Line data Source code
1 : // Copyright 2013 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/base/cpu.h"
6 :
7 : #if V8_LIBC_MSVCRT
8 : #include <intrin.h> // __cpuid()
9 : #endif
10 : #if V8_OS_LINUX
11 : #include <linux/auxvec.h> // AT_HWCAP
12 : #endif
13 : #if V8_GLIBC_PREREQ(2, 16)
14 : #include <sys/auxv.h> // getauxval()
15 : #endif
16 : #if V8_OS_QNX
17 : #include <sys/syspage.h> // cpuinfo
18 : #endif
19 : #if V8_OS_LINUX && V8_HOST_ARCH_PPC
20 : #include <elf.h>
21 : #endif
22 : #if V8_OS_AIX
23 : #include <sys/systemcfg.h> // _system_configuration
24 : #ifndef POWER_8
25 : #define POWER_8 0x10000
26 : #endif
27 : #ifndef POWER_9
28 : #define POWER_9 0x20000
29 : #endif
30 : #endif
31 : #if V8_OS_POSIX
32 : #include <unistd.h> // sysconf()
33 : #endif
34 :
35 : #include <ctype.h>
36 : #include <limits.h>
37 : #include <stdio.h>
38 : #include <stdlib.h>
39 : #include <string.h>
40 : #include <algorithm>
41 :
42 : #include "src/base/logging.h"
43 : #if V8_OS_WIN
44 : #include "src/base/win32-headers.h" // NOLINT
45 : #endif
46 :
47 : namespace v8 {
48 : namespace base {
49 :
50 : #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
51 :
52 : // Define __cpuid() for non-MSVC libraries.
53 : #if !V8_LIBC_MSVCRT
54 :
55 : static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
56 : // Clear ecx to align with __cpuid() of MSVC:
57 : // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
58 : #if defined(__i386__) && defined(__pic__)
59 : // Make sure to preserve ebx, which contains the pointer
60 : // to the GOT in case we're generating PIC.
61 : __asm__ volatile(
62 : "mov %%ebx, %%edi\n\t"
63 : "cpuid\n\t"
64 : "xchg %%edi, %%ebx\n\t"
65 : : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
66 : "=d"(cpu_info[3])
67 : : "a"(info_type), "c"(0));
68 : #else
69 : __asm__ volatile("cpuid \n\t"
70 : : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
71 : "=d"(cpu_info[3])
72 356778 : : "a"(info_type), "c"(0));
73 : #endif // defined(__i386__) && defined(__pic__)
74 : }
75 :
76 : #endif // !V8_LIBC_MSVCRT
77 :
78 : #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 \
79 : || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
80 :
81 : #if V8_OS_LINUX
82 :
83 : #if V8_HOST_ARCH_ARM
84 :
85 : // See <uapi/asm/hwcap.h> kernel header.
86 : /*
87 : * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
88 : */
89 : #define HWCAP_SWP (1 << 0)
90 : #define HWCAP_HALF (1 << 1)
91 : #define HWCAP_THUMB (1 << 2)
92 : #define HWCAP_26BIT (1 << 3) /* Play it safe */
93 : #define HWCAP_FAST_MULT (1 << 4)
94 : #define HWCAP_FPA (1 << 5)
95 : #define HWCAP_VFP (1 << 6)
96 : #define HWCAP_EDSP (1 << 7)
97 : #define HWCAP_JAVA (1 << 8)
98 : #define HWCAP_IWMMXT (1 << 9)
99 : #define HWCAP_CRUNCH (1 << 10)
100 : #define HWCAP_THUMBEE (1 << 11)
101 : #define HWCAP_NEON (1 << 12)
102 : #define HWCAP_VFPv3 (1 << 13)
103 : #define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */
104 : #define HWCAP_TLS (1 << 15)
105 : #define HWCAP_VFPv4 (1 << 16)
106 : #define HWCAP_IDIVA (1 << 17)
107 : #define HWCAP_IDIVT (1 << 18)
108 : #define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */
109 : #define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT)
110 : #define HWCAP_LPAE (1 << 20)
111 :
112 : static uint32_t ReadELFHWCaps() {
113 : uint32_t result = 0;
114 : #if V8_GLIBC_PREREQ(2, 16)
115 : result = static_cast<uint32_t>(getauxval(AT_HWCAP));
116 : #else
117 : // Read the ELF HWCAP flags by parsing /proc/self/auxv.
