LCOV - code coverage report
Current view: top level - src/compiler - simplified-lowering.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 1637 1733 94.5 %
Date: 2019-04-17 Functions: 90 94 95.7 %

          Line data    Source code
       1             : // Copyright 2014 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include "src/compiler/simplified-lowering.h"
       6             : 
       7             : #include <limits>
       8             : 
       9             : #include "src/address-map.h"
      10             : #include "src/base/bits.h"
      11             : #include "src/code-factory.h"
      12             : #include "src/compiler/access-builder.h"
      13             : #include "src/compiler/common-operator.h"
      14             : #include "src/compiler/compiler-source-position-table.h"
      15             : #include "src/compiler/diamond.h"
      16             : #include "src/compiler/linkage.h"
      17             : #include "src/compiler/node-matchers.h"
      18             : #include "src/compiler/node-origin-table.h"
      19             : #include "src/compiler/node-properties.h"
      20             : #include "src/compiler/operation-typer.h"
      21             : #include "src/compiler/operator-properties.h"
      22             : #include "src/compiler/representation-change.h"
      23             : #include "src/compiler/simplified-operator.h"
      24             : #include "src/compiler/type-cache.h"
      25             : #include "src/conversions-inl.h"
      26             : #include "src/objects.h"
      27             : 
      28             : namespace v8 {
      29             : namespace internal {
      30             : namespace compiler {
      31             : 
      32             : // Macro for outputting trace information from representation inference.
      33             : #define TRACE(...)                                      \
      34             :   do {                                                  \
      35             :     if (FLAG_trace_representation) PrintF(__VA_ARGS__); \
      36             :   } while (false)
      37             : 
      38             : // Representation selection and lowering of {Simplified} operators to machine
      39             : // operators are interwined. We use a fixpoint calculation to compute both the
      40             : // output representation and the best possible lowering for {Simplified} nodes.
      41             : // Representation change insertion ensures that all values are in the correct
      42             : // machine representation after this phase, as dictated by the machine
      43             : // operators themselves.
      44             : enum Phase {
      45             :   // 1.) PROPAGATE: Traverse the graph from the end, pushing usage information
      46             :   //     backwards from uses to definitions, around cycles in phis, according
      47             :   //     to local rules for each operator.
      48             :   //     During this phase, the usage information for a node determines the best
      49             :   //     possible lowering for each operator so far, and that in turn determines
      50             :   //     the output representation.
      51             :   //     Therefore, to be correct, this phase must iterate to a fixpoint before
      52             :   //     the next phase can begin.
      53             :   PROPAGATE,
      54             : 
      55             :   // 2.) RETYPE: Propagate types from type feedback forwards.
      56             :   RETYPE,
      57             : 
      58             :   // 3.) LOWER: perform lowering for all {Simplified} nodes by replacing some
      59             :   //     operators for some nodes, expanding some nodes to multiple nodes, or
      60             :   //     removing some (redundant) nodes.
      61             :   //     During this phase, use the {RepresentationChanger} to insert
      62             :   //     representation changes between uses that demand a particular
      63             :   //     representation and nodes that produce a different representation.
      64             :   LOWER
      65             : };
      66             : 
      67             : namespace {
      68             : 
      69       33806 : MachineRepresentation MachineRepresentationFromArrayType(
      70             :     ExternalArrayType array_type) {
      71       33806 :   switch (array_type) {
      72             :     case kExternalUint8Array:
      73             :     case kExternalUint8ClampedArray:
      74             :     case kExternalInt8Array:
      75             :       return MachineRepresentation::kWord8;
      76             :     case kExternalUint16Array:
      77             :     case kExternalInt16Array:
      78        5162 :       return MachineRepresentation::kWord16;
      79             :     case kExternalUint32Array:
      80             :     case kExternalInt32Array:
      81        6509 :       return MachineRepresentation::kWord32;
      82             :     case kExternalFloat32Array:
      83        7852 :       return MachineRepresentation::kFloat32;
      84             :     case kExternalFloat64Array:
      85        3090 :       return MachineRepresentation::kFloat64;
      86             :     case kExternalBigInt64Array:
      87             :     case kExternalBigUint64Array:
      88           0 :       UNIMPLEMENTED();
      89             :   }
      90           0 :   UNREACHABLE();
      91             : }
      92             : 
      93     1079835 : UseInfo CheckedUseInfoAsWord32FromHint(
      94             :     NumberOperationHint hint, const VectorSlotPair& feedback = VectorSlotPair(),
      95             :     IdentifyZeros identify_zeros = kDistinguishZeros) {
      96     1079835 :   switch (hint) {
      97             :     case NumberOperationHint::kSignedSmall:
      98             :     case NumberOperationHint::kSignedSmallInputs:
      99             :       return UseInfo::CheckedSignedSmallAsWord32(identify_zeros, feedback);
     100             :     case NumberOperationHint::kSigned32:
     101             :       return UseInfo::CheckedSigned32AsWord32(identify_zeros, feedback);
     102             :     case NumberOperationHint::kNumber:
     103             :       return UseInfo::CheckedNumberAsWord32(feedback);
     104             :     case NumberOperationHint::kNumberOrOddball:
     105             :       return UseInfo::CheckedNumberOrOddballAsWord32(feedback);
     106             :   }
     107           0 :   UNREACHABLE();
     108             : }
     109             : 
     110      166273 : UseInfo CheckedUseInfoAsFloat64FromHint(
     111             :     NumberOperationHint hint, const VectorSlotPair& feedback,
     112             :     IdentifyZeros identify_zeros = kDistinguishZeros) {
     113      166273 :   switch (hint) {
     114             :     case NumberOperationHint::kSignedSmall:
     115             :     case NumberOperationHint::kSignedSmallInputs:
     116             :     case NumberOperationHint::kSigned32:
     117             :       // Not used currently.
     118           0 :       UNREACHABLE();
     119             :       break;
     120             :     case NumberOperationHint::kNumber:
     121             :       return UseInfo::CheckedNumberAsFloat64(identify_zeros, feedback);
     122             :     case NumberOperationHint::kNumberOrOddball:
     123             :       return UseInfo::CheckedNumberOrOddballAsFloat64(identify_zeros, feedback);
     124             :   }
     125           0 :   UNREACHABLE();
     126             : }
     127             : 
     128     8139461 : UseInfo TruncatingUseInfoFromRepresentation(MachineRepresentation rep) {
     129     8139461 :   switch (rep) {
     130             :     case MachineRepresentation::kTaggedSigned:
     131             :       return UseInfo::TaggedSigned();
     132             :     case MachineRepresentation::kTaggedPointer:
     133             :     case MachineRepresentation::kTagged:
     134             :       return UseInfo::AnyTagged();
     135             :     case MachineRepresentation::kCompressedSigned:
     136             :       return UseInfo::CompressedSigned();
     137             :     case MachineRepresentation::kCompressedPointer:
     138             :     case MachineRepresentation::kCompressed:
     139             :       return UseInfo::AnyCompressed();
     140             :     case MachineRepresentation::kFloat64:
     141             :       return UseInfo::TruncatingFloat64();
     142             :     case MachineRepresentation::kFloat32:
     143             :       return UseInfo::Float32();
     144             :     case MachineRepresentation::kWord8:
     145             :     case MachineRepresentation::kWord16:
     146             :     case MachineRepresentation::kWord32:
     147             :       return UseInfo::TruncatingWord32();
     148             :     case MachineRepresentation::kWord64:
     149             :       return UseInfo::Word64();
     150             :     case MachineRepresentation::kBit:
     151             :       return UseInfo::Bool();
     152             :     case MachineRepresentation::kSimd128:
     153             :     case MachineRepresentation::kNone:
     154             :       break;
     155             :   }
     156           0 :   UNREACHABLE();
     157             : }
     158             : 
     159    10028204 : UseInfo UseInfoForBasePointer(const FieldAccess& access) {
     160    20056413 :   return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::Word();
     161             : }
     162             : 
     163      181619 : UseInfo UseInfoForBasePointer(const ElementAccess& access) {
     164      363238 :   return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::Word();
     165             : }
     166             : 
     167      350246 : void ReplaceEffectControlUses(Node* node, Node* effect, Node* control) {
     168     2015867 :   for (Edge edge : node->use_edges()) {
     169      832849 :     if (NodeProperties::IsControlEdge(edge)) {
     170           0 :       edge.UpdateTo(control);
     171      832805 :     } else if (NodeProperties::IsEffectEdge(edge)) {
     172      422445 :       edge.UpdateTo(effect);
     173             :     } else {
     174             :       DCHECK(NodeProperties::IsValueEdge(edge) ||
     175             :              NodeProperties::IsContextEdge(edge));
     176             :     }
     177             :   }
     178      350169 : }
     179             : 
     180      153791 : bool CanOverflowSigned32(const Operator* op, Type left, Type right,
     181             :                          Zone* type_zone) {
     182             :   // We assume the inputs are checked Signed32 (or known statically
     183             :   // to be Signed32). Technically, the inputs could also be minus zero, but
     184             :   // that cannot cause overflow.
     185      153791 :   left = Type::Intersect(left, Type::Signed32(), type_zone);
     186      153777 :   right = Type::Intersect(right, Type::Signed32(), type_zone);
     187      307510 :   if (left.IsNone() || right.IsNone()) return false;
     188      153742 :   switch (op->opcode()) {
     189             :     case IrOpcode::kSpeculativeSafeIntegerAdd:
     190      149459 :       return (left.Max() + right.Max() > kMaxInt) ||
     191        4315 :              (left.Min() + right.Min() < kMinInt);
     192             : 
     193             :     case IrOpcode::kSpeculativeSafeIntegerSubtract:
     194       16424 :       return (left.Max() - right.Min() > kMaxInt) ||
     195        7826 :              (left.Min() - right.Max() < kMinInt);
     196             : 
     197             :     default:
     198           0 :       UNREACHABLE();
     199             :   }
     200             :   return true;
     201             : }
     202             : 
     203        9159 : bool IsSomePositiveOrderedNumber(Type type) {
     204       15364 :   return type.Is(Type::OrderedNumber()) && !type.IsNone() && type.Min() > 0;
     205             : }
     206             : 
     207             : }  // namespace
     208             : 
     209             : #ifdef DEBUG
     210             : // Helpers for monotonicity checking.
     211             : class InputUseInfos {
     212             :  public:
     213             :   explicit InputUseInfos(Zone* zone) : input_use_infos_(zone) {}
     214             : 
     215             :   void SetAndCheckInput(Node* node, int index, UseInfo use_info) {
     216             :     if (input_use_infos_.empty()) {
     217             :       input_use_infos_.resize(node->InputCount(), UseInfo::None());
     218             :     }
     219             :     // Check that the new use informatin is a super-type of the old
     220             :     // one.
     221             :     DCHECK(IsUseLessGeneral(input_use_infos_[index], use_info));
     222             :     input_use_infos_[index] = use_info;
     223             :   }
     224             : 
     225             :  private:
     226             :   ZoneVector<UseInfo> input_use_infos_;
     227             : 
     228             :   static bool IsUseLessGeneral(UseInfo use1, UseInfo use2) {
     229             :     return use1.truncation().IsLessGeneralThan(use2.truncation());
     230             :   }
     231             : };
     232             : 
     233             : #endif  // DEBUG
     234             : 
     235      464180 : class RepresentationSelector {
     236             :  public:
     237             :   // Information for each node tracked during the fixpoint.
     238      464172 :   class NodeInfo final {
     239             :    public:
     240             :     // Adds new use to the node. Returns true if something has changed
     241             :     // and the node has to be requeued.
     242   100134226 :     bool AddUse(UseInfo info) {
     243   100134226 :       Truncation old_truncation = truncation_;
     244   100131821 :       truncation_ = Truncation::Generalize(truncation_, info.truncation());
     245   100131821 :       return truncation_ != old_truncation;
     246             :     }
     247             : 
     248    36513675 :     void set_queued() { state_ = kQueued; }
     249    67062269 :     void set_visited() { state_ = kVisited; }
     250    30549356 :     void set_pushed() { state_ = kPushed; }
     251    43230967 :     void reset_state() { state_ = kUnvisited; }
     252             :     bool visited() const { return state_ == kVisited; }
     253             :     bool queued() const { return state_ == kQueued; }
     254             :     bool unvisited() const { return state_ == kUnvisited; }
     255             :     Truncation truncation() const { return truncation_; }
     256    34848887 :     void set_output(MachineRepresentation output) { representation_ = output; }
     257             : 
     258             :     MachineRepresentation representation() const { return representation_; }
     259             : 
     260             :     // Helpers for feedback typing.
     261    21401403 :     void set_feedback_type(Type type) { feedback_type_ = type; }
     262             :     Type feedback_type() const { return feedback_type_; }
     263       91213 :     void set_weakened() { weakened_ = true; }
     264             :     bool weakened() const { return weakened_; }
     265    30645889 :     void set_restriction_type(Type type) { restriction_type_ = type; }
     266             :     Type restriction_type() const { return restriction_type_; }
     267             : 
     268             :    private:
     269             :     enum State : uint8_t { kUnvisited, kPushed, kVisited, kQueued };
     270             :     State state_ = kUnvisited;
     271             :     MachineRepresentation representation_ =
     272             :         MachineRepresentation::kNone;             // Output representation.
     273             :     Truncation truncation_ = Truncation::None();  // Information about uses.
     274             : 
     275             :     Type restriction_type_ = Type::Any();
     276             :     Type feedback_type_;
     277             :     bool weakened_ = false;
     278             :   };
     279             : 
     280      464172 :   RepresentationSelector(JSGraph* jsgraph, JSHeapBroker* broker, Zone* zone,
     281             :                          RepresentationChanger* changer,
     282             :                          SourcePositionTable* source_positions,
     283             :                          NodeOriginTable* node_origins)
     284             :       : jsgraph_(jsgraph),
     285             :         zone_(zone),
     286             :         count_(jsgraph->graph()->NodeCount()),
     287             :         info_(count_, zone),
     288             : #ifdef DEBUG
     289             :         node_input_use_infos_(count_, InputUseInfos(zone), zone),
     290             : #endif
     291             :         nodes_(zone),
     292             :         replacements_(zone),
     293             :         phase_(PROPAGATE),
     294             :         changer_(changer),
     295             :         queue_(zone),
     296             :         typing_stack_(zone),
     297             :         source_positions_(source_positions),
     298             :         node_origins_(node_origins),
     299      464180 :         type_cache_(TypeCache::Get()),
     300     1856701 :         op_typer_(broker, graph_zone()) {
     301      464181 :   }
     302             : 
     303             :   // Forward propagation of types from type feedback.
     304      464177 :   void RunTypePropagationPhase() {
     305             :     // Run type propagation.
     306      464177 :     TRACE("--{Type propagation phase}--\n");
     307      464181 :     phase_ = RETYPE;
     308             :     ResetNodeInfoState();
     309             : 
     310             :     DCHECK(typing_stack_.empty());
     311      927783 :     typing_stack_.push({graph()->end(), 0});
     312             :     GetInfo(graph()->end())->set_pushed();
     313    61099594 :     while (!typing_stack_.empty()) {
     314             :       NodeState& current = typing_stack_.top();
     315             : 
     316             :       // If there is an unvisited input, push it and continue.
     317             :       bool pushed_unvisited = false;
     318   255215862 :       while (current.input_index < current.node->InputCount()) {
     319             :         Node* input = current.node->InputAt(current.input_index);
     320             :         NodeInfo* input_info = GetInfo(input);
     321    97058135 :         current.input_index++;
     322    97058135 :         if (input_info->unvisited()) {
     323             :           input_info->set_pushed();
     324    60171586 :           typing_stack_.push({input, 0});
     325             :           pushed_unvisited = true;
     326    30085832 :           break;
     327             :         }
     328             :       }
     329    60635628 :       if (pushed_unvisited) continue;
     330             : 
     331             :       // Process the top of the stack.
     332    30549777 :       Node* node = current.node;
     333             :       typing_stack_.pop();
     334             :       NodeInfo* info = GetInfo(node);
     335             :       info->set_visited();
     336    30549652 :       bool updated = UpdateFeedbackType(node);
     337    30549371 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     338    30549371 :       VisitNode(node, info->truncation(), nullptr);
     339    30549664 :       TRACE("  ==> output ");
     340    30549664 :       PrintOutputInfo(info);
     341    30549635 :       TRACE("\n");
     342    30550130 :       if (updated) {
     343   180271100 :         for (Node* const user : node->uses()) {
     344    80181375 :           if (GetInfo(user)->visited()) {
     345             :             GetInfo(user)->set_queued();
     346             :             queue_.push(user);
     347             :           }
     348             :         }
     349             :       }
     350             :     }
     351             : 
     352             :     // Process the revisit queue.
     353     5479381 :     while (!queue_.empty()) {
     354     5015205 :       Node* node = queue_.front();
     355             :       queue_.pop();
     356             :       NodeInfo* info = GetInfo(node);
     357             :       info->set_visited();
     358     5015211 :       bool updated = UpdateFeedbackType(node);
     359     5015204 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     360     5015204 :       VisitNode(node, info->truncation(), nullptr);
     361     5015225 :       TRACE("  ==> output ");
     362     5015225 :       PrintOutputInfo(info);
     363     5015219 :       TRACE("\n");
     364     5015341 :       if (updated) {
     365    13111013 :         for (Node* const user : node->uses()) {
     366     5808937 :           if (GetInfo(user)->visited()) {
     367             :             GetInfo(user)->set_queued();
     368             :             queue_.push(user);
     369             :           }
     370             :         }
     371             :       }
     372             :     }
     373      464176 :   }
     374             : 
     375             :   void ResetNodeInfoState() {
     376             :     // Clean up for the next phase.
     377    43695148 :     for (NodeInfo& info : info_) {
     378             :       info.reset_state();
     379             :     }
     380             :   }
     381             : 
     382             :   Type TypeOf(Node* node) {
     383             :     Type type = GetInfo(node)->feedback_type();
     384    45441168 :     return type.IsInvalid() ? NodeProperties::GetType(node) : type;
     385             :   }
     386             : 
     387             :   Type FeedbackTypeOf(Node* node) {
     388             :     Type type = GetInfo(node)->feedback_type();
     389    38186097 :     return type.IsInvalid() ? Type::None() : type;
     390             :   }
     391             : 
     392      801407 :   Type TypePhi(Node* node) {
     393             :     int arity = node->op()->ValueInputCount();
     394             :     Type type = FeedbackTypeOf(node->InputAt(0));
     395     3180503 :     for (int i = 1; i < arity; ++i) {
     396     1189545 :       type = op_typer_.Merge(type, FeedbackTypeOf(node->InputAt(i)));
     397             :     }
     398      801410 :     return type;
     399             :   }
     400             : 
     401       12554 :   Type TypeSelect(Node* node) {
     402             :     return op_typer_.Merge(FeedbackTypeOf(node->InputAt(1)),
     403       12554 :                            FeedbackTypeOf(node->InputAt(2)));
     404             :   }
     405             : 
     406    35563473 :   bool UpdateFeedbackType(Node* node) {
     407    35563473 :     if (node->op()->ValueOutputCount() == 0) return false;
     408             : 
     409             :     NodeInfo* info = GetInfo(node);
     410             :     Type type = info->feedback_type();
     411    25157293 :     Type new_type = type;
     412             : 
     413             :     // For any non-phi node just wait until we get all inputs typed. We only
     414             :     // allow untyped inputs for phi nodes because phis are the only places
     415             :     // where cycles need to be broken.
     416    25157293 :     if (node->opcode() != IrOpcode::kPhi) {
     417   141886959 :       for (int i = 0; i < node->op()->ValueInputCount(); i++) {
     418    59612386 :         if (GetInfo(node->InputAt(i))->feedback_type().IsInvalid()) {
     419             :           return false;
     420             :         }
     421             :       }
     422             :     }
     423             : 
     424             :     // We preload these values here to avoid increasing the binary size too
     425             :     // much, which happens if we inline the calls into the macros below.
     426             :     Type input0_type;
     427    43896865 :     if (node->InputCount() > 0) input0_type = FeedbackTypeOf(node->InputAt(0));
     428             :     Type input1_type;
     429    40832163 :     if (node->InputCount() > 1) input1_type = FeedbackTypeOf(node->InputAt(1));
     430             : 
     431    24310620 :     switch (node->opcode()) {
     432             : #define DECLARE_CASE(Name)                               \
     433             :   case IrOpcode::k##Name: {                              \
     434             :     new_type = op_typer_.Name(input0_type, input1_type); \
     435             :     break;                                               \
     436             :   }
     437      480845 :       SIMPLIFIED_NUMBER_BINOP_LIST(DECLARE_CASE)
     438          78 :       DECLARE_CASE(SameValue)
     439             : #undef DECLARE_CASE
     440             : 
     441             : #define DECLARE_CASE(Name)                                               \
     442             :   case IrOpcode::k##Name: {                                              \
     443             :     new_type = Type::Intersect(op_typer_.Name(input0_type, input1_type), \
     444             :                                info->restriction_type(), graph_zone());  \
     445             :     break;                                                               \
     446             :   }
     447        1063 :       SIMPLIFIED_SPECULATIVE_NUMBER_BINOP_LIST(DECLARE_CASE)
     448             : #undef DECLARE_CASE
     449             : 
     450             : #define DECLARE_CASE(Name)                  \
     451             :   case IrOpcode::k##Name: {                 \
     452             :     new_type = op_typer_.Name(input0_type); \
     453             :     break;                                  \
     454             :   }
     455         295 :       SIMPLIFIED_NUMBER_UNOP_LIST(DECLARE_CASE)
     456             : #undef DECLARE_CASE
     457             : 
     458             : #define DECLARE_CASE(Name)                                              \
     459             :   case IrOpcode::k##Name: {                                             \
     460             :     new_type = Type::Intersect(op_typer_.Name(input0_type),             \
     461             :                                info->restriction_type(), graph_zone()); \
     462             :     break;                                                              \
     463             :   }
     464       40755 :       SIMPLIFIED_SPECULATIVE_NUMBER_UNOP_LIST(DECLARE_CASE)
     465         595 :       DECLARE_CASE(CheckFloat64Hole)
     466         524 :       DECLARE_CASE(CheckNumber)
     467        1474 :       DECLARE_CASE(CheckInternalizedString)
     468          18 :       DECLARE_CASE(CheckNonEmptyString)
     469        1814 :       DECLARE_CASE(CheckNonEmptyOneByteString)
     470         248 :       DECLARE_CASE(CheckNonEmptyTwoByteString)
     471        5676 :       DECLARE_CASE(CheckString)
     472             : #undef DECLARE_CASE
     473             : 
     474             :       case IrOpcode::kConvertReceiver:
     475         880 :         new_type = op_typer_.ConvertReceiver(input0_type);
     476         880 :         break;
     477             : 
     478             :       case IrOpcode::kPlainPrimitiveToNumber:
     479        1048 :         new_type = op_typer_.ToNumber(input0_type);
     480        1048 :         break;
     481             : 
     482             :       case IrOpcode::kCheckBounds:
     483             :         new_type =
     484             :             Type::Intersect(op_typer_.CheckBounds(input0_type, input1_type),
     485       64456 :                             info->restriction_type(), graph_zone());
     486       64456 :         break;
     487             : 
     488             :       case IrOpcode::kStringConcat:
     489             :         new_type = op_typer_.StringConcat(input0_type, input1_type,
     490       26458 :                                           FeedbackTypeOf(node->InputAt(2)));
     491       26458 :         break;
     492             : 
     493             :       case IrOpcode::kPhi: {
     494      801406 :         new_type = TypePhi(node);
     495      801410 :         if (!type.IsInvalid()) {
     496      481931 :           new_type = Weaken(node, type, new_type);
     497             :         }
     498             :         break;
     499             :       }
     500             : 
     501             :       case IrOpcode::kConvertTaggedHoleToUndefined:
     502             :         new_type = op_typer_.ConvertTaggedHoleToUndefined(
     503        2135 :             FeedbackTypeOf(node->InputAt(0)));
     504        2135 :         break;
     505             : 
     506             :       case IrOpcode::kTypeGuard: {
     507             :         new_type = op_typer_.TypeTypeGuard(node->op(),
     508       33656 :                                            FeedbackTypeOf(node->InputAt(0)));
     509       33656 :         break;
     510             :       }
     511             : 
     512             :       case IrOpcode::kSelect: {
     513       12554 :         new_type = TypeSelect(node);
     514       12554 :         break;
     515             :       }
     516             : 
     517             :       default:
     518             :         // Shortcut for operations that we do not handle.
