   // would like to keep track of the amount of regexp code on the heap.  This
     182             :   // is not tracked, however.  As a conservative approximation we track the
     183             :   // total regexp code compiled including code that has subsequently been freed
     184             :   // and the total executable memory at any point.
     185             :   static const size_t kRegExpExecutableMemoryLimit = 16 * MB;
     186             :   static const size_t kRegExpCompiledLimit = 1 * MB;
     187             :   static const int kRegExpTooLargeToOptimize = 20 * KB;
     188             : 
     189             :  private:
     190             :   static bool CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re,
     191             :                               Handle<String> sample_subject, bool is_one_byte);
     192             :   static inline bool EnsureCompiledIrregexp(Isolate* isolate,
     193             :                                             Handle<JSRegExp> re,
     194             :                                             Handle<String> sample_subject,
     195             :                                             bool is_one_byte);
     196             : };
     197             : 
     198             : 
     199             : // Represents the location of one element relative to the intersection of
     200             : // two sets. Corresponds to the four areas of a Venn diagram.
     201             : enum ElementInSetsRelation {
     202             :   kInsideNone = 0,
     203             :   kInsideFirst = 1,
     204             :   kInsideSecond = 2,
     205             :   kInsideBoth = 3
     206             : };
     207             : 
     208             : 
     209             : // A set of unsigned integers that behaves especially well on small
     210             : // integers (< 32).  May do zone-allocation.
     211             : class OutSet: public ZoneObject {
     212             :  public:
     213     1023154 :   OutSet() : first_(0), remaining_(nullptr), successors_(nullptr) {}
     214             :   OutSet* Extend(unsigned value, Zone* zone);
     215             :   bool Get(unsigned value) const;
     216             :   static const unsigned kFirstLimit = 32;
     217             : 
     218             :  private:
     219             :   // Destructively set a value in this set.  In most cases you want
     220             :   // to use Extend instead to ensure that only one instance exists
     221             :   // that contains the same values.
     222             :   void Set(unsigned value, Zone* zone);
     223             : 
     224             :   // The successors are a list of sets that contain the same values
     225             :   // as this set and the one more value that is not present in this
     226             :   // set.
     227             :   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
     228             : 
     229             :   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
     230       16962 :       : first_(first), remaining_(remaining), successors_(nullptr) {}
     231             :   uint32_t first_;
     232             :   ZoneList<unsigned>* remaining_;
     233             :   ZoneList<OutSet*>* successors_;
     234             :   friend class Trace;
     235             : };
     236             : 
     237             : 
     238             : // A mapping from integers, specified as ranges, to a set of integers.
     239             : // Used for mapping character ranges to choices.
     240             : class DispatchTable : public ZoneObject {
     241             :  public:
     242             :   explicit DispatchTable(Zone* zone) : tree_(zone) { }
     243             : 
     244             :   class Entry {
     245             :    public:
     246             :     Entry() : from_(0), to_(0), out_set_(nullptr) {}
     247             :     Entry(uc32 from, uc32 to, OutSet* out_set)
     248             :         : from_(from), to_(to), out_set_(out_set) {
     249             :       DCHECK(from <= to);
     250             :     }
     251             :     uc32 from() { return from_; }
     252             :     uc32 to() { return to_; }
     253        4830 :     void set_to(uc32 value) { to_ = value; }
     254             :     void AddValue(int value, Zone* zone) {
     255       80873 :       out_set_ = out_set_->Extend(value, zone);
     256             :     }
     257             :     OutSet* out_set() { return out_set_; }
     258             :    private:
     259             :     uc32 from_;
     260             :     uc32 to_;
     261             :     OutSet* out_set_;
     262             :   };
     263             : 
     264             :   class Config {
     265             :    public:
     266             :     typedef uc32 Key;
     267             :     typedef Entry Value;
     268             :     static const uc32 kNoKey;
     269             :     static const Entry NoValue() { return Value(); }
     270             :     static inline int Compare(uc32 a, uc32 b) {
     271     1570085 :       if (a == b)
     272             :         return 0;
     273     1537295 :       else if (a < b)
     274             :         return -1;
     275             :       else
     276             :         return 1;
     277             :     }
     278             :   };
     279             : 
     280             :   void AddRange(CharacterRange range, int value, Zone* zone);
     281             :   OutSet* Get(uc32 value);
     282             :   void Dump();
     283             : 
     284             :   template <typename Callback>
     285             :   void ForEach(Callback* callback) {
     286        2582 :     return tree()->ForEach(callback);
     287             :   }
     288             : 
     289             :  private:
     290             :   // There can't be a static empty set since it allocates its
     291             :   // successors in a zone and caches them.
     292             :   OutSet* empty() { return &empty_; }
     293             :   OutSet empty_;
     294             :   ZoneSplayTree<Config>* tree() { return &tree_; }
     295             :   ZoneSplayTree<Config> tree_;
     296             : };
     297             : 
     298             : 
     299             : // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
     300             : class UnicodeRangeSplitter {
     301             :  public:
     302             :   UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
     303             :   void Call(uc32 from, DispatchTable::Entry entry);
     304             : 
     305             :   ZoneList<CharacterRange>* bmp() { return bmp_; }
     306             :   ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
     307             :   ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
     308             :   ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
     309             : 
     310             :  private:
     311             :   static const int kBase = 0;
     312             :   // Separate ranges into
     313             :   static const int kBmpCodePoints = 1;
     314             :   static const int kLeadSurrogates = 2;
     315             :   static const int kTrailSurrogates = 3;
     316             :   static const int kNonBmpCodePoints = 4;
     317             : 
     318             :   Zone* zone_;
     319             :   DispatchTable table_;
     320             :   ZoneList<CharacterRange>* bmp_;
     321             :   ZoneList<CharacterRange>* lead_surrogates_;
     322             :   ZoneList<CharacterRange>* trail_surrogates_;
     323             :   ZoneList<CharacterRange>* non_bmp_;
     324             : };
     325             : 
     326             : 
     327             : #define FOR_EACH_NODE_TYPE(VISIT)                                    \
     328             :   VISIT(End)                                                         \
     329             :   VISIT(Action)                                                      \
     330             :   VISIT(Choice)                                                      \
     331             :   VISIT(BackReference)                                               \
     332             :   VISIT(Assertion)                                                   \
     333             :   VISIT(Text)
     334             : 
     335             : 
     336             : class Trace;
     337             : struct PreloadState;
     338             : class GreedyLoopState;
     339             : class AlternativeGenerationList;
     340             : 
     341             : struct NodeInfo {
     342             :   NodeInfo()
     343             :       : being_analyzed(false),
     344             :         been_analyzed(false),
     345             :         follows_word_interest(false),
     346             :         follows_newline_interest(false),
     347             :         follows_start_interest(false),
     348             :         at_end(false),
     349             :         visited(false),
     350     4381730 :         replacement_calculated(false) { }
     351             : 
     352             :   // Returns true if the interests and assumptions of this node
     353             :   // matches the given one.