118 : FILE* fp = fopen("/proc/self/auxv", "r");
119 : if (fp != NULL) {
120 : struct { uint32_t tag; uint32_t value; } entry;
121 : for (;;) {
122 : size_t n = fread(&entry, sizeof(entry), 1, fp);
123 : if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
124 : break;
125 : }
126 : if (entry.tag == AT_HWCAP) {
127 : result = entry.value;
128 : break;
129 : }
130 : }
131 : fclose(fp);
132 : }
133 : #endif
134 : return result;
135 : }
136 :
137 : #endif // V8_HOST_ARCH_ARM
138 :
139 : #if V8_HOST_ARCH_MIPS
140 : int __detect_fp64_mode(void) {
141 : double result = 0;
142 : // Bit representation of (double)1 is 0x3FF0000000000000.
143 : __asm__ volatile(
144 : ".set push\n\t"
145 : ".set noreorder\n\t"
146 : ".set oddspreg\n\t"
147 : "lui $t0, 0x3FF0\n\t"
148 : "ldc1 $f0, %0\n\t"
149 : "mtc1 $t0, $f1\n\t"
150 : "sdc1 $f0, %0\n\t"
151 : ".set pop\n\t"
152 : : "+m"(result)
153 : :
154 : : "t0", "$f0", "$f1", "memory");
155 :
156 : return !(result == 1);
157 : }
158 :
159 :
160 : int __detect_mips_arch_revision(void) {
161 : // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
162 : // kernel.
163 : uint32_t result = 0;
164 : __asm__ volatile(
165 : "move $v0, $zero\n\t"
166 : // Encoding for "addi $v0, $v0, 1" on non-r6,
167 : // which is encoding for "bovc $v0, %v0, 1" on r6.
168 : // Use machine code directly to avoid compilation errors with different
169 : // toolchains and maintain compatibility.
170 : ".word 0x20420001\n\t"
171 : "sw $v0, %0\n\t"
172 : : "=m"(result)
173 : :
174 : : "v0", "memory");
175 : // Result is 0 on r6 architectures, 1 on other architecture revisions.
176 : // Fall-back to the least common denominator which is mips32 revision 1.
177 : return result ? 1 : 6;
178 : }
179 : #endif
180 :
181 : // Extract the information exposed by the kernel via /proc/cpuinfo.
182 : class CPUInfo final {
183 : public:
184 : CPUInfo() : datalen_(0) {
185 : // Get the size of the cpuinfo file by reading it until the end. This is
186 : // required because files under /proc do not always return a valid size
187 : // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
188 : static const char PATHNAME[] = "/proc/cpuinfo";
189 : FILE* fp = fopen(PATHNAME, "r");
190 : if (fp != NULL) {
191 : for (;;) {
192 : char buffer[256];
193 : size_t n = fread(buffer, 1, sizeof(buffer), fp);
194 : if (n == 0) {
195 : break;
196 : }
197 : datalen_ += n;
198 : }
199 : fclose(fp);
200 : }
201 :
202 : // Read the contents of the cpuinfo file.
203 : data_ = new char[datalen_ + 1];
204 : fp = fopen(PATHNAME, "r");
205 : if (fp != NULL) {
206 : for (size_t offset = 0; offset < datalen_; ) {
207 : size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
208 : if (n == 0) {
209 : break;
210 : }
211 : offset += n;
212 : }
213 : fclose(fp);
214 : }
215 :
216 : // Zero-terminate the data.
217 : data_[datalen_] = '\0';
218 : }
219 :
220 : ~CPUInfo() {
221 : delete[] data_;
222 : }
223 :
224 : // Extract the content of a the first occurence of a given field in
225 : // the content of the cpuinfo file and return it as a heap-allocated
226 : // string that must be freed by the caller using delete[].
227 : // Return NULL if not found.
228 : char* ExtractField(const char* field) const {
229 : DCHECK(field != NULL);
230 :
231 : // Look for first field occurence, and ensure it starts the line.
