LCOV - code coverage report
Current view: top level - src - bignum-dtoa.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 146 147 99.3 %
Date: 2019-04-17 Functions: 10 10 100.0 %

          Line data    Source code
       1             : // Copyright 2011 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include "src/bignum-dtoa.h"
       6             : 
       7             : #include <cmath>
       8             : 
       9             : #include "src/base/logging.h"
      10             : #include "src/bignum.h"
      11             : #include "src/double.h"
      12             : #include "src/utils.h"
      13             : 
      14             : namespace v8 {
      15             : namespace internal {
      16             : 
      17             : static int NormalizedExponent(uint64_t significand, int exponent) {
      18             :   DCHECK_NE(significand, 0);
      19     1574958 :   while ((significand & Double::kHiddenBit) == 0) {
      20        1830 :     significand = significand << 1;
      21        1830 :     exponent = exponent - 1;
      22             :   }
      23             :   return exponent;
      24             : }
      25             : 
      26             : 
      27             : // Forward declarations:
      28             : // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
      29             : static int EstimatePower(int exponent);
      30             : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
      31             : // and denominator.
      32             : static void InitialScaledStartValues(double v,
      33             :                                      int estimated_power,
      34             :                                      bool need_boundary_deltas,
      35             :                                      Bignum* numerator,
      36             :                                      Bignum* denominator,
      37             :                                      Bignum* delta_minus,
      38             :                                      Bignum* delta_plus);
      39             : // Multiplies numerator/denominator so that its values lies in the range 1-10.
      40             : // Returns decimal_point s.t.
      41             : //  v = numerator'/denominator' * 10^(decimal_point-1)
      42             : //     where numerator' and denominator' are the values of numerator and
      43             : //     denominator after the call to this function.
      44             : static void FixupMultiply10(int estimated_power, bool is_even,
      45             :                             int* decimal_point,
      46             :                             Bignum* numerator, Bignum* denominator,
      47             :                             Bignum* delta_minus, Bignum* delta_plus);
      48             : // Generates digits from the left to the right and stops when the generated
      49             : // digits yield the shortest decimal representation of v.
      50             : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
      51             :                                    Bignum* delta_minus, Bignum* delta_plus,
      52             :                                    bool is_even,
      53             :                                    Vector<char> buffer, int* length);
      54             : // Generates 'requested_digits' after the decimal point.
      55             : static void BignumToFixed(int requested_digits, int* decimal_point,
      56             :                           Bignum* numerator, Bignum* denominator,
      57             :                           Vector<char>(buffer), int* length);
      58             : // Generates 'count' digits of numerator/denominator.
      59             : // Once 'count' digits have been produced rounds the result depending on the
      60             : // remainder (remainders of exactly .5 round upwards). Might update the
      61             : // decimal_point when rounding up (for example for 0.9999).
      62             : static void GenerateCountedDigits(int count, int* decimal_point,
      63             :                                   Bignum* numerator, Bignum* denominator,
      64             :                                   Vector<char>(buffer), int* length);
      65             : 
      66             : 
      67     1573128 : void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
      68             :                 Vector<char> buffer, int* length, int* decimal_point) {
      69             :   DCHECK_GT(v, 0);
      70             :   DCHECK(!Double(v).IsSpecial());
      71             :   uint64_t significand = Double(v).Significand();
      72     1573128 :   bool is_even = (significand & 1) == 0;
      73             :   int exponent = Double(v).Exponent();
      74             :   int normalized_exponent = NormalizedExponent(significand, exponent);
      75             :   // estimated_power might be too low by 1.
      76             :   int estimated_power = EstimatePower(normalized_exponent);
      77             : 
      78             :   // Shortcut for Fixed.
      79             :   // The requested digits correspond to the digits after the point. If the
      80             :   // number is much too small, then there is no need in trying to get any
      81             :   // digits.
      82     1573128 :   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
      83      144475 :     buffer[0] = '\0';
      84      144475 :     *length = 0;
      85             :     // Set decimal-point to -requested_digits. This is what Gay does.
      86             :     // Note that it should not have any effect anyways since the string is
      87             :     // empty.
