Line data Source code
1 : // Copyright 2014 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/compiler/gap-resolver.h"
6 :
7 : #include <algorithm>
8 : #include <functional>
9 : #include <set>
10 :
11 : namespace v8 {
12 : namespace internal {
13 : namespace compiler {
14 :
15 : namespace {
16 :
17 : #define REP_BIT(rep) (1 << static_cast<int>(rep))
18 :
19 : const int kFloat32Bit = REP_BIT(MachineRepresentation::kFloat32);
20 : const int kFloat64Bit = REP_BIT(MachineRepresentation::kFloat64);
21 :
22 80521546 : inline bool Blocks(MoveOperands* move, InstructionOperand destination) {
23 80521546 : return !move->IsEliminated() && move->source().InterferesWith(destination);
24 : }
25 :
26 : // Splits a FP move between two location operands into the equivalent series of
27 : // moves between smaller sub-operands, e.g. a double move to two single moves.
28 : // This helps reduce the number of cycles that would normally occur under FP
29 : // aliasing, and makes swaps much easier to implement.
30 : MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
31 : ParallelMove* moves) {
32 : DCHECK(!kSimpleFPAliasing);
33 : // Splitting is only possible when the slot size is the same as float size.
34 : DCHECK_EQ(kPointerSize, kFloatSize);
35 : const LocationOperand& src_loc = LocationOperand::cast(move->source());
36 : const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
37 : MachineRepresentation dst_rep = dst_loc.representation();
38 : DCHECK_NE(smaller_rep, dst_rep);
39 : auto src_kind = src_loc.location_kind();
40 : auto dst_kind = dst_loc.location_kind();
41 :
42 : int aliases =
43 : 1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
44 : int base = -1;
45 : USE(base);
46 : DCHECK_EQ(aliases, RegisterConfiguration::Turbofan()->GetAliases(
47 : dst_rep, 0, smaller_rep, &base));
48 :
49 : int src_index = -1;
50 : int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kPointerSize;
51 : int src_step = 1;
52 : if (src_kind == LocationOperand::REGISTER) {
53 : src_index = src_loc.register_code() * aliases;
54 : } else {
55 : src_index = src_loc.index();
56 : // For operands that occuply multiple slots, the index refers to the last
57 : // slot. On little-endian architectures, we start at the high slot and use a
58 : // negative step so that register-to-slot moves are in the correct order.
59 : src_step = -slot_size;
60 : }
61 : int dst_index = -1;
62 : int dst_step = 1;
63 : if (dst_kind == LocationOperand::REGISTER) {
64 : dst_index = dst_loc.register_code() * aliases;
65 : } else {
66 : dst_index = dst_loc.index();
67 : dst_step = -slot_size;
68 : }
69 :
70 : // Reuse 'move' for the first fragment. It is not pending.
71 : move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
72 : move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
73 : // Add the remaining fragment moves.
74 : for (int i = 1; i < aliases; ++i) {
75 : src_index += src_step;
76 : dst_index += dst_step;
77 : moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
78 : AllocatedOperand(dst_kind, smaller_rep, dst_index));
79 : }
80 : // Return the first fragment.
81 : return move;
82 : }
83 :
84 : } // namespace
85 :
86 26444665 : void GapResolver::Resolve(ParallelMove* moves) {
87 : // Clear redundant moves, and collect FP move representations if aliasing
88 : // is non-simple.
89 : int reps = 0;
90 86499949 : for (size_t i = 0; i < moves->size();) {
91 144063096 : MoveOperands* move = (*moves)[i];
92 33610634 : if (move->IsRedundant()) {
93 9658057 : (*moves)[i] = moves->back();
94 : moves->pop_back();
95 : continue;
96 : }
97 23952562 : i++;
98 : if (!kSimpleFPAliasing && move->destination().IsFPRegister()) {
99 : reps |=
100 : REP_BIT(LocationOperand::cast(move->destination()).representation());
101 : }
102 : }
103 :
104 : if (!kSimpleFPAliasing) {
105 : if (reps && !base::bits::IsPowerOfTwo32(reps)) {
106 : // Start with the smallest FP moves, so we never encounter smaller moves
107 : // in the middle of a cycle of larger moves.
108 : if ((reps & kFloat32Bit) != 0) {
109 : split_rep_ = MachineRepresentation::kFloat32;
110 : for (size_t i = 0; i < moves->size(); ++i) {
111 : auto move = (*moves)[i];
112 : if (!move->IsEliminated() && move->destination().IsFloatRegister())
113 : PerformMove(moves, move);
114 : }
115 : }
116 : if ((reps & kFloat64Bit) != 0) {
117 : split_rep_ = MachineRepresentation::kFloat64;
118 : for (size_t i = 0; i < moves->size(); ++i) {
119 : auto move = (*moves)[i];
120 : if (!move->IsEliminated() && move->destination().IsDoubleRegister())
121 : PerformMove(moves, move);
122 : }
123 : }
124 : }
125 : split_rep_ = MachineRepresentation::kSimd128;
126 : }
127 :
128 74349706 : for (size_t i = 0; i < moves->size(); ++i) {
129 23952502 : auto move = (*moves)[i];
130 23952502 : if (!move->IsEliminated()) PerformMove(moves, move);
131 : }
132 26444676 : }
133 :
134 23952559 : void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
135 : // Each call to this function performs a move and deletes it from the move
136 : // graph. We first recursively perform any move blocking this one. We mark a
137 : // move as "pending" on entry to PerformMove in order to detect cycles in the
138 : // move graph. We use operand swaps to resolve cycles, which means that a
139 : // call to PerformMove could change any source operand in the move graph.