232 : size_t fieldlen = strlen(field);
233 : char* p = data_;
234 : for (;;) {
235 : p = strstr(p, field);
236 : if (p == NULL) {
237 : return NULL;
238 : }
239 : if (p == data_ || p[-1] == '\n') {
240 : break;
241 : }
242 : p += fieldlen;
243 : }
244 :
245 : // Skip to the first colon followed by a space.
246 : p = strchr(p + fieldlen, ':');
247 : if (p == NULL || !isspace(p[1])) {
248 : return NULL;
249 : }
250 : p += 2;
251 :
252 : // Find the end of the line.
253 : char* q = strchr(p, '\n');
254 : if (q == NULL) {
255 : q = data_ + datalen_;
256 : }
257 :
258 : // Copy the line into a heap-allocated buffer.
259 : size_t len = q - p;
260 : char* result = new char[len + 1];
261 : if (result != NULL) {
262 : memcpy(result, p, len);
263 : result[len] = '\0';
264 : }
265 : return result;
266 : }
267 :
268 : private:
269 : char* data_;
270 : size_t datalen_;
271 : };
272 :
273 : #if V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
274 :
275 : // Checks that a space-separated list of items contains one given 'item'.
276 : static bool HasListItem(const char* list, const char* item) {
277 : ssize_t item_len = strlen(item);
278 : const char* p = list;
279 : if (p != NULL) {
280 : while (*p != '\0') {
281 : // Skip whitespace.
282 : while (isspace(*p)) ++p;
283 :
284 : // Find end of current list item.
285 : const char* q = p;
286 : while (*q != '\0' && !isspace(*q)) ++q;
287 :
288 : if (item_len == q - p && memcmp(p, item, item_len) == 0) {
289 : return true;
290 : }
291 :
292 : // Skip to next item.
293 : p = q;
294 : }
295 : }
296 : return false;
297 : }
298 :
299 : #endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
300 :
301 : #endif // V8_OS_LINUX
302 :
303 : #endif // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
304 :
305 59463 : CPU::CPU()
306 : : stepping_(0),
307 : model_(0),
308 : ext_model_(0),
309 : family_(0),
310 : ext_family_(0),
311 : type_(0),
312 : implementer_(0),
313 : architecture_(0),
314 : variant_(-1),
315 : part_(0),
316 : icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
317 : dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
318 : has_fpu_(false),
319 : has_cmov_(false),
320 : has_sahf_(false),
321 : has_mmx_(false),
322 : has_sse_(false),
323 : has_sse2_(false),
324 : has_sse3_(false),
325 : has_ssse3_(false),
326 : has_sse41_(false),
327 : has_sse42_(false),
328 : is_atom_(false),
329 : has_osxsave_(false),
330 : has_avx_(false),
331 : has_fma3_(false),
332 : has_bmi1_(false),
333 : has_bmi2_(false),
334 : has_lzcnt_(false),
335 : has_popcnt_(false),
336 : has_idiva_(false),
337 : has_neon_(false),
338 : has_thumb2_(false),
339 : has_vfp_(false),
340 : has_vfp3_(false),
341 : has_vfp3_d32_(false),
342 : is_fp64_mode_(false),
343 59463 : has_non_stop_time_stamp_counter_(false) {
344 59463 : memcpy(vendor_, "Unknown", 8);
345 : #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
346 : int cpu_info[4];
347 :
348 : // __cpuid with an InfoType argument of 0 returns the number of
349 : // valid Ids in CPUInfo[0] and the CPU identification string in
350 : // the other three array elements. The CPU identification string is
351 : // not in linear order. The code below arranges the information
352 : // in a human readable form. The human readable order is CPUInfo[1] |
353 : // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
354 : // before using memcpy to copy these three array elements to cpu_string.
355 : __cpuid(cpu_info, 0);
356 59463 : unsigned num_ids = cpu_info[0];
357 : std::swap(cpu_info[2], cpu_info[3]);
358 : memcpy(vendor_, cpu_info + 1, 12);
359 59463 : vendor_[12] = '\0';
360 :
361 : // Interpret CPU feature information.