     519    22387135 :         if (type.IsInvalid()) {
     520             :           GetInfo(node)->set_feedback_type(NodeProperties::GetType(node));
     521    19693951 :           return true;
     522             :         }
     523             :         return false;
     524             :     }
     525             :     // We need to guarantee that the feedback type is a subtype of the upper
     526             :     // bound. Naively that should hold, but weakening can actually produce
     527             :     // a bigger type if we are unlucky with ordering of phi typing. To be
     528             :     // really sure, just intersect the upper bound with the feedback type.
     529     1923480 :     new_type = Type::Intersect(GetUpperBound(node), new_type, graph_zone());
     530             : 
     531     2885432 :     if (!type.IsInvalid() && new_type.Is(type)) return false;
     532             :     GetInfo(node)->set_feedback_type(new_type);
     533     1707452 :     if (FLAG_trace_representation) {
     534           0 :       PrintNodeFeedbackType(node);
     535             :     }
     536             :     return true;
     537             :   }
     538             : 
     539           0 :   void PrintNodeFeedbackType(Node* n) {
     540           0 :     StdoutStream os;
     541           0 :     os << "#" << n->id() << ":" << *n->op() << "(";
     542             :     int j = 0;
     543           0 :     for (Node* const i : n->inputs()) {
     544           0 :       if (j++ > 0) os << ", ";
     545           0 :       os << "#" << i->id() << ":" << i->op()->mnemonic();
     546             :     }
     547           0 :     os << ")";
     548           0 :     if (NodeProperties::IsTyped(n)) {
     549             :       Type static_type = NodeProperties::GetType(n);
     550           0 :       os << "  [Static type: " << static_type;
     551             :       Type feedback_type = GetInfo(n)->feedback_type();
     552           0 :       if (!feedback_type.IsInvalid() && feedback_type != static_type) {
     553           0 :         os << ", Feedback type: " << feedback_type;
     554             :       }
     555           0 :       os << "]";
     556             :     }
     557             :     os << std::endl;
     558           0 :   }
     559             : 
     560      481931 :   Type Weaken(Node* node, Type previous_type, Type current_type) {
     561             :     // If the types have nothing to do with integers, return the types.
     562      481931 :     Type const integer = type_cache_->kInteger;
     563      481931 :     if (!previous_type.Maybe(integer)) {
     564       29768 :       return current_type;
     565             :     }
     566             :     DCHECK(current_type.Maybe(integer));
     567             : 
     568      452170 :     Type current_integer = Type::Intersect(current_type, integer, graph_zone());
     569             :     DCHECK(!current_integer.IsNone());
     570             :     Type previous_integer =
     571      452167 :         Type::Intersect(previous_type, integer, graph_zone());
     572             :     DCHECK(!previous_integer.IsNone());
     573             : 
     574             :     // Once we start weakening a node, we should always weaken.
     575      452165 :     if (!GetInfo(node)->weakened()) {
     576             :       // Only weaken if there is range involved; we should converge quickly
     577             :       // for all other types (the exception is a union of many constants,
     578             :       // but we currently do not increase the number of constants in unions).
     579       95496 :       Type previous = previous_integer.GetRange();
     580       95496 :       Type current = current_integer.GetRange();
     581      186803 :       if (current.IsInvalid() || previous.IsInvalid()) {
     582        4282 :         return current_type;
     583             :       }
     584             :       // Range is involved => we are weakening.
     585             :       GetInfo(node)->set_weakened();
     586             :     }
     587             : 
     588             :     return Type::Union(current_type,
     589             :                        op_typer_.WeakenRange(previous_integer, current_integer),
     590      447882 :                        graph_zone());
     591             :   }
     592             : 
     593             :   // Backward propagation of truncations.
     594      464179 :   void RunTruncationPropagationPhase() {
     595             :     // Run propagation phase to a fixpoint.
     596      464179 :     TRACE("--{Propagation phase}--\n");
     597      464179 :     phase_ = PROPAGATE;
     598      464179 :     EnqueueInitial(jsgraph_->graph()->end());
     599             :     // Process nodes from the queue until it is empty.
     600    63459022 :     while (!queue_.empty()) {
     601    31497414 :       Node* node = queue_.front();
     602             :       NodeInfo* info = GetInfo(node);
     603             :       queue_.pop();
     604             :       info->set_visited();
     605    31497406 :       TRACE(" visit #%d: %s (trunc: %s)\n", node->id(), node->op()->mnemonic(),
     606             :             info->truncation().description());
     607    31497406 :       VisitNode(node, info->truncation(), nullptr);
     608             :     }
     609      464181 :   }
     610             : 
     611      464179 :   void Run(SimplifiedLowering* lowering) {
     612      464179 :     RunTruncationPropagationPhase();
     613             : 
     614      464181 :     RunTypePropagationPhase();
     615             : 
     616             :     // Run lowering and change insertion phase.
     617      464177 :     TRACE("--{Simplified lowering phase}--\n");
     618      464182 :     phase_ = LOWER;
     619             :     // Process nodes from the collected {nodes_} vector.
     620    31013097 :     for (NodeVector::iterator i = nodes_.begin(); i != nodes_.end(); ++i) {
     621    30548919 :       Node* node = *i;
     622             :       NodeInfo* info = GetInfo(node);
     623    30548919 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     624             :       // Reuse {VisitNode()} so the representation rules are in one place.
     625             :       SourcePositionTable::Scope scope(
     626    30548919 :           source_positions_, source_positions_->GetSourcePosition(node));
     627             :       NodeOriginTable::Scope origin_scope(node_origins_, "simplified lowering",
     628    30548813 :                                           node);
     629    30548813 :       VisitNode(node, info->truncation(), lowering);
     630             :     }
     631             : 
     632             :     // Perform the final replacements.
     633     1724889 :     for (NodeVector::iterator i = replacements_.begin();
     634             :          i != replacements_.end(); ++i) {
     635     1260710 :       Node* node = *i;
     636     1260710 :       Node* replacement = *(++i);
     637     1260710 :       node->ReplaceUses(replacement);
     638     1260708 :       node->Kill();
     639             :       // We also need to replace the node in the rest of the vector.
     640   186915072 :       for (NodeVector::iterator j = i + 1; j != replacements_.end(); ++j) {
     641             :         ++j;
     642   185654361 :         if (*j == node) *j = replacement;
     643             :       }
     644             :     }
     645      464179 :   }
     646             : 
     647      464179 :   void EnqueueInitial(Node* node) {
     648      464179 :     NodeInfo* info = GetInfo(node);
     649             :     info->set_queued();
     650      464179 :     nodes_.push_back(node);
     651             :     queue_.push(node);
     652      464177 :   }
     653             : 
     654             :   // Enqueue {use_node}'s {index} input if the {use} contains new information
     655             :   // for that input node. Add the input to {nodes_} if this is the first time
     656             :   // it's been visited.
     657   159122777 :   void EnqueueInput(Node* use_node, int index,
     658             :                     UseInfo use_info = UseInfo::None()) {
     659   159122777 :     Node* node = use_node->InputAt(index);
     660   248192207 :     if (phase_ != PROPAGATE) return;
     661             :     NodeInfo* info = GetInfo(node);
     662             : #ifdef DEBUG
     663             :     // Check monotonicity of input requirements.
     664             :     node_input_use_infos_[use_node->id()].SetAndCheckInput(use_node, index,
     665             :                                                            use_info);
     666             : #endif  // DEBUG
     667   100138680 :     if (info->unvisited()) {
     668             :       // First visit of this node.
     669             :       info->set_queued();
     670    30085974 :       nodes_.push_back(node);
     671             :       queue_.push(node);
     672    30085801 :       TRACE("  initial #%i: ", node->id());
     673    30085801 :       info->AddUse(use_info);
     674    30085387 :       PrintTruncation(info->truncation());
     675    30085333 :       return;
     676             :     }
     677    70052706 :     TRACE("   queue #%i?: ", node->id());
     678    70052706 :     PrintTruncation(info->truncation());
     679    70052014 :     if (info->AddUse(use_info)) {
     680             :       // New usage information for the node is available.
     681     2350987 :       if (!info->queued()) {
     682             :         queue_.push(node);
     683             :         info->set_queued();
     684      948121 :         TRACE("   added: ");
     685             :       } else {
     686     1402868 :         TRACE(" inqueue: ");
     687             :       }
     688     2350989 :       PrintTruncation(info->truncation());
     689             :     }
     690             :   }
     691             : 
     692             :   bool lower() const { return phase_ == LOWER; }
     693             :   bool retype() const { return phase_ == RETYPE; }
     694             :   bool propagate() const { return phase_ == PROPAGATE; }
     695             : 
     696             :   void SetOutput(Node* node, MachineRepresentation representation,
     697             :                  Type restriction_type = Type::Any()) {
     698             :     NodeInfo* const info = GetInfo(node);
     699    95414549 :     switch (phase_) {
     700             :       case PROPAGATE:
     701             :         info->set_restriction_type(restriction_type);
     702             :         break;
     703             :       case RETYPE:
     704             :         DCHECK(info->restriction_type().Is(restriction_type));
     705             :         DCHECK(restriction_type.Is(info->restriction_type()));
     706             :         info->set_output(representation);
     707             :         break;
     708             :       case LOWER:
     709             :         DCHECK_EQ(info->representation(), representation);
     710             :         DCHECK(info->restriction_type().Is(restriction_type));
     711             :         DCHECK(restriction_type.Is(info->restriction_type()));
     712             :         break;
     713             :     }
     714             :   }
     715             : 
     716             :   Type GetUpperBound(Node* node) { return NodeProperties::GetType(node); }
     717             : 
     718       89652 :   bool InputCannotBe(Node* node, Type type) {
     719             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     720       89652 :     return !GetUpperBound(node->InputAt(0)).Maybe(type);
     721             :   }
     722             : 
     723       60386 :   bool InputIs(Node* node, Type type) {
     724             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     725      120772 :     return GetUpperBound(node->InputAt(0)).Is(type);
     726             :   }
     727             : 
     728             :   bool BothInputsAreSigned32(Node* node) {
     729       95414 :     return BothInputsAre(node, Type::Signed32());
     730             :   }
     731             : 
     732             :   bool BothInputsAreUnsigned32(Node* node) {
     733      102539 :     return BothInputsAre(node, Type::Unsigned32());
     734             :   }
     735             : 
     736     1038258 :   bool BothInputsAre(Node* node, Type type) {
     737             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     738     2383907 :     return GetUpperBound(node->InputAt(0)).Is(type) &&
     739     1345649 :            GetUpperBound(node->InputAt(1)).Is(type);
     740             :   }
     741             : 
     742             :   bool IsNodeRepresentationTagged(Node* node) {
     743             :     MachineRepresentation representation = GetInfo(node)->representation();
     744             :     return IsAnyTagged(representation);
     745             :   }
     746             : 
     747          72 :   bool OneInputCannotBe(Node* node, Type type) {
     748             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     749         144 :     return !GetUpperBound(node->InputAt(0)).Maybe(type) ||
     750         144 :            !GetUpperBound(node->InputAt(1)).Maybe(type);
     751             :   }
     752             : 
     753      333234 :   void ChangeToPureOp(Node* node, const Operator* new_op) {
     754             :     DCHECK(new_op->HasProperty(Operator::kPure));
     755      333234 :     if (node->op()->EffectInputCount() > 0) {
     756             :       DCHECK_LT(0, node->op()->ControlInputCount());
     757      210059 :       Node* control = NodeProperties::GetControlInput(node);
     758      210039 :       Node* effect = NodeProperties::GetEffectInput(node);
     759      210026 :       if (TypeOf(node).IsNone()) {
     760             :         // If the node is unreachable, insert an Unreachable node and mark the
     761             :         // value dead.
     762             :         // TODO(jarin,tebbi) Find a way to unify/merge this insertion with
     763             :         // InsertUnreachableIfNecessary.
     764         320 :         Node* unreachable = effect = graph()->NewNode(
     765         320 :             jsgraph_->common()->Unreachable(), effect, control);
     766         320 :         new_op = jsgraph_->common()->DeadValue(GetInfo(node)->representation());
     767         320 :         node->ReplaceInput(0, unreachable);
     768             :       }
     769             :       // Rewire the effect and control chains.
     770      210026 :       node->TrimInputCount(new_op->ValueInputCount());
     771      210033 :       ReplaceEffectControlUses(node, effect, control);
     772             :     } else {
     773             :       DCHECK_EQ(0, node->op()->ControlInputCount());
     774             :     }
     775      333203 :     NodeProperties::ChangeOp(node, new_op);
     776      333186 :   }
     777             : 
     778             :   // Converts input {index} of {node} according to given UseInfo {use},
     779             :   // assuming the type of the input is {input_type}. If {input_type} is null,
     780             :   // it takes the input from the input node {TypeOf(node->InputAt(index))}.
     781    53264108 :   void ConvertInput(Node* node, int index, UseInfo use,
     782             :                     Type input_type = Type::Invalid()) {
     783             :     Node* input = node->InputAt(index);
     784             :     // In the change phase, insert a change before the use if necessary.
     785    53264108 :     if (use.representation() == MachineRepresentation::kNone)
     786             :       return;  // No input requirement on the use.
     787             :     DCHECK_NOT_NULL(input);
     788             :     NodeInfo* input_info = GetInfo(input);
     789             :     MachineRepresentation input_rep = input_info->representation();
     790    50808394 :     if (input_rep != use.representation() ||
     791             :         use.type_check() != TypeCheckKind::kNone) {
     792             :       // Output representation doesn't match usage.
     793    16065260 :       TRACE("  change: #%d:%s(@%d #%d:%s) ", node->id(), node->op()->mnemonic(),
     794             :             index, input->id(), input->op()->mnemonic());
     795    16065242 :       TRACE(" from ");
     796    16065242 :       PrintOutputInfo(input_info);
     797    16065175 :       TRACE(" to ");
     798    16065175 :       PrintUseInfo(use);
     799    16065142 :       TRACE("\n");
     800    16065154 :       if (input_type.IsInvalid()) {
     801             :         input_type = TypeOf(input);
     802             :       }
     803    16065154 :       Node* n = changer_->GetRepresentationFor(
     804    16065154 :           input, input_info->representation(), input_type, node, use);
     805    16065002 :       node->ReplaceInput(index, n);
     806             :     }
     807             :   }
     808             : 
     809   172064204 :   void ProcessInput(Node* node, int index, UseInfo use) {
     810   172064204 :     switch (phase_) {
     811             :       case PROPAGATE:
     812    55121844 :         EnqueueInput(node, index, use);
     813    55119824 :         break;
     814             :       case RETYPE:
     815             :         break;
     816             :       case LOWER:
     817    53241653 :         ConvertInput(node, index, use);
     818    53240489 :         break;
     819             :     }
     820   172061020 :   }
     821             : 
     822    18403228 :   void ProcessRemainingInputs(Node* node, int index) {
     823             :     DCHECK_GE(index, NodeProperties::PastValueIndex(node));
     824             :     DCHECK_GE(index, NodeProperties::PastContextIndex(node));
     825    78879641 :     for (int i = std::max(index, NodeProperties::FirstEffectIndex(node));
     826    30238236 :          i < NodeProperties::PastEffectIndex(node); ++i) {
     827    11835056 :       EnqueueInput(node, i);  // Effect inputs: just visit
     828             :     }
     829    79007280 :     for (int i = std::max(index, NodeProperties::FirstControlIndex(node));
     830    30302055 :          i < NodeProperties::PastControlIndex(node); ++i) {
     831    11898893 :       EnqueueInput(node, i);  // Control inputs: just visit
     832             :     }
     833    18403212 :   }
     834             : 
     835             :   // The default, most general visitation case. For {node}, process all value,
     836             :   // context, frame state, effect, and control inputs, assuming that value
     837             :   // inputs should have {kRepTagged} representation and can observe all output
     838             :   // values {kTypeAny}.
     839    29700673 :   void VisitInputs(Node* node) {
     840    29700417 :     int tagged_count = node->op()->ValueInputCount() +
     841             :                        OperatorProperties::GetContextInputCount(node->op()) +
     842    29699960 :                        OperatorProperties::GetFrameStateInputCount(node->op());
     843             :     // Visit value, context and frame state inputs as tagged.
     844   116231532 :     for (int i = 0; i < tagged_count; i++) {
     845    43265899 :       ProcessInput(node, i, UseInfo::AnyTagged());
     846             :     }
     847             :     // Only enqueue other inputs (effects, control).
     848   141717123 :     for (int i = tagged_count; i < node->InputCount(); i++) {
     849    56008868 :       EnqueueInput(node, i);
     850             :     }
     851    29701129 :   }
     852             : 
     853     1671274 :   void VisitReturn(Node* node) {
     854     1671275 :     int tagged_limit = node->op()->ValueInputCount() +
     855             :                        OperatorProperties::GetContextInputCount(node->op()) +
     856     1671275 :                        OperatorProperties::GetFrameStateInputCount(node->op());
     857             :     // Visit integer slot count to pop
     858     1671281 :     ProcessInput(node, 0, UseInfo::TruncatingWord32());
     859             : 
     860             :     // Visit value, context and frame state inputs as tagged.
     861     5013849 :     for (int i = 1; i < tagged_limit; i++) {
     862     1671285 :       ProcessInput(node, i, UseInfo::AnyTagged());
     863             :     }
     864             :     // Only enqueue other inputs (effects, control).
     865     8356395 :     for (int i = tagged_limit; i < node->InputCount(); i++) {
     866     3342561 :       EnqueueInput(node, i);
     867             :     }
     868     1671284 :   }
     869             : 
     870             :   // Helper for an unused node.
     871      330162 :   void VisitUnused(Node* node) {
     872      330162 :     int value_count = node->op()->ValueInputCount() +
     873             :                       OperatorProperties::GetContextInputCount(node->op()) +
     874      330163 :                       OperatorProperties::GetFrameStateInputCount(node->op());
     875     1373051 :     for (int i = 0; i < value_count; i++) {
     876      521445 :       ProcessInput(node, i, UseInfo::None());
     877             :     }
     878      330164 :     ProcessRemainingInputs(node, value_count);
     879      330162 :     if (lower()) Kill(node);
     880      330162 :   }
     881             : 
     882             :   // Helper for no-op node.
     883          36 :   void VisitNoop(Node* node, Truncation truncation) {
     884          36 :     if (truncation.IsUnused()) return VisitUnused(node);
     885             :     MachineRepresentation representation =
     886          22 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
     887          44 :     VisitUnop(node, UseInfo(representation, truncation), representation);
     888          33 :     if (lower()) DeferReplacement(node, node->InputAt(0));
     889             :   }
     890             : 
     891             :   // Helper for binops of the R x L -> O variety.
     892     3507388 :   void VisitBinop(Node* node, UseInfo left_use, UseInfo right_use,
     893             :                   MachineRepresentation output,
     894             :                   Type restriction_type = Type::Any()) {
     895             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     896     3507388 :     ProcessInput(node, 0, left_use);
     897     3506737 :     ProcessInput(node, 1, right_use);
     898    10174697 :     for (int i = 2; i < node->InputCount(); i++) {
     899     3334135 :       EnqueueInput(node, i);
     900             :     }
     901             :     SetOutput(node, output, restriction_type);
     902     3507257 :   }
     903             : 
     904             :   // Helper for binops of the I x I -> O variety.
     905             :   void VisitBinop(Node* node, UseInfo input_use, MachineRepresentation output,
     906             :                   Type restriction_type = Type::Any()) {
     907     2864312 :     VisitBinop(node, input_use, input_use, output, restriction_type);
     908             :   }
     909             : 
     910       81805 :   void VisitSpeculativeInt32Binop(Node* node) {
     911             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     912       81805 :     if (BothInputsAre(node, Type::NumberOrOddball())) {
     913             :       return VisitBinop(node, UseInfo::TruncatingWord32(),
     914             :                         MachineRepresentation::kWord32);
     915             :     }
     916       18503 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
     917       37006 :     return VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
     918       18503 :                       MachineRepresentation::kWord32);
     919             :   }
     920             : 
     921             :   // Helper for unops of the I -> O variety.
     922    10715468 :   void VisitUnop(Node* node, UseInfo input_use, MachineRepresentation output,
     923             :                  Type restriction_type = Type::Any()) {
     924             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     925    10715468 :     ProcessInput(node, 0, input_use);
     926    10715463 :     ProcessRemainingInputs(node, 1);
     927             :     SetOutput(node, output, restriction_type);
     928    10715453 :   }
     929             : 
     930             :   // Helper for leaf nodes.
     931             :   void VisitLeaf(Node* node, MachineRepresentation output) {
     932             :     DCHECK_EQ(0, node->InputCount());
     933             :     SetOutput(node, output);
     934             :   }
     935             : 
     936             :   // Helpers for specific types of binops.
     937      630848 :   void VisitFloat64Binop(Node* node) {
     938             :     VisitBinop(node, UseInfo::TruncatingFloat64(),
     939             :                MachineRepresentation::kFloat64);
     940      630863 :   }
     941        2219 :   void VisitInt64Binop(Node* node) {
     942             :     VisitBinop(node, UseInfo::Word64(), MachineRepresentation::kWord64);
     943        2219 :   }
     944      487901 :   void VisitWord32TruncatingBinop(Node* node) {
     945             :     VisitBinop(node, UseInfo::TruncatingWord32(),
     946             :                MachineRepresentation::kWord32);
     947      487954 :   }
     948             : 
     949             :   // Infer representation for phi-like nodes.
     950             :   // The {node} parameter is only used to decide on the int64 representation.
     951             :   // Once the type system supports an external pointer type, the {node}
     952             :   // parameter can be removed.
     953     1651603 :   MachineRepresentation GetOutputInfoForPhi(Node* node, Type type,
     954             :                                             Truncation use) {
     955             :     // Compute the representation.
     956     1651561 :     if (type.Is(Type::None())) {
     957             :       return MachineRepresentation::kNone;
     958     2947794 :     } else if (type.Is(Type::Signed32()) || type.Is(Type::Unsigned32())) {
     959             :       return MachineRepresentation::kWord32;
     960     2128891 :     } else if (type.Is(Type::NumberOrOddball()) && use.IsUsedAsWord32()) {
     961             :       return MachineRepresentation::kWord32;
     962     1300588 :     } else if (type.Is(Type::Boolean())) {
     963             :       return MachineRepresentation::kBit;
     964     1948096 :     } else if (type.Is(Type::NumberOrOddball()) && use.IsUsedAsFloat64()) {
     965             :       return MachineRepresentation::kFloat64;
     966     2290086 :     } else if (type.Is(Type::Union(Type::SignedSmall(), Type::NaN(), zone()))) {
     967             :       // TODO(turbofan): For Phis that return either NaN or some Smi, it's
     968             :       // beneficial to not go all the way to double, unless the uses are
     969             :       // double uses. For tagging that just means some potentially expensive
     970             :       // allocation code; we might want to do the same for -0 as well?
     971             :       return MachineRepresentation::kTagged;
     972     1144897 :     } else if (type.Is(Type::Number())) {
     973             :       return MachineRepresentation::kFloat64;
     974      493477 :     } else if (type.Is(Type::ExternalPointer())) {
     975             :       return MachineType::PointerRepresentation();
     976             :     }
     977      493477 :     return MachineRepresentation::kTagged;
     978             :   }
     979             : 
     980             :   // Helper for handling selects.
     981       38621 :   void VisitSelect(Node* node, Truncation truncation,
     982             :                    SimplifiedLowering* lowering) {
     983             :     DCHECK(TypeOf(node->InputAt(0)).Is(Type::Boolean()));
     984       38621 :     ProcessInput(node, 0, UseInfo::Bool());
     985             : 
     986             :     MachineRepresentation output =
     987       38621 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
     988             :     SetOutput(node, output);
     989             : 
     990       38621 :     if (lower()) {
     991             :       // Update the select operator.
     992       12554 :       SelectParameters p = SelectParametersOf(node->op());
     993       12554 :       if (output != p.representation()) {
     994        7263 :         NodeProperties::ChangeOp(node,
     995        7263 :                                  lowering->common()->Select(output, p.hint()));
     996             :       }
     997             :     }
     998             :     // Convert inputs to the output representation of this phi, pass the
     999             :     // truncation truncation along.
    1000       77242 :     UseInfo input_use(output, truncation);
    1001       38621 :     ProcessInput(node, 1, input_use);
    1002       38621 :     ProcessInput(node, 2, input_use);
    1003       38621 :   }
    1004             : 
    1005             :   // Helper for handling phis.