     354             :   bool Matches(NodeInfo* that) {
     355             :     return (at_end == that->at_end) &&
     356             :            (follows_word_interest == that->follows_word_interest) &&
     357             :            (follows_newline_interest == that->follows_newline_interest) &&
     358             :            (follows_start_interest == that->follows_start_interest);
     359             :   }
     360             : 
     361             :   // Updates the interests of this node given the interests of the
     362             :   // node preceding it.
     363             :   void AddFromPreceding(NodeInfo* that) {
     364             :     at_end |= that->at_end;
     365             :     follows_word_interest |= that->follows_word_interest;
     366             :     follows_newline_interest |= that->follows_newline_interest;
     367             :     follows_start_interest |= that->follows_start_interest;
     368             :   }
     369             : 
     370             :   bool HasLookbehind() {
     371             :     return follows_word_interest ||
     372             :            follows_newline_interest ||
     373             :            follows_start_interest;
     374             :   }
     375             : 
     376             :   // Sets the interests of this node to include the interests of the
     377             :   // following node.
     378             :   void AddFromFollowing(NodeInfo* that) {
     379      566759 :     follows_word_interest |= that->follows_word_interest;
     380      566759 :     follows_newline_interest |= that->follows_newline_interest;
     381      566759 :     follows_start_interest |= that->follows_start_interest;
     382             :   }
     383             : 
     384             :   void ResetCompilationState() {
     385             :     being_analyzed = false;
     386             :     been_analyzed = false;
     387             :   }
     388             : 
     389             :   bool being_analyzed: 1;
     390             :   bool been_analyzed: 1;
     391             : 
     392             :   // These bits are set of this node has to know what the preceding
     393             :   // character was.
     394             :   bool follows_word_interest: 1;
     395             :   bool follows_newline_interest: 1;
     396             :   bool follows_start_interest: 1;
     397             : 
     398             :   bool at_end: 1;
     399             :   bool visited: 1;
     400             :   bool replacement_calculated: 1;
     401             : };
     402             : 
     403             : 
     404             : // Details of a quick mask-compare check that can look ahead in the
     405             : // input stream.
     406             : class QuickCheckDetails {
     407             :  public:
     408             :   QuickCheckDetails()
     409             :       : characters_(0),
     410             :         mask_(0),
     411             :         value_(0),
     412    14082980 :         cannot_match_(false) { }
     413             :   explicit QuickCheckDetails(int characters)
     414             :       : characters_(characters),
     415             :         mask_(0),
     416             :         value_(0),
     417      919630 :         cannot_match_(false) { }
     418             :   bool Rationalize(bool one_byte);
     419             :   // Merge in the information from another branch of an alternation.
     420             :   void Merge(QuickCheckDetails* other, int from_index);
     421             :   // Advance the current position by some amount.
     422             :   void Advance(int by, bool one_byte);
     423             :   void Clear();
     424             :   bool cannot_match() { return cannot_match_; }
     425         463 :   void set_cannot_match() { cannot_match_ = true; }
     426             :   struct Position {
     427    12002088 :     Position() : mask(0), value(0), determines_perfectly(false) { }
     428             :     uc16 mask;
     429             :     uc16 value;
     430             :     bool determines_perfectly;
     431             :   };
     432             :   int characters() { return characters_; }
     433      603622 :   void set_characters(int characters) { characters_ = characters; }
     434             :   Position* positions(int index) {
     435             :     DCHECK_LE(0, index);
     436             :     DCHECK_GT(characters_, index);
     437     1793098 :     return positions_ + index;
     438             :   }
     439             :   uint32_t mask() { return mask_; }
     440             :   uint32_t value() { return value_; }
     441             : 
     442             :  private:
     443             :   // How many characters do we have quick check information from.  This is
     444             :   // the same for all branches of a choice node.
     445             :   int characters_;
     446             :   Position positions_[4];
     447             :   // These values are the condensate of the above array after Rationalize().
     448             :   uint32_t mask_;
     449             :   uint32_t value_;
     450             :   // If set to true, there is no way this quick check can match at all.
     451             :   // E.g., if it requires to be at the start of the input, and isn't.
     452             :   bool cannot_match_;
     453             : };
     454             : 
     455             : 
     456             : extern int kUninitializedRegExpNodePlaceHolder;
     457             : 
     458             : 
     459           0 : class RegExpNode: public ZoneObject {
     460             :  public:
     461             :   explicit RegExpNode(Zone* zone)
     462             :       : replacement_(nullptr),
     463             :         on_work_list_(false),
     464             :         trace_count_(0),
     465     8763460 :         zone_(zone) {
     466     4381730 :     bm_info_[0] = bm_info_[1] = nullptr;
     467             :   }
     468             :   virtual ~RegExpNode();
     469             :   virtual void Accept(NodeVisitor* visitor) = 0;
     470             :   // Generates a goto to this node or actually generates the code at this point.
     471             :   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
     472             :   // How many characters must this node consume at a minimum in order to
     473             :   // succeed.  If we have found at least 'still_to_find' characters that
     474             :   // must be consumed there is no need to ask any following nodes whether
     475             :   // they are sure to eat any more characters.  The not_at_start argument is
     476             :   // used to indicate that we know we are not at the start of the input.  In
     477             :   // this case anchored branches will always fail and can be ignored when
     478             :   // determining how many characters are consumed on success.
     479             :   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
     480             :   // Emits some quick code that checks whether the preloaded characters match.
     481             :   // Falls through on certain failure, jumps to the label on possible success.
     482             :   // If the node cannot make a quick check it does nothing and returns false.
     483             :   bool EmitQuickCheck(RegExpCompiler* compiler,
     484             :                       Trace* bounds_check_trace,
     485             :                       Trace* trace,
     486             :                       bool preload_has_checked_bounds,
     487             :                       Label* on_possible_success,
     488             :                       QuickCheckDetails* details_return,
     489             :                       bool fall_through_on_failure);
     490             :   // For a given number of characters this returns a mask and a value.  The
     491             :   // next n characters are anded with the mask and compared with the value.
     492             :   // A comparison failure indicates the node cannot match the next n characters.
     493             :   // A comparison success indicates the node may match.
     494             :   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
     495             :                                     RegExpCompiler* compiler,
     496             :                                     int characters_filled_in,
     497             :                                     bool not_at_start) = 0;
     498             :   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
     499       87188 :   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
     500             :   // Only returns the successor for a text node of length 1 that matches any
     501             :   // character and that has no guards on it.
     502       78573 :   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
     503             :       RegExpCompiler* compiler) {
     504       78573 :     return nullptr;
     505             :   }
     506             : 
     507             :   // Collects information on the possible code units (mod 128) that can match if
     508             :   // we look forward.  This is used for a Boyer-Moore-like string searching
     509             :   // implementation.  TODO(erikcorry):  This should share more code with
     510             :   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
     511             :   // the number of nodes we are willing to look at in order to create this data.
     512             :   static const int kRecursionBudget = 200;
     513             :   bool KeepRecursing(RegExpCompiler* compiler);
     514           0 :   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
     515             :                             BoyerMooreLookahead* bm, bool not_at_start) {
     516           0 :     UNREACHABLE();
     517             :   }
     518             : 
     519             :   // If we know that the input is one-byte then there are some nodes that can
     520             :   // never match.  This method returns a node that can be substituted for
     521             :   // itself, or nullptr if the node can never match.