      88      144475 :     *decimal_point = -requested_digits;
      89      144475 :     return;
      90             :   }
      91             : 
      92     1428653 :   Bignum numerator;
      93     1428653 :   Bignum denominator;
      94     1428653 :   Bignum delta_minus;
      95     1428653 :   Bignum delta_plus;
      96             :   // Make sure the bignum can grow large enough. The smallest double equals
      97             :   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
      98             :   // The maximum double is 1.7976931348623157e308 which needs fewer than
      99             :   // 308*4 binary digits.
     100             :   DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
     101     1428653 :   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
     102     1428653 :   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
     103             :                            &numerator, &denominator,
     104     1428653 :                            &delta_minus, &delta_plus);
     105             :   // We now have v = (numerator / denominator) * 10^estimated_power.
     106     1428653 :   FixupMultiply10(estimated_power, is_even, decimal_point,
     107             :                   &numerator, &denominator,
     108     1428653 :                   &delta_minus, &delta_plus);
     109             :   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
     110             :   //  1 <= (numerator + delta_plus) / denominator < 10
     111     1428653 :   switch (mode) {
     112             :     case BIGNUM_DTOA_SHORTEST:
     113             :       GenerateShortestDigits(&numerator, &denominator,
     114             :                              &delta_minus, &delta_plus,
     115      506914 :                              is_even, buffer, length);
     116      506914 :       break;
     117             :     case BIGNUM_DTOA_FIXED:
     118             :       BignumToFixed(requested_digits, decimal_point,
     119             :                     &numerator, &denominator,
     120      355596 :                     buffer, length);
     121      355596 :       break;
     122             :     case BIGNUM_DTOA_PRECISION:
     123             :       GenerateCountedDigits(requested_digits, decimal_point,
     124             :                             &numerator, &denominator,
     125      566143 :                             buffer, length);
     126      566143 :       break;
     127             :     default:
     128           0 :       UNREACHABLE();
     129             :   }
     130     2857306 :   buffer[*length] = '\0';
     131             : }
     132             : 
     133             : 
     134             : // The procedure starts generating digits from the left to the right and stops
     135             : // when the generated digits yield the shortest decimal representation of v. A
     136             : // decimal representation of v is a number lying closer to v than to any other
     137             : // double, so it converts to v when read.
     138             : //
     139             : // This is true if d, the decimal representation, is between m- and m+, the
     140             : // upper and lower boundaries. d must be strictly between them if !is_even.
     141             : //           m- := (numerator - delta_minus) / denominator
     142             : //           m+ := (numerator + delta_plus) / denominator
     143             : //
     144             : // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
     145             : //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
     146             : //   will be produced. This should be the standard precondition.
     147      506914 : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
     148             :                                    Bignum* delta_minus, Bignum* delta_plus,
     149             :                                    bool is_even,
     150             :                                    Vector<char> buffer, int* length) {
     151             :   // Small optimization: if delta_minus and delta_plus are the same just reuse
     152             :   // one of the two bignums.
     153      506914 :   if (Bignum::Equal(*delta_minus, *delta_plus)) {
     154             :     delta_plus = delta_minus;
     155             :   }
     156      506914 :   *length = 0;
     157             :   while (true) {
     158             :     uint16_t digit;
     159     8307264 :     digit = numerator->DivideModuloIntBignum(*denominator);
     160             :     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
     161             :     // digit = numerator / denominator (integer division).
     162             :     // numerator = numerator % denominator.
     163    16614528 :     buffer[(*length)++] = digit + '0';
     164             : 
     165             :     // Can we stop already?
     166             :     // If the remainder of the division is less than the distance to the lower
     167             :     // boundary we can stop. In this case we simply round down (discarding the
     168             :     // remainder).
     169             :     // Similarly we test if we can round up (using the upper boundary).
     170             :     bool in_delta_room_minus;
     171             :     bool in_delta_room_plus;
     172     8307264 :     if (is_even) {
     173             :       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
     174             :     } else {
     175             :       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
     176             :     }
     177     8307264 :     if (is_even) {
     178             :       in_delta_room_plus =
     179     4157323 :           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
     180             :     } else {
     181             :       in_delta_room_plus =
     182     4149941 :           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
     183             :     }
     184     8307264 :     if (!in_delta_room_minus && !in_delta_room_plus) {
     185             :       // Prepare for next iteration.
     186             :       numerator->Times10();
     187             :       delta_minus->Times10();
     188             :       // We optimized delta_plus to be equal to delta_minus (if they share the
     189             :       // same value). So don't multiply delta_plus if they point to the same
     190             :       // object.