    1006     1521403 :   void VisitPhi(Node* node, Truncation truncation,
    1007             :                 SimplifiedLowering* lowering) {
    1008             :     MachineRepresentation output =
    1009     1521403 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
    1010             :     // Only set the output representation if not running with type
    1011             :     // feedback. (Feedback typing will set the representation.)
    1012             :     SetOutput(node, output);
    1013             : 
    1014             :     int values = node->op()->ValueInputCount();
    1015     1521335 :     if (lower()) {
    1016             :       // Update the phi operator.
    1017      319481 :       if (output != PhiRepresentationOf(node->op())) {
    1018      176480 :         NodeProperties::ChangeOp(node, lowering->common()->Phi(output, values));
    1019             :       }
    1020             :     }
    1021             : 
    1022             :     // Convert inputs to the output representation of this phi, pass the
    1023             :     // truncation along.
    1024     3043126 :     UseInfo input_use(output, truncation);
    1025    12765020 :     for (int i = 0; i < node->InputCount(); i++) {
    1026    11243860 :       ProcessInput(node, i, i < values ? input_use : UseInfo::None());
    1027             :     }
    1028     1521456 :   }
    1029             : 
    1030      162521 :   void VisitObjectIs(Node* node, Type type, SimplifiedLowering* lowering) {
    1031      162521 :     Type const input_type = TypeOf(node->InputAt(0));
    1032      162521 :     if (input_type.Is(type)) {
    1033        4041 :       VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    1034        4041 :       if (lower()) {
    1035        1379 :         DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    1036             :       }
    1037             :     } else {
    1038      158481 :       VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    1039      158481 :       if (lower() && !input_type.Maybe(type)) {
    1040         485 :         DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    1041             :       }
    1042             :     }
    1043      162522 :   }
    1044             : 
    1045       15458 :   void VisitCheck(Node* node, Type type, SimplifiedLowering* lowering) {
    1046       15458 :     if (InputIs(node, type)) {
    1047             :       VisitUnop(node, UseInfo::AnyTagged(),
    1048        1189 :                 MachineRepresentation::kTaggedPointer);
    1049        1559 :       if (lower()) DeferReplacement(node, node->InputAt(0));
    1050             :     } else {
    1051       28538 :       VisitUnop(node,
    1052             :                 UseInfo::CheckedHeapObjectAsTaggedPointer(VectorSlotPair()),
    1053       14269 :                 MachineRepresentation::kTaggedPointer);
    1054             :     }
    1055       15458 :   }
    1056             : 
    1057      338180 :   void VisitCall(Node* node, SimplifiedLowering* lowering) {
    1058      338180 :     auto call_descriptor = CallDescriptorOf(node->op());
    1059      338183 :     int params = static_cast<int>(call_descriptor->ParameterCount());
    1060             :     int value_input_count = node->op()->ValueInputCount();
    1061             :     // Propagate representation information from call descriptor.
    1062     5136335 :     for (int i = 0; i < value_input_count; i++) {
    1063     2399076 :       if (i == 0) {
    1064             :         // The target of the call.
    1065      338180 :         ProcessInput(node, i, UseInfo::Any());
    1066     2060896 :       } else if ((i - 1) < params) {
    1067     1727685 :         ProcessInput(node, i,
    1068             :                      TruncatingUseInfoFromRepresentation(
    1069     3455369 :                          call_descriptor->GetInputType(i).representation()));
    1070             :       } else {
    1071      333210 :         ProcessInput(node, i, UseInfo::AnyTagged());
    1072             :       }
    1073             :     }
    1074      338183 :     ProcessRemainingInputs(node, value_input_count);
    1075             : 
    1076      338181 :     if (call_descriptor->ReturnCount() > 0) {
    1077             :       SetOutput(node, call_descriptor->GetReturnType(0).representation());
    1078             :     } else {
    1079             :       SetOutput(node, MachineRepresentation::kTagged);
    1080             :     }
    1081      338181 :   }
    1082             : 
    1083       10052 :   void MaskShiftOperand(Node* node, Type rhs_type) {
    1084       20105 :     if (!rhs_type.Is(type_cache_->kZeroToThirtyOne)) {
    1085         959 :       Node* const rhs = NodeProperties::GetValueInput(node, 1);
    1086        1918 :       node->ReplaceInput(1,
    1087         959 :                          graph()->NewNode(jsgraph_->machine()->Word32And(), rhs,
    1088        1918 :                                           jsgraph_->Int32Constant(0x1F)));
    1089             :     }
    1090       10053 :   }
    1091             : 
    1092      531686 :   static MachineSemantic DeoptValueSemanticOf(Type type) {
    1093             :     // We only need signedness to do deopt correctly.
    1094      531665 :     if (type.Is(Type::Signed32())) {
    1095             :       return MachineSemantic::kInt32;
    1096      362611 :     } else if (type.Is(Type::Unsigned32())) {
    1097             :       return MachineSemantic::kUint32;
    1098             :     } else {
    1099      361000 :       return MachineSemantic::kAny;
    1100             :     }
    1101             :   }
    1102             : 
    1103    11294644 :   static MachineType DeoptMachineTypeOf(MachineRepresentation rep, Type type) {
    1104    11294644 :     if (type.IsNone()) {
    1105             :       return MachineType::None();
    1106             :     }
    1107             :     // Do not distinguish between various Tagged variations.
    1108    11294644 :     if (IsAnyTagged(rep)) {
    1109             :       return MachineType::AnyTagged();
    1110             :     }
    1111             :     // Word64 representation is only valid for safe integer values.
    1112      531736 :     if (rep == MachineRepresentation::kWord64) {
    1113             :       DCHECK(type.Is(TypeCache::Get()->kSafeInteger));
    1114          51 :       return MachineType(rep, MachineSemantic::kInt64);
    1115             :     }
    1116      531685 :     MachineType machine_type(rep, DeoptValueSemanticOf(type));
    1117             :     DCHECK(machine_type.representation() != MachineRepresentation::kWord32 ||
    1118             :            machine_type.semantic() == MachineSemantic::kInt32 ||
    1119             :            machine_type.semantic() == MachineSemantic::kUint32);
    1120             :     DCHECK(machine_type.representation() != MachineRepresentation::kBit ||
    1121             :            type.Is(Type::Boolean()));
    1122      531675 :     return machine_type;
    1123             :   }
    1124             : 
    1125    10996347 :   void VisitStateValues(Node* node) {
    1126    10996347 :     if (propagate()) {
    1127    23712071 :       for (int i = 0; i < node->InputCount(); i++) {
    1128    10297635 :         EnqueueInput(node, i, UseInfo::Any());
    1129             :       }
    1130     7879420 :     } else if (lower()) {
    1131     3117018 :       Zone* zone = jsgraph_->zone();
    1132             :       ZoneVector<MachineType>* types =
    1133             :           new (zone->New(sizeof(ZoneVector<MachineType>)))
    1134     6234046 :               ZoneVector<MachineType>(node->InputCount(), zone);
    1135    23712243 :       for (int i = 0; i < node->InputCount(); i++) {
    1136             :         Node* input = node->InputAt(i);
    1137    10297621 :         (*types)[i] =
    1138    10297621 :             DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input));
    1139             :       }
    1140     3117013 :       SparseInputMask mask = SparseInputMaskOf(node->op());
    1141     3117013 :       NodeProperties::ChangeOp(
    1142     6234021 :           node, jsgraph_->common()->TypedStateValues(types, mask));
    1143             :     }
    1144             :     SetOutput(node, MachineRepresentation::kTagged);
    1145    10996356 :   }
    1146             : 
    1147    16622414 :   void VisitFrameState(Node* node) {
    1148             :     DCHECK_EQ(5, node->op()->ValueInputCount());
    1149             :     DCHECK_EQ(1, OperatorProperties::GetFrameStateInputCount(node->op()));
    1150             : 
    1151    16622490 :     ProcessInput(node, 0, UseInfo::AnyTagged());  // Parameters.
    1152    16622490 :     ProcessInput(node, 1, UseInfo::AnyTagged());  // Registers.
    1153             : 
    1154             :     // Accumulator is a special flower - we need to remember its type in
    1155             :     // a singleton typed-state-values node (as if it was a singleton
    1156             :     // state-values node).
    1157    16622506 :     if (propagate()) {
    1158     5259990 :       EnqueueInput(node, 2, UseInfo::Any());
    1159    11362527 :     } else if (lower()) {
    1160     5259978 :       Zone* zone = jsgraph_->zone();
    1161             :       Node* accumulator = node->InputAt(2);
    1162     5259978 :       if (accumulator == jsgraph_->OptimizedOutConstant()) {
    1163     4396400 :         node->ReplaceInput(2, jsgraph_->SingleDeadTypedStateValues());
    1164             :       } else {
    1165             :         ZoneVector<MachineType>* types =
    1166             :             new (zone->New(sizeof(ZoneVector<MachineType>)))
    1167      863579 :                 ZoneVector<MachineType>(1, zone);
    1168             :         (*types)[0] = DeoptMachineTypeOf(GetInfo(accumulator)->representation(),
    1169      863578 :                                          TypeOf(accumulator));
    1170             : 
    1171      863578 :         node->ReplaceInput(
    1172     1727155 :             2, jsgraph_->graph()->NewNode(jsgraph_->common()->TypedStateValues(
    1173             :                                               types, SparseInputMask::Dense()),
    1174      863577 :                                           accumulator));
    1175             :       }
    1176             :     }
    1177             : 
    1178    16622536 :     ProcessInput(node, 3, UseInfo::AnyTagged());  // Context.
    1179    16622511 :     ProcessInput(node, 4, UseInfo::AnyTagged());  // Closure.
    1180    16622498 :     ProcessInput(node, 5, UseInfo::AnyTagged());  // Outer frame state.
    1181    16622478 :     return SetOutput(node, MachineRepresentation::kTagged);
    1182             :   }
    1183             : 
    1184       69405 :   void VisitObjectState(Node* node) {
    1185       69405 :     if (propagate()) {
    1186      289189 :       for (int i = 0; i < node->InputCount(); i++) {
    1187      133367 :         EnqueueInput(node, i, UseInfo::Any());
    1188             :       }
    1189       46950 :     } else if (lower()) {
    1190       22455 :       Zone* zone = jsgraph_->zone();
    1191             :       ZoneVector<MachineType>* types =
    1192             :           new (zone->New(sizeof(ZoneVector<MachineType>)))
    1193       44910 :               ZoneVector<MachineType>(node->InputCount(), zone);
    1194      289189 :       for (int i = 0; i < node->InputCount(); i++) {
    1195             :         Node* input = node->InputAt(i);
    1196      133367 :         (*types)[i] =
    1197      133367 :             DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input));
    1198             :       }
    1199       22455 :       NodeProperties::ChangeOp(node, jsgraph_->common()->TypedObjectState(
    1200       22455 :                                          ObjectIdOf(node->op()), types));
    1201             :     }
    1202             :     SetOutput(node, MachineRepresentation::kTagged);
    1203       69405 :   }
    1204             : 
    1205             :   const Operator* Int32Op(Node* node) {
    1206      212287 :     return changer_->Int32OperatorFor(node->opcode());
    1207             :   }
    1208             : 
    1209             :   const Operator* Int32OverflowOp(Node* node) {
    1210      150129 :     return changer_->Int32OverflowOperatorFor(node->opcode());
    1211             :   }
    1212             : 
    1213             :   const Operator* Int64Op(Node* node) {
    1214         525 :     return changer_->Int64OperatorFor(node->opcode());
    1215             :   }
    1216             : 
    1217             :   const Operator* Uint32Op(Node* node) {
    1218       36345 :     return changer_->Uint32OperatorFor(node->opcode());
    1219             :   }
    1220             : 
    1221             :   const Operator* Uint32OverflowOp(Node* node) {
    1222         113 :     return changer_->Uint32OverflowOperatorFor(node->opcode());
    1223             :   }
    1224             : 
    1225             :   const Operator* Float64Op(Node* node) {
    1226      167915 :     return changer_->Float64OperatorFor(node->opcode());
    1227             :   }
    1228             : 
    1229     6395402 :   WriteBarrierKind WriteBarrierKindFor(
    1230             :       BaseTaggedness base_taggedness,
    1231             :       MachineRepresentation field_representation, Type field_type,
    1232             :       MachineRepresentation value_representation, Node* value) {
    1233    12790804 :     if (base_taggedness == kTaggedBase &&
    1234             :         CanBeTaggedPointer(field_representation)) {
    1235     5605806 :       Type value_type = NodeProperties::GetType(value);
    1236    11211612 :       if (field_representation == MachineRepresentation::kTaggedSigned ||
    1237     5605806 :           value_representation == MachineRepresentation::kTaggedSigned) {
    1238             :         // Write barriers are only for stores of heap objects.
    1239             :         return kNoWriteBarrier;
    1240             :       }
    1241    11211613 :       if (field_type.Is(Type::BooleanOrNullOrUndefined()) ||
    1242             :           value_type.Is(Type::BooleanOrNullOrUndefined())) {
    1243             :         // Write barriers are not necessary when storing true, false, null or
    1244             :         // undefined, because these special oddballs are always in the root set.
    1245             :         return kNoWriteBarrier;
    1246             :       }
    1247     5223075 :       if (value_type.IsHeapConstant()) {
    1248             :         RootIndex root_index;
    1249     1886987 :         const RootsTable& roots_table = jsgraph_->isolate()->roots_table();
    1250     3773973 :         if (roots_table.IsRootHandle(value_type.AsHeapConstant()->Value(),
    1251             :                                      &root_index)) {
    1252     1082032 :           if (RootsTable::IsImmortalImmovable(root_index)) {
    1253             :             // Write barriers are unnecessary for immortal immovable roots.
    1254             :             return kNoWriteBarrier;
    1255             :           }
    1256             :         }
    1257             :       }
    1258     8282086 :       if (field_representation == MachineRepresentation::kTaggedPointer ||
    1259     4141043 :           value_representation == MachineRepresentation::kTaggedPointer) {
    1260             :         // Write barriers for heap objects are cheaper.
    1261             :         return kPointerWriteBarrier;
    1262             :       }
    1263             :       NumberMatcher m(value);
    1264     3196511 :       if (m.HasValue()) {
    1265        1589 :         if (IsSmiDouble(m.Value())) {
    1266             :           // Storing a smi doesn't need a write barrier.
    1267             :           return kNoWriteBarrier;
    1268             :         }
    1269             :         // The NumberConstant will be represented as HeapNumber.
    1270        1589 :         return kPointerWriteBarrier;
    1271             :       }
    1272             :       return kFullWriteBarrier;
    1273             :     }
    1274             :     return kNoWriteBarrier;
    1275             :   }
    1276             : 
    1277             :   WriteBarrierKind WriteBarrierKindFor(
    1278             :       BaseTaggedness base_taggedness,
    1279             :       MachineRepresentation field_representation, int field_offset,
    1280             :       Type field_type, MachineRepresentation value_representation,
    1281             :       Node* value) {
    1282             :     WriteBarrierKind write_barrier_kind =
    1283     6276196 :         WriteBarrierKindFor(base_taggedness, field_representation, field_type,
    1284     6276196 :                             value_representation, value);
    1285     6276194 :     if (write_barrier_kind != kNoWriteBarrier) {
    1286     8192652 :       if (base_taggedness == kTaggedBase &&
    1287     4096326 :           field_offset == HeapObject::kMapOffset) {
    1288             :         write_barrier_kind = kMapWriteBarrier;
    1289             :       }
    1290             :     }
    1291             :     return write_barrier_kind;
    1292             :   }
    1293             : 
    1294             :   Graph* graph() const { return jsgraph_->graph(); }
    1295             :   CommonOperatorBuilder* common() const { return jsgraph_->common(); }
    1296             :   SimplifiedOperatorBuilder* simplified() const {
    1297             :     return jsgraph_->simplified();
    1298             :   }
    1299             : 
    1300        6246 :   void LowerToCheckedInt32Mul(Node* node, Truncation truncation,
    1301             :                               Type input0_type, Type input1_type) {
    1302             :     // If one of the inputs is positive and/or truncation is being applied,
    1303             :     // there is no need to return -0.
    1304             :     CheckForMinusZeroMode mz_mode =
    1305        4600 :         truncation.IdentifiesZeroAndMinusZero() ||
    1306        9159 :                 IsSomePositiveOrderedNumber(input0_type) ||
    1307        4559 :                 IsSomePositiveOrderedNumber(input1_type)
    1308             :             ? CheckForMinusZeroMode::kDontCheckForMinusZero
    1309        6246 :             : CheckForMinusZeroMode::kCheckForMinusZero;
    1310             : 
    1311        6246 :     NodeProperties::ChangeOp(node, simplified()->CheckedInt32Mul(mz_mode));
    1312        6246 :   }
    1313             : 
    1314      150129 :   void ChangeToInt32OverflowOp(Node* node) {
    1315      150123 :     NodeProperties::ChangeOp(node, Int32OverflowOp(node));
    1316      150108 :   }
    1317             : 
    1318         113 :   void ChangeToUint32OverflowOp(Node* node) {
    1319         113 :     NodeProperties::ChangeOp(node, Uint32OverflowOp(node));
    1320         113 :   }
    1321             : 
    1322      790016 :   void VisitSpeculativeIntegerAdditiveOp(Node* node, Truncation truncation,
    1323             :                                          SimplifiedLowering* lowering) {
    1324      790016 :     Type left_upper = GetUpperBound(node->InputAt(0));
    1325      790016 :     Type right_upper = GetUpperBound(node->InputAt(1));
    1326             : 
    1327     1927261 :     if (left_upper.Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1328      347254 :         right_upper.Is(type_cache_->kAdditiveSafeIntegerOrMinusZero)) {
    1329             :       // Only eliminate the node if its typing rule can be satisfied, namely
    1330             :       // that a safe integer is produced.
    1331      341274 :       if (truncation.IsUnused()) return VisitUnused(node);
    1332             : 
    1333             :       // If we know how to interpret the result or if the users only care
    1334             :       // about the low 32-bits, we can truncate to Word32 do a wrapping
    1335             :       // addition.
    1336      715672 :       if (GetUpperBound(node).Is(Type::Signed32()) ||
    1337      391594 :           GetUpperBound(node).Is(Type::Unsigned32()) ||
    1338             :           truncation.IsUsedAsWord32()) {
    1339             :         // => Int32Add/Sub
    1340      260168 :         VisitWord32TruncatingBinop(node);
    1341      323490 :         if (lower()) ChangeToPureOp(node, Int32Op(node));
    1342             :         return;
    1343             :       }
    1344             :     }
    1345             : 
    1346             :     // Try to use type feedback.
    1347      512418 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
    1348             :     DCHECK(hint == NumberOperationHint::kSignedSmall ||
    1349             :            hint == NumberOperationHint::kSigned32);
    1350             : 
    1351      512702 :     Type left_feedback_type = TypeOf(node->InputAt(0));
    1352      512702 :     Type right_feedback_type = TypeOf(node->InputAt(1));
    1353             :     // Handle the case when no int32 checks on inputs are necessary (but
    1354             :     // an overflow check is needed on the output). Note that we do not
    1355             :     // have to do any check if at most one side can be minus zero. For
    1356             :     // subtraction we need to handle the case of -0 - 0 properly, since
    1357             :     // that can produce -0.
    1358             :     Type left_constraint_type =
    1359             :         node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd
    1360             :             ? Type::Signed32OrMinusZero()
    1361      512702 :             : Type::Signed32();
    1362      580277 :     if (left_upper.Is(left_constraint_type) &&
    1363      574174 :         right_upper.Is(Type::Signed32OrMinusZero()) &&
    1364          21 :         (left_upper.Is(Type::Signed32()) || right_upper.Is(Type::Signed32()))) {
    1365             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1366             :                  MachineRepresentation::kWord32, Type::Signed32());
    1367             :     } else {
    1368             :       // If the output's truncation is identify-zeros, we can pass it
    1369             :       // along. Moreover, if the operation is addition and we know the
    1370             :       // right-hand side is not minus zero, we do not have to distinguish
    1371             :       // between 0 and -0.
    1372             :       IdentifyZeros left_identify_zeros = truncation.identify_zeros();
    1373      887439 :       if (node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd &&
    1374      436232 :           !right_feedback_type.Maybe(Type::MinusZero())) {
    1375             :         left_identify_zeros = kIdentifyZeros;
    1376             :       }
    1377             :       UseInfo left_use = CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1378      451207 :                                                         left_identify_zeros);
    1379             :       // For CheckedInt32Add and CheckedInt32Sub, we don't need to do
    1380             :       // a minus zero check for the right hand side, since we already
    1381             :       // know that the left hand side is a proper Signed32 value,
    1382             :       // potentially guarded by a check.
    1383             :       UseInfo right_use = CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1384      451393 :                                                          kIdentifyZeros);
    1385             :       VisitBinop(node, left_use, right_use, MachineRepresentation::kWord32,
    1386      451373 :                  Type::Signed32());
    1387             :     }
    1388      512913 :     if (lower()) {
    1389      308135 :       if (truncation.IsUsedAsWord32() ||
    1390      153794 :           !CanOverflowSigned32(node->op(), left_feedback_type,
    1391             :                                right_feedback_type, graph_zone())) {
    1392        5748 :         ChangeToPureOp(node, Int32Op(node));
    1393             : 
    1394             :       } else {
    1395      148593 :         ChangeToInt32OverflowOp(node);
    1396             :       }
    1397             :     }
    1398             :     return;
    1399             :   }
    1400             : 
    1401        3887 :   void VisitSpeculativeAdditiveOp(Node* node, Truncation truncation,
    1402             :                                   SimplifiedLowering* lowering) {
    1403       11661 :     if (BothInputsAre(node, type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1404        3887 :         (GetUpperBound(node).Is(Type::Signed32()) ||
    1405           0 :          GetUpperBound(node).Is(Type::Unsigned32()) ||
    1406             :          truncation.IsUsedAsWord32())) {
    1407             :       // => Int32Add/Sub
    1408           0 :       VisitWord32TruncatingBinop(node);
    1409           0 :       if (lower()) ChangeToPureOp(node, Int32Op(node));
    1410             :       return;
    1411             :     }
    1412             : 
    1413             :     // default case => Float64Add/Sub
    1414        7774 :     VisitBinop(node,
    1415             :                UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    1416             :                                                         VectorSlotPair()),
    1417             :                MachineRepresentation::kFloat64, Type::Number());
    1418        3887 :     if (lower()) {
    1419        1112 :       ChangeToPureOp(node, Float64Op(node));
    1420             :     }
    1421             :     return;
    1422             :   }
    1423             : 
    1424       13904 :   void VisitSpeculativeNumberModulus(Node* node, Truncation truncation,
    1425             :                                      SimplifiedLowering* lowering) {
    1426       42319 :     if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN()) &&
    1427         165 :         (truncation.IsUsedAsWord32() ||
    1428       14234 :          NodeProperties::GetType(node).Is(Type::Unsigned32()))) {
    1429             :       // => unsigned Uint32Mod
    1430         640 :       VisitWord32TruncatingBinop(node);
    1431         640 :       if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1432             :       return;
    1433             :     }
    1434       46797 :     if (BothInputsAre(node, Type::Signed32OrMinusZeroOrNaN()) &&
    1435        1236 :         (truncation.IsUsedAsWord32() ||
    1436       15736 :          NodeProperties::GetType(node).Is(Type::Signed32()))) {
    1437             :       // => signed Int32Mod
    1438        7005 :       VisitWord32TruncatingBinop(node);
    1439        7005 :       if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1440             :       return;
    1441             :     }
    1442             : 
    1443             :     // Try to use type feedback.
    1444        6259 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
    1445             : 
    1446             :     // Handle the case when no uint32 checks on inputs are necessary
    1447             :     // (but an overflow check is needed on the output).
    1448        6259 :     if (BothInputsAreUnsigned32(node)) {
    1449         264 :       if (hint == NumberOperationHint::kSignedSmall ||
    1450         132 :           hint == NumberOperationHint::kSigned32) {
    1451             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1452             :                    MachineRepresentation::kWord32, Type::Unsigned32());
    1453         132 :         if (lower()) ChangeToUint32OverflowOp(node);
    1454             :         return;
    1455             :       }
    1456             :     }
    1457             : 
    1458             :     // Handle the case when no int32 checks on inputs are necessary
    1459             :     // (but an overflow check is needed on the output).
    1460        6127 :     if (BothInputsAre(node, Type::Signed32())) {
    1461             :       // If both the inputs the feedback are int32, use the overflow op.