     522       14563 :   virtual RegExpNode* FilterOneByte(int depth) { return this; }
     523             :   // Helper for FilterOneByte.
     524             :   RegExpNode* replacement() {
     525             :     DCHECK(info()->replacement_calculated);
     526             :     return replacement_;
     527             :   }
     528             :   RegExpNode* set_replacement(RegExpNode* replacement) {
     529      161233 :     info()->replacement_calculated = true;
     530      161233 :     replacement_ =  replacement;
     531             :     return replacement;  // For convenience.
     532             :   }
     533             : 
     534             :   // We want to avoid recalculating the lookahead info, so we store it on the
     535             :   // node.  Only info that is for this node is stored.  We can tell that the
     536             :   // info is for this node when offset == 0, so the information is calculated
     537             :   // relative to this node.
     538             :   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
     539      103833 :     if (offset == 0) set_bm_info(not_at_start, bm);
     540             :   }
     541             : 
     542             :   Label* label() { return &label_; }
     543             :   // If non-generic code is generated for a node (i.e. the node is not at the
     544             :   // start of the trace) then it cannot be reused.  This variable sets a limit
     545             :   // on how often we allow that to happen before we insist on starting a new
     546             :   // trace and generating generic code for a node that can be reused by flushing
     547             :   // the deferred actions in the current trace and generating a goto.
     548             :   static const int kMaxCopiesCodeGenerated = 10;
     549             : 
     550             :   bool on_work_list() { return on_work_list_; }
     551      423294 :   void set_on_work_list(bool value) { on_work_list_ = value; }
     552             : 
     553             :   NodeInfo* info() { return &info_; }
     554             : 
     555             :   BoyerMooreLookahead* bm_info(bool not_at_start) {
     556       82361 :     return bm_info_[not_at_start ? 1 : 0];
     557             :   }
     558             : 
     559             :   Zone* zone() const { return zone_; }
     560             : 
     561             :  protected:
     562             :   enum LimitResult { DONE, CONTINUE };
     563             :   RegExpNode* replacement_;
     564             : 
     565             :   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
     566             : 
     567             :   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
     568      196092 :     bm_info_[not_at_start ? 1 : 0] = bm;
     569             :   }
     570             : 
     571             :  private:
     572             :   static const int kFirstCharBudget = 10;
     573             :   Label label_;
     574             :   bool on_work_list_;
     575             :   NodeInfo info_;
     576             :   // This variable keeps track of how many times code has been generated for
     577             :   // this node (in different traces).  We don't keep track of where the
     578             :   // generated code is located unless the code is generated at the start of
     579             :   // a trace, in which case it is generic and can be reused by flushing the
     580             :   // deferred operations in the current trace and generating a goto.
     581             :   int trace_count_;
     582             :   BoyerMooreLookahead* bm_info_[2];
     583             : 
     584             :   Zone* zone_;
     585             : };
     586             : 
     587             : 
     588           0 : class SeqRegExpNode: public RegExpNode {
     589             :  public:
     590     3267647 :   explicit SeqRegExpNode(RegExpNode* on_success)
     591     3267647 :       : RegExpNode(on_success->zone()), on_success_(on_success) { }
     592             :   RegExpNode* on_success() { return on_success_; }
     593             :   void set_on_success(RegExpNode* node) { on_success_ = node; }
     594             :   RegExpNode* FilterOneByte(int depth) override;
     595           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     596             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     597           0 :     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
     598           0 :     if (offset == 0) set_bm_info(not_at_start, bm);
     599           0 :   }
     600             : 
     601             :  protected:
     602             :   RegExpNode* FilterSuccessor(int depth);
     603             : 
     604             :  private:
     605             :   RegExpNode* on_success_;
     606             : };
     607             : 
     608             : 
     609           0 : class ActionNode: public SeqRegExpNode {
     610             :  public:
     611             :   enum ActionType {
     612             :     SET_REGISTER,
     613             :     INCREMENT_REGISTER,
     614             :     STORE_POSITION,
     615             :     BEGIN_SUBMATCH,
     616             :     POSITIVE_SUBMATCH_SUCCESS,
     617             :     EMPTY_MATCH_CHECK,
     618             :     CLEAR_CAPTURES
     619             :   };
     620             :   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
     621             :   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
     622             :   static ActionNode* StorePosition(int reg,
     623             :                                    bool is_capture,
     624             :                                    RegExpNode* on_success);
     625             :   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
     626             :   static ActionNode* BeginSubmatch(int stack_pointer_reg,
     627             :                                    int position_reg,
     628             :                                    RegExpNode* on_success);
     629             :   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
     630             :                                              int restore_reg,
     631             :                                              int clear_capture_count,
     632             :                                              int clear_capture_from,
     633             :                                              RegExpNode* on_success);
     634             :   static ActionNode* EmptyMatchCheck(int start_register,
     635             :                                      int repetition_register,
     636             :                                      int repetition_limit,
     637             :                                      RegExpNode* on_success);
     638             :   void Accept(NodeVisitor* visitor) override;
     639             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     640             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     641       67287 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     642             :                             RegExpCompiler* compiler, int filled_in,
     643             :                             bool not_at_start) override {
     644       67287 :     return on_success()->GetQuickCheckDetails(
     645       67287 :         details, compiler, filled_in, not_at_start);
     646             :   }
     647             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     648             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     649             :   ActionType action_type() { return action_type_; }
     650             :   // TODO(erikcorry): We should allow some action nodes in greedy loops.
     651      114767 :   int GreedyLoopTextLength() override {
     652      114767 :     return kNodeIsTooComplexForGreedyLoops;
     653             :   }
     654             : 
     655             :  private:
     656             :   union {
     657             :     struct {
     658             :       int reg;
     659             :       int value;
     660             :     } u_store_register;
     661             :     struct {
     662             :       int reg;
     663             :     } u_increment_register;
     664             :     struct {
     665             :       int reg;
     666             :       bool is_capture;
     667             :     } u_position_register;
     668             :     struct {
     669             :       int stack_pointer_register;
     670             :       int current_position_register;
     671             :       int clear_register_count;
     672             :       int clear_register_from;
     673             :     } u_submatch;
     674             :     struct {
     675             :       int start_register;
     676             :       int repetition_register;
     677             :       int repetition_limit;
     678             :     } u_empty_match_check;
     679             :     struct {
     680             :       int range_from;
     681             :       int range_to;
     682             :     } u_clear_captures;
     683             :   } data_;
     684             :   ActionNode(ActionType action_type, RegExpNode* on_success)
     685             :       : SeqRegExpNode(on_success),
     686     2041830 :         action_type_(action_type) { }
     687             :   ActionType action_type_;
     688             :   friend class DotPrinter;
     689             : };
     690             : 
     691             : 
     692           0 : class TextNode: public SeqRegExpNode {
     693             :  public:
     694             :   TextNode(ZoneList<TextElement>* elms, bool read_backward,
     695             :            RegExpNode* on_success)
     696     1044344 :       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
     697      173562 :   TextNode(RegExpCharacterClass* that, bool read_backward,
     698             :            RegExpNode* on_success)
     699             :       : SeqRegExpNode(on_success),
     700      347124 :         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
     701      347124 :         read_backward_(read_backward) {
     702      173562 :     elms_->Add(TextElement::CharClass(that), zone());
     703      173562 :   }
     704             :   // Create TextNode for a single character class for the given ranges.
