Line data Source code
1 : // Copyright 2011 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/bignum-dtoa.h"
6 :
7 : #include <cmath>
8 :
9 : #include "src/base/logging.h"
10 : #include "src/bignum.h"
11 : #include "src/double.h"
12 : #include "src/utils.h"
13 :
14 : namespace v8 {
15 : namespace internal {
16 :
17 : static int NormalizedExponent(uint64_t significand, int exponent) {
18 : DCHECK_NE(significand, 0);
19 1574958 : while ((significand & Double::kHiddenBit) == 0) {
20 1830 : significand = significand << 1;
21 1830 : exponent = exponent - 1;
22 : }
23 : return exponent;
24 : }
25 :
26 :
27 : // Forward declarations:
28 : // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
29 : static int EstimatePower(int exponent);
30 : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
31 : // and denominator.
32 : static void InitialScaledStartValues(double v,
33 : int estimated_power,
34 : bool need_boundary_deltas,
35 : Bignum* numerator,
36 : Bignum* denominator,
37 : Bignum* delta_minus,
38 : Bignum* delta_plus);
39 : // Multiplies numerator/denominator so that its values lies in the range 1-10.
40 : // Returns decimal_point s.t.
41 : // v = numerator'/denominator' * 10^(decimal_point-1)
42 : // where numerator' and denominator' are the values of numerator and
43 : // denominator after the call to this function.
44 : static void FixupMultiply10(int estimated_power, bool is_even,
45 : int* decimal_point,
46 : Bignum* numerator, Bignum* denominator,
47 : Bignum* delta_minus, Bignum* delta_plus);
48 : // Generates digits from the left to the right and stops when the generated
49 : // digits yield the shortest decimal representation of v.
50 : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
51 : Bignum* delta_minus, Bignum* delta_plus,
52 : bool is_even,
53 : Vector<char> buffer, int* length);
54 : // Generates 'requested_digits' after the decimal point.
55 : static void BignumToFixed(int requested_digits, int* decimal_point,
56 : Bignum* numerator, Bignum* denominator,
57 : Vector<char>(buffer), int* length);
58 : // Generates 'count' digits of numerator/denominator.
59 : // Once 'count' digits have been produced rounds the result depending on the
60 : // remainder (remainders of exactly .5 round upwards). Might update the
61 : // decimal_point when rounding up (for example for 0.9999).
62 : static void GenerateCountedDigits(int count, int* decimal_point,
63 : Bignum* numerator, Bignum* denominator,
64 : Vector<char>(buffer), int* length);
65 :
66 :
67 1573128 : void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
68 : Vector<char> buffer, int* length, int* decimal_point) {
69 : DCHECK_GT(v, 0);
70 : DCHECK(!Double(v).IsSpecial());
71 : uint64_t significand = Double(v).Significand();
72 1573128 : bool is_even = (significand & 1) == 0;
73 : int exponent = Double(v).Exponent();
74 : int normalized_exponent = NormalizedExponent(significand, exponent);
75 : // estimated_power might be too low by 1.
76 : int estimated_power = EstimatePower(normalized_exponent);
77 :
78 : // Shortcut for Fixed.
79 : // The requested digits correspond to the digits after the point. If the
80 : // number is much too small, then there is no need in trying to get any
81 : // digits.
82 1573128 : if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
83 144475 : buffer[0] = '\0';
84 144475 : *length = 0;
85 : // Set decimal-point to -requested_digits. This is what Gay does.
86 : // Note that it should not have any effect anyways since the string is
87 : // empty.
88 144475 : *decimal_point = -requested_digits;
89 144475 : return;
90 : }
91 :
92 1428653 : Bignum numerator;
93 1428653 : Bignum denominator;
94 1428653 : Bignum delta_minus;
95 1428653 : Bignum delta_plus;
96 : // Make sure the bignum can grow large enough. The smallest double equals
97 : // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
98 : // The maximum double is 1.7976931348623157e308 which needs fewer than
99 : // 308*4 binary digits.