    1462        2208 :       if (hint == NumberOperationHint::kSignedSmall ||
    1463        1104 :           hint == NumberOperationHint::kSigned32) {
    1464             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1465             :                    MachineRepresentation::kWord32, Type::Signed32());
    1466        1104 :         if (lower()) ChangeToInt32OverflowOp(node);
    1467             :         return;
    1468             :       }
    1469             :     }
    1470             : 
    1471       10046 :     if (hint == NumberOperationHint::kSignedSmall ||
    1472        5023 :         hint == NumberOperationHint::kSigned32) {
    1473             :       // If the result is truncated, we only need to check the inputs.
    1474             :       // For the left hand side we just propagate the identify zeros
    1475             :       // mode of the {truncation}; and for modulus the sign of the
    1476             :       // right hand side doesn't matter anyways, so in particular there's
    1477             :       // no observable difference between a 0 and a -0 then.
    1478             :       UseInfo const lhs_use = CheckedUseInfoAsWord32FromHint(
    1479        4213 :           hint, VectorSlotPair(), truncation.identify_zeros());
    1480             :       UseInfo const rhs_use = CheckedUseInfoAsWord32FromHint(
    1481        4213 :           hint, VectorSlotPair(), kIdentifyZeros);
    1482        4213 :       if (truncation.IsUsedAsWord32()) {
    1483         186 :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32);
    1484         186 :         if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1485        4027 :       } else if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN())) {
    1486             :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32,
    1487           0 :                    Type::Unsigned32());
    1488           0 :         if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1489             :       } else {
    1490             :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32,
    1491        4027 :                    Type::Signed32());
    1492        4027 :         if (lower()) ChangeToInt32OverflowOp(node);
    1493             :       }
    1494             :       return;
    1495             :     }
    1496             : 
    1497        1672 :     if (TypeOf(node->InputAt(0)).Is(Type::Unsigned32()) &&
    1498        1672 :         TypeOf(node->InputAt(1)).Is(Type::Unsigned32()) &&
    1499           0 :         (truncation.IsUsedAsWord32() ||
    1500         810 :          NodeProperties::GetType(node).Is(Type::Unsigned32()))) {
    1501             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1502             :                  MachineRepresentation::kWord32, Type::Number());
    1503           0 :       if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1504             :       return;
    1505             :     }
    1506        1739 :     if (TypeOf(node->InputAt(0)).Is(Type::Signed32()) &&
    1507        1739 :         TypeOf(node->InputAt(1)).Is(Type::Signed32()) &&
    1508           0 :         (truncation.IsUsedAsWord32() ||
    1509         810 :          NodeProperties::GetType(node).Is(Type::Signed32()))) {
    1510             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1511             :                  MachineRepresentation::kWord32, Type::Number());
    1512           0 :       if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1513             :       return;
    1514             :     }
    1515             : 
    1516             :     // default case => Float64Mod
    1517             :     // For the left hand side we just propagate the identify zeros
    1518             :     // mode of the {truncation}; and for modulus the sign of the
    1519             :     // right hand side doesn't matter anyways, so in particular there's
    1520             :     // no observable difference between a 0 and a -0 then.
    1521             :     UseInfo const lhs_use = UseInfo::CheckedNumberOrOddballAsFloat64(
    1522        1620 :         truncation.identify_zeros(), VectorSlotPair());
    1523             :     UseInfo const rhs_use = UseInfo::CheckedNumberOrOddballAsFloat64(
    1524        1620 :         kIdentifyZeros, VectorSlotPair());
    1525             :     VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kFloat64,
    1526         810 :                Type::Number());
    1527        1022 :     if (lower()) ChangeToPureOp(node, Float64Op(node));
    1528             :     return;
    1529             :   }
    1530             : 
    1531    30548283 :   void InsertUnreachableIfNecessary(Node* node) {
    1532             :     DCHECK(lower());
    1533             :     // If the node is effectful and it produces an impossible value, then we
    1534             :     // insert Unreachable node after it.
    1535    51202532 :     if (node->op()->ValueOutputCount() > 0 &&
    1536     5460841 :         node->op()->EffectOutputCount() > 0 &&
    1537    36008354 :         node->opcode() != IrOpcode::kUnreachable && TypeOf(node).IsNone()) {
    1538             :       Node* control =
    1539             :           (node->op()->ControlOutputCount() == 0)
    1540             :               ? NodeProperties::GetControlInput(node, 0)
    1541        1180 :               : NodeProperties::FindSuccessfulControlProjection(node);
    1542             : 
    1543             :       Node* unreachable =
    1544        1180 :           graph()->NewNode(common()->Unreachable(), node, control);
    1545             : 
    1546             :       // Insert unreachable node and replace all the effect uses of the {node}
    1547             :       // with the new unreachable node.
    1548        7426 :       for (Edge edge : node->use_edges()) {
    1549        3123 :         if (!NodeProperties::IsEffectEdge(edge)) continue;
    1550             :         // Make sure to not overwrite the unreachable node's input. That would
    1551             :         // create a cycle.
    1552        2367 :         if (edge.from() == unreachable) continue;
    1553             :         // Avoid messing up the exceptional path.
    1554        1187 :         if (edge.from()->opcode() == IrOpcode::kIfException) {
    1555             :           DCHECK(!node->op()->HasProperty(Operator::kNoThrow));
    1556             :           DCHECK_EQ(NodeProperties::GetControlInput(edge.from()), node);
    1557             :           continue;
    1558             :         }
    1559             : 
    1560        1180 :         edge.UpdateTo(unreachable);
    1561             :       }
    1562             :     }
    1563    30548283 :   }
    1564             : 
    1565      187567 :   void VisitCheckBounds(Node* node, SimplifiedLowering* lowering) {
    1566      187567 :     CheckParameters const& p = CheckParametersOf(node->op());
    1567      187567 :     Type const index_type = TypeOf(node->InputAt(0));
    1568      187567 :     Type const length_type = TypeOf(node->InputAt(1));
    1569      187567 :     if (length_type.Is(Type::Unsigned31())) {
    1570      186946 :       if (index_type.Is(Type::Integral32OrMinusZero())) {
    1571             :         // Map -0 to 0, and the values in the [-2^31,-1] range to the
    1572             :         // [2^31,2^32-1] range, which will be considered out-of-bounds
    1573             :         // as well, because the {length_type} is limited to Unsigned31.
    1574             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1575             :                    MachineRepresentation::kWord32);
    1576      173281 :         if (lower()) {
    1577             :           CheckBoundsParameters::Mode mode =
    1578             :               CheckBoundsParameters::kDeoptOnOutOfBounds;
    1579      104256 :           if (lowering->poisoning_level_ ==
    1580      104256 :                   PoisoningMitigationLevel::kDontPoison &&
    1581      104256 :               (index_type.IsNone() || length_type.IsNone() ||
    1582      100349 :                (index_type.Min() >= 0.0 &&
    1583       48221 :                 index_type.Max() < length_type.Min()))) {
    1584             :             // The bounds check is redundant if we already know that
    1585             :             // the index is within the bounds of [0.0, length[.
    1586             :             mode = CheckBoundsParameters::kAbortOnOutOfBounds;
    1587             :           }
    1588       52128 :           NodeProperties::ChangeOp(
    1589       52128 :               node, simplified()->CheckedUint32Bounds(p.feedback(), mode));
    1590             :         }
    1591             :       } else {
    1592             :         VisitBinop(
    1593             :             node,
    1594             :             UseInfo::CheckedSigned32AsWord32(kIdentifyZeros, p.feedback()),
    1595       13665 :             UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    1596       13665 :         if (lower()) {
    1597        2605 :           NodeProperties::ChangeOp(
    1598             :               node,
    1599             :               simplified()->CheckedUint32Bounds(
    1600        2605 :                   p.feedback(), CheckBoundsParameters::kDeoptOnOutOfBounds));
    1601             :         }
    1602             :       }
    1603             :     } else {
    1604             :       DCHECK(length_type.Is(type_cache_->kPositiveSafeInteger));
    1605             :       VisitBinop(node,
    1606             :                  UseInfo::CheckedSigned64AsWord64(kIdentifyZeros, p.feedback()),
    1607         622 :                  UseInfo::Word64(), MachineRepresentation::kWord64);
    1608         622 :       if (lower()) {
    1609         202 :         NodeProperties::ChangeOp(
    1610         202 :             node, simplified()->CheckedUint64Bounds(p.feedback()));
    1611             :       }
    1612             :     }
    1613      187568 :   }
    1614             : 
    1615             :   // Dispatching routine for visiting the node {node} with the usage {use}.
    1616             :   // Depending on the operator, propagate new usage info to the inputs.
    1617    97599164 :   void VisitNode(Node* node, Truncation truncation,
    1618             :                  SimplifiedLowering* lowering) {
    1619             :     // Unconditionally eliminate unused pure nodes (only relevant if there's
    1620             :     // a pure operation in between two effectful ones, where the last one
    1621             :     // is unused).
    1622             :     // Note: We must not do this for constants, as they are cached and we
    1623             :     // would thus kill the cached {node} during lowering (i.e. replace all
    1624             :     // uses with Dead), but at that point some node lowering might have
    1625             :     // already taken the constant {node} from the cache (while it was in
    1626             :     // a sane state still) and we would afterwards replace that use with
    1627             :     // Dead as well.
    1628   158324440 :     if (node->op()->ValueInputCount() > 0 &&
    1629   134492746 :         node->op()->HasProperty(Operator::kPure) && truncation.IsUnused()) {
    1630      109255 :       return VisitUnused(node);
    1631             :     }
    1632             : 
    1633    97489909 :     if (lower()) InsertUnreachableIfNecessary(node);
    1634             : 
    1635    97503567 :     switch (node->opcode()) {
    1636             :       //------------------------------------------------------------------
    1637             :       // Common operators.
    1638             :       //------------------------------------------------------------------
    1639             :       case IrOpcode::kStart:
    1640             :         // We use Start as a terminator for the frame state chain, so even
    1641             :         // tho Start doesn't really produce a value, we have to say Tagged
    1642             :         // here, otherwise the input conversion will fail.
    1643             :         return VisitLeaf(node, MachineRepresentation::kTagged);
    1644             :       case IrOpcode::kParameter:
    1645             :         // TODO(titzer): use representation from linkage.
    1646     6004118 :         return VisitUnop(node, UseInfo::None(), MachineRepresentation::kTagged);
    1647             :       case IrOpcode::kInt32Constant:
    1648             :         return VisitLeaf(node, MachineRepresentation::kWord32);
    1649             :       case IrOpcode::kInt64Constant:
    1650             :         return VisitLeaf(node, MachineRepresentation::kWord64);
    1651             :       case IrOpcode::kExternalConstant:
    1652             :         return VisitLeaf(node, MachineType::PointerRepresentation());
    1653             :       case IrOpcode::kNumberConstant: {
    1654     3569698 :         double const value = OpParameter<double>(node->op());
    1655             :         int value_as_int;
    1656     3569698 :         if (DoubleToSmiInteger(value, &value_as_int)) {
    1657             :           VisitLeaf(node, MachineRepresentation::kTaggedSigned);
    1658     3426951 :           if (lower()) {
    1659             :             intptr_t smi = bit_cast<intptr_t>(Smi::FromInt(value_as_int));
    1660     1098085 :             DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(smi));
    1661             :           }
    1662             :           return;
    1663             :         }
    1664             :         VisitLeaf(node, MachineRepresentation::kTagged);
    1665             :         return;
    1666             :       }
    1667             :       case IrOpcode::kHeapConstant:
    1668             :       case IrOpcode::kDelayedStringConstant:
    1669             :         return VisitLeaf(node, MachineRepresentation::kTaggedPointer);
    1670             :       case IrOpcode::kPointerConstant: {
    1671             :         VisitLeaf(node, MachineType::PointerRepresentation());
    1672         666 :         if (lower()) {
    1673         222 :           intptr_t const value = OpParameter<intptr_t>(node->op());
    1674         222 :           DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(value));
    1675             :         }
    1676             :         return;
    1677             :       }
    1678             : 
    1679             :       case IrOpcode::kBranch: {
    1680             :         DCHECK(TypeOf(node->InputAt(0)).Is(Type::Boolean()));
    1681     1846288 :         ProcessInput(node, 0, UseInfo::Bool());
    1682     1846222 :         EnqueueInput(node, NodeProperties::FirstControlIndex(node));
    1683     1846212 :         return;
    1684             :       }
    1685             :       case IrOpcode::kSwitch:
    1686       18983 :         ProcessInput(node, 0, UseInfo::TruncatingWord32());
    1687       18983 :         EnqueueInput(node, NodeProperties::FirstControlIndex(node));
    1688       18983 :         return;
    1689             :       case IrOpcode::kSelect:
    1690       38621 :         return VisitSelect(node, truncation, lowering);
    1691             :       case IrOpcode::kPhi:
    1692     1521410 :         return VisitPhi(node, truncation, lowering);
    1693             :       case IrOpcode::kCall:
    1694      338180 :         return VisitCall(node, lowering);
    1695             : 
    1696             :       //------------------------------------------------------------------
    1697             :       // JavaScript operators.
    1698             :       //------------------------------------------------------------------
    1699             :       case IrOpcode::kToBoolean: {
    1700      153463 :         if (truncation.IsUsedAsBool()) {
    1701      152860 :           ProcessInput(node, 0, UseInfo::Bool());
    1702             :           SetOutput(node, MachineRepresentation::kBit);
    1703      201302 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    1704             :         } else {
    1705         603 :           VisitInputs(node);
    1706             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    1707             :         }
    1708             :         return;
    1709             :       }
    1710             :       case IrOpcode::kJSToNumber:
    1711             :       case IrOpcode::kJSToNumberConvertBigInt:
    1712             :       case IrOpcode::kJSToNumeric: {
    1713       38181 :         VisitInputs(node);
    1714             :         // TODO(bmeurer): Optimize somewhat based on input type?
    1715       38181 :         if (truncation.IsUsedAsWord32()) {
    1716             :           SetOutput(node, MachineRepresentation::kWord32);
    1717         333 :           if (lower())
    1718          75 :             lowering->DoJSToNumberOrNumericTruncatesToWord32(node, this);
    1719       37848 :         } else if (truncation.IsUsedAsFloat64()) {
    1720             :           SetOutput(node, MachineRepresentation::kFloat64);
    1721        4987 :           if (lower())
    1722        1413 :             lowering->DoJSToNumberOrNumericTruncatesToFloat64(node, this);
    1723             :         } else {
    1724             :           SetOutput(node, MachineRepresentation::kTagged);
    1725             :         }
    1726             :         return;
    1727             :       }
    1728             : 
    1729             :       //------------------------------------------------------------------
    1730             :       // Simplified operators.
    1731             :       //------------------------------------------------------------------
    1732             :       case IrOpcode::kBooleanNot: {
    1733        9679 :         if (lower()) {
    1734             :           NodeInfo* input_info = GetInfo(node->InputAt(0));
    1735        3111 :           if (input_info->representation() == MachineRepresentation::kBit) {
    1736             :             // BooleanNot(x: kRepBit) => Word32Equal(x, #0)
    1737        2074 :             node->AppendInput(jsgraph_->zone(), jsgraph_->Int32Constant(0));
    1738        2074 :             NodeProperties::ChangeOp(node, lowering->machine()->Word32Equal());
    1739        1037 :           } else if (CanBeTaggedPointer(input_info->representation())) {
    1740             :             // BooleanNot(x: kRepTagged) => WordEqual(x, #false)
    1741        1037 :             node->AppendInput(jsgraph_->zone(), jsgraph_->FalseConstant());
    1742        1037 :             NodeProperties::ChangeOp(node, lowering->machine()->WordEqual());
    1743             :           } else {
    1744             :             DCHECK(TypeOf(node->InputAt(0)).IsNone());
    1745           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    1746             :           }
    1747             :         } else {
    1748             :           // No input representation requirement; adapt during lowering.
    1749        6568 :           ProcessInput(node, 0, UseInfo::AnyTruncatingToBool());
    1750             :           SetOutput(node, MachineRepresentation::kBit);
    1751             :         }
    1752             :         return;
    1753             :       }
    1754             :       case IrOpcode::kNumberEqual: {
    1755      155695 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1756      155695 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1757             :         // Regular number comparisons in JavaScript generally identify zeros,
    1758             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1759             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1760             :         // For equality we also handle the case that one side is non-zero, in
    1761             :         // which case we allow to truncate NaN to 0 on the other side.
    1762      209769 :         if ((lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1763      257382 :              rhs_type.Is(Type::Unsigned32OrMinusZero())) ||
    1764         102 :             (lhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    1765          36 :              rhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    1766          36 :              OneInputCannotBe(node, type_cache_->kZeroish))) {
    1767             :           // => unsigned Int32Cmp
    1768             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1769             :                      MachineRepresentation::kBit);
    1770       66647 :           if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    1771             :           return;
    1772             :         }
    1773      122874 :         if ((lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1774      182216 :              rhs_type.Is(Type::Signed32OrMinusZero())) ||
    1775          65 :             (lhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    1776          36 :              rhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    1777          36 :              OneInputCannotBe(node, type_cache_->kZeroish))) {
    1778             :           // => signed Int32Cmp
    1779             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1780             :                      MachineRepresentation::kBit);
    1781       27850 :           if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    1782             :           return;
    1783             :         }
    1784             :         // => Float64Cmp
    1785             :         VisitBinop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    1786             :                    MachineRepresentation::kBit);
    1787       89105 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    1788             :         return;
    1789             :       }
    1790             :       case IrOpcode::kNumberLessThan:
    1791             :       case IrOpcode::kNumberLessThanOrEqual: {
    1792      164126 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1793      164126 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1794             :         // Regular number comparisons in JavaScript generally identify zeros,
    1795             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1796             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1797      267374 :         if (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1798             :             rhs_type.Is(Type::Unsigned32OrMinusZero())) {
    1799             :           // => unsigned Int32Cmp
    1800             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1801             :                      MachineRepresentation::kBit);
    1802      115880 :           if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    1803       84665 :         } else if (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1804             :                    rhs_type.Is(Type::Signed32OrMinusZero())) {
    1805             :           // => signed Int32Cmp
    1806             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1807             :                      MachineRepresentation::kBit);
    1808       13640 :           if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    1809             :         } else {
    1810             :           // => Float64Cmp
    1811             :           VisitBinop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    1812             :                      MachineRepresentation::kBit);
    1813       62519 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    1814             :         }
    1815             :         return;
    1816             :       }
    1817             : 
    1818             :       case IrOpcode::kSpeculativeSafeIntegerAdd:
    1819             :       case IrOpcode::kSpeculativeSafeIntegerSubtract:
    1820      790020 :         return VisitSpeculativeIntegerAdditiveOp(node, truncation, lowering);
    1821             : 
    1822             :       case IrOpcode::kSpeculativeNumberAdd:
    1823             :       case IrOpcode::kSpeculativeNumberSubtract:
    1824        3887 :         return VisitSpeculativeAdditiveOp(node, truncation, lowering);
    1825             : 
    1826             :       case IrOpcode::kSpeculativeNumberLessThan:
    1827             :       case IrOpcode::kSpeculativeNumberLessThanOrEqual:
    1828             :       case IrOpcode::kSpeculativeNumberEqual: {
    1829      388954 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1830      388954 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1831             :         // Regular number comparisons in JavaScript generally identify zeros,
    1832             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1833             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1834      658990 :         if (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1835             :             rhs_type.Is(Type::Unsigned32OrMinusZero())) {
    1836             :           // => unsigned Int32Cmp
    1837             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1838             :                      MachineRepresentation::kBit);
    1839        6209 :           if (lower()) ChangeToPureOp(node, Uint32Op(node));
    1840             :           return;
    1841      664266 :         } else if (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1842             :                    rhs_type.Is(Type::Signed32OrMinusZero())) {
    1843             :           // => signed Int32Cmp
    1844             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1845             :                      MachineRepresentation::kBit);
    1846      246238 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1847             :           return;
    1848             :         }
    1849             :         // Try to use type feedback.
    1850      199936 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    1851      199935 :         switch (hint) {
    1852             :           case NumberOperationHint::kSigned32:
    1853             :           case NumberOperationHint::kSignedSmall:
    1854      160634 :             if (propagate()) {
    1855      232872 :               VisitBinop(node,
    1856             :                          CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1857             :                                                         kIdentifyZeros),
    1858             :                          MachineRepresentation::kBit);
    1859       44198 :             } else if (retype()) {
    1860             :               SetOutput(node, MachineRepresentation::kBit, Type::Any());
    1861             :             } else {
    1862             :               DCHECK(lower());
    1863             :               Node* lhs = node->InputAt(0);
    1864             :               Node* rhs = node->InputAt(1);
    1865       32068 :               if (IsNodeRepresentationTagged(lhs) &&
    1866             :                   IsNodeRepresentationTagged(rhs)) {
    1867       28898 :                 VisitBinop(node,
    1868             :                            UseInfo::CheckedSignedSmallAsTaggedSigned(
    1869             :                                VectorSlotPair(), kIdentifyZeros),
    1870             :                            MachineRepresentation::kBit);
    1871       14449 :                 ChangeToPureOp(
    1872       28898 :                     node, changer_->TaggedSignedOperatorFor(node->opcode()));
    1873             : 
    1874             :               } else {
    1875        5348 :                 VisitBinop(node,
    1876             :                            CheckedUseInfoAsWord32FromHint(
    1877             :                                hint, VectorSlotPair(), kIdentifyZeros),
    1878             :                            MachineRepresentation::kBit);
    1879        2674 :                 ChangeToPureOp(node, Int32Op(node));
    1880             :               }
    1881             :             }
    1882             :             return;
    1883             :           case NumberOperationHint::kSignedSmallInputs:
    1884             :             // This doesn't make sense for compare operations.
    1885           0 :             UNREACHABLE();
    1886             :           case NumberOperationHint::kNumberOrOddball:
    1887             :             // Abstract and strict equality don't perform ToNumber conversions
    1888             :             // on Oddballs, so make sure we don't accidentially sneak in a
    1889             :             // hint with Oddball feedback here.
    1890             :             DCHECK_NE(IrOpcode::kSpeculativeNumberEqual, node->opcode());
    1891             :             V8_FALLTHROUGH;
    1892             :           case NumberOperationHint::kNumber:
    1893       78602 :             VisitBinop(node,
    1894             :                        CheckedUseInfoAsFloat64FromHint(hint, VectorSlotPair(),
    1895             :                                                        kIdentifyZeros),
    1896             :                        MachineRepresentation::kBit);
    1897       48606 :             if (lower()) ChangeToPureOp(node, Float64Op(node));
    1898             :             return;
    1899             :         }
    1900           0 :         UNREACHABLE();
    1901             :         return;
    1902             :       }
    1903             : 
    1904             :       case IrOpcode::kNumberAdd:
    1905             :       case IrOpcode::kNumberSubtract: {
    1906     1537779 :         if (TypeOf(node->InputAt(0))
    1907     1300224 :                 .Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1908     1300212 :             TypeOf(node->InputAt(1))
    1909     1206795 :                 .Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1910     1488440 :             (TypeOf(node).Is(Type::Signed32()) ||
    1911      548722 :              TypeOf(node).Is(Type::Unsigned32()) ||
    1912             :              truncation.IsUsedAsWord32())) {
    1913             :           // => Int32Add/Sub
    1914      171672 :           VisitWord32TruncatingBinop(node);
    1915      210187 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1916     2387154 :         } else if (jsgraph_->machine()->Is64() &&
    1917      598921 :                    BothInputsAre(node, type_cache_->kSafeInteger) &&
    1918      600627 :                    GetUpperBound(node).Is(type_cache_->kSafeInteger)) {
    1919             :           // => Int64Add/Sub
    1920        1678 :           VisitInt64Binop(node);
    1921        2203 :           if (lower()) ChangeToPureOp(node, Int64Op(node));
    1922             :         } else {
    1923             :           // => Float64Add/Sub
    1924      595537 :           VisitFloat64Binop(node);
    1925      668737 :           if (lower()) ChangeToPureOp(node, Float64Op(node));
    1926             :         }
    1927             :         return;
    1928             :       }
    1929             :       case IrOpcode::kSpeculativeNumberMultiply: {
    1930      128118 :         if (BothInputsAre(node, Type::Integral32()) &&
    1931       57160 :             (NodeProperties::GetType(node).Is(Type::Signed32()) ||
    1932       50096 :              NodeProperties::GetType(node).Is(Type::Unsigned32()) ||
    1933         420 :              (truncation.IsUsedAsWord32() &&
    1934       43126 :               NodeProperties::GetType(node).Is(
    1935         420 :                   type_cache_->kSafeIntegerOrMinusZero)))) {
    1936             :           // Multiply reduces to Int32Mul if the inputs are integers, and
    1937             :           // (a) the output is either known to be Signed32, or
    1938             :           // (b) the output is known to be Unsigned32, or
    1939             :           // (c) the uses are truncating and the result is in the safe
    1940             :           //     integer range.
