Line data Source code
1 : // Copyright 2012 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_DATE_H_
6 : #define V8_DATE_H_
7 :
8 : #include "src/allocation.h"
9 : #include "src/base/platform/platform.h"
10 : #include "src/base/timezone-cache.h"
11 : #include "src/globals.h"
12 :
13 : namespace v8 {
14 : namespace internal {
15 :
16 : class DateCache {
17 : public:
18 : static const int kMsPerMin = 60 * 1000;
19 : static const int kSecPerDay = 24 * 60 * 60;
20 : static const int64_t kMsPerDay = kSecPerDay * 1000;
21 : static const int64_t kMsPerMonth = kMsPerDay * 30;
22 :
23 : // The largest time that can be passed to OS date-time library functions.
24 : static const int kMaxEpochTimeInSec = kMaxInt;
25 : static const int64_t kMaxEpochTimeInMs =
26 : static_cast<int64_t>(kMaxInt) * 1000;
27 :
28 : // The largest time that can be stored in JSDate.
29 : static const int64_t kMaxTimeInMs =
30 : static_cast<int64_t>(864000000) * 10000000;
31 :
32 : // Conservative upper bound on time that can be stored in JSDate
33 : // before UTC conversion.
34 : static const int64_t kMaxTimeBeforeUTCInMs = kMaxTimeInMs + kMsPerMonth;
35 :
36 : // Sentinel that denotes an invalid local offset.
37 : static const int kInvalidLocalOffsetInMs = kMaxInt;
38 : // Sentinel that denotes an invalid cache stamp.
39 : // It is an invariant of DateCache that cache stamp is non-negative.
40 : static const int kInvalidStamp = -1;
41 :
42 : DateCache();
43 :
44 31860 : virtual ~DateCache() {
45 31860 : delete tz_cache_;
46 31860 : tz_cache_ = NULL;
47 31860 : }
48 :
49 :
50 : // Clears cached timezone information and increments the cache stamp.
51 : void ResetDateCache();
52 :
53 :
54 : // Computes floor(time_ms / kMsPerDay).
55 : static int DaysFromTime(int64_t time_ms) {
56 192827 : if (time_ms < 0) time_ms -= (kMsPerDay - 1);
57 192827 : return static_cast<int>(time_ms / kMsPerDay);
58 : }
59 :
60 :
61 : // Computes modulo(time_ms, kMsPerDay) given that
62 : // days = floor(time_ms / kMsPerDay).
63 : static int TimeInDay(int64_t time_ms, int days) {
64 107097 : return static_cast<int>(time_ms - days * kMsPerDay);
65 : }
66 :
67 :
68 : // Given the number of days since the epoch, computes the weekday.
69 : // ECMA 262 - 15.9.1.6.
70 : int Weekday(int days) {
71 175342 : int result = (days + 4) % 7;
72 175342 : return result >= 0 ? result : result + 7;
73 : }
74 :
75 :
76 : bool IsLeap(int year) {
77 85401 : return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
78 : }
79 :
80 :
81 : // ECMA 262 - 15.9.1.7.
82 : int LocalOffsetInMs() {
83 189855 : if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
84 220 : local_offset_ms_ = GetLocalOffsetFromOS();
85 : }
86 189855 : return local_offset_ms_;
87 : }
88 :
89 :
90 88770 : const char* LocalTimezone(int64_t time_ms) {
91 88770 : if (time_ms < 0 || time_ms > kMaxEpochTimeInMs) {
92 27990 : time_ms = EquivalentTime(time_ms);
93 : }
94 88770 : bool is_dst = DaylightSavingsOffsetInMs(time_ms) != 0;
95 88770 : const char** name = is_dst ? &dst_tz_name_ : &tz_name_;
96 88770 : if (*name == nullptr) {
97 167 : *name = tz_cache_->LocalTimezone(static_cast<double>(time_ms));
98 : }
99 88770 : return *name;
100 : }
101 :
102 : // ECMA 262 - 15.9.5.26
103 : int TimezoneOffset(int64_t time_ms) {
104 88799 : int64_t local_ms = ToLocal(time_ms);
105 88799 : return static_cast<int>((time_ms - local_ms) / kMsPerMin);
106 : }
107 :
108 : // ECMA 262 - 15.9.1.9
109 : // LocalTime(t) = t + LocalTZA + DaylightSavingTA(t)
110 187182 : int64_t ToLocal(int64_t time_ms) {
111 187182 : return time_ms + LocalOffsetInMs() + DaylightSavingsOffsetInMs(time_ms);
112 : }
113 :
114 : // ECMA 262 - 15.9.1.9
115 : // UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA)
116 2673 : int64_t ToUTC(int64_t time_ms) {
117 : // We need to compute UTC time that corresponds to the given local time.