362 59463 : if (num_ids > 0) {
363 : __cpuid(cpu_info, 1);
364 59463 : stepping_ = cpu_info[0] & 0xf;
365 59463 : model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
366 59463 : family_ = (cpu_info[0] >> 8) & 0xf;
367 59463 : type_ = (cpu_info[0] >> 12) & 0x3;
368 59463 : ext_model_ = (cpu_info[0] >> 16) & 0xf;
369 59463 : ext_family_ = (cpu_info[0] >> 20) & 0xff;
370 59463 : has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
371 59463 : has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
372 59463 : has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
373 59463 : has_sse_ = (cpu_info[3] & 0x02000000) != 0;
374 59463 : has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
375 59463 : has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
376 59463 : has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
377 59463 : has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
378 59463 : has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
379 59463 : has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
380 59463 : has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
381 59463 : has_avx_ = (cpu_info[2] & 0x10000000) != 0;
382 59463 : has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
383 :
384 59463 : if (family_ == 0x6) {
385 59463 : switch (model_) {
386 : case 0x1c: // SLT
387 : case 0x26:
388 : case 0x36:
389 : case 0x27:
390 : case 0x35:
391 : case 0x37: // SLM
392 : case 0x4a:
393 : case 0x4d:
394 : case 0x4c: // AMT
395 : case 0x6e:
396 0 : is_atom_ = true;
397 : }
398 : }
399 : }
400 :
401 : // There are separate feature flags for VEX-encoded GPR instructions.
402 59463 : if (num_ids >= 7) {
403 : __cpuid(cpu_info, 7);
404 59463 : has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
405 59463 : has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
406 : }
407 :
408 : // Query extended IDs.
409 : __cpuid(cpu_info, 0x80000000);
410 59463 : unsigned num_ext_ids = cpu_info[0];
411 :
412 : // Interpret extended CPU feature information.
413 59463 : if (num_ext_ids > 0x80000000) {
414 : __cpuid(cpu_info, 0x80000001);
415 59463 : has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
416 : // SAHF must be probed in long mode.
417 59463 : has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
418 : }
419 :
420 : // Check if CPU has non stoppable time stamp counter.
421 : const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
422 59463 : if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
423 : __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
424 59463 : has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
425 : }
426 :
427 : #elif V8_HOST_ARCH_ARM
428 :
429 : #if V8_OS_LINUX
430 :
431 : CPUInfo cpu_info;
432 :
433 : // Extract implementor from the "CPU implementer" field.
434 : char* implementer = cpu_info.ExtractField("CPU implementer");
435 : if (implementer != NULL) {
436 : char* end;
437 : implementer_ = strtol(implementer, &end, 0);
438 : if (end == implementer) {
439 : implementer_ = 0;
440 : }
441 : delete[] implementer;
442 : }
443 :
444 : char* variant = cpu_info.ExtractField("CPU variant");
445 : if (variant != NULL) {
446 : char* end;
447 : variant_ = strtol(variant, &end, 0);
448 : if (end == variant) {
449 : variant_ = -1;
450 : }
451 : delete[] variant;
452 : }
453 :
454 : // Extract part number from the "CPU part" field.
455 : char* part = cpu_info.ExtractField("CPU part");
456 : if (part != NULL) {
457 : char* end;
458 : part_ = strtol(part, &end, 0);
459 : if (end == part) {
460 : part_ = 0;
461 : }
462 : delete[] part;
463 : }
464 :
465 : // Extract architecture from the "CPU Architecture" field.
466 : // The list is well-known, unlike the the output of
467 : // the 'Processor' field which can vary greatly.
468 : // See the definition of the 'proc_arch' array in
469 : // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
470 : // same file.
471 : char* architecture = cpu_info.ExtractField("CPU architecture");
472 : if (architecture != NULL) {
473 : char* end;
474 : architecture_ = strtol(architecture, &end, 10);
475 : if (end == architecture) {
476 : // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
477 : if (strcmp(architecture, "AArch64") == 0) {
478 : architecture_ = 8;
479 : } else {
480 : architecture_ = 0;
481 : }
482 : }
483 : delete[] architecture;
484 :
485 : // Unfortunately, it seems that certain ARMv6-based CPUs
486 : // report an incorrect architecture number of 7!
487 : //
488 : // See http://code.google.com/p/android/issues/detail?id=10812
489 : //
490 : // We try to correct this by looking at the 'elf_platform'
491 : // field reported by the 'Processor' field, which is of the
492 : // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
493 : // an ARMv6-one. For example, the Raspberry Pi is one popular
494 : // ARMv6 device that reports architecture 7.