100 : DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
101 1428653 : bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
102 1428653 : InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
103 : &numerator, &denominator,
104 1428653 : &delta_minus, &delta_plus);
105 : // We now have v = (numerator / denominator) * 10^estimated_power.
106 1428653 : FixupMultiply10(estimated_power, is_even, decimal_point,
107 : &numerator, &denominator,
108 1428653 : &delta_minus, &delta_plus);
109 : // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
110 : // 1 <= (numerator + delta_plus) / denominator < 10
111 1428653 : switch (mode) {
112 : case BIGNUM_DTOA_SHORTEST:
113 : GenerateShortestDigits(&numerator, &denominator,
114 : &delta_minus, &delta_plus,
115 506914 : is_even, buffer, length);
116 506914 : break;
117 : case BIGNUM_DTOA_FIXED:
118 : BignumToFixed(requested_digits, decimal_point,
119 : &numerator, &denominator,
120 355596 : buffer, length);
121 355596 : break;
122 : case BIGNUM_DTOA_PRECISION:
123 : GenerateCountedDigits(requested_digits, decimal_point,
124 : &numerator, &denominator,
125 566143 : buffer, length);
126 566143 : break;
127 : default:
128 0 : UNREACHABLE();
129 : }
130 2857306 : buffer[*length] = '\0';
131 : }
132 :
133 :
134 : // The procedure starts generating digits from the left to the right and stops
135 : // when the generated digits yield the shortest decimal representation of v. A
136 : // decimal representation of v is a number lying closer to v than to any other
137 : // double, so it converts to v when read.
138 : //
139 : // This is true if d, the decimal representation, is between m- and m+, the
140 : // upper and lower boundaries. d must be strictly between them if !is_even.
141 : // m- := (numerator - delta_minus) / denominator
142 : // m+ := (numerator + delta_plus) / denominator
143 : //
144 : // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
145 : // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
146 : // will be produced. This should be the standard precondition.
147 506914 : static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
148 : Bignum* delta_minus, Bignum* delta_plus,
149 : bool is_even,
150 : Vector<char> buffer, int* length) {
151 : // Small optimization: if delta_minus and delta_plus are the same just reuse
152 : // one of the two bignums.
153 506914 : if (Bignum::Equal(*delta_minus, *delta_plus)) {
154 : delta_plus = delta_minus;
155 : }
156 506914 : *length = 0;
157 : while (true) {
158 : uint16_t digit;
159 8307264 : digit = numerator->DivideModuloIntBignum(*denominator);
160 : DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive.
161 : // digit = numerator / denominator (integer division).
162 : // numerator = numerator % denominator.
163 16614528 : buffer[(*length)++] = digit + '0';
164 :
165 : // Can we stop already?
166 : // If the remainder of the division is less than the distance to the lower
167 : // boundary we can stop. In this case we simply round down (discarding the
168 : // remainder).
169 : // Similarly we test if we can round up (using the upper boundary).
170 : bool in_delta_room_minus;
171 : bool in_delta_room_plus;
172 8307264 : if (is_even) {
173 : in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
174 : } else {
175 : in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
176 : }
177 8307264 : if (is_even) {
178 : in_delta_room_plus =
179 4157323 : Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
180 : } else {
181 : in_delta_room_plus =
182 4149941 : Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
183 : }
184 8307264 : if (!in_delta_room_minus && !in_delta_room_plus) {
185 : // Prepare for next iteration.
186 : numerator->Times10();
187 : delta_minus->Times10();
188 : // We optimized delta_plus to be equal to delta_minus (if they share the
189 : // same value). So don't multiply delta_plus if they point to the same
190 : // object.
191 7800350 : if (delta_minus != delta_plus) {
192 : delta_plus->Times10();
193 : }
194 506914 : } else if (in_delta_room_minus && in_delta_room_plus) {
195 : // Let's see if 2*numerator < denominator.