     191     7800350 :       if (delta_minus != delta_plus) {
     192             :         delta_plus->Times10();
     193             :       }
     194      506914 :     } else if (in_delta_room_minus && in_delta_room_plus) {
     195             :       // Let's see if 2*numerator < denominator.
     196             :       // If yes, then the next digit would be < 5 and we can round down.
     197      234405 :       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
     198      234405 :       if (compare < 0) {
     199             :         // Remaining digits are less than .5. -> Round down (== do nothing).
     200      117137 :       } else if (compare > 0) {
     201             :         // Remaining digits are more than .5 of denominator. -> Round up.
     202             :         // Note that the last digit could not be a '9' as otherwise the whole
     203             :         // loop would have stopped earlier.
     204             :         // We still have an assert here in case the preconditions were not
     205             :         // satisfied.
     206             :         DCHECK_NE(buffer[(*length) - 1], '9');
     207      233136 :         buffer[(*length) - 1]++;
     208             :       } else {
     209             :         // Halfway case.
     210             :         // TODO(floitsch): need a way to solve half-way cases.
     211             :         //   For now let's round towards even (since this is what Gay seems to
     212             :         //   do).
     213             : 
     214        1138 :         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
     215             :           // Round down => Do nothing.
     216             :         } else {
     217             :           DCHECK_NE(buffer[(*length) - 1], '9');
     218         271 :           buffer[(*length) - 1]++;
     219             :         }
     220             :       }
     221             :       return;
     222      272509 :     } else if (in_delta_room_minus) {
     223             :       // Round down (== do nothing).
     224             :       return;
     225             :     } else {  // in_delta_room_plus
     226             :       // Round up.
     227             :       // Note again that the last digit could not be '9' since this would have
     228             :       // stopped the loop earlier.
     229             :       // We still have an DCHECK here, in case the preconditions were not
     230             :       // satisfied.
     231             :       DCHECK_NE(buffer[(*length) - 1], '9');
     232      268622 :       buffer[(*length) - 1]++;
     233      134311 :       return;
     234             :     }
     235             :   }
     236             : }
     237             : 
     238             : 
     239             : // Let v = numerator / denominator < 10.
     240             : // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
     241             : // from left to right. Once 'count' digits have been produced we decide wether
     242             : // to round up or down. Remainders of exactly .5 round upwards. Numbers such
     243             : // as 9.999999 propagate a carry all the way, and change the
     244             : // exponent (decimal_point), when rounding upwards.
     245      901944 : static void GenerateCountedDigits(int count, int* decimal_point,
     246             :                                   Bignum* numerator, Bignum* denominator,
     247             :                                   Vector<char>(buffer), int* length) {
     248             :   DCHECK_GE(count, 0);
     249    23906604 :   for (int i = 0; i < count - 1; ++i) {
     250             :     uint16_t digit;
     251    11502330 :     digit = numerator->DivideModuloIntBignum(*denominator);
     252             :     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
     253             :     // digit = numerator / denominator (integer division).
     254             :     // numerator = numerator % denominator.
     255    23004660 :     buffer[i] = digit + '0';
     256             :     // Prepare for next iteration.
     257             :     numerator->Times10();
     258             :   }
     259             :   // Generate the last digit.
     260             :   uint16_t digit;
     261      901944 :   digit = numerator->DivideModuloIntBignum(*denominator);
     262      901944 :   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
     263      402107 :     digit++;
     264             :   }
     265     1803888 :   buffer[count - 1] = digit + '0';
     266             :   // Correct bad digits (in case we had a sequence of '9's). Propagate the
     267             :   // carry until we hat a non-'9' or til we reach the first digit.
     268      943622 :   for (int i = count - 1; i > 0; --i) {
     269     1816534 :     if (buffer[i] != '0' + 10) break;
     270       41678 :     buffer[i] = '0';
     271       83356 :     buffer[i - 1]++;
     272             :   }
     273      901944 :   if (buffer[0] == '0' + 10) {
     274             :     // Propagate a carry past the top place.
     275         770 :     buffer[0] = '1';
     276         770 :     (*decimal_point)++;
     277             :   }
     278      901944 :   *length = count;
     279      901944 : }
     280             : 
     281             : 
     282             : // Generates 'requested_digits' after the decimal point. It might omit
     283             : // trailing '0's. If the input number is too small then no digits at all are
     284             : // generated (ex.: 2 fixed digits for 0.00001).