     705             :   static TextNode* CreateForCharacterRanges(Zone* zone,
     706             :                                             ZoneList<CharacterRange>* ranges,
     707             :                                             bool read_backward,
     708             :                                             RegExpNode* on_success,
     709             :                                             JSRegExp::Flags flags);
     710             :   // Create TextNode for a surrogate pair with a range given for the
     711             :   // lead and the trail surrogate each.
     712             :   static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
     713             :                                           CharacterRange trail,
     714             :                                           bool read_backward,
     715             :                                           RegExpNode* on_success,
     716             :                                           JSRegExp::Flags flags);
     717             :   void Accept(NodeVisitor* visitor) override;
     718             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     719             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     720             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     721             :                             RegExpCompiler* compiler, int characters_filled_in,
     722             :                             bool not_at_start) override;
     723             :   ZoneList<TextElement>* elements() { return elms_; }
     724             :   bool read_backward() { return read_backward_; }
     725             :   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
     726             :   int GreedyLoopTextLength() override;
     727             :   RegExpNode* GetSuccessorOfOmnivorousTextNode(
     728             :       RegExpCompiler* compiler) override;
     729             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     730             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     731             :   void CalculateOffsets();
     732             :   RegExpNode* FilterOneByte(int depth) override;
     733             : 
     734             :  private:
     735             :   enum TextEmitPassType {
     736             :     NON_LATIN1_MATCH,            // Check for characters that can't match.
     737             :     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
     738             :     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
     739             :     CASE_CHARACTER_MATCH,        // Case-independent single character check.
     740             :     CHARACTER_CLASS_MATCH        // Character class.
     741             :   };
     742             :   static bool SkipPass(TextEmitPassType pass, bool ignore_case);
     743             :   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
     744             :   static const int kLastPass = CHARACTER_CLASS_MATCH;
     745             :   void TextEmitPass(RegExpCompiler* compiler,
     746             :                     TextEmitPassType pass,
     747             :                     bool preloaded,
     748             :                     Trace* trace,
     749             :                     bool first_element_checked,
     750             :                     int* checked_up_to);
     751             :   int Length();
     752             :   ZoneList<TextElement>* elms_;
     753             :   bool read_backward_;
     754             : };
     755             : 
     756             : 
     757           0 : class AssertionNode: public SeqRegExpNode {
     758             :  public:
     759             :   enum AssertionType {
     760             :     AT_END,
     761             :     AT_START,
     762             :     AT_BOUNDARY,
     763             :     AT_NON_BOUNDARY,
     764             :     AFTER_NEWLINE
     765             :   };
     766        2052 :   static AssertionNode* AtEnd(RegExpNode* on_success) {
     767        2052 :     return new(on_success->zone()) AssertionNode(AT_END, on_success);
     768             :   }
     769        3065 :   static AssertionNode* AtStart(RegExpNode* on_success) {
     770        3065 :     return new(on_success->zone()) AssertionNode(AT_START, on_success);
     771             :   }
     772         136 :   static AssertionNode* AtBoundary(RegExpNode* on_success) {
     773         136 :     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
     774             :   }
     775         114 :   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
     776         114 :     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
     777             :   }
     778         129 :   static AssertionNode* AfterNewline(RegExpNode* on_success) {
     779         129 :     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
     780             :   }
     781             :   void Accept(NodeVisitor* visitor) override;
     782             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     783             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     784             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     785             :                             RegExpCompiler* compiler, int filled_in,
     786             :                             bool not_at_start) override;
     787             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     788             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     789             :   AssertionType assertion_type() { return assertion_type_; }
     790             : 
     791             :  private:
     792             :   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
     793             :   enum IfPrevious { kIsNonWord, kIsWord };
     794             :   void BacktrackIfPrevious(RegExpCompiler* compiler,
     795             :                            Trace* trace,
     796             :                            IfPrevious backtrack_if_previous);
     797             :   AssertionNode(AssertionType t, RegExpNode* on_success)
     798        5496 :       : SeqRegExpNode(on_success), assertion_type_(t) { }
     799             :   AssertionType assertion_type_;
     800             : };
     801             : 
     802             : 
     803           0 : class BackReferenceNode: public SeqRegExpNode {
     804             :  public:
     805             :   BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags,
     806             :                     bool read_backward, RegExpNode* on_success)
     807             :       : SeqRegExpNode(on_success),
     808             :         start_reg_(start_reg),
     809             :         end_reg_(end_reg),
     810             :         flags_(flags),
     811        2415 :         read_backward_(read_backward) {}
     812             :   void Accept(NodeVisitor* visitor) override;
     813             :   int start_register() { return start_reg_; }
     814             :   int end_register() { return end_reg_; }
     815             :   bool read_backward() { return read_backward_; }
     816             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     817             :   int EatsAtLeast(int still_to_find, int recursion_depth,
     818             :                   bool not_at_start) override;
     819         581 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     820             :                             RegExpCompiler* compiler, int characters_filled_in,
     821             :                             bool not_at_start) override {
     822         581 :     return;
     823             :   }
     824             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     825             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     826             : 
     827             :  private:
     828             :   int start_reg_;
     829             :   int end_reg_;
     830             :   JSRegExp::Flags flags_;
     831             :   bool read_backward_;
     832             : };
     833             : 
     834             : 
     835           0 : class EndNode: public RegExpNode {
     836             :  public:
     837             :   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
     838       88812 :   EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
     839             :   void Accept(NodeVisitor* visitor) override;
     840             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     841      115356 :   int EatsAtLeast(int still_to_find, int recursion_depth,
     842             :                   bool not_at_start) override {
     843      115356 :     return 0;
     844             :   }
     845           0 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     846             :                             RegExpCompiler* compiler, int characters_filled_in,
     847             :                             bool not_at_start) override {
     848             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     849           0 :     UNREACHABLE();
     850             :   }
     851           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     852             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     853             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     854           0 :     UNREACHABLE();
     855             :   }
     856             : 
     857             :  private:
     858             :   Action action_;
     859             : };
     860             : 
     861             : 
     862           0 : class NegativeSubmatchSuccess: public EndNode {
     863             :  public:
     864             :   NegativeSubmatchSuccess(int stack_pointer_reg,
     865             :                           int position_reg,
     866             :                           int clear_capture_count,
     867             :                           int clear_capture_start,
     868             :                           Zone* zone)
     869             :       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
     870             :         stack_pointer_register_(stack_pointer_reg),
     871             :         current_position_register_(position_reg),
     872             :         clear_capture_count_(clear_capture_count),
     873        2812 :         clear_capture_start_(clear_capture_start) { }
     874             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     875             : 
     876             :  private:
     877             :   int stack_pointer_register_;
     878             :   int current_position_register_;