    1941        2081 :           VisitWord32TruncatingBinop(node);
    1942        2636 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1943             :           return;
    1944             :         }
    1945             :         // Try to use type feedback.
    1946       40625 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    1947       40625 :         Type input0_type = TypeOf(node->InputAt(0));
    1948       40625 :         Type input1_type = TypeOf(node->InputAt(1));
    1949             : 
    1950             :         // Handle the case when no int32 checks on inputs are necessary
    1951             :         // (but an overflow check is needed on the output).
    1952       40625 :         if (BothInputsAre(node, Type::Signed32())) {
    1953             :           // If both inputs and feedback are int32, use the overflow op.
    1954        5706 :           if (hint == NumberOperationHint::kSignedSmall ||
    1955        2853 :               hint == NumberOperationHint::kSigned32) {
    1956             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    1957             :                        MachineRepresentation::kWord32, Type::Signed32());
    1958        2853 :             if (lower()) {
    1959             :               LowerToCheckedInt32Mul(node, truncation, input0_type,
    1960         915 :                                      input1_type);
    1961             :             }
    1962             :             return;
    1963             :           }
    1964             :         }
    1965             : 
    1966       75544 :         if (hint == NumberOperationHint::kSignedSmall ||
    1967       37772 :             hint == NumberOperationHint::kSigned32) {
    1968       36086 :           VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    1969             :                      MachineRepresentation::kWord32, Type::Signed32());
    1970       18043 :           if (lower()) {
    1971        5331 :             LowerToCheckedInt32Mul(node, truncation, input0_type, input1_type);
    1972             :           }
    1973             :           return;
    1974             :         }
    1975             : 
    1976             :         // Checked float64 x float64 => float64
    1977       39458 :         VisitBinop(node,
    1978             :                    UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    1979             :                                                             VectorSlotPair()),
    1980             :                    MachineRepresentation::kFloat64, Type::Number());
    1981       25311 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    1982             :         return;
    1983             :       }
    1984             :       case IrOpcode::kNumberMultiply: {
    1985       55103 :         if (TypeOf(node->InputAt(0)).Is(Type::Integral32()) &&
    1986       59810 :             TypeOf(node->InputAt(1)).Is(Type::Integral32()) &&
    1987       31792 :             (TypeOf(node).Is(Type::Signed32()) ||
    1988       30084 :              TypeOf(node).Is(Type::Unsigned32()) ||
    1989         575 :              (truncation.IsUsedAsWord32() &&
    1990       25215 :               TypeOf(node).Is(type_cache_->kSafeIntegerOrMinusZero)))) {
    1991             :           // Multiply reduces to Int32Mul if the inputs are integers, and
    1992             :           // (a) the output is either known to be Signed32, or
    1993             :           // (b) the output is known to be Unsigned32, or
    1994             :           // (c) the uses are truncating and the result is in the safe
    1995             :           //     integer range.
    1996        2259 :           VisitWord32TruncatingBinop(node);
    1997        2724 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1998             :           return;
    1999             :         }
    2000             :         // Number x Number => Float64Mul
    2001       21806 :         VisitFloat64Binop(node);
    2002       27849 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2003             :         return;
    2004             :       }
    2005             :       case IrOpcode::kSpeculativeNumberDivide: {
    2006       58643 :         if (BothInputsAreUnsigned32(node) && truncation.IsUsedAsWord32()) {
    2007             :           // => unsigned Uint32Div
    2008         577 :           VisitWord32TruncatingBinop(node);
    2009         577 :           if (lower()) DeferReplacement(node, lowering->Uint32Div(node));
    2010             :           return;
    2011             :         }
    2012       51320 :         if (BothInputsAreSigned32(node)) {
    2013       30548 :           if (NodeProperties::GetType(node).Is(Type::Signed32())) {
    2014             :             // => signed Int32Div
    2015           0 :             VisitWord32TruncatingBinop(node);
    2016           0 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2017             :             return;
    2018             :           }
    2019       15274 :           if (truncation.IsUsedAsWord32()) {
    2020             :             // => signed Int32Div
    2021        6937 :             VisitWord32TruncatingBinop(node);
    2022        6937 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2023             :             return;
    2024             :           }
    2025             :         }
    2026             : 
    2027             :         // Try to use type feedback.
    2028       44383 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2029             : 
    2030             :         // Handle the case when no uint32 checks on inputs are necessary
    2031             :         // (but an overflow check is needed on the output).
    2032       44383 :         if (BothInputsAreUnsigned32(node)) {
    2033       12338 :           if (hint == NumberOperationHint::kSignedSmall ||
    2034        6169 :               hint == NumberOperationHint::kSigned32) {
    2035             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    2036             :                        MachineRepresentation::kWord32, Type::Unsigned32());
    2037         289 :             if (lower()) ChangeToUint32OverflowOp(node);
    2038             :             return;
    2039             :           }
    2040             :         }
    2041             : 
    2042             :         // Handle the case when no int32 checks on inputs are necessary
    2043             :         // (but an overflow check is needed on the output).
    2044       44094 :         if (BothInputsAreSigned32(node)) {
    2045             :           // If both the inputs the feedback are int32, use the overflow op.
    2046       16120 :           if (hint == NumberOperationHint::kSignedSmall ||
    2047        8060 :               hint == NumberOperationHint::kSigned32) {
    2048             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    2049             :                        MachineRepresentation::kWord32, Type::Signed32());
    2050          12 :             if (lower()) ChangeToInt32OverflowOp(node);
    2051             :             return;
    2052             :           }
    2053             :         }
    2054             : 
    2055       88164 :         if (hint == NumberOperationHint::kSigned32 ||
    2056       87268 :             hint == NumberOperationHint::kSignedSmall ||
    2057             :             hint == NumberOperationHint::kSignedSmallInputs) {
    2058             :           // If the result is truncated, we only need to check the inputs.
    2059       37767 :           if (truncation.IsUsedAsWord32()) {
    2060        4854 :             VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2061             :                        MachineRepresentation::kWord32);
    2062        2427 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2063             :             return;
    2064       35340 :           } else if (hint != NumberOperationHint::kSignedSmallInputs) {
    2065        1598 :             VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2066             :                        MachineRepresentation::kWord32, Type::Signed32());
    2067         799 :             if (lower()) ChangeToInt32OverflowOp(node);
    2068             :             return;
    2069             :           }
    2070             :         }
    2071             : 
    2072             :         // default case => Float64Div
    2073       81712 :         VisitBinop(node,
    2074             :                    UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    2075             :                                                             VectorSlotPair()),
    2076             :                    MachineRepresentation::kFloat64, Type::Number());
    2077       52759 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2078             :         return;
    2079             :       }
    2080             :       case IrOpcode::kNumberDivide: {
    2081       36532 :         if (TypeOf(node->InputAt(0)).Is(Type::Unsigned32()) &&
    2082       37339 :             TypeOf(node->InputAt(1)).Is(Type::Unsigned32()) &&
    2083         665 :             (truncation.IsUsedAsWord32() ||
    2084       14319 :              TypeOf(node).Is(Type::Unsigned32()))) {
    2085             :           // => unsigned Uint32Div
    2086         142 :           VisitWord32TruncatingBinop(node);
    2087         142 :           if (lower()) DeferReplacement(node, lowering->Uint32Div(node));
    2088             :           return;
    2089             :         }
    2090       36192 :         if (TypeOf(node->InputAt(0)).Is(Type::Signed32()) &&
    2091       37638 :             TypeOf(node->InputAt(1)).Is(Type::Signed32()) &&
    2092        1438 :             (truncation.IsUsedAsWord32() ||
    2093       14950 :              TypeOf(node).Is(Type::Signed32()))) {
    2094             :           // => signed Int32Div
    2095           8 :           VisitWord32TruncatingBinop(node);
    2096           8 :           if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2097             :           return;
    2098             :         }
    2099             :         // Number x Number => Float64Div
    2100       13504 :         VisitFloat64Binop(node);
    2101       16871 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2102             :         return;
    2103             :       }
    2104             :       case IrOpcode::kSpeculativeNumberModulus:
    2105       13904 :         return VisitSpeculativeNumberModulus(node, truncation, lowering);
    2106             :       case IrOpcode::kNumberModulus: {
    2107        2564 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2108        2564 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2109        5426 :         if ((lhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    2110        2884 :              rhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN())) &&
    2111         153 :             (truncation.IsUsedAsWord32() ||
    2112        2870 :              TypeOf(node).Is(Type::Unsigned32()))) {
    2113             :           // => unsigned Uint32Mod
    2114         320 :           VisitWord32TruncatingBinop(node);
    2115         320 :           if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    2116             :           return;
    2117             :         }
    2118        4761 :         if ((lhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    2119        2452 :              rhs_type.Is(Type::Signed32OrMinusZeroOrNaN())) &&
    2120        2754 :             (truncation.IsUsedAsWord32() || TypeOf(node).Is(Type::Signed32()) ||
    2121          42 :              (truncation.IdentifiesZeroAndMinusZero() &&
    2122        2286 :               TypeOf(node).Is(Type::Signed32OrMinusZero())))) {
    2123             :           // => signed Int32Mod
    2124          98 :           VisitWord32TruncatingBinop(node);
    2125          98 :           if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    2126             :           return;
    2127             :         }
    2128             :         // => Float64Mod
    2129             :         // For the left hand side we just propagate the identify zeros
    2130             :         // mode of the {truncation}; and for modulus the sign of the
    2131             :         // right hand side doesn't matter anyways, so in particular there's
    2132             :         // no observable difference between a 0 and a -0 then.
    2133             :         UseInfo const lhs_use =
    2134             :             UseInfo::TruncatingFloat64(truncation.identify_zeros());
    2135             :         UseInfo const rhs_use = UseInfo::TruncatingFloat64(kIdentifyZeros);
    2136        2146 :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kFloat64);
    2137        2500 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2138             :         return;
    2139             :       }
    2140             :       case IrOpcode::kNumberBitwiseOr:
    2141             :       case IrOpcode::kNumberBitwiseXor:
    2142             :       case IrOpcode::kNumberBitwiseAnd: {
    2143       19729 :         VisitWord32TruncatingBinop(node);
    2144       26190 :         if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    2145             :         return;
    2146             :       }
    2147             :       case IrOpcode::kSpeculativeNumberBitwiseOr:
    2148             :       case IrOpcode::kSpeculativeNumberBitwiseXor:
    2149             :       case IrOpcode::kSpeculativeNumberBitwiseAnd:
    2150       81805 :         VisitSpeculativeInt32Binop(node);
    2151       81804 :         if (lower()) {
    2152       22508 :           ChangeToPureOp(node, Int32Op(node));
    2153             :         }
    2154             :         return;
    2155             :       case IrOpcode::kNumberShiftLeft: {
    2156        1293 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2157             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2158        1293 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2159        1293 :         if (lower()) {
    2160         376 :           MaskShiftOperand(node, rhs_type);
    2161         376 :           ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2162             :         }
    2163             :         return;
    2164             :       }
    2165             :       case IrOpcode::kSpeculativeNumberShiftLeft: {
    2166        8098 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2167        7297 :           Type rhs_type = GetUpperBound(node->InputAt(1));
    2168             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2169             :                      UseInfo::TruncatingWord32(),
    2170        7297 :                      MachineRepresentation::kWord32);
    2171        7297 :           if (lower()) {
    2172        1845 :             MaskShiftOperand(node, rhs_type);
    2173        1845 :             ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2174             :           }
    2175             :           return;
    2176             :         }
    2177         801 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2178         801 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2179        1602 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2180             :                    MachineRepresentation::kWord32, Type::Signed32());
    2181         801 :         if (lower()) {
    2182         258 :           MaskShiftOperand(node, rhs_type);
    2183         258 :           ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2184             :         }
    2185             :         return;
    2186             :       }
    2187             :       case IrOpcode::kNumberShiftRight: {
    2188         555 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2189             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2190         555 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2191         555 :         if (lower()) {
    2192         155 :           MaskShiftOperand(node, rhs_type);
    2193         155 :           ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2194             :         }
    2195             :         return;
    2196             :       }
    2197             :       case IrOpcode::kSpeculativeNumberShiftRight: {
    2198       22814 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2199       21581 :           Type rhs_type = GetUpperBound(node->InputAt(1));
    2200             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2201             :                      UseInfo::TruncatingWord32(),
    2202       21581 :                      MachineRepresentation::kWord32);
    2203       21581 :           if (lower()) {
    2204        5213 :             MaskShiftOperand(node, rhs_type);
    2205        5213 :             ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2206             :           }
    2207             :           return;
    2208             :         }
    2209        1233 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2210        1233 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2211        2466 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2212             :                    MachineRepresentation::kWord32, Type::Signed32());
    2213        1233 :         if (lower()) {
    2214         380 :           MaskShiftOperand(node, rhs_type);
    2215         380 :           ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2216             :         }
    2217             :         return;
    2218             :       }
    2219             :       case IrOpcode::kNumberShiftRightLogical: {
    2220         683 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2221             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2222         683 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2223         683 :         if (lower()) {
    2224         209 :           MaskShiftOperand(node, rhs_type);
    2225         209 :           ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2226             :         }
    2227             :         return;
    2228             :       }
    2229             :       case IrOpcode::kSpeculativeNumberShiftRightLogical: {
    2230        5936 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2231        5936 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2232       15113 :         if (rhs_type.Is(type_cache_->kZeroish) &&
    2233        6480 :             (hint == NumberOperationHint::kSignedSmall ||
    2234        9840 :              hint == NumberOperationHint::kSigned32) &&
    2235             :             !truncation.IsUsedAsWord32()) {
    2236             :           // The SignedSmall or Signed32 feedback means that the results that we
    2237             :           // have seen so far were of type Unsigned31.  We speculate that this
    2238             :           // will continue to hold.  Moreover, since the RHS is 0, the result
    2239             :           // will just be the (converted) LHS.
    2240         650 :           VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2241             :                      MachineRepresentation::kWord32, Type::Unsigned31());
    2242         325 :           if (lower()) {
    2243          92 :             node->RemoveInput(1);
    2244         184 :             NodeProperties::ChangeOp(
    2245          92 :                 node, simplified()->CheckedUint32ToInt32(VectorSlotPair()));
    2246             :           }
    2247             :           return;
    2248             :         }
    2249        5612 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2250             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2251             :                      UseInfo::TruncatingWord32(),
    2252        4221 :                      MachineRepresentation::kWord32);
    2253        4221 :           if (lower()) {
    2254        1194 :             MaskShiftOperand(node, rhs_type);
    2255        1194 :             ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2256             :           }
    2257             :           return;
    2258             :         }
    2259        2782 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2260             :                    MachineRepresentation::kWord32, Type::Unsigned32());
    2261        1391 :         if (lower()) {
    2262         423 :           MaskShiftOperand(node, rhs_type);
    2263         423 :           ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2264             :         }
    2265             :         return;
    2266             :       }
    2267             :       case IrOpcode::kNumberAbs: {
    2268             :         // NumberAbs maps both 0 and -0 to 0, so we can generally
    2269             :         // pass the kIdentifyZeros truncation to its input, and
    2270             :         // choose to ignore minus zero in all cases.
    2271         903 :         Type const input_type = TypeOf(node->InputAt(0));
    2272         903 :         if (input_type.Is(Type::Unsigned32OrMinusZero())) {
    2273             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2274          37 :                     MachineRepresentation::kWord32);
    2275          52 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2276         866 :         } else if (input_type.Is(Type::Signed32OrMinusZero())) {
    2277             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2278         208 :                     MachineRepresentation::kWord32);
    2279         208 :           if (lower()) DeferReplacement(node, lowering->Int32Abs(node));
    2280        1316 :         } else if (input_type.Is(type_cache_->kPositiveIntegerOrNaN)) {
    2281             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2282          14 :                     MachineRepresentation::kFloat64);
    2283          21 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2284             :         } else {
    2285             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2286         644 :                     MachineRepresentation::kFloat64);
    2287         834 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2288             :         }
    2289             :         return;
    2290             :       }
    2291             :       case IrOpcode::kNumberClz32: {
    2292             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2293          84 :                   MachineRepresentation::kWord32);
    2294         112 :         if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    2295             :         return;
    2296             :       }
    2297             :       case IrOpcode::kNumberImul: {
    2298             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2299        2616 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2300        3488 :         if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    2301             :         return;
    2302             :       }
    2303             :       case IrOpcode::kNumberFround: {
    2304             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2305        3900 :                   MachineRepresentation::kFloat32);
    2306        5187 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2307             :         return;
    2308             :       }
    2309             :       case IrOpcode::kNumberMax: {
    2310             :         // It is safe to use the feedback types for left and right hand side
    2311             :         // here, since we can only narrow those types and thus we can only
    2312             :         // promise a more specific truncation.
    2313             :         // For NumberMax we generally propagate whether the truncation
    2314             :         // identifies zeros to the inputs, and we choose to ignore minus
    2315             :         // zero in those cases.
    2316        7554 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2317        7554 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2318       11625 :         if ((lhs_type.Is(Type::Unsigned32()) &&
    2319       11646 :              rhs_type.Is(Type::Unsigned32())) ||
    2320         681 :             (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2321         102 :              rhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2322             :              truncation.IdentifiesZeroAndMinusZero())) {
    2323        3483 :           VisitWord32TruncatingBinop(node);
    2324        3483 :           if (lower()) {
    2325        1107 :             lowering->DoMax(node, lowering->machine()->Uint32LessThan(),
    2326        1107 :                             MachineRepresentation::kWord32);
    2327             :           }
    2328        7831 :         } else if ((lhs_type.Is(Type::Signed32()) &&
    2329        4956 :                     rhs_type.Is(Type::Signed32())) ||
    2330         625 :                    (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    2331          81 :                     rhs_type.Is(Type::Signed32OrMinusZero()) &&
    2332             :                     truncation.IdentifiesZeroAndMinusZero())) {
    2333        3186 :           VisitWord32TruncatingBinop(node);
    2334        3186 :           if (lower()) {
    2335        1041 :             lowering->DoMax(node, lowering->machine()->Int32LessThan(),
    2336        1041 :                             MachineRepresentation::kWord32);
    2337             :           }
    2338        2655 :         } else if (jsgraph_->machine()->Is64() &&
    2339        1512 :                    lhs_type.Is(type_cache_->kSafeInteger) &&
    2340         627 :                    rhs_type.Is(type_cache_->kSafeInteger)) {
    2341         501 :           VisitInt64Binop(node);
    2342         501 :           if (lower()) {
    2343         164 :             lowering->DoMax(node, lowering->machine()->Int64LessThan(),
    2344         164 :                             MachineRepresentation::kWord64);
    2345             :           }
    2346             :         } else {
    2347             :           VisitBinop(node,
    2348             :                      UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2349             :                      MachineRepresentation::kFloat64);
    2350         384 :           if (lower()) {
    2351             :             // If the right hand side is not NaN, and the left hand side
    2352             :             // is not NaN (or -0 if the difference between the zeros is
    2353             :             // observed), we can do a simple floating point comparison here.
    2354         240 :             if (lhs_type.Is(truncation.IdentifiesZeroAndMinusZero()
    2355             :                                 ? Type::OrderedNumber()
    2356         193 :                                 : Type::PlainNumber()) &&
    2357             :                 rhs_type.Is(Type::OrderedNumber())) {
    2358          48 :               lowering->DoMax(node, lowering->machine()->Float64LessThan(),
    2359          48 :                               MachineRepresentation::kFloat64);
    2360             :             } else {
    2361          72 :               NodeProperties::ChangeOp(node, Float64Op(node));
    2362             :             }
    2363             :           }
    2364             :         }
    2365             :         return;
    2366             :       }
    2367             :       case IrOpcode::kNumberMin: {
    2368             :         // It is safe to use the feedback types for left and right hand side
    2369             :         // here, since we can only narrow those types and thus we can only
    2370             :         // promise a more specific truncation.
    2371             :         // For NumberMin we generally propagate whether the truncation
    2372             :         // identifies zeros to the inputs, and we choose to ignore minus
    2373             :         // zero in those cases.
    2374       10241 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2375       10241 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2376       19864 :         if ((lhs_type.Is(Type::Unsigned32()) &&
    2377       11104 :              rhs_type.Is(Type::Unsigned32())) ||
    2378         299 :             (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2379          81 :              rhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2380             :              truncation.IdentifiesZeroAndMinusZero())) {
    2381        9378 :           VisitWord32TruncatingBinop(node);
    2382        9378 :           if (lower()) {
    2383        3008 :             lowering->DoMin(node, lowering->machine()->Uint32LessThan(),
    2384        3008 :                             MachineRepresentation::kWord32);
    2385             :           }
    2386        1254 :         } else if ((lhs_type.Is(Type::Signed32()) &&
    2387        1498 :                     rhs_type.Is(Type::Signed32())) ||
    2388         217 :                    (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    2389          81 :                     rhs_type.Is(Type::Signed32OrMinusZero()) &&
    2390             :                     truncation.IdentifiesZeroAndMinusZero())) {
    2391         228 :           VisitWord32TruncatingBinop(node);
    2392         228 :           if (lower()) {
    2393          70 :             lowering->DoMin(node, lowering->machine()->Int32LessThan(),
    2394          70 :                             MachineRepresentation::kWord32);
    2395             :           }
    2396        1905 :         } else if (jsgraph_->machine()->Is64() &&
    2397         822 :                    lhs_type.Is(type_cache_->kSafeInteger) &&
    2398         187 :                    rhs_type.Is(type_cache_->kSafeInteger)) {
    2399          40 :           VisitInt64Binop(node);
    2400          40 :           if (lower()) {
    2401          16 :             lowering->DoMin(node, lowering->machine()->Int64LessThan(),
    2402          16 :                             MachineRepresentation::kWord64);
    2403             :           }
    2404             :         } else {
    2405             :           VisitBinop(node,
    2406             :                      UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2407             :                      MachineRepresentation::kFloat64);
    2408         595 :           if (lower()) {
    2409             :             // If the left hand side is not NaN, and the right hand side
    2410             :             // is not NaN (or -0 if the difference between the zeros is
    2411             :             // observed), we can do a simple floating point comparison here.
    2412         277 :             if (lhs_type.Is(Type::OrderedNumber()) &&
    2413          84 :                 rhs_type.Is(truncation.IdentifiesZeroAndMinusZero()
    2414             :                                 ? Type::OrderedNumber()
    2415             :                                 : Type::PlainNumber())) {
    2416          45 :               lowering->DoMin(node,
    2417             :                               lowering->machine()->Float64LessThanOrEqual(),
    2418          45 :                               MachineRepresentation::kFloat64);
    2419             :             } else {
    2420         148 :               NodeProperties::ChangeOp(node, Float64Op(node));
    2421             :             }
    2422             :           }
    2423             :         }
    2424             :         return;
    2425             :       }
    2426             :       case IrOpcode::kNumberAtan2:
    2427             :       case IrOpcode::kNumberPow: {
    2428             :         VisitBinop(node, UseInfo::TruncatingFloat64(),
    2429             :                    MachineRepresentation::kFloat64);
    2430        3708 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2431             :         return;
    2432             :       }
    2433             :       case IrOpcode::kNumberCeil:
    2434             :       case IrOpcode::kNumberFloor:
    2435             :       case IrOpcode::kNumberRound:
    2436             :       case IrOpcode::kNumberTrunc: {
    2437             :         // For NumberCeil, NumberFloor, NumberRound and NumberTrunc we propagate
    2438             :         // the zero identification part of the truncation, and we turn them into
    2439             :         // no-ops if we figure out (late) that their input is already an
    2440             :         // integer, NaN or -0.