     285             : //
     286             : // Input verifies:  1 <= (numerator + delta) / denominator < 10.
     287      355596 : static void BignumToFixed(int requested_digits, int* decimal_point,
     288             :                           Bignum* numerator, Bignum* denominator,
     289             :                           Vector<char>(buffer), int* length) {
     290             :   // Note that we have to look at more than just the requested_digits, since
     291             :   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
     292             :   // Even though the power of v equals 0 we can't just stop here.
     293      355596 :   if (-(*decimal_point) > requested_digits) {
     294             :     // The number is definitively too small.
     295             :     // Ex: 0.001 with requested_digits == 1.
     296             :     // Set decimal-point to -requested_digits. This is what Gay does.
     297             :     // Note that it should not have any effect anyways since the string is
     298             :     // empty.
     299        8895 :     *decimal_point = -requested_digits;
     300        8895 :     *length = 0;
     301             :     return;
     302      346701 :   } else if (-(*decimal_point) == requested_digits) {
     303             :     // We only need to verify if the number rounds down or up.
     304             :     // Ex: 0.04 and 0.06 with requested_digits == 1.
     305             :     DCHECK(*decimal_point == -requested_digits);
     306             :     // Initially the fraction lies in range (1, 10]. Multiply the denominator
     307             :     // by 10 so that we can compare more easily.
     308             :     denominator->Times10();
     309       10900 :     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
     310             :       // If the fraction is >= 0.5 then we have to include the rounded
     311             :       // digit.
     312        3145 :       buffer[0] = '1';
     313        3145 :       *length = 1;
     314        3145 :       (*decimal_point)++;
     315             :     } else {
     316             :       // Note that we caught most of similar cases earlier.
     317        7755 :       *length = 0;
     318             :     }
     319             :     return;
     320             :   } else {
     321             :     // The requested digits correspond to the digits after the point.
     322             :     // The variable 'needed_digits' includes the digits before the point.
     323      335801 :     int needed_digits = (*decimal_point) + requested_digits;
     324             :     GenerateCountedDigits(needed_digits, decimal_point,
     325             :                           numerator, denominator,
     326      335801 :                           buffer, length);
     327             :   }
     328             : }
     329             : 
     330             : 
     331             : // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
     332             : // v = f * 2^exponent and 2^52 <= f < 2^53.
     333             : // v is hence a normalized double with the given exponent. The output is an
     334             : // approximation for the exponent of the decimal approimation .digits * 10^k.
     335             : //
     336             : // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
     337             : // Note: this property holds for v's upper boundary m+ too.
     338             : //    10^k <= m+ < 10^k+1.
     339             : //   (see explanation below).
     340             : //
     341             : // Examples:
     342             : //  EstimatePower(0)   => 16
     343             : //  EstimatePower(-52) => 0
     344             : //
     345             : // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
     346             : static int EstimatePower(int exponent) {
     347             :   // This function estimates log10 of v where v = f*2^e (with e == exponent).
     348             :   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
     349             :   // Note that f is bounded by its container size. Let p = 53 (the double's
     350             :   // significand size). Then 2^(p-1) <= f < 2^p.
     351             :   //
     352             :   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
     353             :   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
     354             :   // The computed number undershoots by less than 0.631 (when we compute log3
     355             :   // and not log10).
     356             :   //
     357             :   // Optimization: since we only need an approximated result this computation
     358             :   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
     359             :   // not really measurable, though.
     360             :   //
     361             :   // Since we want to avoid overshooting we decrement by 1e10 so that
     362             :   // floating-point imprecisions don't affect us.
     363             :   //
     364             :   // Explanation for v's boundary m+: the computation takes advantage of
     365             :   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
     366             :   // (even for denormals where the delta can be much more important).
     367             : 
     368             :   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
     369             : 
     370             :   // For doubles len(f) == 53 (don't forget the hidden bit).
     371             :   const int kSignificandSize = 53;
     372             :   double estimate =
     373     1573128 :       std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
     374     1573128 :   return static_cast<int>(estimate);
     375             : }
     376             : 
     377             : 
     378             : // See comments for InitialScaledStartValues.