495 : if (architecture_ == 7) {
496 : char* processor = cpu_info.ExtractField("Processor");
497 : if (HasListItem(processor, "(v6l)")) {
498 : architecture_ = 6;
499 : }
500 : delete[] processor;
501 : }
502 :
503 : // elf_platform moved to the model name field in Linux v3.8.
504 : if (architecture_ == 7) {
505 : char* processor = cpu_info.ExtractField("model name");
506 : if (HasListItem(processor, "(v6l)")) {
507 : architecture_ = 6;
508 : }
509 : delete[] processor;
510 : }
511 : }
512 :
513 : // Try to extract the list of CPU features from ELF hwcaps.
514 : uint32_t hwcaps = ReadELFHWCaps();
515 : if (hwcaps != 0) {
516 : has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
517 : has_neon_ = (hwcaps & HWCAP_NEON) != 0;
518 : has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
519 : has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
520 : has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
521 : (hwcaps & HWCAP_VFPD32) != 0));
522 : } else {
523 : // Try to fallback to "Features" CPUInfo field.
524 : char* features = cpu_info.ExtractField("Features");
525 : has_idiva_ = HasListItem(features, "idiva");
526 : has_neon_ = HasListItem(features, "neon");
527 : has_thumb2_ = HasListItem(features, "thumb2");
528 : has_vfp_ = HasListItem(features, "vfp");
529 : if (HasListItem(features, "vfpv3d16")) {
530 : has_vfp3_ = true;
531 : } else if (HasListItem(features, "vfpv3")) {
532 : has_vfp3_ = true;
533 : has_vfp3_d32_ = true;
534 : }
535 : delete[] features;
536 : }
537 :
538 : // Some old kernels will report vfp not vfpv3. Here we make an attempt
539 : // to detect vfpv3 by checking for vfp *and* neon, since neon is only
540 : // available on architectures with vfpv3. Checking neon on its own is
541 : // not enough as it is possible to have neon without vfp.
542 : if (has_vfp_ && has_neon_) {
543 : has_vfp3_ = true;
544 : }
545 :
546 : // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
547 : if (architecture_ < 7 && has_vfp3_) {
548 : architecture_ = 7;
549 : }
550 :
551 : // ARMv7 implies Thumb2.
552 : if (architecture_ >= 7) {
553 : has_thumb2_ = true;
554 : }
555 :
556 : // The earliest architecture with Thumb2 is ARMv6T2.
557 : if (has_thumb2_ && architecture_ < 6) {
558 : architecture_ = 6;
559 : }
560 :
561 : // We don't support any FPUs other than VFP.
562 : has_fpu_ = has_vfp_;
563 :
564 : #elif V8_OS_QNX
565 :
566 : uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
567 : if (cpu_flags & ARM_CPU_FLAG_V7) {
568 : architecture_ = 7;
569 : has_thumb2_ = true;
570 : } else if (cpu_flags & ARM_CPU_FLAG_V6) {
571 : architecture_ = 6;
572 : // QNX doesn't say if Thumb2 is available.
573 : // Assume false for the architectures older than ARMv7.
574 : }
575 : DCHECK(architecture_ >= 6);
576 : has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
577 : has_vfp_ = has_fpu_;
578 : if (cpu_flags & ARM_CPU_FLAG_NEON) {
579 : has_neon_ = true;
580 : has_vfp3_ = has_vfp_;
581 : #ifdef ARM_CPU_FLAG_VFP_D32
582 : has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
583 : #endif
584 : }
585 : has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
586 :
587 : #endif // V8_OS_LINUX
588 :
589 : #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
590 :
591 : // Simple detection of FPU at runtime for Linux.
592 : // It is based on /proc/cpuinfo, which reveals hardware configuration
593 : // to user-space applications. According to MIPS (early 2010), no similar
594 : // facility is universally available on the MIPS architectures,
595 : // so it's up to individual OSes to provide such.