196 : // If yes, then the next digit would be < 5 and we can round down.
197 234405 : int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
198 234405 : if (compare < 0) {
199 : // Remaining digits are less than .5. -> Round down (== do nothing).
200 117137 : } else if (compare > 0) {
201 : // Remaining digits are more than .5 of denominator. -> Round up.
202 : // Note that the last digit could not be a '9' as otherwise the whole
203 : // loop would have stopped earlier.
204 : // We still have an assert here in case the preconditions were not
205 : // satisfied.
206 : DCHECK_NE(buffer[(*length) - 1], '9');
207 233136 : buffer[(*length) - 1]++;
208 : } else {
209 : // Halfway case.
210 : // TODO(floitsch): need a way to solve half-way cases.
211 : // For now let's round towards even (since this is what Gay seems to
212 : // do).
213 :
214 1138 : if ((buffer[(*length) - 1] - '0') % 2 == 0) {
215 : // Round down => Do nothing.
216 : } else {
217 : DCHECK_NE(buffer[(*length) - 1], '9');
218 271 : buffer[(*length) - 1]++;
219 : }
220 : }
221 : return;
222 272509 : } else if (in_delta_room_minus) {
223 : // Round down (== do nothing).
224 : return;
225 : } else { // in_delta_room_plus
226 : // Round up.
227 : // Note again that the last digit could not be '9' since this would have
228 : // stopped the loop earlier.
229 : // We still have an DCHECK here, in case the preconditions were not
230 : // satisfied.
231 : DCHECK_NE(buffer[(*length) - 1], '9');
232 268622 : buffer[(*length) - 1]++;
233 134311 : return;
234 : }
235 : }
236 : }
237 :
238 :
239 : // Let v = numerator / denominator < 10.
240 : // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
241 : // from left to right. Once 'count' digits have been produced we decide wether
242 : // to round up or down. Remainders of exactly .5 round upwards. Numbers such
243 : // as 9.999999 propagate a carry all the way, and change the
244 : // exponent (decimal_point), when rounding upwards.
245 901944 : static void GenerateCountedDigits(int count, int* decimal_point,
246 : Bignum* numerator, Bignum* denominator,
247 : Vector<char>(buffer), int* length) {
248 : DCHECK_GE(count, 0);
249 23906604 : for (int i = 0; i < count - 1; ++i) {
250 : uint16_t digit;
251 11502330 : digit = numerator->DivideModuloIntBignum(*denominator);
252 : DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive.
253 : // digit = numerator / denominator (integer division).
254 : // numerator = numerator % denominator.
255 23004660 : buffer[i] = digit + '0';
256 : // Prepare for next iteration.
257 : numerator->Times10();
258 : }
259 : // Generate the last digit.
260 : uint16_t digit;
261 901944 : digit = numerator->DivideModuloIntBignum(*denominator);
262 901944 : if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
263 402107 : digit++;
264 : }
265 1803888 : buffer[count - 1] = digit + '0';
266 : // Correct bad digits (in case we had a sequence of '9's). Propagate the
267 : // carry until we hat a non-'9' or til we reach the first digit.
268 943622 : for (int i = count - 1; i > 0; --i) {
269 1816534 : if (buffer[i] != '0' + 10) break;
270 41678 : buffer[i] = '0';
271 83356 : buffer[i - 1]++;
272 : }
273 901944 : if (buffer[0] == '0' + 10) {
274 : // Propagate a carry past the top place.
275 770 : buffer[0] = '1';
276 770 : (*decimal_point)++;
277 : }
278 901944 : *length = count;
279 901944 : }
280 :
281 :
282 : // Generates 'requested_digits' after the decimal point. It might omit
283 : // trailing '0's. If the input number is too small then no digits at all are
284 : // generated (ex.: 2 fixed digits for 0.00001).
285 : //
286 : // Input verifies: 1 <= (numerator + delta) / denominator < 10.