     379      565609 : static void InitialScaledStartValuesPositiveExponent(
     380             :     double v, int estimated_power, bool need_boundary_deltas,
     381             :     Bignum* numerator, Bignum* denominator,
     382             :     Bignum* delta_minus, Bignum* delta_plus) {
     383             :   // A positive exponent implies a positive power.
     384             :   DCHECK_GE(estimated_power, 0);
     385             :   // Since the estimated_power is positive we simply multiply the denominator
     386             :   // by 10^estimated_power.
     387             : 
     388             :   // numerator = v.
     389      565609 :   numerator->AssignUInt64(Double(v).Significand());
     390      565609 :   numerator->ShiftLeft(Double(v).Exponent());
     391             :   // denominator = 10^estimated_power.
     392      565609 :   denominator->AssignPowerUInt16(10, estimated_power);
     393             : 
     394      565609 :   if (need_boundary_deltas) {
     395             :     // Introduce a common denominator so that the deltas to the boundaries are
     396             :     // integers.
     397      238249 :     denominator->ShiftLeft(1);
     398      238249 :     numerator->ShiftLeft(1);
     399             :     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
     400             :     // denominator (of 2) delta_plus equals 2^e.
     401      238249 :     delta_plus->AssignUInt16(1);
     402      238249 :     delta_plus->ShiftLeft(Double(v).Exponent());
     403             :     // Same for delta_minus (with adjustments below if f == 2^p-1).
     404      238249 :     delta_minus->AssignUInt16(1);
     405      238249 :     delta_minus->ShiftLeft(Double(v).Exponent());
     406             : 
     407             :     // If the significand (without the hidden bit) is 0, then the lower
     408             :     // boundary is closer than just half a ulp (unit in the last place).
     409             :     // There is only one exception: if the next lower number is a denormal then
     410             :     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
     411             :     // have to test it in the other function where exponent < 0).
     412             :     uint64_t v_bits = Double(v).AsUint64();
     413      238249 :     if ((v_bits & Double::kSignificandMask) == 0) {
     414             :       // The lower boundary is closer at half the distance of "normal" numbers.
     415             :       // Increase the common denominator and adapt all but the delta_minus.
     416          95 :       denominator->ShiftLeft(1);  // *2
     417          95 :       numerator->ShiftLeft(1);    // *2
     418          95 :       delta_plus->ShiftLeft(1);   // *2
     419             :     }
     420             :   }
     421      565609 : }
     422             : 
     423             : 
     424             : // See comments for InitialScaledStartValues
     425      211030 : static void InitialScaledStartValuesNegativeExponentPositivePower(
     426             :     double v, int estimated_power, bool need_boundary_deltas,
     427             :     Bignum* numerator, Bignum* denominator,
     428             :     Bignum* delta_minus, Bignum* delta_plus) {
     429             :   uint64_t significand = Double(v).Significand();
     430             :   int exponent = Double(v).Exponent();
     431             :   // v = f * 2^e with e < 0, and with estimated_power >= 0.
     432             :   // This means that e is close to 0 (have a look at how estimated_power is
     433             :   // computed).
     434             : 
     435             :   // numerator = significand
     436             :   //  since v = significand * 2^exponent this is equivalent to
     437             :   //  numerator = v * / 2^-exponent
     438      211030 :   numerator->AssignUInt64(significand);
     439             :   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
     440      211030 :   denominator->AssignPowerUInt16(10, estimated_power);
     441      211030 :   denominator->ShiftLeft(-exponent);
     442             : 
     443      211030 :   if (need_boundary_deltas) {
     444             :     // Introduce a common denominator so that the deltas to the boundaries are
     445             :     // integers.
     446       16771 :     denominator->ShiftLeft(1);
     447       16771 :     numerator->ShiftLeft(1);
     448             :     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
     449             :     // denominator (of 2) delta_plus equals 2^e.
     450             :     // Given that the denominator already includes v's exponent the distance
     451             :     // to the boundaries is simply 1.
     452       16771 :     delta_plus->AssignUInt16(1);
     453             :     // Same for delta_minus (with adjustments below if f == 2^p-1).
     454       16771 :     delta_minus->AssignUInt16(1);
     455             : 
     456             :     // If the significand (without the hidden bit) is 0, then the lower
     457             :     // boundary is closer than just one ulp (unit in the last place).
     458             :     // There is only one exception: if the next lower number is a denormal
     459             :     // then the distance is 1 ulp. Since the exponent is close to zero
     460             :     // (otherwise estimated_power would have been negative) this cannot happen
     461             :     // here either.