140 : DCHECK(!move->IsPending());
141 : DCHECK(!move->IsRedundant());
142 :
143 : // Clear this move's destination to indicate a pending move. The actual
144 : // destination is saved on the side.
145 23952559 : InstructionOperand source = move->source();
146 : DCHECK(!source.IsInvalid()); // Or else it will look eliminated.
147 23952559 : InstructionOperand destination = move->destination();
148 : move->SetPending();
149 :
150 : // We may need to split moves between FP locations differently.
151 : const bool is_fp_loc_move =
152 : !kSimpleFPAliasing && destination.IsFPLocationOperand();
153 :
154 : // Perform a depth-first traversal of the move graph to resolve dependencies.
155 : // Any unperformed, unpending move with a source the same as this one's
156 : // destination blocks this one so recursively perform all such moves.
157 210180430 : for (size_t i = 0; i < moves->size(); ++i) {
158 186227909 : auto other = (*moves)[i];
159 81137694 : if (other->IsEliminated()) continue;
160 52989336 : if (other->IsPending()) continue;
161 28546230 : if (other->source().InterferesWith(destination)) {
162 : if (is_fp_loc_move &&
163 : LocationOperand::cast(other->source()).representation() >
164 : split_rep_) {
165 : // 'other' must also be an FP location move. Break it into fragments
166 : // of the same size as 'move'. 'other' is set to one of the fragments,
167 : // and the rest are appended to 'moves'.
168 : other = Split(other, split_rep_, moves);
169 : // 'other' may not block destination now.
170 : if (!other->source().InterferesWith(destination)) continue;
171 : }
172 : // Though PerformMove can change any source operand in the move graph,
173 : // this call cannot create a blocking move via a swap (this loop does not
174 : // miss any). Assume there is a non-blocking move with source A and this
175 : // move is blocked on source B and there is a swap of A and B. Then A and
176 : // B must be involved in the same cycle (or they would not be swapped).
177 : // Since this move's destination is B and there is only a single incoming
178 : // edge to an operand, this move must also be involved in the same cycle.
179 : // In that case, the blocking move will be created but will be "pending"
180 : // when we return from PerformMove.
181 405464 : PerformMove(moves, other);
182 : }
183 : }
184 :
185 : // This move's source may have changed due to swaps to resolve cycles and so
186 : // it may now be the last move in the cycle. If so remove it.
187 23952521 : source = move->source();
188 23952540 : if (source.EqualsCanonicalized(destination)) {
189 : move->Eliminate();
190 23919665 : return;
191 : }
192 :
193 : // We are about to resolve this move and don't need it marked as pending, so
194 : // restore its destination.
195 : move->set_destination(destination);
196 :
197 : // The move may be blocked on a (at most one) pending move, in which case we
198 : // have a cycle. Search for such a blocking move and perform a swap to
199 : // resolve it.
200 : auto blocker = std::find_if(moves->begin(), moves->end(),
201 : std::bind2nd(std::ptr_fun(&Blocks), destination));
202 23929000 : if (blocker == moves->end()) {
203 : // The easy case: This move is not blocked.
204 23896138 : assembler_->AssembleMove(&source, &destination);
205 : move->Eliminate();
206 : return;
207 : }
208 :
209 : // Ensure source is a register or both are stack slots, to limit swap cases.
210 57056 : if (source.IsStackSlot() || source.IsFPStackSlot()) {
211 : std::swap(source, destination);
212 : }
213 32862 : assembler_->AssembleSwap(&source, &destination);
214 : move->Eliminate();
215 :
216 : // Update outstanding moves whose source may now have been moved.
217 : if (is_fp_loc_move) {
218 : // We may have to split larger moves.
219 : for (size_t i = 0; i < moves->size(); ++i) {
220 : auto other = (*moves)[i];
221 : if (other->IsEliminated()) continue;
222 : if (source.InterferesWith(other->source())) {
223 : if (LocationOperand::cast(other->source()).representation() >
224 : split_rep_) {
225 : other = Split(other, split_rep_, moves);
226 : if (!source.InterferesWith(other->source())) continue;
227 : }
228 : other->set_source(destination);
229 : } else if (destination.InterferesWith(other->source())) {
230 : if (LocationOperand::cast(other->source()).representation() >
231 : split_rep_) {
232 : other = Split(other, split_rep_, moves);
233 : if (!destination.InterferesWith(other->source())) continue;
234 : }
235 : other->set_source(source);
236 : }
237 : }
238 : } else {
239 502298 : for (auto other : *moves) {
240 436574 : if (other->IsEliminated()) continue;
241 493160 : if (source.EqualsCanonicalized(other->source())) {
242 : other->set_source(destination);
243 230848 : } else if (destination.EqualsCanonicalized(other->source())) {
244 : other->set_source(source);
245 : }
246 : }
247 : }
248 : }
249 : } // namespace compiler
250 : } // namespace internal
251 : } // namespace v8
|