287 355596 : static void BignumToFixed(int requested_digits, int* decimal_point,
288 : Bignum* numerator, Bignum* denominator,
289 : Vector<char>(buffer), int* length) {
290 : // Note that we have to look at more than just the requested_digits, since
291 : // a number could be rounded up. Example: v=0.5 with requested_digits=0.
292 : // Even though the power of v equals 0 we can't just stop here.
293 355596 : if (-(*decimal_point) > requested_digits) {
294 : // The number is definitively too small.
295 : // Ex: 0.001 with requested_digits == 1.
296 : // Set decimal-point to -requested_digits. This is what Gay does.
297 : // Note that it should not have any effect anyways since the string is
298 : // empty.
299 8895 : *decimal_point = -requested_digits;
300 8895 : *length = 0;
301 : return;
302 346701 : } else if (-(*decimal_point) == requested_digits) {
303 : // We only need to verify if the number rounds down or up.
304 : // Ex: 0.04 and 0.06 with requested_digits == 1.
305 : DCHECK(*decimal_point == -requested_digits);
306 : // Initially the fraction lies in range (1, 10]. Multiply the denominator
307 : // by 10 so that we can compare more easily.
308 : denominator->Times10();
309 10900 : if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
310 : // If the fraction is >= 0.5 then we have to include the rounded
311 : // digit.
312 3145 : buffer[0] = '1';
313 3145 : *length = 1;
314 3145 : (*decimal_point)++;
315 : } else {
316 : // Note that we caught most of similar cases earlier.
317 7755 : *length = 0;
318 : }
319 : return;
320 : } else {
321 : // The requested digits correspond to the digits after the point.
322 : // The variable 'needed_digits' includes the digits before the point.
323 335801 : int needed_digits = (*decimal_point) + requested_digits;
324 : GenerateCountedDigits(needed_digits, decimal_point,
325 : numerator, denominator,
326 335801 : buffer, length);
327 : }
328 : }
329 :
330 :
331 : // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
332 : // v = f * 2^exponent and 2^52 <= f < 2^53.
333 : // v is hence a normalized double with the given exponent. The output is an
334 : // approximation for the exponent of the decimal approimation .digits * 10^k.
335 : //
336 : // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
337 : // Note: this property holds for v's upper boundary m+ too.
338 : // 10^k <= m+ < 10^k+1.
339 : // (see explanation below).
340 : //
341 : // Examples:
342 : // EstimatePower(0) => 16
343 : // EstimatePower(-52) => 0
344 : //
345 : // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
346 : static int EstimatePower(int exponent) {
347 : // This function estimates log10 of v where v = f*2^e (with e == exponent).
348 : // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
349 : // Note that f is bounded by its container size. Let p = 53 (the double's
350 : // significand size). Then 2^(p-1) <= f < 2^p.
351 : //
352 : // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
353 : // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
354 : // The computed number undershoots by less than 0.631 (when we compute log3
355 : // and not log10).
356 : //
357 : // Optimization: since we only need an approximated result this computation
358 : // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
359 : // not really measurable, though.
360 : //
361 : // Since we want to avoid overshooting we decrement by 1e10 so that
362 : // floating-point imprecisions don't affect us.
363 : //
364 : // Explanation for v's boundary m+: the computation takes advantage of
365 : // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
366 : // (even for denormals where the delta can be much more important).
367 :
368 : const double k1Log10 = 0.30102999566398114; // 1/lg(10)
369 :
370 : // For doubles len(f) == 53 (don't forget the hidden bit).
371 : const int kSignificandSize = 53;
372 : double estimate =
373 1573128 : std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
374 1573128 : return static_cast<int>(estimate);
375 : }
376 :
377 :
378 : // See comments for InitialScaledStartValues.
379 565609 : static void InitialScaledStartValuesPositiveExponent(
380 : double v, int estimated_power, bool need_boundary_deltas,
381 : Bignum* numerator, Bignum* denominator,
382 : Bignum* delta_minus, Bignum* delta_plus) {
383 : // A positive exponent implies a positive power.