     879             :   int clear_capture_count_;
     880             :   int clear_capture_start_;
     881             : };
     882             : 
     883             : 
     884             : class Guard: public ZoneObject {
     885             :  public:
     886             :   enum Relation { LT, GEQ };
     887             :   Guard(int reg, Relation op, int value)
     888             :       : reg_(reg),
     889             :         op_(op),
     890      903937 :         value_(value) { }
     891             :   int reg() { return reg_; }
     892             :   Relation op() { return op_; }
     893             :   int value() { return value_; }
     894             : 
     895             :  private:
     896             :   int reg_;
     897             :   Relation op_;
     898             :   int value_;
     899             : };
     900             : 
     901             : 
     902             : class GuardedAlternative {
     903             :  public:
     904             :   explicit GuardedAlternative(RegExpNode* node)
     905     2001612 :       : node_(node), guards_(nullptr) {}
     906             :   void AddGuard(Guard* guard, Zone* zone);
     907             :   RegExpNode* node() { return node_; }
     908       58737 :   void set_node(RegExpNode* node) { node_ = node; }
     909             :   ZoneList<Guard*>* guards() { return guards_; }
     910             : 
     911             :  private:
     912             :   RegExpNode* node_;
     913             :   ZoneList<Guard*>* guards_;
     914             : };
     915             : 
     916             : 
     917             : class AlternativeGeneration;
     918             : 
     919             : 
     920           0 : class ChoiceNode: public RegExpNode {
     921             :  public:
     922     1025271 :   explicit ChoiceNode(int expected_size, Zone* zone)
     923             :       : RegExpNode(zone),
     924             :         alternatives_(new (zone)
     925     1025271 :                           ZoneList<GuardedAlternative>(expected_size, zone)),
     926             :         table_(nullptr),
     927             :         not_at_start_(false),
     928     2050542 :         being_calculated_(false) {}
     929             :   void Accept(NodeVisitor* visitor) override;
     930     2131943 :   void AddAlternative(GuardedAlternative node) {
     931     4251623 :     alternatives()->Add(node, zone());
     932             :   }
     933             :   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
     934             :   DispatchTable* GetTable(bool ignore_case);
     935             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     936             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     937             :   int EatsAtLeastHelper(int still_to_find,
     938             :                         int budget,
     939             :                         RegExpNode* ignore_this_node,
     940             :                         bool not_at_start);
     941             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     942             :                             RegExpCompiler* compiler, int characters_filled_in,
     943             :                             bool not_at_start) override;
     944             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     945             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     946             : 
     947             :   bool being_calculated() { return being_calculated_; }
     948             :   bool not_at_start() { return not_at_start_; }
     949        4134 :   void set_not_at_start() { not_at_start_ = true; }
     950           0 :   void set_being_calculated(bool b) { being_calculated_ = b; }
     951      471125 :   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
     952      471125 :     return true;
     953             :   }
     954             :   RegExpNode* FilterOneByte(int depth) override;
     955           0 :   virtual bool read_backward() { return false; }
     956             : 
     957             :  protected:
     958             :   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
     959             :   ZoneList<GuardedAlternative>* alternatives_;
     960             : 
     961             :  private:
     962             :   friend class DispatchTableConstructor;
     963             :   friend class Analysis;
     964             :   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
     965             :                      Guard* guard,
     966             :                      Trace* trace);
     967             :   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
     968             :   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
     969             :                                  Trace* trace,
     970             :                                  GuardedAlternative alternative,
     971             :                                  AlternativeGeneration* alt_gen,
     972             :                                  int preload_characters,
     973             :                                  bool next_expects_preload);
     974             :   void SetUpPreLoad(RegExpCompiler* compiler,
     975             :                     Trace* current_trace,
     976             :                     PreloadState* preloads);
     977             :   void AssertGuardsMentionRegisters(Trace* trace);
     978             :   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
     979             :   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
     980             :                         Trace* trace,
     981             :                         AlternativeGenerationList* alt_gens,
     982             :                         PreloadState* preloads,
     983             :                         GreedyLoopState* greedy_loop_state,
     984             :                         int text_length);
     985             :   void EmitChoices(RegExpCompiler* compiler,
     986             :                    AlternativeGenerationList* alt_gens,
     987             :                    int first_choice,
     988             :                    Trace* trace,
     989             :                    PreloadState* preloads);
     990             :   DispatchTable* table_;
     991             :   // If true, this node is never checked at the start of the input.
     992             :   // Allows a new trace to start with at_start() set to false.
     993             :   bool not_at_start_;
     994             :   bool being_calculated_;
     995             : };
     996             : 
     997             : 
     998           0 : class NegativeLookaroundChoiceNode : public ChoiceNode {
     999             :  public:
    1000        2812 :   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
    1001             :                                         GuardedAlternative then_do_this,
    1002             :                                         Zone* zone)
    1003        2812 :       : ChoiceNode(2, zone) {
    1004             :     AddAlternative(this_must_fail);
    1005             :     AddAlternative(then_do_this);
    1006        2812 :   }
    1007             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1008             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1009             :                             RegExpCompiler* compiler, int characters_filled_in,
    1010             :                             bool not_at_start) override;
    1011        1105 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1012             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
    1013        2210 :     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
    1014        1105 :                                               not_at_start);
    1015        1105 :     if (offset == 0) set_bm_info(not_at_start, bm);
    1016        1105 :   }
    1017             :   // For a negative lookahead we don't emit the quick check for the
    1018             :   // alternative that is expected to fail.  This is because quick check code
    1019             :   // starts by loading enough characters for the alternative that takes fewest
    1020             :   // characters, but on a negative lookahead the negative branch did not take
    1021             :   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
    1022        5604 :   bool try_to_emit_quick_check_for_alternative(bool is_first) override {
    1023        5604 :     return !is_first;
    1024             :   }
    1025             :   RegExpNode* FilterOneByte(int depth) override;
    1026             : };
    1027             : 
    1028             : 
    1029           0 : class LoopChoiceNode: public ChoiceNode {
    1030             :  public:
    1031             :   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
    1032             :       : ChoiceNode(2, zone),
    1033             :         loop_node_(nullptr),
    1034             :         continue_node_(nullptr),
    1035             :         body_can_be_zero_length_(body_can_be_zero_length),
    1036      999400 :         read_backward_(read_backward) {}
    1037             :   void AddLoopAlternative(GuardedAlternative alt);
    1038             :   void AddContinueAlternative(GuardedAlternative alt);
    1039             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
    1040             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1041             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1042             :                             RegExpCompiler* compiler, int characters_filled_in,
    1043             :                             bool not_at_start) override;
    1044             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1045             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
    1046             :   RegExpNode* loop_node() { return loop_node_; }
    1047             :   RegExpNode* continue_node() { return continue_node_; }
    1048             :   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
    1049       23390 :   bool read_backward() override { return read_backward_; }
    1050             :   void Accept(NodeVisitor* visitor) override;
    1051             :   RegExpNode* FilterOneByte(int depth) override;
    1052             : 
    1053             :  private:
    1054             :   // AddAlternative is made private for loop nodes because alternatives
    1055             :   // should not be added freely, we need to keep track of which node
    1056             :   // goes back to the node itself.