118 : // Literally following spec here leads to incorrect time computation at
119 : // the points were we transition to and from DST.
120 : //
121 : // The following shows that using DST for (t - LocalTZA - hour) produces
122 : // correct conversion.
123 : //
124 : // Consider transition to DST at local time L1.
125 : // Let L0 = L1 - hour, L2 = L1 + hour,
126 : // U1 = UTC time that corresponds to L1,
127 : // U0 = U1 - hour.
128 : // Transitioning to DST moves local clock one hour forward L1 => L2, so
129 : // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
130 : // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
131 : // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
132 : // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
133 : // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
134 : // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
135 : // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
136 : //
137 : // Consider transition from DST at local time L1.
138 : // Let L0 = L1 - hour,
139 : // U1 = UTC time that corresponds to L1,
140 : // U0 = U1 - hour, U2 = U1 + hour.
141 : // Transitioning from DST moves local clock one hour back L1 => L0, so
142 : // U0 = UTC time that corresponds to L0 (before transition)
143 : // = L0 - LocalTZA - hour.
144 : // U1 = UTC time that corresponds to L0 (after transition)
145 : // = L0 - LocalTZA = L1 - LocalTZA - hour
146 : // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
147 : // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
148 : // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
149 : // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
150 : // It is impossible to get U1 from local time.
151 :
152 : const int kMsPerHour = 3600 * 1000;
153 2673 : time_ms -= LocalOffsetInMs();
154 2673 : return time_ms - DaylightSavingsOffsetInMs(time_ms - kMsPerHour);
155 : }
156 :
157 :
158 : // Computes a time equivalent to the given time according
159 : // to ECMA 262 - 15.9.1.9.
160 : // The issue here is that some library calls don't work right for dates
161 : // that cannot be represented using a non-negative signed 32 bit integer
162 : // (measured in whole seconds based on the 1970 epoch).
163 : // We solve this by mapping the time to a year with same leap-year-ness
164 : // and same starting day for the year. The ECMAscript specification says
165 : // we must do this, but for compatibility with other browsers, we use
166 : // the actual year if it is in the range 1970..2037
167 85401 : int64_t EquivalentTime(int64_t time_ms) {
168 : int days = DaysFromTime(time_ms);
169 85401 : int time_within_day_ms = static_cast<int>(time_ms - days * kMsPerDay);
170 : int year, month, day;
171 85401 : YearMonthDayFromDays(days, &year, &month, &day);
172 85401 : int new_days = DaysFromYearMonth(EquivalentYear(year), month) + day - 1;
173 85401 : return static_cast<int64_t>(new_days) * kMsPerDay + time_within_day_ms;
174 : }
175 :
176 : // Returns an equivalent year in the range [2008-2035] matching
177 : // - leap year,
178 : // - week day of first day.
179 : // ECMA 262 - 15.9.1.9.
180 85401 : int EquivalentYear(int year) {
181 85401 : int week_day = Weekday(DaysFromYearMonth(year, 0));
182 85401 : int recent_year = (IsLeap(year) ? 1956 : 1967) + (week_day * 12) % 28;
183 : // Find the year in the range 2008..2037 that is equivalent mod 28.
184 : // Add 3*28 to give a positive argument to the modulus operator.
185 85401 : return 2008 + (recent_year + 3 * 28 - 2008) % 28;
186 : }
187 :
188 : // Given the number of days since the epoch, computes
189 : // the corresponding year, month, and day.