384 : DCHECK_GE(estimated_power, 0);
385 : // Since the estimated_power is positive we simply multiply the denominator
386 : // by 10^estimated_power.
387 :
388 : // numerator = v.
389 565609 : numerator->AssignUInt64(Double(v).Significand());
390 565609 : numerator->ShiftLeft(Double(v).Exponent());
391 : // denominator = 10^estimated_power.
392 565609 : denominator->AssignPowerUInt16(10, estimated_power);
393 :
394 565609 : if (need_boundary_deltas) {
395 : // Introduce a common denominator so that the deltas to the boundaries are
396 : // integers.
397 238249 : denominator->ShiftLeft(1);
398 238249 : numerator->ShiftLeft(1);
399 : // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
400 : // denominator (of 2) delta_plus equals 2^e.
401 238249 : delta_plus->AssignUInt16(1);
402 238249 : delta_plus->ShiftLeft(Double(v).Exponent());
403 : // Same for delta_minus (with adjustments below if f == 2^p-1).
404 238249 : delta_minus->AssignUInt16(1);
405 238249 : delta_minus->ShiftLeft(Double(v).Exponent());
406 :
407 : // If the significand (without the hidden bit) is 0, then the lower
408 : // boundary is closer than just half a ulp (unit in the last place).
409 : // There is only one exception: if the next lower number is a denormal then
410 : // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
411 : // have to test it in the other function where exponent < 0).
412 : uint64_t v_bits = Double(v).AsUint64();
413 238249 : if ((v_bits & Double::kSignificandMask) == 0) {
414 : // The lower boundary is closer at half the distance of "normal" numbers.
415 : // Increase the common denominator and adapt all but the delta_minus.
416 95 : denominator->ShiftLeft(1); // *2
417 95 : numerator->ShiftLeft(1); // *2
418 95 : delta_plus->ShiftLeft(1); // *2
419 : }
420 : }
421 565609 : }
422 :
423 :
424 : // See comments for InitialScaledStartValues
425 211030 : static void InitialScaledStartValuesNegativeExponentPositivePower(
426 : double v, int estimated_power, bool need_boundary_deltas,
427 : Bignum* numerator, Bignum* denominator,
428 : Bignum* delta_minus, Bignum* delta_plus) {
429 : uint64_t significand = Double(v).Significand();
430 : int exponent = Double(v).Exponent();
431 : // v = f * 2^e with e < 0, and with estimated_power >= 0.
432 : // This means that e is close to 0 (have a look at how estimated_power is
433 : // computed).
434 :
435 : // numerator = significand
436 : // since v = significand * 2^exponent this is equivalent to
437 : // numerator = v * / 2^-exponent
438 211030 : numerator->AssignUInt64(significand);
439 : // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
440 211030 : denominator->AssignPowerUInt16(10, estimated_power);
441 211030 : denominator->ShiftLeft(-exponent);
442 :
443 211030 : if (need_boundary_deltas) {
444 : // Introduce a common denominator so that the deltas to the boundaries are
445 : // integers.
446 16771 : denominator->ShiftLeft(1);
447 16771 : numerator->ShiftLeft(1);
448 : // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
449 : // denominator (of 2) delta_plus equals 2^e.
450 : // Given that the denominator already includes v's exponent the distance
451 : // to the boundaries is simply 1.
452 16771 : delta_plus->AssignUInt16(1);
453 : // Same for delta_minus (with adjustments below if f == 2^p-1).
454 16771 : delta_minus->AssignUInt16(1);
455 :
456 : // If the significand (without the hidden bit) is 0, then the lower
457 : // boundary is closer than just one ulp (unit in the last place).
458 : // There is only one exception: if the next lower number is a denormal
459 : // then the distance is 1 ulp. Since the exponent is close to zero
460 : // (otherwise estimated_power would have been negative) this cannot happen
461 : // here either.