    1057             :   void AddAlternative(GuardedAlternative node) {
    1058             :     ChoiceNode::AddAlternative(node);
    1059             :   }
    1060             : 
    1061             :   RegExpNode* loop_node_;
    1062             :   RegExpNode* continue_node_;
    1063             :   bool body_can_be_zero_length_;
    1064             :   bool read_backward_;
    1065             : };
    1066             : 
    1067             : 
    1068             : // Improve the speed that we scan for an initial point where a non-anchored
    1069             : // regexp can match by using a Boyer-Moore-like table. This is done by
    1070             : // identifying non-greedy non-capturing loops in the nodes that eat any
    1071             : // character one at a time.  For example in the middle of the regexp
    1072             : // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
    1073             : // inserted at the start of any non-anchored regexp.
    1074             : //
    1075             : // When we have found such a loop we look ahead in the nodes to find the set of
    1076             : // characters that can come at given distances. For example for the regexp
    1077             : // /.?foo/ we know that there are at least 3 characters ahead of us, and the
    1078             : // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
    1079             : // the lookahead info where the set of characters is reasonably constrained. In
    1080             : // our example this is from index 1 to 2 (0 is not constrained). We can now
    1081             : // look 3 characters ahead and if we don't find one of [f, o] (the union of
    1082             : // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
    1083             : //
    1084             : // For Unicode input strings we do the same, but modulo 128.
    1085             : //
    1086             : // We also look at the first string fed to the regexp and use that to get a hint
    1087             : // of the character frequencies in the inputs. This affects the assessment of
    1088             : // whether the set of characters is 'reasonably constrained'.
    1089             : //
    1090             : // We also have another lookahead mechanism (called quick check in the code),
    1091             : // which uses a wide load of multiple characters followed by a mask and compare
    1092             : // to determine whether a match is possible at this point.
    1093             : enum ContainedInLattice {
    1094             :   kNotYet = 0,
    1095             :   kLatticeIn = 1,
    1096             :   kLatticeOut = 2,
    1097             :   kLatticeUnknown = 3  // Can also mean both in and out.
    1098             : };
    1099             : 
    1100             : 
    1101             : inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
    1102      838058 :   return static_cast<ContainedInLattice>(a | b);
    1103             : }
    1104             : 
    1105             : 
    1106             : ContainedInLattice AddRange(ContainedInLattice a,
    1107             :                             const int* ranges,
    1108             :                             int ranges_size,
    1109             :                             Interval new_range);
    1110             : 
    1111             : 
    1112             : class BoyerMoorePositionInfo : public ZoneObject {
    1113             :  public:
    1114       99240 :   explicit BoyerMoorePositionInfo(Zone* zone)
    1115       99240 :       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
    1116             :         map_count_(0),
    1117             :         w_(kNotYet),
    1118             :         s_(kNotYet),
    1119             :         d_(kNotYet),
    1120       99240 :         surrogate_(kNotYet) {
    1121    12801960 :      for (int i = 0; i < kMapSize; i++) {
    1122    12702720 :        map_->Add(false, zone);
    1123             :      }
    1124       99240 :   }
    1125             : 
    1126             :   bool& at(int i) { return map_->at(i); }
    1127             : 
    1128             :   static const int kMapSize = 128;
    1129             :   static const int kMask = kMapSize - 1;
    1130             : 
    1131             :   int map_count() const { return map_count_; }
    1132             : 
    1133             :   void Set(int character);
    1134             :   void SetInterval(const Interval& interval);
    1135             :   void SetAll();
    1136             :   bool is_non_word() { return w_ == kLatticeOut; }
    1137             :   bool is_word() { return w_ == kLatticeIn; }
    1138             : 
    1139             :  private:
    1140             :   ZoneList<bool>* map_;
    1141             :   int map_count_;  // Number of set bits in the map.
    1142             :   ContainedInLattice w_;  // The \w character class.
    1143             :   ContainedInLattice s_;  // The \s character class.
    1144             :   ContainedInLattice d_;  // The \d character class.
    1145             :   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
    1146             : };
    1147             : 
    1148             : 
    1149             : class BoyerMooreLookahead : public ZoneObject {
    1150             :  public:
    1151             :   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
    1152             : 
    1153             :   int length() { return length_; }
    1154             :   int max_char() { return max_char_; }
    1155             :   RegExpCompiler* compiler() { return compiler_; }
    1156             : 
    1157             :   int Count(int map_number) {
    1158      540915 :     return bitmaps_->at(map_number)->map_count();
    1159             :   }
    1160             : 
    1161         150 :   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
    1162             : 
    1163       79612 :   void Set(int map_number, int character) {
    1164      159224 :     if (character > max_char_) return;
    1165      159224 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1166             :     info->Set(character);
    1167             :   }
    1168             : 
    1169      323436 :   void SetInterval(int map_number, const Interval& interval) {
    1170      323436 :     if (interval.from() > max_char_) return;
    1171      323436 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1172      161718 :     if (interval.to() > max_char_) {
    1173           0 :       info->SetInterval(Interval(interval.from(), max_char_));
    1174             :     } else {
    1175      161718 :       info->SetInterval(interval);
    1176             :     }
    1177             :   }
    1178             : 
    1179        5476 :   void SetAll(int map_number) {
    1180       10952 :     bitmaps_->at(map_number)->SetAll();
    1181        5476 :   }
    1182             : 
    1183        1084 :   void SetRest(int from_map) {
    1184        1084 :     for (int i = from_map; i < length_; i++) SetAll(i);
    1185             :   }
    1186             :   void EmitSkipInstructions(RegExpMacroAssembler* masm);
    1187             : 
    1188             :  private:
    1189             :   // This is the value obtained by EatsAtLeast.  If we do not have at least this
    1190             :   // many characters left in the sample string then the match is bound to fail.
    1191             :   // Therefore it is OK to read a character this far ahead of the current match
    1192             :   // point.
    1193             :   int length_;
    1194             :   RegExpCompiler* compiler_;
    1195             :   // 0xff for Latin1, 0xffff for UTF-16.
    1196             :   int max_char_;
    1197             :   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
    1198             : 
    1199             :   int GetSkipTable(int min_lookahead,
    1200             :                    int max_lookahead,
    1201             :                    Handle<ByteArray> boolean_skip_table);
    1202             :   bool FindWorthwhileInterval(int* from, int* to);
    1203             :   int FindBestInterval(
    1204             :     int max_number_of_chars, int old_biggest_points, int* from, int* to);
    1205             : };
    1206             : 
    1207             : 
    1208             : // There are many ways to generate code for a node.  This class encapsulates
    1209             : // the current way we should be generating.  In other words it encapsulates
    1210             : // the current state of the code generator.  The effect of this is that we
    1211             : // generate code for paths that the matcher can take through the regular
    1212             : // expression.  A given node in the regexp can be code-generated several times
    1213             : // as it can be part of several traces.  For example for the regexp:
    1214             : // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
    1215             : // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
    1216             : // to match foo is generated only once (the traces have a common prefix).  The
    1217             : // code to store the capture is deferred and generated (twice) after the places
    1218             : // where baz has been matched.
    1219             : class Trace {
    1220             :  public:
    1221             :   // A value for a property that is either known to be true, know to be false,
    1222             :   // or not known.