     462             :     uint64_t v_bits = Double(v).AsUint64();
     463       16771 :     if ((v_bits & Double::kSignificandMask) == 0) {
     464             :       // The lower boundary is closer at half the distance of "normal" numbers.
     465             :       // Increase the denominator and adapt all but the delta_minus.
     466          10 :       denominator->ShiftLeft(1);  // *2
     467          10 :       numerator->ShiftLeft(1);    // *2
     468          10 :       delta_plus->ShiftLeft(1);   // *2
     469             :     }
     470             :   }
     471      211030 : }
     472             : 
     473             : 
     474             : // See comments for InitialScaledStartValues
     475      652014 : static void InitialScaledStartValuesNegativeExponentNegativePower(
     476             :     double v, int estimated_power, bool need_boundary_deltas,
     477             :     Bignum* numerator, Bignum* denominator,
     478             :     Bignum* delta_minus, Bignum* delta_plus) {
     479             :   const uint64_t kMinimalNormalizedExponent =
     480             :       V8_2PART_UINT64_C(0x00100000, 00000000);
     481             :   uint64_t significand = Double(v).Significand();
     482             :   int exponent = Double(v).Exponent();
     483             :   // Instead of multiplying the denominator with 10^estimated_power we
     484             :   // multiply all values (numerator and deltas) by 10^-estimated_power.
     485             : 
     486             :   // Use numerator as temporary container for power_ten.
     487             :   Bignum* power_ten = numerator;
     488      652014 :   power_ten->AssignPowerUInt16(10, -estimated_power);
     489             : 
     490      652014 :   if (need_boundary_deltas) {
     491             :     // Since power_ten == numerator we must make a copy of 10^estimated_power
     492             :     // before we complete the computation of the numerator.
     493             :     // delta_plus = delta_minus = 10^estimated_power
     494      251894 :     delta_plus->AssignBignum(*power_ten);
     495      251894 :     delta_minus->AssignBignum(*power_ten);
     496             :   }
     497             : 
     498             :   // numerator = significand * 2 * 10^-estimated_power
     499             :   //  since v = significand * 2^exponent this is equivalent to
     500             :   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
     501             :   // Remember: numerator has been abused as power_ten. So no need to assign it
     502             :   //  to itself.
     503             :   DCHECK(numerator == power_ten);
     504      652014 :   numerator->MultiplyByUInt64(significand);
     505             : 
     506             :   // denominator = 2 * 2^-exponent with exponent < 0.
     507      652014 :   denominator->AssignUInt16(1);
     508      652014 :   denominator->ShiftLeft(-exponent);
     509             : 
     510      652014 :   if (need_boundary_deltas) {
     511             :     // Introduce a common denominator so that the deltas to the boundaries are
     512             :     // integers.
     513      251894 :     numerator->ShiftLeft(1);
     514      251894 :     denominator->ShiftLeft(1);
     515             :     // With this shift the boundaries have their correct value, since
     516             :     // delta_plus = 10^-estimated_power, and
     517             :     // delta_minus = 10^-estimated_power.
     518             :     // These assignments have been done earlier.
     519             : 
     520             :     // The special case where the lower boundary is twice as close.
     521             :     // This time we have to look out for the exception too.
     522             :     uint64_t v_bits = Double(v).AsUint64();
     523      251894 :     if ((v_bits & Double::kSignificandMask) == 0 &&
     524             :         // The only exception where a significand == 0 has its boundaries at
     525             :         // "normal" distances:
     526             :         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
     527         342 :       numerator->ShiftLeft(1);    // *2
     528         342 :       denominator->ShiftLeft(1);  // *2
     529         342 :       delta_plus->ShiftLeft(1);   // *2
     530             :     }
     531             :   }
     532      652014 : }
     533             : 
     534             : 
     535             : // Let v = significand * 2^exponent.
     536             : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
     537             : // and denominator. The functions GenerateShortestDigits and
     538             : // GenerateCountedDigits will then convert this ratio to its decimal
     539             : // representation d, with the required accuracy.
     540             : // Then d * 10^estimated_power is the representation of v.
     541             : // (Note: the fraction and the estimated_power might get adjusted before
     542             : // generating the decimal representation.)
     543             : //
     544             : // The initial start values consist of:
     545             : //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
     546             : //  - a scaled (common) denominator.