462 : uint64_t v_bits = Double(v).AsUint64();
463 16771 : if ((v_bits & Double::kSignificandMask) == 0) {
464 : // The lower boundary is closer at half the distance of "normal" numbers.
465 : // Increase the denominator and adapt all but the delta_minus.
466 10 : denominator->ShiftLeft(1); // *2
467 10 : numerator->ShiftLeft(1); // *2
468 10 : delta_plus->ShiftLeft(1); // *2
469 : }
470 : }
471 211030 : }
472 :
473 :
474 : // See comments for InitialScaledStartValues
475 652014 : static void InitialScaledStartValuesNegativeExponentNegativePower(
476 : double v, int estimated_power, bool need_boundary_deltas,
477 : Bignum* numerator, Bignum* denominator,
478 : Bignum* delta_minus, Bignum* delta_plus) {
479 : const uint64_t kMinimalNormalizedExponent =
480 : V8_2PART_UINT64_C(0x00100000, 00000000);
481 : uint64_t significand = Double(v).Significand();
482 : int exponent = Double(v).Exponent();
483 : // Instead of multiplying the denominator with 10^estimated_power we
484 : // multiply all values (numerator and deltas) by 10^-estimated_power.
485 :
486 : // Use numerator as temporary container for power_ten.
487 : Bignum* power_ten = numerator;
488 652014 : power_ten->AssignPowerUInt16(10, -estimated_power);
489 :
490 652014 : if (need_boundary_deltas) {
491 : // Since power_ten == numerator we must make a copy of 10^estimated_power
492 : // before we complete the computation of the numerator.
493 : // delta_plus = delta_minus = 10^estimated_power
494 251894 : delta_plus->AssignBignum(*power_ten);
495 251894 : delta_minus->AssignBignum(*power_ten);
496 : }
497 :
498 : // numerator = significand * 2 * 10^-estimated_power
499 : // since v = significand * 2^exponent this is equivalent to
500 : // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
501 : // Remember: numerator has been abused as power_ten. So no need to assign it
502 : // to itself.
503 : DCHECK(numerator == power_ten);
504 652014 : numerator->MultiplyByUInt64(significand);
505 :
506 : // denominator = 2 * 2^-exponent with exponent < 0.
507 652014 : denominator->AssignUInt16(1);
508 652014 : denominator->ShiftLeft(-exponent);
509 :
510 652014 : if (need_boundary_deltas) {
511 : // Introduce a common denominator so that the deltas to the boundaries are
512 : // integers.
513 251894 : numerator->ShiftLeft(1);
514 251894 : denominator->ShiftLeft(1);
515 : // With this shift the boundaries have their correct value, since
516 : // delta_plus = 10^-estimated_power, and
517 : // delta_minus = 10^-estimated_power.
518 : // These assignments have been done earlier.
519 :
520 : // The special case where the lower boundary is twice as close.
521 : // This time we have to look out for the exception too.
522 : uint64_t v_bits = Double(v).AsUint64();
523 251894 : if ((v_bits & Double::kSignificandMask) == 0 &&
524 : // The only exception where a significand == 0 has its boundaries at
525 : // "normal" distances:
526 : (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
527 342 : numerator->ShiftLeft(1); // *2
528 342 : denominator->ShiftLeft(1); // *2
529 342 : delta_plus->ShiftLeft(1); // *2
530 : }
531 : }
532 652014 : }
533 :
534 :
535 : // Let v = significand * 2^exponent.
536 : // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
537 : // and denominator. The functions GenerateShortestDigits and
538 : // GenerateCountedDigits will then convert this ratio to its decimal
539 : // representation d, with the required accuracy.
540 : // Then d * 10^estimated_power is the representation of v.
541 : // (Note: the fraction and the estimated_power might get adjusted before
542 : // generating the decimal representation.)
543 : //
544 : // The initial start values consist of:
545 : // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
546 : // - a scaled (common) denominator.