    1223             :   enum TriBool {
    1224             :     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
    1225             :   };
    1226             : 
    1227             :   class DeferredAction {
    1228             :    public:
    1229             :     DeferredAction(ActionNode::ActionType action_type, int reg)
    1230      250930 :         : action_type_(action_type), reg_(reg), next_(nullptr) {}
    1231             :     DeferredAction* next() { return next_; }
    1232             :     bool Mentions(int reg);
    1233             :     int reg() { return reg_; }
    1234             :     ActionNode::ActionType action_type() { return action_type_; }
    1235             :    private:
    1236             :     ActionNode::ActionType action_type_;
    1237             :     int reg_;
    1238             :     DeferredAction* next_;
    1239             :     friend class Trace;
    1240             :   };
    1241             : 
    1242             :   class DeferredCapture : public DeferredAction {
    1243             :    public:
    1244      241535 :     DeferredCapture(int reg, bool is_capture, Trace* trace)
    1245             :         : DeferredAction(ActionNode::STORE_POSITION, reg),
    1246             :           cp_offset_(trace->cp_offset()),
    1247      241535 :           is_capture_(is_capture) { }
    1248             :     int cp_offset() { return cp_offset_; }
    1249             :     bool is_capture() { return is_capture_; }
    1250             :    private:
    1251             :     int cp_offset_;
    1252             :     bool is_capture_;
    1253             :     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    1254             :   };
    1255             : 
    1256             :   class DeferredSetRegister : public DeferredAction {
    1257             :    public:
    1258             :     DeferredSetRegister(int reg, int value)
    1259             :         : DeferredAction(ActionNode::SET_REGISTER, reg),
    1260        3465 :           value_(value) { }
    1261             :     int value() { return value_; }
    1262             :    private:
    1263             :     int value_;
    1264             :   };
    1265             : 
    1266             :   class DeferredClearCaptures : public DeferredAction {
    1267             :    public:
    1268             :     explicit DeferredClearCaptures(Interval range)
    1269             :         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
    1270        2186 :           range_(range) { }
    1271             :     Interval range() { return range_; }
    1272             :    private:
    1273             :     Interval range_;
    1274             :   };
    1275             : 
    1276             :   class DeferredIncrementRegister : public DeferredAction {
    1277             :    public:
    1278             :     explicit DeferredIncrementRegister(int reg)
    1279             :         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
    1280             :   };
    1281             : 
    1282      638169 :   Trace()
    1283             :       : cp_offset_(0),
    1284             :         actions_(nullptr),
    1285             :         backtrack_(nullptr),
    1286             :         stop_node_(nullptr),
    1287             :         loop_label_(nullptr),
    1288             :         characters_preloaded_(0),
    1289             :         bound_checked_up_to_(0),
    1290             :         flush_budget_(100),
    1291     1276338 :         at_start_(UNKNOWN) {}
    1292             : 
    1293             :   // End the trace.  This involves flushing the deferred actions in the trace
    1294             :   // and pushing a backtrack location onto the backtrack stack.  Once this is
    1295             :   // done we can start a new trace or go to one that has already been
    1296             :   // generated.
    1297             :   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
    1298             :   int cp_offset() { return cp_offset_; }
    1299             :   DeferredAction* actions() { return actions_; }
    1300             :   // A trivial trace is one that has no deferred actions or other state that
    1301             :   // affects the assumptions used when generating code.  There is no recorded
    1302             :   // backtrack location in a trivial trace, so with a trivial trace we will
    1303             :   // generate code that, on a failure to match, gets the backtrack location
    1304             :   // from the backtrack stack rather than using a direct jump instruction.  We
    1305             :   // always start code generation with a trivial trace and non-trivial traces
    1306             :   // are created as we emit code for nodes or add to the list of deferred
    1307             :   // actions in the trace.  The location of the code generated for a node using
    1308             :   // a trivial trace is recorded in a label in the node so that gotos can be
    1309             :   // generated to that code.
    1310     2207779 :   bool is_trivial() {
    1311     3495158 :     return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 &&
    1312     1864174 :            characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
    1313     4037815 :            quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
    1314             :   }
    1315             :   TriBool at_start() { return at_start_; }
    1316      531567 :   void set_at_start(TriBool at_start) { at_start_ = at_start; }
    1317             :   Label* backtrack() { return backtrack_; }
    1318             :   Label* loop_label() { return loop_label_; }
    1319             :   RegExpNode* stop_node() { return stop_node_; }
    1320             :   int characters_preloaded() { return characters_preloaded_; }
    1321             :   int bound_checked_up_to() { return bound_checked_up_to_; }
    1322             :   int flush_budget() { return flush_budget_; }
    1323             :   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
    1324             :   bool mentions_reg(int reg);
    1325             :   // Returns true if a deferred position store exists to the specified
    1326             :   // register and stores the offset in the out-parameter.  Otherwise
    1327             :   // returns false.
    1328             :   bool GetStoredPosition(int reg, int* cp_offset);
    1329             :   // These set methods and AdvanceCurrentPositionInTrace should be used only on
    1330             :   // new traces - the intention is that traces are immutable after creation.
    1331             :   void add_action(DeferredAction* new_action) {
    1332             :     DCHECK(new_action->next_ == nullptr);
    1333      250930 :     new_action->next_ = actions_;
    1334      250930 :     actions_ = new_action;
    1335             :   }
    1336      806187 :   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
    1337       11695 :   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
    1338       11695 :   void set_loop_label(Label* label) { loop_label_ = label; }
    1339      828444 :   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
    1340      432746 :   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
    1341      192638 :   void set_flush_budget(int to) { flush_budget_ = to; }
    1342             :   void set_quick_check_performed(QuickCheckDetails* d) {
    1343      224822 :     quick_check_performed_ = *d;
    1344             :   }
    1345             :   void InvalidateCurrentCharacter();
    1346             :   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
    1347             : 
    1348             :  private:
    1349             :   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
    1350             :   void PerformDeferredActions(RegExpMacroAssembler* macro,
    1351             :                               int max_register,
    1352             :                               const OutSet& affected_registers,
    1353             :                               OutSet* registers_to_pop,
    1354             :                               OutSet* registers_to_clear,
    1355             :                               Zone* zone);
    1356             :   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
    1357             :                                 int max_register,
    1358             :                                 const OutSet& registers_to_pop,
    1359             :                                 const OutSet& registers_to_clear);
    1360             :   int cp_offset_;
    1361             :   DeferredAction* actions_;
    1362             :   Label* backtrack_;
    1363             :   RegExpNode* stop_node_;
    1364             :   Label* loop_label_;
    1365             :   int characters_preloaded_;
    1366             :   int bound_checked_up_to_;
    1367             :   QuickCheckDetails quick_check_performed_;
    1368             :   int flush_budget_;
    1369             :   TriBool at_start_;
    1370             : };
    1371             : 
    1372             : 
    1373             : class GreedyLoopState {
    1374             :  public:
    1375             :   explicit GreedyLoopState(bool not_at_start);
    1376             : 
    1377             :   Label* label() { return &label_; }
    1378             :   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
    1379             : 
    1380             :  private:
    1381             :   Label label_;
    1382             :   Trace counter_backtrack_trace_;
    1383             : };
    1384             : 
    1385             : 
    1386             : struct PreloadState {
    1387             :   static const int kEatsAtLeastNotYetInitialized = -1;
    1388             :   bool preload_is_current_;
    1389             :   bool preload_has_checked_bounds_;
    1390             :   int preload_characters_;
    1391             :   int eats_at_least_;
    1392             :   void init() {
    1393      213650 :     eats_at_least_ = kEatsAtLeastNotYetInitialized;
    1394             :   }
    1395             : };
    1396             : 
    1397             : 
    1398       85760 : class NodeVisitor {
    1399             :  public:
    1400       85760 :   virtual ~NodeVisitor() = default;
    1401             : #define DECLARE_VISIT(Type)                                          \
    1402             :   virtual void Visit##Type(Type##Node* that) = 0;
    1403             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1404             : #undef DECLARE_VISIT
    1405           0 :   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
    1406             : };
    1407             : 
    1408             : 
    1409             : // Node visitor used to add the start set of the alternatives to the
    1410             : // dispatch table of a choice node.