    2441      134540 :         Type const input_type = TypeOf(node->InputAt(0));
    2442             :         VisitUnop(node, UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2443      134540 :                   MachineRepresentation::kFloat64);
    2444      134540 :         if (lower()) {
    2445       88524 :           if (input_type.Is(type_cache_->kIntegerOrMinusZeroOrNaN)) {
    2446        1246 :             DeferReplacement(node, node->InputAt(0));
    2447       43016 :           } else if (node->opcode() == IrOpcode::kNumberRound) {
    2448        1554 :             DeferReplacement(node, lowering->Float64Round(node));
    2449             :           } else {
    2450       41462 :             NodeProperties::ChangeOp(node, Float64Op(node));
    2451             :           }
    2452             :         }
    2453             :         return;
    2454             :       }
    2455             :       case IrOpcode::kNumberAcos:
    2456             :       case IrOpcode::kNumberAcosh:
    2457             :       case IrOpcode::kNumberAsin:
    2458             :       case IrOpcode::kNumberAsinh:
    2459             :       case IrOpcode::kNumberAtan:
    2460             :       case IrOpcode::kNumberAtanh:
    2461             :       case IrOpcode::kNumberCos:
    2462             :       case IrOpcode::kNumberCosh:
    2463             :       case IrOpcode::kNumberExp:
    2464             :       case IrOpcode::kNumberExpm1:
    2465             :       case IrOpcode::kNumberLog:
    2466             :       case IrOpcode::kNumberLog1p:
    2467             :       case IrOpcode::kNumberLog2:
    2468             :       case IrOpcode::kNumberLog10:
    2469             :       case IrOpcode::kNumberCbrt:
    2470             :       case IrOpcode::kNumberSin:
    2471             :       case IrOpcode::kNumberSinh:
    2472             :       case IrOpcode::kNumberTan:
    2473             :       case IrOpcode::kNumberTanh: {
    2474             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2475         858 :                   MachineRepresentation::kFloat64);
    2476        1136 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2477             :         return;
    2478             :       }
    2479             :       case IrOpcode::kNumberSign: {
    2480         111 :         if (InputIs(node, Type::Signed32())) {
    2481             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2482          21 :                     MachineRepresentation::kWord32);
    2483          21 :           if (lower()) DeferReplacement(node, lowering->Int32Sign(node));
    2484             :         } else {
    2485             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2486          90 :                     MachineRepresentation::kFloat64);
    2487          90 :           if (lower()) DeferReplacement(node, lowering->Float64Sign(node));
    2488             :         }
    2489             :         return;
    2490             :       }
    2491             :       case IrOpcode::kNumberSilenceNaN: {
    2492        2276 :         Type const input_type = TypeOf(node->InputAt(0));
    2493        2276 :         if (input_type.Is(Type::OrderedNumber())) {
    2494             :           // No need to silence anything if the input cannot be NaN.
    2495             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2496          14 :                     MachineRepresentation::kFloat64);
    2497          21 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2498             :         } else {
    2499             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2500        2262 :                     MachineRepresentation::kFloat64);
    2501        2994 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2502             :         }
    2503             :         return;
    2504             :       }
    2505             :       case IrOpcode::kNumberSqrt: {
    2506             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2507         156 :                   MachineRepresentation::kFloat64);
    2508         207 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2509             :         return;
    2510             :       }
    2511             :       case IrOpcode::kNumberToBoolean: {
    2512             :         // For NumberToBoolean we don't care whether the input is 0 or
    2513             :         // -0, since both of them are mapped to false anyways, so we
    2514             :         // can generally pass kIdentifyZeros truncation.
    2515         558 :         Type const input_type = TypeOf(node->InputAt(0));
    2516         558 :         if (input_type.Is(Type::Integral32OrMinusZeroOrNaN())) {
    2517             :           // 0, -0 and NaN all map to false, so we can safely truncate
    2518             :           // all of them to zero here.
    2519             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2520         305 :                     MachineRepresentation::kBit);
    2521         305 :           if (lower()) lowering->DoIntegral32ToBit(node);
    2522         253 :         } else if (input_type.Is(Type::OrderedNumber())) {
    2523             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2524          77 :                     MachineRepresentation::kBit);
    2525          77 :           if (lower()) lowering->DoOrderedNumberToBit(node);
    2526             :         } else {
    2527             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2528         176 :                     MachineRepresentation::kBit);
    2529         176 :           if (lower()) lowering->DoNumberToBit(node);
    2530             :         }
    2531             :         return;
    2532             :       }
    2533             :       case IrOpcode::kNumberToInt32: {
    2534             :         // Just change representation if necessary.
    2535             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2536        1621 :                   MachineRepresentation::kWord32);
    2537        1906 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2538             :         return;
    2539             :       }
    2540             :       case IrOpcode::kNumberToString: {
    2541             :         VisitUnop(node, UseInfo::AnyTagged(),
    2542       11187 :                   MachineRepresentation::kTaggedPointer);
    2543       11187 :         return;
    2544             :       }
    2545             :       case IrOpcode::kNumberToUint32: {
    2546             :         // Just change representation if necessary.
    2547             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2548        6270 :                   MachineRepresentation::kWord32);
    2549        8232 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2550             :         return;
    2551             :       }
    2552             :       case IrOpcode::kNumberToUint8Clamped: {
    2553        1446 :         Type const input_type = TypeOf(node->InputAt(0));
    2554        2892 :         if (input_type.Is(type_cache_->kUint8OrMinusZeroOrNaN)) {
    2555             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2556          45 :                     MachineRepresentation::kWord32);
    2557          60 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2558        1401 :         } else if (input_type.Is(Type::Unsigned32OrMinusZeroOrNaN())) {
    2559             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2560         240 :                     MachineRepresentation::kWord32);
    2561         240 :           if (lower()) lowering->DoUnsigned32ToUint8Clamped(node);
    2562        1161 :         } else if (input_type.Is(Type::Signed32OrMinusZeroOrNaN())) {
    2563             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2564         216 :                     MachineRepresentation::kWord32);
    2565         216 :           if (lower()) lowering->DoSigned32ToUint8Clamped(node);
    2566        1890 :         } else if (input_type.Is(type_cache_->kIntegerOrMinusZeroOrNaN)) {
    2567             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2568          63 :                     MachineRepresentation::kFloat64);
    2569          63 :           if (lower()) lowering->DoIntegerToUint8Clamped(node);
    2570             :         } else {
    2571             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2572         882 :                     MachineRepresentation::kFloat64);
    2573         882 :           if (lower()) lowering->DoNumberToUint8Clamped(node);
    2574             :         }
    2575             :         return;
    2576             :       }
    2577             :       case IrOpcode::kReferenceEqual: {
    2578             :         VisitBinop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    2579      601816 :         if (lower()) {
    2580      198716 :           NodeProperties::ChangeOp(node, lowering->machine()->WordEqual());
    2581             :         }
    2582             :         return;
    2583             :       }
    2584             :       case IrOpcode::kSameValue: {
    2585         234 :         if (truncation.IsUnused()) return VisitUnused(node);
    2586         234 :         if (BothInputsAre(node, Type::Number())) {
    2587             :           VisitBinop(node, UseInfo::TruncatingFloat64(),
    2588             :                      MachineRepresentation::kBit);
    2589         231 :           if (lower()) {
    2590          77 :             NodeProperties::ChangeOp(node,
    2591          77 :                                      lowering->simplified()->NumberSameValue());
    2592             :           }
    2593             :         } else {
    2594             :           VisitBinop(node, UseInfo::AnyTagged(),
    2595             :                      MachineRepresentation::kTaggedPointer);
    2596             :         }
    2597             :         return;
    2598             :       }
    2599             :       case IrOpcode::kTypeOf: {
    2600             :         return VisitUnop(node, UseInfo::AnyTagged(),
    2601       66540 :                          MachineRepresentation::kTaggedPointer);
    2602             :       }
    2603             :       case IrOpcode::kStringConcat: {
    2604       82893 :         Type const length_type = TypeOf(node->InputAt(0));
    2605       82893 :         Type const first_type = TypeOf(node->InputAt(1));
    2606       82893 :         Type const second_type = TypeOf(node->InputAt(2));
    2607      186153 :         if (length_type.Is(type_cache_->kConsStringLengthType) &&
    2608       99026 :             first_type.Is(Type::NonEmptyString()) &&
    2609             :             second_type.Is(Type::NonEmptyString())) {
    2610             :           // We know that we'll construct a ConsString here, so we
    2611             :           // can inline a fast-path into TurboFan optimized code.
    2612       12624 :           ProcessInput(node, 0, UseInfo::TruncatingWord32());  // length
    2613       12624 :           ProcessInput(node, 1, UseInfo::AnyTagged());         // first
    2614       12624 :           ProcessInput(node, 2, UseInfo::AnyTagged());         // second
    2615             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    2616       12624 :           if (lower()) {
    2617        9052 :             if (first_type.Is(Type::NonEmptyOneByteString()) &&
    2618             :                 second_type.Is(Type::NonEmptyOneByteString())) {
    2619        3965 :               NodeProperties::ChangeOp(
    2620        3965 :                   node, lowering->simplified()->NewConsOneByteString());
    2621        2196 :             } else if (first_type.Is(Type::NonEmptyTwoByteString()) ||
    2622             :                        second_type.Is(Type::NonEmptyTwoByteString())) {
    2623          33 :               NodeProperties::ChangeOp(
    2624          33 :                   node, lowering->simplified()->NewConsTwoByteString());
    2625             :             } else {
    2626        1081 :               NodeProperties::ChangeOp(node,
    2627        1081 :                                        lowering->simplified()->NewConsString());
    2628             :             }
    2629             :           }
    2630             :         } else {
    2631       70269 :           ProcessInput(node, 0, UseInfo::TaggedSigned());  // length
    2632       70269 :           ProcessInput(node, 1, UseInfo::AnyTagged());     // first
    2633       70269 :           ProcessInput(node, 2, UseInfo::AnyTagged());     // second
    2634             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    2635             :         }
    2636             :         return;
    2637             :       }
    2638             :       case IrOpcode::kStringEqual:
    2639             :       case IrOpcode::kStringLessThan:
    2640             :       case IrOpcode::kStringLessThanOrEqual: {
    2641             :         return VisitBinop(node, UseInfo::AnyTagged(),
    2642             :                           MachineRepresentation::kTaggedPointer);
    2643             :       }
    2644             :       case IrOpcode::kStringCharCodeAt: {
    2645             :         return VisitBinop(node, UseInfo::AnyTagged(), UseInfo::Word(),
    2646        8198 :                           MachineRepresentation::kWord32);
    2647             :       }
    2648             :       case IrOpcode::kStringCodePointAt: {
    2649             :         return VisitBinop(node, UseInfo::AnyTagged(), UseInfo::Word(),
    2650         721 :                           MachineRepresentation::kTaggedSigned);
    2651             :       }
    2652             :       case IrOpcode::kStringFromSingleCharCode: {
    2653             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2654        3564 :                   MachineRepresentation::kTaggedPointer);
    2655        3564 :         return;
    2656             :       }
    2657             :       case IrOpcode::kStringFromSingleCodePoint: {
    2658             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2659         718 :                   MachineRepresentation::kTaggedPointer);
    2660         718 :         return;
    2661             :       }
    2662             :       case IrOpcode::kStringIndexOf: {
    2663         816 :         ProcessInput(node, 0, UseInfo::AnyTagged());
    2664         816 :         ProcessInput(node, 1, UseInfo::AnyTagged());
    2665         816 :         ProcessInput(node, 2, UseInfo::TaggedSigned());
    2666             :         SetOutput(node, MachineRepresentation::kTaggedSigned);
    2667             :         return;
    2668             :       }
    2669             :       case IrOpcode::kStringLength: {
    2670             :         // TODO(bmeurer): The input representation should be TaggedPointer.
    2671             :         // Fix this once we have a dedicated StringConcat/JSStringAdd
    2672             :         // operator, which marks it's output as TaggedPointer properly.
    2673       72936 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kWord32);
    2674       72936 :         return;
    2675             :       }
    2676             :       case IrOpcode::kStringSubstring: {
    2677        4039 :         ProcessInput(node, 0, UseInfo::AnyTagged());
    2678        4039 :         ProcessInput(node, 1, UseInfo::TruncatingWord32());
    2679        4039 :         ProcessInput(node, 2, UseInfo::TruncatingWord32());
    2680        4039 :         ProcessRemainingInputs(node, 3);
    2681             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    2682             :         return;
    2683             :       }
    2684             :       case IrOpcode::kStringToLowerCaseIntl:
    2685             :       case IrOpcode::kStringToUpperCaseIntl: {
    2686             :         VisitUnop(node, UseInfo::AnyTagged(),
    2687         461 :                   MachineRepresentation::kTaggedPointer);
    2688         461 :         return;
    2689             :       }
    2690             :       case IrOpcode::kCheckBounds:
    2691      187568 :         return VisitCheckBounds(node, lowering);
    2692             :       case IrOpcode::kPoisonIndex: {
    2693             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2694        3803 :                   MachineRepresentation::kWord32);
    2695        3803 :         return;
    2696             :       }
    2697             :       case IrOpcode::kCheckHeapObject: {
    2698       89652 :         if (InputCannotBe(node, Type::SignedSmall())) {
    2699             :           VisitUnop(node, UseInfo::AnyTagged(),
    2700           0 :                     MachineRepresentation::kTaggedPointer);
    2701             :         } else {
    2702      179304 :           VisitUnop(node,
    2703             :                     UseInfo::CheckedHeapObjectAsTaggedPointer(VectorSlotPair()),
    2704       89652 :                     MachineRepresentation::kTaggedPointer);
    2705             :         }
    2706      117891 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2707             :         return;
    2708             :       }
    2709             :       case IrOpcode::kCheckIf: {
    2710       51512 :         ProcessInput(node, 0, UseInfo::Bool());
    2711       51512 :         ProcessRemainingInputs(node, 1);
    2712             :         SetOutput(node, MachineRepresentation::kNone);
    2713             :         return;
    2714             :       }
    2715             :       case IrOpcode::kCheckInternalizedString: {
    2716        5558 :         VisitCheck(node, Type::InternalizedString(), lowering);
    2717        5558 :         return;
    2718             :       }
    2719             :       case IrOpcode::kCheckNonEmptyString: {
    2720          54 :         VisitCheck(node, Type::NonEmptyString(), lowering);
    2721          54 :         return;
    2722             :       }
    2723             :       case IrOpcode::kCheckNonEmptyOneByteString: {
    2724        5595 :         VisitCheck(node, Type::NonEmptyOneByteString(), lowering);
    2725        5595 :         return;
    2726             :       }
    2727             :       case IrOpcode::kCheckNonEmptyTwoByteString: {
    2728         730 :         VisitCheck(node, Type::NonEmptyTwoByteString(), lowering);
    2729         730 :         return;
    2730             :       }
    2731             :       case IrOpcode::kCheckNumber: {
    2732        1574 :         Type const input_type = TypeOf(node->InputAt(0));
    2733        1574 :         if (input_type.Is(Type::Number())) {
    2734          36 :           VisitNoop(node, truncation);
    2735             :         } else {
    2736        1538 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    2737             :         }
    2738             :         return;
    2739             :       }
    2740             :       case IrOpcode::kCheckReceiver: {
    2741        3187 :         VisitCheck(node, Type::Receiver(), lowering);
    2742        3187 :         return;
    2743             :       }
    2744             :       case IrOpcode::kCheckReceiverOrNullOrUndefined: {
    2745         230 :         VisitCheck(node, Type::ReceiverOrNullOrUndefined(), lowering);
    2746         230 :         return;
    2747             :       }
    2748             :       case IrOpcode::kCheckSmi: {
    2749       97349 :         const CheckParameters& params = CheckParametersOf(node->op());
    2750       97349 :         if (SmiValuesAre32Bits() && truncation.IsUsedAsWord32()) {
    2751             :           VisitUnop(node,
    2752             :                     UseInfo::CheckedSignedSmallAsWord32(kDistinguishZeros,
    2753             :                                                         params.feedback()),
    2754       24275 :                     MachineRepresentation::kWord32);
    2755             :         } else {
    2756             :           VisitUnop(
    2757             :               node,
    2758             :               UseInfo::CheckedSignedSmallAsTaggedSigned(params.feedback()),
    2759       73074 :               MachineRepresentation::kTaggedSigned);
    2760             :         }
    2761      126860 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2762             :         return;
    2763             :       }
    2764             :       case IrOpcode::kCheckString: {
    2765       18891 :         const CheckParameters& params = CheckParametersOf(node->op());
    2766       18891 :         if (InputIs(node, Type::String())) {
    2767             :           VisitUnop(node, UseInfo::AnyTagged(),
    2768           0 :                     MachineRepresentation::kTaggedPointer);
    2769           0 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2770             :         } else {
    2771             :           VisitUnop(
    2772             :               node,
    2773             :               UseInfo::CheckedHeapObjectAsTaggedPointer(params.feedback()),
    2774       18891 :               MachineRepresentation::kTaggedPointer);
    2775             :         }
    2776             :         return;
    2777             :       }
    2778             :       case IrOpcode::kCheckSymbol: {
    2779         104 :         VisitCheck(node, Type::Symbol(), lowering);
    2780         104 :         return;
    2781             :       }
    2782             : 
    2783             :       case IrOpcode::kAllocate: {
    2784      340725 :         ProcessInput(node, 0, UseInfo::Word());
    2785      340725 :         ProcessRemainingInputs(node, 1);
    2786             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    2787             :         return;
    2788             :       }
    2789             :       case IrOpcode::kLoadMessage: {
    2790       89616 :         if (truncation.IsUnused()) return VisitUnused(node);
    2791       21890 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTagged);
    2792       21890 :         return;
    2793             :       }
    2794             :       case IrOpcode::kStoreMessage: {
    2795       89999 :         ProcessInput(node, 0, UseInfo::Word());
    2796       89999 :         ProcessInput(node, 1, UseInfo::AnyTagged());
    2797       89999 :         ProcessRemainingInputs(node, 2);
    2798             :         SetOutput(node, MachineRepresentation::kNone);
    2799             :         return;
    2800             :       }
    2801             :       case IrOpcode::kLoadFieldByIndex: {
    2802        2107 :         if (truncation.IsUnused()) return VisitUnused(node);
    2803             :         VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(),
    2804        2073 :                    MachineRepresentation::kTagged);
    2805        2073 :         return;
    2806             :       }
    2807             :       case IrOpcode::kLoadField: {
    2808     3863252 :         if (truncation.IsUnused()) return VisitUnused(node);
    2809     3752011 :         FieldAccess access = FieldAccessOf(node->op());
    2810             :         MachineRepresentation const representation =
    2811             :             access.machine_type.representation();
    2812     3752011 :         VisitUnop(node, UseInfoForBasePointer(access), representation);
    2813     3752015 :         return;
    2814             :       }
    2815             :       case IrOpcode::kStoreField: {
    2816     6276194 :         FieldAccess access = FieldAccessOf(node->op());
    2817             :         Node* value_node = node->InputAt(1);
    2818             :         NodeInfo* input_info = GetInfo(value_node);
    2819             :         MachineRepresentation field_representation =
    2820             :             access.machine_type.representation();
    2821             : 
    2822             :         // Convert to Smi if possible, such that we can avoid a write barrier.
    2823    18828588 :         if (field_representation == MachineRepresentation::kTagged &&
    2824    16381416 :             TypeOf(value_node).Is(Type::SignedSmall())) {
    2825             :           field_representation = MachineRepresentation::kTaggedSigned;
    2826             :         }
    2827     6276196 :         WriteBarrierKind write_barrier_kind = WriteBarrierKindFor(
    2828     6276196 :             access.base_is_tagged, field_representation, access.offset,
    2829             :             access.type, input_info->representation(), value_node);
    2830             : 
    2831     6276194 :         ProcessInput(node, 0, UseInfoForBasePointer(access));
    2832     6276195 :         ProcessInput(node, 1,
    2833     6276197 :                      TruncatingUseInfoFromRepresentation(field_representation));
    2834     6276194 :         ProcessRemainingInputs(node, 2);
    2835             :         SetOutput(node, MachineRepresentation::kNone);
    2836     6276196 :         if (lower()) {
    2837     2088814 :           if (write_barrier_kind < access.write_barrier_kind) {
    2838      723200 :             access.write_barrier_kind = write_barrier_kind;
    2839      723200 :             NodeProperties::ChangeOp(
    2840     1446400 :                 node, jsgraph_->simplified()->StoreField(access));
    2841             :           }
    2842             :         }
    2843             :         return;
    2844             :       }
    2845             :       case IrOpcode::kLoadElement: {
    2846       64529 :         if (truncation.IsUnused()) return VisitUnused(node);
    2847       62412 :         ElementAccess access = ElementAccessOf(node->op());
    2848       62412 :         VisitBinop(node, UseInfoForBasePointer(access), UseInfo::Word(),
    2849       62412 :                    access.machine_type.representation());
    2850       62412 :         return;
    2851             :       }
    2852             :       case IrOpcode::kLoadStackArgument: {
    2853        2346 :         if (truncation.IsUnused()) return VisitUnused(node);
    2854             :         VisitBinop(node, UseInfo::Word(), MachineRepresentation::kTagged);
    2855             :         return;
    2856             :       }
    2857             :       case IrOpcode::kStoreElement: {
    2858      119207 :         ElementAccess access = ElementAccessOf(node->op());
    2859             :         Node* value_node = node->InputAt(2);
    2860             :         NodeInfo* input_info = GetInfo(value_node);
    2861             :         MachineRepresentation element_representation =
    2862             :             access.machine_type.representation();
    2863             : 
    2864             :         // Convert to Smi if possible, such that we can avoid a write barrier.
    2865      357621 :         if (element_representation == MachineRepresentation::kTagged &&
    2866      275865 :             TypeOf(value_node).Is(Type::SignedSmall())) {
    2867             :           element_representation = MachineRepresentation::kTaggedSigned;
    2868             :         }
    2869      119207 :         WriteBarrierKind write_barrier_kind = WriteBarrierKindFor(
    2870      119207 :             access.base_is_tagged, element_representation, access.type,
    2871      119207 :             input_info->representation(), value_node);
    2872      119207 :         ProcessInput(node, 0, UseInfoForBasePointer(access));  // base
    2873      119207 :         ProcessInput(node, 1, UseInfo::Word());                // index
    2874      119207 :         ProcessInput(node, 2,
    2875             :                      TruncatingUseInfoFromRepresentation(
    2876      119207 :                          element_representation));  // value
    2877      119207 :         ProcessRemainingInputs(node, 3);
    2878             :         SetOutput(node, MachineRepresentation::kNone);
    2879      119207 :         if (lower()) {
    2880       38886 :           if (write_barrier_kind < access.write_barrier_kind) {
    2881       22673 :             access.write_barrier_kind = write_barrier_kind;
    2882       22673 :             NodeProperties::ChangeOp(
    2883       45346 :                 node, jsgraph_->simplified()->StoreElement(access));
    2884             :           }
    2885             :         }
    2886             :         return;
    2887             :       }
    2888             :       case IrOpcode::kNumberIsFloat64Hole: {
    2889             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2890         230 :                   MachineRepresentation::kBit);
    2891         230 :         return;
    2892             :       }
    2893             :       case IrOpcode::kTransitionAndStoreElement: {
    2894         878 :         Type value_type = TypeOf(node->InputAt(2));
    2895             : 
    2896         878 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // array
    2897         878 :         ProcessInput(node, 1, UseInfo::Word());       // index
    2898             : 
    2899         878 :         if (value_type.Is(Type::SignedSmall())) {
    2900         287 :           ProcessInput(node, 2, UseInfo::TruncatingWord32());  // value
    2901         287 :           if (lower()) {
    2902          70 :             NodeProperties::ChangeOp(node,
    2903          70 :                                      simplified()->StoreSignedSmallElement());
    2904             :           }
    2905         591 :         } else if (value_type.Is(Type::Number())) {
    2906         123 :           ProcessInput(node, 2, UseInfo::TruncatingFloat64());  // value
    2907         123 :           if (lower()) {
    2908          28 :             Handle<Map> double_map = DoubleMapParameterOf(node->op());
    2909          28 :             NodeProperties::ChangeOp(
    2910             :                 node,
    2911          28 :                 simplified()->TransitionAndStoreNumberElement(double_map));
    2912             :           }
    2913         468 :         } else if (value_type.Is(Type::NonNumber())) {
    2914          92 :           ProcessInput(node, 2, UseInfo::AnyTagged());  // value
    2915          92 :           if (lower()) {
    2916          20 :             Handle<Map> fast_map = FastMapParameterOf(node->op());
    2917          20 :             NodeProperties::ChangeOp(
    2918             :                 node, simplified()->TransitionAndStoreNonNumberElement(
    2919          20 :                           fast_map, value_type));
    2920             :           }
    2921             :         } else {
    2922         376 :           ProcessInput(node, 2, UseInfo::AnyTagged());  // value
    2923             :         }
    2924             : 
    2925         878 :         ProcessRemainingInputs(node, 3);
    2926             :         SetOutput(node, MachineRepresentation::kNone);
    2927             :         return;
    2928             :       }
    2929             :       case IrOpcode::kLoadTypedElement: {
    2930             :         MachineRepresentation const rep =
    2931       16626 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2932       16626 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2933       16626 :         ProcessInput(node, 1, UseInfo::AnyTagged());  // base pointer
    2934       16626 :         ProcessInput(node, 2, UseInfo::Word());       // external pointer
    2935       16626 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2936       16626 :         ProcessRemainingInputs(node, 4);
    2937             :         SetOutput(node, rep);
    2938             :         return;
    2939             :       }
    2940             :       case IrOpcode::kLoadDataViewElement: {
    2941             :         MachineRepresentation const rep =
    2942         804 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2943         804 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2944         804 :         ProcessInput(node, 1, UseInfo::Word());       // external pointer
    2945         804 :         ProcessInput(node, 2, UseInfo::Word());       // byte offset
    2946         804 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2947         804 :         ProcessInput(node, 4, UseInfo::Bool());       // little-endian
    2948         804 :         ProcessRemainingInputs(node, 5);
    2949             :         SetOutput(node, rep);
    2950             :         return;
    2951             :       }
    2952             :       case IrOpcode::kStoreTypedElement: {
    2953             :         MachineRepresentation const rep =
    2954       15788 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2955       15788 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2956       15788 :         ProcessInput(node, 1, UseInfo::AnyTagged());  // base pointer
    2957       15788 :         ProcessInput(node, 2, UseInfo::Word());       // external pointer
    2958       15788 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2959       15788 :         ProcessInput(node, 4,
    2960       15788 :                      TruncatingUseInfoFromRepresentation(rep));  // value
    2961       15788 :         ProcessRemainingInputs(node, 5);
    2962             :         SetOutput(node, MachineRepresentation::kNone);
    2963             :         return;
    2964             :       }
    2965             :       case IrOpcode::kStoreDataViewElement: {
    2966             :         MachineRepresentation const rep =
    2967         588 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2968         588 :         ProcessInput(node, 0, UseInfo::AnyTagged());         // buffer
    2969         588 :         ProcessInput(node, 1, UseInfo::Word());              // external pointer
    2970         588 :         ProcessInput(node, 2, UseInfo::Word());              // byte offset
    2971         588 :         ProcessInput(node, 3, UseInfo::Word());              // index
    2972         588 :         ProcessInput(node, 4,
    2973         588 :                      TruncatingUseInfoFromRepresentation(rep));  // value
    2974         588 :         ProcessInput(node, 5, UseInfo::Bool());  // little-endian
    2975         588 :         ProcessRemainingInputs(node, 6);
    2976             :         SetOutput(node, MachineRepresentation::kNone);
    2977             :         return;
    2978             :       }
    2979             :       case IrOpcode::kConvertReceiver: {
    2980        2676 :         Type input_type = TypeOf(node->InputAt(0));
    2981             :         VisitBinop(node, UseInfo::AnyTagged(),
    2982             :                    MachineRepresentation::kTaggedPointer);
    2983        2676 :         if (lower()) {
    2984             :           // Try to optimize the {node} based on the input type.