596 : CPUInfo cpu_info;
597 : char* cpu_model = cpu_info.ExtractField("cpu model");
598 : has_fpu_ = HasListItem(cpu_model, "FPU");
599 : char* ASEs = cpu_info.ExtractField("ASEs implemented");
600 : has_msa_ = HasListItem(ASEs, "msa");
601 : delete[] cpu_model;
602 : delete[] ASEs;
603 : #ifdef V8_HOST_ARCH_MIPS
604 : is_fp64_mode_ = __detect_fp64_mode();
605 : architecture_ = __detect_mips_arch_revision();
606 : #endif
607 :
608 : #elif V8_HOST_ARCH_ARM64
609 :
610 : CPUInfo cpu_info;
611 :
612 : // Extract implementor from the "CPU implementer" field.
613 : char* implementer = cpu_info.ExtractField("CPU implementer");
614 : if (implementer != NULL) {
615 : char* end;
616 : implementer_ = static_cast<int>(strtol(implementer, &end, 0));
617 : if (end == implementer) {
618 : implementer_ = 0;
619 : }
620 : delete[] implementer;
621 : }
622 :
623 : char* variant = cpu_info.ExtractField("CPU variant");
624 : if (variant != NULL) {
625 : char* end;
626 : variant_ = static_cast<int>(strtol(variant, &end, 0));
627 : if (end == variant) {
628 : variant_ = -1;
629 : }
630 : delete[] variant;
631 : }
632 :
633 : // Extract part number from the "CPU part" field.
634 : char* part = cpu_info.ExtractField("CPU part");
635 : if (part != NULL) {
636 : char* end;
637 : part_ = static_cast<int>(strtol(part, &end, 0));
638 : if (end == part) {
639 : part_ = 0;
640 : }
641 : delete[] part;
642 : }
643 :
644 : #elif V8_HOST_ARCH_PPC
645 :
646 : #ifndef USE_SIMULATOR
647 : #if V8_OS_LINUX
648 : // Read processor info from /proc/self/auxv.
649 : char* auxv_cpu_type = NULL;
650 : FILE* fp = fopen("/proc/self/auxv", "r");
651 : if (fp != NULL) {
652 : #if V8_TARGET_ARCH_PPC64
653 : Elf64_auxv_t entry;
654 : #else
655 : Elf32_auxv_t entry;
656 : #endif
657 : for (;;) {
658 : size_t n = fread(&entry, sizeof(entry), 1, fp);
659 : if (n == 0 || entry.a_type == AT_NULL) {
660 : break;
661 : }
662 : switch (entry.a_type) {
663 : case AT_PLATFORM:
664 : auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
665 : break;
666 : case AT_ICACHEBSIZE:
667 : icache_line_size_ = entry.a_un.a_val;
668 : break;
669 : case AT_DCACHEBSIZE:
670 : dcache_line_size_ = entry.a_un.a_val;
671 : break;
672 : }
673 : }
674 : fclose(fp);
675 : }
676 :
677 : part_ = -1;
678 : if (auxv_cpu_type) {
679 : if (strcmp(auxv_cpu_type, "power9") == 0) {
680 : part_ = PPC_POWER9;
681 : } else if (strcmp(auxv_cpu_type, "power8") == 0) {
682 : part_ = PPC_POWER8;
683 : } else if (strcmp(auxv_cpu_type, "power7") == 0) {
684 : part_ = PPC_POWER7;
685 : } else if (strcmp(auxv_cpu_type, "power6") == 0) {
686 : part_ = PPC_POWER6;
687 : } else if (strcmp(auxv_cpu_type, "power5") == 0) {
688 : part_ = PPC_POWER5;
689 : } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
690 : part_ = PPC_G5;
691 : } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
692 : part_ = PPC_G4;
693 : } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
694 : part_ = PPC_PA6T;
695 : }
696 : }
697 :
698 : #elif V8_OS_AIX
699 : switch (_system_configuration.implementation) {
700 : case POWER_9:
701 : part_ = PPC_POWER9;
702 : break;
703 : case POWER_8:
704 : part_ = PPC_POWER8;
705 : break;
706 : case POWER_7:
707 : part_ = PPC_POWER7;
708 : break;
709 : case POWER_6:
710 : part_ = PPC_POWER6;
711 : break;
712 : case POWER_5:
713 : part_ = PPC_POWER5;
714 : break;
715 : }
716 : #endif // V8_OS_AIX
717 : #endif // !USE_SIMULATOR
718 : #endif // V8_HOST_ARCH_PPC
719 59463 : }
720 :
721 : } // namespace base
722 : } // namespace v8
|