    1411          55 : class DispatchTableConstructor: public NodeVisitor {
    1412             :  public:
    1413             :   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
    1414             :                            Zone* zone)
    1415             :       : table_(table),
    1416             :         choice_index_(-1),
    1417             :         ignore_case_(ignore_case),
    1418          55 :         zone_(zone) { }
    1419             : 
    1420             :   void BuildTable(ChoiceNode* node);
    1421             : 
    1422         580 :   void AddRange(CharacterRange range) {
    1423        1160 :     table()->AddRange(range, choice_index_, zone_);
    1424             :   }
    1425             : 
    1426             :   void AddInverse(ZoneList<CharacterRange>* ranges);
    1427             : 
    1428             : #define DECLARE_VISIT(Type)                                          \
    1429             :   virtual void Visit##Type(Type##Node* that);
    1430             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1431             : #undef DECLARE_VISIT
    1432             : 
    1433             :   DispatchTable* table() { return table_; }
    1434          55 :   void set_choice_index(int value) { choice_index_ = value; }
    1435             : 
    1436             :  protected:
    1437             :   DispatchTable* table_;
    1438             :   int choice_index_;
    1439             :   bool ignore_case_;
    1440             :   Zone* zone_;
    1441             : };
    1442             : 
    1443             : 
    1444             : // Assertion propagation moves information about assertions such as
    1445             : // \b to the affected nodes.  For instance, in /.\b./ information must
    1446             : // be propagated to the first '.' that whatever follows needs to know
    1447             : // if it matched a word or a non-word, and to the second '.' that it
    1448             : // has to check if it succeeds a word or non-word.  In this case the
    1449             : // result will be something like:
    1450             : //
    1451             : //   +-------+        +------------+
    1452             : //   |   .   |        |      .     |
    1453             : //   +-------+  --->  +------------+
    1454             : //   | word? |        | check word |
    1455             : //   +-------+        +------------+
    1456       85705 : class Analysis: public NodeVisitor {
    1457             :  public:
    1458             :   Analysis(Isolate* isolate, bool is_one_byte)
    1459       85705 :       : isolate_(isolate), is_one_byte_(is_one_byte), error_message_(nullptr) {}
    1460             :   void EnsureAnalyzed(RegExpNode* node);
    1461             : 
    1462             : #define DECLARE_VISIT(Type) void Visit##Type(Type##Node* that) override;
    1463             :   FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1464             : #undef DECLARE_VISIT
    1465             :   void VisitLoopChoice(LoopChoiceNode* that) override;
    1466             : 
    1467             :   bool has_failed() { return error_message_ != nullptr; }
    1468             :   const char* error_message() {
    1469             :     DCHECK(error_message_ != nullptr);
    1470             :     return error_message_;
    1471             :   }
    1472             :   void fail(const char* error_message) {
    1473         427 :     error_message_ = error_message;
    1474             :   }
    1475             : 
    1476             :   Isolate* isolate() const { return isolate_; }
    1477             : 
    1478             :  private:
    1479             :   Isolate* isolate_;
    1480             :   bool is_one_byte_;
    1481             :   const char* error_message_;
    1482             : 
    1483             :   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
    1484             : };
    1485             : 
    1486             : 
    1487             : struct RegExpCompileData {
    1488             :   RegExpCompileData()
    1489             :       : tree(nullptr),
    1490             :         node(nullptr),
    1491             :         simple(true),
    1492             :         contains_anchor(false),
    1493      761480 :         capture_count(0) {}
    1494             :   RegExpTree* tree;
    1495             :   RegExpNode* node;
    1496             :   bool simple;
    1497             :   bool contains_anchor;
    1498             :   Handle<FixedArray> capture_name_map;
    1499             :   Handle<String> error;
    1500             :   int capture_count;
    1501             : };
    1502             : 
    1503             : 
    1504             : class RegExpEngine: public AllStatic {
    1505             :  public:
    1506             :   struct CompilationResult {
    1507             :     inline CompilationResult(Isolate* isolate, const char* error_message);
    1508             :     CompilationResult(Object code, int registers)
    1509       85278 :         : code(code), num_registers(registers) {}
    1510             :     const char* const error_message = nullptr;
    1511             :     Object const code;
    1512             :     int const num_registers = 0;
    1513             :   };
    1514             : 
    1515             :   static CompilationResult Compile(Isolate* isolate, Zone* zone,
    1516             :                                    RegExpCompileData* input,
    1517             :                                    JSRegExp::Flags flags,
    1518             :                                    Handle<String> pattern,
    1519             :                                    Handle<String> sample_subject,
    1520             :                                    bool is_one_byte);
    1521             : 
    1522             :   static bool TooMuchRegExpCode(Isolate* isolate, Handle<String> pattern);
    1523             : 
    1524             :   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
    1525             : };
    1526             : 
    1527             : 
    1528             : class RegExpResultsCache : public AllStatic {
    1529             :  public:
    1530             :   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
    1531             : 
    1532             :   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
    1533             :   // On success, the returned result is guaranteed to be a COW-array.
    1534             :   static Object Lookup(Heap* heap, String key_string, Object key_pattern,
    1535             :                        FixedArray* last_match_out, ResultsCacheType type);
    1536             :   // Attempt to add value_array to the cache specified by type.  On success,
    1537             :   // value_array is turned into a COW-array.
    1538             :   static void Enter(Isolate* isolate, Handle<String> key_string,
    1539             :                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
    1540             :                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
    1541             :   static void Clear(FixedArray cache);
    1542             :   static const int kRegExpResultsCacheSize = 0x100;
    1543             : 
    1544             :  private:
    1545             :   static const int kArrayEntriesPerCacheEntry = 4;
    1546             :   static const int kStringOffset = 0;
    1547             :   static const int kPatternOffset = 1;
    1548             :   static const int kArrayOffset = 2;
    1549             :   static const int kLastMatchOffset = 3;
    1550             : };
    1551             : 
    1552             : }  // namespace internal
    1553             : }  // namespace v8
    1554             : 
    1555             : #endif  // V8_REGEXP_JSREGEXP_H_

Generated by: LCOV version 1.10