    2985         873 :           if (input_type.Is(Type::Receiver())) {
    2986           0 :             DeferReplacement(node, node->InputAt(0));
    2987         873 :           } else if (input_type.Is(Type::NullOrUndefined())) {
    2988           0 :             DeferReplacement(node, node->InputAt(1));
    2989         873 :           } else if (!input_type.Maybe(Type::NullOrUndefined())) {
    2990          85 :             NodeProperties::ChangeOp(
    2991             :                 node, lowering->simplified()->ConvertReceiver(
    2992          85 :                           ConvertReceiverMode::kNotNullOrUndefined));
    2993             :           }
    2994             :         }
    2995             :         return;
    2996             :       }
    2997             :       case IrOpcode::kPlainPrimitiveToNumber: {
    2998        2624 :         if (InputIs(node, Type::Boolean())) {
    2999         199 :           VisitUnop(node, UseInfo::Bool(), MachineRepresentation::kWord32);
    3000         258 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3001        2425 :         } else if (InputIs(node, Type::String())) {
    3002        1001 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3003        1001 :           if (lower()) {
    3004         331 :             NodeProperties::ChangeOp(node, simplified()->StringToNumber());
    3005             :           }
    3006        1424 :         } else if (truncation.IsUsedAsWord32()) {
    3007          57 :           if (InputIs(node, Type::NumberOrOddball())) {
    3008             :             VisitUnop(node, UseInfo::TruncatingWord32(),
    3009          30 :                       MachineRepresentation::kWord32);
    3010          40 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3011             :           } else {
    3012             :             VisitUnop(node, UseInfo::AnyTagged(),
    3013          27 :                       MachineRepresentation::kWord32);
    3014          27 :             if (lower()) {
    3015           9 :               NodeProperties::ChangeOp(node,
    3016           9 :                                        simplified()->PlainPrimitiveToWord32());
    3017             :             }
    3018             :           }
    3019        1367 :         } else if (truncation.IsUsedAsFloat64()) {
    3020        1291 :           if (InputIs(node, Type::NumberOrOddball())) {
    3021             :             VisitUnop(node, UseInfo::TruncatingFloat64(),
    3022        1291 :                       MachineRepresentation::kFloat64);
    3023        1623 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3024             :           } else {
    3025             :             VisitUnop(node, UseInfo::AnyTagged(),
    3026           0 :                       MachineRepresentation::kFloat64);
    3027           0 :             if (lower()) {
    3028           0 :               NodeProperties::ChangeOp(node,
    3029           0 :                                        simplified()->PlainPrimitiveToFloat64());
    3030             :             }
    3031             :           }
    3032             :         } else {
    3033          76 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3034             :         }
    3035             :         return;
    3036             :       }
    3037             :       case IrOpcode::kSpeculativeToNumber: {
    3038             :         NumberOperationParameters const& p =
    3039      133175 :             NumberOperationParametersOf(node->op());
    3040      133175 :         switch (p.hint()) {
    3041             :           case NumberOperationHint::kSigned32:
    3042             :           case NumberOperationHint::kSignedSmall:
    3043             :           case NumberOperationHint::kSignedSmallInputs:
    3044        6203 :             VisitUnop(node,
    3045             :                       CheckedUseInfoAsWord32FromHint(p.hint(), p.feedback()),
    3046        6203 :                       MachineRepresentation::kWord32, Type::Signed32());
    3047        6203 :             break;
    3048             :           case NumberOperationHint::kNumber:
    3049             :           case NumberOperationHint::kNumberOrOddball:
    3050      126972 :             VisitUnop(node,
    3051             :                       CheckedUseInfoAsFloat64FromHint(p.hint(), p.feedback()),
    3052      126972 :                       MachineRepresentation::kFloat64);
    3053      126972 :             break;
    3054             :         }
    3055      173513 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    3056             :         return;
    3057             :       }
    3058             :       case IrOpcode::kObjectIsArrayBufferView: {
    3059             :         // TODO(turbofan): Introduce a Type::ArrayBufferView?
    3060          48 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3061          48 :         return;
    3062             :       }
    3063             :       case IrOpcode::kObjectIsBigInt: {
    3064          75 :         VisitObjectIs(node, Type::BigInt(), lowering);
    3065          75 :         return;
    3066             :       }
    3067             :       case IrOpcode::kObjectIsCallable: {
    3068         330 :         VisitObjectIs(node, Type::Callable(), lowering);
    3069         330 :         return;
    3070             :       }
    3071             :       case IrOpcode::kObjectIsConstructor: {
    3072             :         // TODO(turbofan): Introduce a Type::Constructor?
    3073        1131 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3074        1131 :         return;
    3075             :       }
    3076             :       case IrOpcode::kObjectIsDetectableCallable: {
    3077       43900 :         VisitObjectIs(node, Type::DetectableCallable(), lowering);
    3078       43900 :         return;
    3079             :       }
    3080             :       case IrOpcode::kObjectIsFiniteNumber: {
    3081         588 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3082        1176 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3083         210 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3084         210 :           if (lower()) {
    3085          70 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3086             :           }
    3087         378 :         } else if (!input_type.Maybe(Type::Number())) {
    3088          42 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3089          42 :           if (lower()) {
    3090          14 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3091             :           }
    3092         336 :         } else if (input_type.Is(Type::Number())) {
    3093             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3094         315 :                     MachineRepresentation::kBit);
    3095         315 :           if (lower()) {
    3096         105 :             NodeProperties::ChangeOp(node,
    3097         105 :                                      lowering->simplified()->NumberIsFinite());
    3098             :           }
    3099             :         } else {
    3100          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3101             :         }
    3102             :         return;
    3103             :       }
    3104             :       case IrOpcode::kNumberIsFinite: {
    3105             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3106          70 :                   MachineRepresentation::kBit);
    3107          70 :         return;
    3108             :       }
    3109             :       case IrOpcode::kObjectIsSafeInteger: {
    3110          42 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3111          84 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3112           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3113           0 :           if (lower()) {
    3114           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3115             :           }
    3116          42 :         } else if (!input_type.Maybe(Type::Number())) {
    3117           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3118           0 :           if (lower()) {
    3119           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3120             :           }
    3121          42 :         } else if (input_type.Is(Type::Number())) {
    3122             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3123          21 :                     MachineRepresentation::kBit);
    3124          21 :           if (lower()) {
    3125           7 :             NodeProperties::ChangeOp(
    3126           7 :                 node, lowering->simplified()->NumberIsSafeInteger());
    3127             :           }
    3128             :         } else {
    3129          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3130             :         }
    3131             :         return;
    3132             :       }
    3133             :       case IrOpcode::kNumberIsSafeInteger: {
    3134           0 :         UNREACHABLE();
    3135             :       }
    3136             :       case IrOpcode::kObjectIsInteger: {
    3137         588 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3138        1176 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3139         210 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3140         210 :           if (lower()) {
    3141          70 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3142             :           }
    3143         378 :         } else if (!input_type.Maybe(Type::Number())) {
    3144           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3145           0 :           if (lower()) {
    3146           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3147             :           }
    3148         378 :         } else if (input_type.Is(Type::Number())) {
    3149             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3150         357 :                     MachineRepresentation::kBit);
    3151         357 :           if (lower()) {
    3152         119 :             NodeProperties::ChangeOp(node,
    3153         119 :                                      lowering->simplified()->NumberIsInteger());
    3154             :           }
    3155             :         } else {
    3156          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3157             :         }
    3158             :         return;
    3159             :       }
    3160             :       case IrOpcode::kNumberIsInteger: {
    3161             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3162           0 :                   MachineRepresentation::kBit);
    3163           0 :         return;
    3164             :       }
    3165             :       case IrOpcode::kObjectIsMinusZero: {
    3166         363 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3167         363 :         if (input_type.Is(Type::MinusZero())) {
    3168           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3169           0 :           if (lower()) {
    3170           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3171             :           }
    3172         363 :         } else if (!input_type.Maybe(Type::MinusZero())) {
    3173           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3174           0 :           if (lower()) {
    3175           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3176             :           }
    3177         363 :         } else if (input_type.Is(Type::Number())) {
    3178             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3179         294 :                     MachineRepresentation::kBit);
    3180         294 :           if (lower()) {
    3181          98 :             NodeProperties::ChangeOp(node, simplified()->NumberIsMinusZero());
    3182             :           }
    3183             :         } else {
    3184          69 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3185             :         }
    3186             :         return;
    3187             :       }
    3188             :       case IrOpcode::kObjectIsNaN: {
    3189        2724 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3190        2724 :         if (input_type.Is(Type::NaN())) {
    3191           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3192           0 :           if (lower()) {
    3193           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3194             :           }
    3195        2724 :         } else if (!input_type.Maybe(Type::NaN())) {
    3196          36 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3197          36 :           if (lower()) {
    3198          12 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3199             :           }
    3200        2688 :         } else if (input_type.Is(Type::Number())) {
    3201             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3202         540 :                     MachineRepresentation::kBit);
    3203         540 :           if (lower()) {
    3204         180 :             NodeProperties::ChangeOp(node, simplified()->NumberIsNaN());
    3205             :           }
    3206             :         } else {
    3207        2148 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3208             :         }
    3209             :         return;
    3210             :       }
    3211             :       case IrOpcode::kNumberIsNaN: {
    3212             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3213        8464 :                   MachineRepresentation::kBit);
    3214        8464 :         return;
    3215             :       }
    3216             :       case IrOpcode::kObjectIsNonCallable: {
    3217       18705 :         VisitObjectIs(node, Type::NonCallable(), lowering);
    3218       18705 :         return;
    3219             :       }
    3220             :       case IrOpcode::kObjectIsNumber: {
    3221       23541 :         VisitObjectIs(node, Type::Number(), lowering);
    3222       23541 :         return;
    3223             :       }
    3224             :       case IrOpcode::kObjectIsReceiver: {
    3225       64029 :         VisitObjectIs(node, Type::Receiver(), lowering);
    3226       64029 :         return;
    3227             :       }
    3228             :       case IrOpcode::kObjectIsSmi: {
    3229             :         // TODO(turbofan): Optimize based on input representation.
    3230        3935 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3231        3935 :         return;
    3232             :       }
    3233             :       case IrOpcode::kObjectIsString: {
    3234        7026 :         VisitObjectIs(node, Type::String(), lowering);
    3235        7026 :         return;
    3236             :       }
    3237             :       case IrOpcode::kObjectIsSymbol: {
    3238          71 :         VisitObjectIs(node, Type::Symbol(), lowering);
    3239          71 :         return;
    3240             :       }
    3241             :       case IrOpcode::kObjectIsUndetectable: {
    3242        4845 :         VisitObjectIs(node, Type::Undetectable(), lowering);
    3243        4845 :         return;
    3244             :       }
    3245             :       case IrOpcode::kArgumentsFrame: {
    3246             :         SetOutput(node, MachineType::PointerRepresentation());
    3247             :         return;
    3248             :       }
    3249             :       case IrOpcode::kArgumentsLength: {
    3250       50936 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTaggedSigned);
    3251       50936 :         return;
    3252             :       }
    3253             :       case IrOpcode::kNewDoubleElements:
    3254             :       case IrOpcode::kNewSmiOrObjectElements: {
    3255        1662 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTaggedPointer);
    3256        1662 :         return;
    3257             :       }
    3258             :       case IrOpcode::kNewArgumentsElements: {
    3259             :         VisitBinop(node, UseInfo::Word(), UseInfo::TaggedSigned(),
    3260       58963 :                    MachineRepresentation::kTaggedPointer);
    3261       58963 :         return;
    3262             :       }
    3263             :       case IrOpcode::kCheckFloat64Hole: {
    3264        1903 :         Type const input_type = TypeOf(node->InputAt(0));
    3265             :         CheckFloat64HoleMode mode =
    3266        1903 :             CheckFloat64HoleParametersOf(node->op()).mode();
    3267        1903 :         if (mode == CheckFloat64HoleMode::kAllowReturnHole) {
    3268             :           // If {mode} is allow-return-hole _and_ the {truncation}
    3269             :           // identifies NaN and undefined, we can just pass along
    3270             :           // the {truncation} and completely wipe the {node}.
    3271        1358 :           if (truncation.IsUnused()) return VisitUnused(node);
    3272        1262 :           if (truncation.IsUsedAsFloat64()) {
    3273             :             VisitUnop(node, UseInfo::TruncatingFloat64(),
    3274         129 :                       MachineRepresentation::kFloat64);
    3275         172 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3276             :             return;
    3277             :           }
    3278             :         }
    3279        3356 :         VisitUnop(node,
    3280             :                   UseInfo(MachineRepresentation::kFloat64, Truncation::Any()),
    3281        1678 :                   MachineRepresentation::kFloat64, Type::Number());
    3282        2216 :         if (lower() && input_type.Is(Type::Number())) {
    3283          64 :           DeferReplacement(node, node->InputAt(0));
    3284             :         }
    3285             :         return;
    3286             :       }
    3287             :       case IrOpcode::kCheckNotTaggedHole: {
    3288         330 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3289         330 :         return;
    3290             :       }
    3291             :       case IrOpcode::kConvertTaggedHoleToUndefined: {
    3292       10258 :         if (InputIs(node, Type::NumberOrOddball()) &&
    3293             :             truncation.IsUsedAsWord32()) {
    3294             :           // Propagate the Word32 truncation.
    3295             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    3296        1009 :                     MachineRepresentation::kWord32);
    3297        1259 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3298        8240 :         } else if (InputIs(node, Type::NumberOrOddball()) &&
    3299             :                    truncation.IsUsedAsFloat64()) {
    3300             :           // Propagate the Float64 truncation.
    3301             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3302         143 :                     MachineRepresentation::kFloat64);
    3303         187 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3304        6078 :         } else if (InputIs(node, Type::NonInternal())) {
    3305         126 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3306         168 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3307             :         } else {
    3308             :           // TODO(turbofan): Add a (Tagged) truncation that identifies hole
    3309             :           // and undefined, i.e. for a[i] === obj cases.
    3310        5952 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3311             :         }
    3312             :         return;
    3313             :       }
    3314             :       case IrOpcode::kCheckEqualsSymbol:
    3315             :       case IrOpcode::kCheckEqualsInternalizedString:
    3316             :         return VisitBinop(node, UseInfo::AnyTagged(),
    3317             :                           MachineRepresentation::kNone);
    3318             :       case IrOpcode::kMapGuard:
    3319             :         // Eliminate MapGuard nodes here.
    3320       22210 :         return VisitUnused(node);
    3321             :       case IrOpcode::kCheckMaps:
    3322             :       case IrOpcode::kTransitionElementsKind: {
    3323      162727 :         VisitInputs(node);
    3324             :         return SetOutput(node, MachineRepresentation::kNone);
    3325             :       }
    3326             :       case IrOpcode::kCompareMaps:
    3327             :         return VisitUnop(node, UseInfo::AnyTagged(),
    3328       24141 :                          MachineRepresentation::kBit);
    3329             :       case IrOpcode::kEnsureWritableFastElements:
    3330             :         return VisitBinop(node, UseInfo::AnyTagged(),
    3331             :                           MachineRepresentation::kTaggedPointer);
    3332             :       case IrOpcode::kMaybeGrowFastElements: {
    3333       11509 :         Type const index_type = TypeOf(node->InputAt(2));
    3334       11509 :         Type const length_type = TypeOf(node->InputAt(3));
    3335       11509 :         ProcessInput(node, 0, UseInfo::AnyTagged());         // object
    3336       11509 :         ProcessInput(node, 1, UseInfo::AnyTagged());         // elements
    3337       11509 :         ProcessInput(node, 2, UseInfo::TruncatingWord32());  // index
    3338       11509 :         ProcessInput(node, 3, UseInfo::TruncatingWord32());  // length
    3339       11509 :         ProcessRemainingInputs(node, 4);
    3340             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    3341       11509 :         if (lower()) {
    3342             :           // If the index is known to be less than the length (or if
    3343             :           // we're in dead code), we know that we don't need to grow
    3344             :           // the elements, so we can just remove this operation all
    3345             :           // together and replace it with the elements that we have
    3346             :           // on the inputs.
    3347       10629 :           if (index_type.IsNone() || length_type.IsNone() ||
    3348        3543 :               index_type.Max() < length_type.Min()) {
    3349          50 :             DeferReplacement(node, node->InputAt(1));
    3350             :           }
    3351             :         }
    3352             :         return;
    3353             :       }
    3354             : 
    3355             :       case IrOpcode::kDateNow:
    3356          39 :         VisitInputs(node);
    3357             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3358             :       case IrOpcode::kFrameState:
    3359    16622413 :         return VisitFrameState(node);
    3360             :       case IrOpcode::kStateValues:
    3361    10996380 :         return VisitStateValues(node);
    3362             :       case IrOpcode::kObjectState:
    3363       69405 :         return VisitObjectState(node);
    3364             :       case IrOpcode::kObjectId:
    3365             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3366             :       case IrOpcode::kTypeGuard: {
    3367             :         // We just get rid of the sigma here, choosing the best representation
    3368             :         // for the sigma's type.
    3369       91589 :         Type type = TypeOf(node);
    3370             :         MachineRepresentation representation =
    3371       91589 :             GetOutputInfoForPhi(node, type, truncation);
    3372             : 
    3373             :         // Here we pretend that the input has the sigma's type for the
    3374             :         // conversion.
    3375      183183 :         UseInfo use(representation, truncation);
    3376       91591 :         if (propagate()) {
    3377       30741 :           EnqueueInput(node, 0, use);
    3378       60850 :         } else if (lower()) {
    3379       22678 :           ConvertInput(node, 0, use, type);
    3380             :         }
    3381       91592 :         ProcessRemainingInputs(node, 1);
    3382             :         SetOutput(node, representation);
    3383             :         return;
    3384             :       }
    3385             : 
    3386             :       case IrOpcode::kFinishRegion:
    3387      405141 :         VisitInputs(node);
    3388             :         // Assume the output is tagged pointer.
    3389             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3390             : 
    3391             :       case IrOpcode::kReturn:
    3392     1671273 :         VisitReturn(node);
    3393             :         // Assume the output is tagged.
    3394             :         return SetOutput(node, MachineRepresentation::kTagged);
    3395             : 
    3396             :       case IrOpcode::kFindOrderedHashMapEntry: {
    3397         684 :         Type const key_type = TypeOf(node->InputAt(1));
    3398         684 :         if (key_type.Is(Type::Signed32OrMinusZero())) {
    3399             :           VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(),
    3400          64 :                      MachineType::PointerRepresentation());
    3401          64 :           if (lower()) {
    3402          16 :             NodeProperties::ChangeOp(
    3403             :                 node,
    3404          16 :                 lowering->simplified()->FindOrderedHashMapEntryForInt32Key());
    3405             :           }
    3406             :         } else {
    3407             :           VisitBinop(node, UseInfo::AnyTagged(),
    3408             :                      MachineRepresentation::kTaggedSigned);
    3409             :         }
    3410             :         return;
    3411             :       }
    3412             : 
    3413             :       // Operators with all inputs tagged and no or tagged output have uniform
    3414             :       // handling.
    3415             :       case IrOpcode::kEnd:
    3416             :       case IrOpcode::kIfSuccess:
    3417             :       case IrOpcode::kIfException:
    3418             :       case IrOpcode::kIfTrue:
    3419             :       case IrOpcode::kIfFalse:
    3420             :       case IrOpcode::kIfValue:
    3421             :       case IrOpcode::kIfDefault:
    3422             :       case IrOpcode::kDeoptimize:
    3423             :       case IrOpcode::kEffectPhi:
    3424             :       case IrOpcode::kTerminate:
    3425             :       case IrOpcode::kCheckpoint:
    3426             :       case IrOpcode::kLoop:
    3427             :       case IrOpcode::kMerge:
    3428             :       case IrOpcode::kThrow:
    3429             :       case IrOpcode::kBeginRegion:
    3430             :       case IrOpcode::kProjection:
    3431             :       case IrOpcode::kOsrValue:
    3432             :       case IrOpcode::kArgumentsElementsState:
    3433             :       case IrOpcode::kArgumentsLengthState:
    3434             :       case IrOpcode::kUnreachable:
    3435             :       case IrOpcode::kRuntimeAbort:
    3436             : // All JavaScript operators except JSToNumber have uniform handling.
    3437             : #define OPCODE_CASE(name) case IrOpcode::k##name:
    3438             :         JS_SIMPLE_BINOP_LIST(OPCODE_CASE)
    3439             :         JS_OBJECT_OP_LIST(OPCODE_CASE)
    3440             :         JS_CONTEXT_OP_LIST(OPCODE_CASE)
    3441             :         JS_OTHER_OP_LIST(OPCODE_CASE)
    3442             : #undef OPCODE_CASE
    3443             :       case IrOpcode::kJSBitwiseNot:
    3444             :       case IrOpcode::kJSDecrement:
    3445             :       case IrOpcode::kJSIncrement:
    3446             :       case IrOpcode::kJSNegate:
    3447             :       case IrOpcode::kJSToLength:
    3448             :       case IrOpcode::kJSToName:
    3449             :       case IrOpcode::kJSToObject:
    3450             :       case IrOpcode::kJSToString:
    3451             :       case IrOpcode::kJSParseInt:
    3452    29093954 :         VisitInputs(node);
    3453             :         // Assume the output is tagged.