190 : void YearMonthDayFromDays(int days, int* year, int* month, int* day);
191 :
192 : // Computes the number of days since the epoch for
193 : // the first day of the given month in the given year.
194 : int DaysFromYearMonth(int year, int month);
195 :
196 : // Breaks down the time value.
197 : void BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
198 : int* weekday, int* hour, int* min, int* sec, int* ms);
199 :
200 : // Cache stamp is used for invalidating caches in JSDate.
201 : // We increment the stamp each time when the timezone information changes.
202 : // JSDate objects perform stamp check and invalidate their caches if
203 : // their saved stamp is not equal to the current stamp.
204 : Smi* stamp() { return stamp_; }
205 : void* stamp_address() { return &stamp_; }
206 :
207 : // These functions are virtual so that we can override them when testing.
208 32479 : virtual int GetDaylightSavingsOffsetFromOS(int64_t time_sec) {
209 32479 : double time_ms = static_cast<double>(time_sec * 1000);
210 32479 : return static_cast<int>(tz_cache_->DaylightSavingsOffset(time_ms));
211 : }
212 :
213 213 : virtual int GetLocalOffsetFromOS() {
214 213 : double offset = tz_cache_->LocalTimeOffset();
215 : DCHECK(offset < kInvalidLocalOffsetInMs);
216 213 : return static_cast<int>(offset);
217 : }
218 :
219 : private:
220 : // The implementation relies on the fact that no time zones have
221 : // more than one daylight savings offset change per 19 days.
222 : // In Egypt in 2010 they decided to suspend DST during Ramadan. This
223 : // led to a short interval where DST is in effect from September 10 to
224 : // September 30.
225 : static const int kDefaultDSTDeltaInSec = 19 * kSecPerDay;
226 :
227 : // Size of the Daylight Savings Time cache.
228 : static const int kDSTSize = 32;
229 :
230 : // Daylight Savings Time segment stores a segment of time where
231 : // daylight savings offset does not change.
232 : struct DST {
233 : int start_sec;
234 : int end_sec;
235 : int offset_ms;
236 : int last_used;
237 : };
238 :
239 : // Computes the daylight savings offset for the given time.
240 : // ECMA 262 - 15.9.1.8
241 : int DaylightSavingsOffsetInMs(int64_t time_ms);
242 :
243 : // Sets the before_ and the after_ segments from the DST cache such that
244 : // the before_ segment starts earlier than the given time and
245 : // the after_ segment start later than the given time.
246 : // Both segments might be invalid.
247 : // The last_used counters of the before_ and after_ are updated.
248 : void ProbeDST(int time_sec);
249 :
250 : // Finds the least recently used segment from the DST cache that is not
251 : // equal to the given 'skip' segment.
252 : DST* LeastRecentlyUsedDST(DST* skip);
253 :
254 : // Extends the after_ segment with the given point or resets it
255 : // if it starts later than the given time + kDefaultDSTDeltaInSec.
256 : inline void ExtendTheAfterSegment(int time_sec, int offset_ms);
257 :
258 : // Makes the given segment invalid.
259 : inline void ClearSegment(DST* segment);
260 :
261 : bool InvalidSegment(DST* segment) {
262 : return segment->start_sec > segment->end_sec;
263 : }
264 :
265 : Smi* stamp_;
266 :
267 : // Daylight Saving Time cache.
268 : DST dst_[kDSTSize];
269 : int dst_usage_counter_;
270 : DST* before_;
271 : DST* after_;
272 :
273 : int local_offset_ms_;
274 :
275 : // Year/Month/Day cache.
276 : bool ymd_valid_;
277 : int ymd_days_;
278 : int ymd_year_;
279 : int ymd_month_;
280 : int ymd_day_;
281 :
282 : // Timezone name cache
283 : const char* tz_name_;
284 : const char* dst_tz_name_;
285 :
286 : base::TimezoneCache* tz_cache_;
287 : };
288 :
289 : } // namespace internal
290 : } // namespace v8
291 :
292 : #endif
|