     547             : //  optionally (used by GenerateShortestDigits to decide if it has the shortest
     548             : //  decimal converting back to v):
     549             : //  - v - m-: the distance to the lower boundary.
     550             : //  - m+ - v: the distance to the upper boundary.
     551             : //
     552             : // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
     553             : //
     554             : // Let ep == estimated_power, then the returned values will satisfy:
     555             : //  v / 10^ep = numerator / denominator.
     556             : //  v's boundarys m- and m+:
     557             : //    m- / 10^ep == v / 10^ep - delta_minus / denominator
     558             : //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
     559             : //  Or in other words:
     560             : //    m- == v - delta_minus * 10^ep / denominator;
     561             : //    m+ == v + delta_plus * 10^ep / denominator;
     562             : //
     563             : // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
     564             : //  or       10^k <= v < 10^(k+1)
     565             : //  we then have 0.1 <= numerator/denominator < 1
     566             : //           or    1 <= numerator/denominator < 10
     567             : //
     568             : // It is then easy to kickstart the digit-generation routine.
     569             : //
     570             : // The boundary-deltas are only filled if need_boundary_deltas is set.
     571     1428653 : static void InitialScaledStartValues(double v,
     572             :                                      int estimated_power,
     573             :                                      bool need_boundary_deltas,
     574             :                                      Bignum* numerator,
     575             :                                      Bignum* denominator,
     576             :                                      Bignum* delta_minus,
     577             :                                      Bignum* delta_plus) {
     578     1428653 :   if (Double(v).Exponent() >= 0) {
     579      565609 :     InitialScaledStartValuesPositiveExponent(
     580             :         v, estimated_power, need_boundary_deltas,
     581      565609 :         numerator, denominator, delta_minus, delta_plus);
     582      863044 :   } else if (estimated_power >= 0) {
     583      211030 :     InitialScaledStartValuesNegativeExponentPositivePower(
     584             :         v, estimated_power, need_boundary_deltas,
     585      211030 :         numerator, denominator, delta_minus, delta_plus);
     586             :   } else {
     587      652014 :     InitialScaledStartValuesNegativeExponentNegativePower(
     588             :         v, estimated_power, need_boundary_deltas,
     589      652014 :         numerator, denominator, delta_minus, delta_plus);
     590             :   }
     591     1428653 : }
     592             : 
     593             : 
     594             : // This routine multiplies numerator/denominator so that its values lies in the
     595             : // range 1-10. That is after a call to this function we have:
     596             : //    1 <= (numerator + delta_plus) /denominator < 10.
     597             : // Let numerator the input before modification and numerator' the argument
     598             : // after modification, then the output-parameter decimal_point is such that
     599             : //  numerator / denominator * 10^estimated_power ==
     600             : //    numerator' / denominator' * 10^(decimal_point - 1)
     601             : // In some cases estimated_power was too low, and this is already the case. We
     602             : // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
     603             : // estimated_power) but do not touch the numerator or denominator.
     604             : // Otherwise the routine multiplies the numerator and the deltas by 10.
     605     1428653 : static void FixupMultiply10(int estimated_power, bool is_even,
     606             :                             int* decimal_point,
     607             :                             Bignum* numerator, Bignum* denominator,
     608             :                             Bignum* delta_minus, Bignum* delta_plus) {
     609             :   bool in_range;
     610     1428653 :   if (is_even) {
     611             :     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
     612             :     // are rounded to the closest floating-point number with even significand.
     613      714924 :     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
     614             :   } else {
     615      713729 :     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
     616             :   }
     617     1428653 :   if (in_range) {
     618             :     // Since numerator + delta_plus >= denominator we already have
     619             :     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
     620      238349 :     *decimal_point = estimated_power + 1;
     621             :   } else {
     622     1190304 :     *decimal_point = estimated_power;
     623             :     numerator->Times10();
     624     1190304 :     if (Bignum::Equal(*delta_minus, *delta_plus)) {
     625             :       delta_minus->Times10();
     626     1189862 :       delta_plus->AssignBignum(*delta_minus);
     627             :     } else {
     628             :       delta_minus->Times10();
     629             :       delta_plus->Times10();
     630             :     }
     631             :   }
     632     1428653 : }
     633             : 
     634             : }  // namespace internal
     635      122004 : }  // namespace v8

Generated by: LCOV version 1.10