547 : // optionally (used by GenerateShortestDigits to decide if it has the shortest
548 : // decimal converting back to v):
549 : // - v - m-: the distance to the lower boundary.
550 : // - m+ - v: the distance to the upper boundary.
551 : //
552 : // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
553 : //
554 : // Let ep == estimated_power, then the returned values will satisfy:
555 : // v / 10^ep = numerator / denominator.
556 : // v's boundarys m- and m+:
557 : // m- / 10^ep == v / 10^ep - delta_minus / denominator
558 : // m+ / 10^ep == v / 10^ep + delta_plus / denominator
559 : // Or in other words:
560 : // m- == v - delta_minus * 10^ep / denominator;
561 : // m+ == v + delta_plus * 10^ep / denominator;
562 : //
563 : // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
564 : // or 10^k <= v < 10^(k+1)
565 : // we then have 0.1 <= numerator/denominator < 1
566 : // or 1 <= numerator/denominator < 10
567 : //
568 : // It is then easy to kickstart the digit-generation routine.
569 : //
570 : // The boundary-deltas are only filled if need_boundary_deltas is set.
571 1428653 : static void InitialScaledStartValues(double v,
572 : int estimated_power,
573 : bool need_boundary_deltas,
574 : Bignum* numerator,
575 : Bignum* denominator,
576 : Bignum* delta_minus,
577 : Bignum* delta_plus) {
578 1428653 : if (Double(v).Exponent() >= 0) {
579 565609 : InitialScaledStartValuesPositiveExponent(
580 : v, estimated_power, need_boundary_deltas,
581 565609 : numerator, denominator, delta_minus, delta_plus);
582 863044 : } else if (estimated_power >= 0) {
583 211030 : InitialScaledStartValuesNegativeExponentPositivePower(
584 : v, estimated_power, need_boundary_deltas,
585 211030 : numerator, denominator, delta_minus, delta_plus);
586 : } else {
587 652014 : InitialScaledStartValuesNegativeExponentNegativePower(
588 : v, estimated_power, need_boundary_deltas,
589 652014 : numerator, denominator, delta_minus, delta_plus);
590 : }
591 1428653 : }
592 :
593 :
594 : // This routine multiplies numerator/denominator so that its values lies in the
595 : // range 1-10. That is after a call to this function we have:
596 : // 1 <= (numerator + delta_plus) /denominator < 10.
597 : // Let numerator the input before modification and numerator' the argument
598 : // after modification, then the output-parameter decimal_point is such that
599 : // numerator / denominator * 10^estimated_power ==
600 : // numerator' / denominator' * 10^(decimal_point - 1)
601 : // In some cases estimated_power was too low, and this is already the case. We
602 : // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
603 : // estimated_power) but do not touch the numerator or denominator.
604 : // Otherwise the routine multiplies the numerator and the deltas by 10.
605 1428653 : static void FixupMultiply10(int estimated_power, bool is_even,
606 : int* decimal_point,
607 : Bignum* numerator, Bignum* denominator,
608 : Bignum* delta_minus, Bignum* delta_plus) {
609 : bool in_range;
610 1428653 : if (is_even) {
611 : // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
612 : // are rounded to the closest floating-point number with even significand.
613 714924 : in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
614 : } else {
615 713729 : in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
616 : }
617 1428653 : if (in_range) {
618 : // Since numerator + delta_plus >= denominator we already have
619 : // 1 <= numerator/denominator < 10. Simply update the estimated_power.
620 238349 : *decimal_point = estimated_power + 1;
621 : } else {
622 1190304 : *decimal_point = estimated_power;
623 : numerator->Times10();
624 1190304 : if (Bignum::Equal(*delta_minus, *delta_plus)) {
625 : delta_minus->Times10();
626 1189862 : delta_plus->AssignBignum(*delta_minus);
627 : } else {
628 : delta_minus->Times10();
629 : delta_plus->Times10();
630 : }
631 : }
632 1428653 : }
633 :
634 : } // namespace internal
635 122004 : } // namespace v8
|