    3454             :         return SetOutput(node, MachineRepresentation::kTagged);
    3455             :       case IrOpcode::kDeadValue:
    3456        1616 :         ProcessInput(node, 0, UseInfo::Any());
    3457             :         return SetOutput(node, MachineRepresentation::kNone);
    3458             :       default:
    3459           0 :         FATAL(
    3460             :             "Representation inference: unsupported opcode %i (%s), node #%i\n.",
    3461           0 :             node->opcode(), node->op()->mnemonic(), node->id());
    3462             :         break;
    3463             :     }
    3464             :     UNREACHABLE();
    3465             :   }
    3466             : 
    3467     1260703 :   void DeferReplacement(Node* node, Node* replacement) {
    3468     1260703 :     TRACE("defer replacement #%d:%s with #%d:%s\n", node->id(),
    3469             :           node->op()->mnemonic(), replacement->id(),
    3470             :           replacement->op()->mnemonic());
    3471             : 
    3472             :     // Disconnect the node from effect and control chains, if necessary.
    3473     2521414 :     if (node->op()->EffectInputCount() > 0) {
    3474             :       DCHECK_LT(0, node->op()->ControlInputCount());
    3475             :       // Disconnect the node from effect and control chains.
    3476      105837 :       Node* control = NodeProperties::GetControlInput(node);
    3477      105837 :       Node* effect = NodeProperties::GetEffectInput(node);
    3478      105837 :       ReplaceEffectControlUses(node, effect, control);
    3479             :     }
    3480             : 
    3481     1260707 :     replacements_.push_back(node);
    3482     1260707 :     replacements_.push_back(replacement);
    3483             : 
    3484     1260708 :     node->NullAllInputs();  // Node is now dead.
    3485     1260706 :   }
    3486             : 
    3487       34319 :   void Kill(Node* node) {
    3488       34319 :     TRACE("killing #%d:%s\n", node->id(), node->op()->mnemonic());
    3489             : 
    3490       34319 :     if (node->op()->EffectInputCount() == 1) {
    3491             :       DCHECK_LT(0, node->op()->ControlInputCount());
    3492             :       // Disconnect the node from effect and control chains.
    3493       34305 :       Node* control = NodeProperties::GetControlInput(node);
    3494       34305 :       Node* effect = NodeProperties::GetEffectInput(node);
    3495       34305 :       ReplaceEffectControlUses(node, effect, control);
    3496             :     } else {
    3497             :       DCHECK_EQ(0, node->op()->EffectInputCount());
    3498             :       DCHECK_EQ(0, node->op()->ControlOutputCount());
    3499             :       DCHECK_EQ(0, node->op()->EffectOutputCount());
    3500             :     }
    3501             : 
    3502       34319 :     node->ReplaceUses(jsgraph_->Dead());
    3503             : 
    3504       34319 :     node->NullAllInputs();  // The {node} is now dead.
    3505       34319 :   }
    3506             : 
    3507    51627441 :   void PrintOutputInfo(NodeInfo* info) {
    3508    51627441 :     if (FLAG_trace_representation) {
    3509           0 :       StdoutStream{} << info->representation();
    3510             :     }
    3511    51627441 :   }
    3512             : 
    3513             :   void PrintRepresentation(MachineRepresentation rep) {
    3514             :     if (FLAG_trace_representation) {
    3515             :       StdoutStream{} << rep;
    3516             :     }
    3517             :   }
    3518             : 
    3519   102483362 :   void PrintTruncation(Truncation truncation) {
    3520   102483362 :     if (FLAG_trace_representation) {
    3521           0 :       StdoutStream{} << truncation.description() << std::endl;
    3522             :     }
    3523   102483362 :   }
    3524             : 
    3525    16065165 :   void PrintUseInfo(UseInfo info) {
    3526    16065165 :     if (FLAG_trace_representation) {
    3527           0 :       StdoutStream{} << info.representation() << ":"
    3528           0 :                      << info.truncation().description();
    3529             :     }
    3530    16065165 :   }
    3531             : 
    3532             :  private:
    3533             :   JSGraph* jsgraph_;
    3534             :   Zone* zone_;                      // Temporary zone.
    3535             :   size_t const count_;              // number of nodes in the graph
    3536             :   ZoneVector<NodeInfo> info_;       // node id -> usage information
    3537             : #ifdef DEBUG
    3538             :   ZoneVector<InputUseInfos> node_input_use_infos_;  // Debug information about
    3539             :                                                     // requirements on inputs.
    3540             : #endif                                              // DEBUG
    3541             :   NodeVector nodes_;                // collected nodes
    3542             :   NodeVector replacements_;         // replacements to be done after lowering
    3543             :   Phase phase_;                     // current phase of algorithm
    3544             :   RepresentationChanger* changer_;  // for inserting representation changes
    3545             :   ZoneQueue<Node*> queue_;          // queue for traversing the graph
    3546             : 
    3547             :   struct NodeState {
    3548             :     Node* node;
    3549             :     int input_index;
    3550             :   };
    3551             :   ZoneStack<NodeState> typing_stack_;  // stack for graph typing.
    3552             :   // TODO(danno): RepresentationSelector shouldn't know anything about the
    3553             :   // source positions table, but must for now since there currently is no other
    3554             :   // way to pass down source position information to nodes created during
    3555             :   // lowering. Once this phase becomes a vanilla reducer, it should get source
    3556             :   // position information via the SourcePositionWrapper like all other reducers.
    3557             :   SourcePositionTable* source_positions_;
    3558             :   NodeOriginTable* node_origins_;
    3559             :   TypeCache const* type_cache_;
    3560             :   OperationTyper op_typer_;  // helper for the feedback typer
    3561             : 
    3562             :   NodeInfo* GetInfo(Node* node) {
    3563             :     DCHECK(node->id() < count_);
    3564   705027723 :     return &info_[node->id()];
    3565             :   }
    3566             :   Zone* zone() { return zone_; }
    3567             :   Zone* graph_zone() { return jsgraph_->zone(); }
    3568             : };
    3569             : 
    3570      464173 : SimplifiedLowering::SimplifiedLowering(JSGraph* jsgraph, JSHeapBroker* broker,
    3571             :                                        Zone* zone,
    3572             :                                        SourcePositionTable* source_positions,
    3573             :                                        NodeOriginTable* node_origins,
    3574             :                                        PoisoningMitigationLevel poisoning_level)
    3575             :     : jsgraph_(jsgraph),
    3576             :       broker_(broker),
    3577             :       zone_(zone),
    3578      464173 :       type_cache_(TypeCache::Get()),
    3579             :       source_positions_(source_positions),
    3580             :       node_origins_(node_origins),
    3581     1392533 :       poisoning_level_(poisoning_level) {}
    3582             : 
    3583      464174 : void SimplifiedLowering::LowerAllNodes() {
    3584      464174 :   RepresentationChanger changer(jsgraph(), jsgraph()->isolate());
    3585      464177 :   RepresentationSelector selector(jsgraph(), broker_, zone_, &changer,
    3586      928354 :                                   source_positions_, node_origins_);
    3587      464181 :   selector.Run(this);
    3588      464180 : }
    3589             : 
    3590        1413 : void SimplifiedLowering::DoJSToNumberOrNumericTruncatesToFloat64(
    3591             :     Node* node, RepresentationSelector* selector) {
    3592             :   DCHECK(node->opcode() == IrOpcode::kJSToNumber ||
    3593             :          node->opcode() == IrOpcode::kJSToNumberConvertBigInt ||
    3594             :          node->opcode() == IrOpcode::kJSToNumeric);
    3595             :   Node* value = node->InputAt(0);
    3596             :   Node* context = node->InputAt(1);
    3597             :   Node* frame_state = node->InputAt(2);
    3598             :   Node* effect = node->InputAt(3);
    3599             :   Node* control = node->InputAt(4);
    3600             : 
    3601        1413 :   Node* check0 = graph()->NewNode(simplified()->ObjectIsSmi(), value);
    3602             :   Node* branch0 =
    3603        1413 :       graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
    3604             : 
    3605        1413 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3606             :   Node* etrue0 = effect;
    3607             :   Node* vtrue0;
    3608             :   {
    3609        1413 :     vtrue0 = graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), value);
    3610        1413 :     vtrue0 = graph()->NewNode(machine()->ChangeInt32ToFloat64(), vtrue0);
    3611             :   }
    3612             : 
    3613        1413 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3614             :   Node* efalse0 = effect;
    3615             :   Node* vfalse0;
    3616             :   {
    3617             :     Operator const* op =
    3618             :         node->opcode() == IrOpcode::kJSToNumber
    3619             :             ? (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3620             :                    ? ToNumberConvertBigIntOperator()
    3621             :                    : ToNumberOperator())
    3622        1413 :             : ToNumericOperator();
    3623             :     Node* code = node->opcode() == IrOpcode::kJSToNumber
    3624             :                      ? ToNumberCode()
    3625             :                      : (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3626             :                             ? ToNumberConvertBigIntCode()
    3627        1413 :                             : ToNumericCode());
    3628             :     vfalse0 = efalse0 = if_false0 = graph()->NewNode(
    3629             :         op, code, value, context, frame_state, efalse0, if_false0);
    3630             : 
    3631             :     // Update potential {IfException} uses of {node} to point to the above
    3632             :     // stub call node instead.
    3633        1413 :     Node* on_exception = nullptr;
    3634        1413 :     if (NodeProperties::IsExceptionalCall(node, &on_exception)) {
    3635           0 :       NodeProperties::ReplaceControlInput(on_exception, vfalse0);
    3636           0 :       NodeProperties::ReplaceEffectInput(on_exception, efalse0);
    3637           0 :       if_false0 = graph()->NewNode(common()->IfSuccess(), vfalse0);
    3638             :     }
    3639             : 
    3640        1413 :     Node* check1 = graph()->NewNode(simplified()->ObjectIsSmi(), vfalse0);
    3641        1413 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3642             : 
    3643        1413 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3644             :     Node* etrue1 = efalse0;
    3645             :     Node* vtrue1;
    3646             :     {
    3647             :       vtrue1 =
    3648        1413 :           graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), vfalse0);
    3649        1413 :       vtrue1 = graph()->NewNode(machine()->ChangeInt32ToFloat64(), vtrue1);
    3650             :     }
    3651             : 
    3652        1413 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3653             :     Node* efalse1 = efalse0;
    3654             :     Node* vfalse1;
    3655             :     {
    3656        1413 :       vfalse1 = efalse1 = graph()->NewNode(
    3657        2826 :           simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), efalse0,
    3658             :           efalse1, if_false1);
    3659             :     }
    3660             : 
    3661        1413 :     if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
    3662             :     efalse0 =
    3663        1413 :         graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
    3664             :     vfalse0 =
    3665        1413 :         graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
    3666             :                          vtrue1, vfalse1, if_false0);
    3667             :   }
    3668             : 
    3669        1413 :   control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
    3670        1413 :   effect = graph()->NewNode(common()->EffectPhi(2), etrue0, efalse0, control);
    3671        1413 :   value = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
    3672             :                            vtrue0, vfalse0, control);
    3673             : 
    3674             :   // Replace effect and control uses appropriately.
    3675        9893 :   for (Edge edge : node->use_edges()) {
    3676        4240 :     if (NodeProperties::IsControlEdge(edge)) {
    3677        1413 :       if (edge.from()->opcode() == IrOpcode::kIfSuccess) {
    3678           0 :         edge.from()->ReplaceUses(control);
    3679           0 :         edge.from()->Kill();
    3680             :       } else {
    3681             :         DCHECK_NE(IrOpcode::kIfException, edge.from()->opcode());
    3682        1413 :         edge.UpdateTo(control);
    3683             :       }
    3684        2827 :     } else if (NodeProperties::IsEffectEdge(edge)) {
    3685        1414 :       edge.UpdateTo(effect);
    3686             :     }
    3687             :   }
    3688             : 
    3689        1413 :   selector->DeferReplacement(node, value);
    3690        1413 : }
    3691             : 
    3692          75 : void SimplifiedLowering::DoJSToNumberOrNumericTruncatesToWord32(
    3693             :     Node* node, RepresentationSelector* selector) {
    3694             :   DCHECK(node->opcode() == IrOpcode::kJSToNumber ||
    3695             :          node->opcode() == IrOpcode::kJSToNumberConvertBigInt ||
    3696             :          node->opcode() == IrOpcode::kJSToNumeric);
    3697             :   Node* value = node->InputAt(0);
    3698             :   Node* context = node->InputAt(1);
    3699             :   Node* frame_state = node->InputAt(2);
    3700             :   Node* effect = node->InputAt(3);
    3701             :   Node* control = node->InputAt(4);
    3702             : 
    3703          75 :   Node* check0 = graph()->NewNode(simplified()->ObjectIsSmi(), value);
    3704             :   Node* branch0 =
    3705          75 :       graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
    3706             : 
    3707          75 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3708             :   Node* etrue0 = effect;
    3709             :   Node* vtrue0 =
    3710          75 :       graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), value);
    3711             : 
    3712          75 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3713             :   Node* efalse0 = effect;
    3714             :   Node* vfalse0;
    3715             :   {
    3716             :     Operator const* op =
    3717             :         node->opcode() == IrOpcode::kJSToNumber
    3718             :             ? (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3719             :                    ? ToNumberConvertBigIntOperator()
    3720             :                    : ToNumberOperator())
    3721          75 :             : ToNumericOperator();
    3722             :     Node* code = node->opcode() == IrOpcode::kJSToNumber
    3723             :                      ? ToNumberCode()
    3724             :                      : (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3725             :                             ? ToNumberConvertBigIntCode()
    3726          75 :                             : ToNumericCode());
    3727             :     vfalse0 = efalse0 = if_false0 = graph()->NewNode(
    3728             :         op, code, value, context, frame_state, efalse0, if_false0);
    3729             : 
    3730             :     // Update potential {IfException} uses of {node} to point to the above
    3731             :     // stub call node instead.
    3732          75 :     Node* on_exception = nullptr;
    3733          75 :     if (NodeProperties::IsExceptionalCall(node, &on_exception)) {
    3734           8 :       NodeProperties::ReplaceControlInput(on_exception, vfalse0);
    3735           8 :       NodeProperties::ReplaceEffectInput(on_exception, efalse0);
    3736           8 :       if_false0 = graph()->NewNode(common()->IfSuccess(), vfalse0);
    3737             :     }
    3738             : 
    3739          75 :     Node* check1 = graph()->NewNode(simplified()->ObjectIsSmi(), vfalse0);
    3740          75 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3741             : 
    3742          75 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3743             :     Node* etrue1 = efalse0;
    3744             :     Node* vtrue1 =
    3745          75 :         graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), vfalse0);
    3746             : 
    3747          75 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3748             :     Node* efalse1 = efalse0;
    3749             :     Node* vfalse1;
    3750             :     {
    3751          75 :       vfalse1 = efalse1 = graph()->NewNode(
    3752         150 :           simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), efalse0,
    3753             :           efalse1, if_false1);
    3754          75 :       vfalse1 = graph()->NewNode(machine()->TruncateFloat64ToWord32(), vfalse1);
    3755             :     }
    3756             : 
    3757          75 :     if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
    3758             :     efalse0 =
    3759          75 :         graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
    3760          75 :     vfalse0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
    3761             :                                vtrue1, vfalse1, if_false0);
    3762             :   }
    3763             : 
    3764          75 :   control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
    3765          75 :   effect = graph()->NewNode(common()->EffectPhi(2), etrue0, efalse0, control);
    3766          75 :   value = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
    3767             :                            vtrue0, vfalse0, control);
    3768             : 
    3769             :   // Replace effect and control uses appropriately.
    3770         459 :   for (Edge edge : node->use_edges()) {
    3771         192 :     if (NodeProperties::IsControlEdge(edge)) {
    3772         114 :       if (edge.from()->opcode() == IrOpcode::kIfSuccess) {
    3773           8 :         edge.from()->ReplaceUses(control);
    3774           8 :         edge.from()->Kill();
    3775             :       } else {
    3776             :         DCHECK_NE(IrOpcode::kIfException, edge.from()->opcode());
    3777         106 :         edge.UpdateTo(control);
    3778             :       }
    3779          78 :     } else if (NodeProperties::IsEffectEdge(edge)) {
    3780          75 :       edge.UpdateTo(effect);
    3781             :     }
    3782             :   }
    3783             : 
    3784          75 :   selector->DeferReplacement(node, value);
    3785          75 : }
    3786             : 
    3787        1554 : Node* SimplifiedLowering::Float64Round(Node* const node) {
    3788        1554 :   Node* const one = jsgraph()->Float64Constant(1.0);
    3789        1554 :   Node* const one_half = jsgraph()->Float64Constant(0.5);
    3790             :   Node* const input = node->InputAt(0);
    3791             : 
    3792             :   // Round up towards Infinity, and adjust if the difference exceeds 0.5.
    3793        3108 :   Node* result = graph()->NewNode(machine()->Float64RoundUp().placeholder(),
    3794             :                                   node->InputAt(0));
    3795        6216 :   return graph()->NewNode(
    3796             :       common()->Select(MachineRepresentation::kFloat64),
    3797             :       graph()->NewNode(
    3798             :           machine()->Float64LessThanOrEqual(),
    3799             :           graph()->NewNode(machine()->Float64Sub(), result, one_half), input),
    3800        1554 :       result, graph()->NewNode(machine()->Float64Sub(), result, one));
    3801             : }
    3802             : 
    3803          30 : Node* SimplifiedLowering::Float64Sign(Node* const node) {
    3804          30 :   Node* const minus_one = jsgraph()->Float64Constant(-1.0);
    3805          30 :   Node* const zero = jsgraph()->Float64Constant(0.0);
    3806          30 :   Node* const one = jsgraph()->Float64Constant(1.0);
    3807             : 
    3808             :   Node* const input = node->InputAt(0);
    3809             : 
    3810         120 :   return graph()->NewNode(
    3811             :       common()->Select(MachineRepresentation::kFloat64),
    3812             :       graph()->NewNode(machine()->Float64LessThan(), input, zero), minus_one,
    3813             :       graph()->NewNode(
    3814             :           common()->Select(MachineRepresentation::kFloat64),
    3815             :           graph()->NewNode(machine()->Float64LessThan(), zero, input), one,
    3816          30 :           input));
    3817             : }
    3818             : 
    3819          83 : Node* SimplifiedLowering::Int32Abs(Node* const node) {
    3820             :   Node* const input = node->InputAt(0);
    3821             : 
    3822             :   // Generate case for absolute integer value.
    3823             :   //
    3824             :   //    let sign = input >> 31 in
    3825             :   //    (input ^ sign) - sign
    3826             : 
    3827          83 :   Node* sign = graph()->NewNode(machine()->Word32Sar(), input,
    3828             :                                 jsgraph()->Int32Constant(31));
    3829         166 :   return graph()->NewNode(machine()->Int32Sub(),
    3830             :                           graph()->NewNode(machine()->Word32Xor(), input, sign),
    3831          83 :                           sign);
    3832             : }
    3833             : 
    3834        3007 : Node* SimplifiedLowering::Int32Div(Node* const node) {
    3835        3007 :   Int32BinopMatcher m(node);
    3836        3007 :   Node* const zero = jsgraph()->Int32Constant(0);
    3837        3007 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    3838             :   Node* const lhs = m.left().node();
    3839             :   Node* const rhs = m.right().node();
    3840             : 
    3841        3007 :   if (m.right().Is(-1)) {
    3842          30 :     return graph()->NewNode(machine()->Int32Sub(), zero, lhs);
    3843        2992 :   } else if (m.right().Is(0)) {
    3844             :     return rhs;
    3845        2992 :   } else if (machine()->Int32DivIsSafe() || m.right().HasValue()) {
    3846        4706 :     return graph()->NewNode(machine()->Int32Div(), lhs, rhs, graph()->start());
    3847             :   }
    3848             : 
    3849             :   // General case for signed integer division.
    3850             :   //
    3851             :   //    if 0 < rhs then
    3852             :   //      lhs / rhs
    3853             :   //    else
    3854             :   //      if rhs < -1 then
    3855             :   //        lhs / rhs
    3856             :   //      else if rhs == 0 then
    3857             :   //        0
    3858             :   //      else
    3859             :   //        0 - lhs
    3860             :   //
    3861             :   // Note: We do not use the Diamond helper class here, because it really hurts
    3862             :   // readability with nested diamonds.
    3863         639 :   const Operator* const merge_op = common()->Merge(2);
    3864             :   const Operator* const phi_op =
    3865         639 :       common()->Phi(MachineRepresentation::kWord32, 2);
    3866             : 
    3867         639 :   Node* check0 = graph()->NewNode(machine()->Int32LessThan(), zero, rhs);
    3868         639 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0,
    3869             :                                    graph()->start());
    3870             : 
    3871         639 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3872         639 :   Node* true0 = graph()->NewNode(machine()->Int32Div(), lhs, rhs, if_true0);
    3873             : 
    3874         639 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3875             :   Node* false0;
    3876             :   {
    3877         639 :     Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minus_one);
    3878         639 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3879             : 
    3880         639 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3881         639 :     Node* true1 = graph()->NewNode(machine()->Int32Div(), lhs, rhs, if_true1);
    3882             : 
    3883         639 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3884             :     Node* false1;
    3885             :     {
    3886         639 :       Node* check2 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    3887         639 :       Node* branch2 = graph()->NewNode(common()->Branch(), check2, if_false1);
    3888             : 
    3889         639 :       Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
    3890             :       Node* true2 = zero;
    3891             : 
    3892         639 :       Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
    3893         639 :       Node* false2 = graph()->NewNode(machine()->Int32Sub(), zero, lhs);
    3894             : 
    3895             :       if_false1 = graph()->NewNode(merge_op, if_true2, if_false2);
    3896             :       false1 = graph()->NewNode(phi_op, true2, false2, if_false1);
    3897             :     }
    3898             : 
    3899             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    3900             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    3901             :   }
    3902             : 
    3903             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    3904         639 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    3905             : }
    3906             : 
    3907        2411 : Node* SimplifiedLowering::Int32Mod(Node* const node) {
    3908        2411 :   Int32BinopMatcher m(node);
    3909        2411 :   Node* const zero = jsgraph()->Int32Constant(0);
    3910        2411 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    3911             :   Node* const lhs = m.left().node();
    3912             :   Node* const rhs = m.right().node();
    3913             : 
    3914        4814 :   if (m.right().Is(-1) || m.right().Is(0)) {
    3915             :     return zero;
    3916        2403 :   } else if (m.right().HasValue()) {
    3917        4784 :     return graph()->NewNode(machine()->Int32Mod(), lhs, rhs, graph()->start());
    3918             :   }
    3919             : 
    3920             :   // General case for signed integer modulus, with optimization for (unknown)
    3921             :   // power of 2 right hand side.
    3922             :   //
    3923             :   //   if 0 < rhs then
    3924             :   //     msk = rhs - 1
    3925             :   //     if rhs & msk != 0 then
    3926             :   //       lhs % rhs
    3927             :   //     else
    3928             :   //       if lhs < 0 then
    3929             :   //         -(-lhs & msk)
    3930             :   //       else
    3931             :   //         lhs & msk
    3932             :   //   else
    3933             :   //     if rhs < -1 then
    3934             :   //       lhs % rhs
    3935             :   //     else
    3936             :   //       zero
    3937             :   //
    3938             :   // Note: We do not use the Diamond helper class here, because it really hurts
    3939             :   // readability with nested diamonds.
    3940          11 :   const Operator* const merge_op = common()->Merge(2);
    3941             :   const Operator* const phi_op =
    3942          11 :       common()->Phi(MachineRepresentation::kWord32, 2);
    3943             : 
    3944          11 :   Node* check0 = graph()->NewNode(machine()->Int32LessThan(), zero, rhs);
    3945          11 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0,
    3946             :                                    graph()->start());
    3947             : 
    3948          11 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3949             :   Node* true0;
    3950             :   {
    3951          11 :     Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minus_one);
    3952             : 
    3953          11 :     Node* check1 = graph()->NewNode(machine()->Word32And(), rhs, msk);
    3954          11 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
    3955             : 
    3956          11 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3957          11 :     Node* true1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
    3958             : 
    3959          11 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3960             :     Node* false1;
    3961             :     {
    3962          11 :       Node* check2 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
    3963          11 :       Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
    3964             :                                        check2, if_false1);
    3965             : 
    3966          11 :       Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
    3967          33 :       Node* true2 = graph()->NewNode(
    3968             :           machine()->Int32Sub(), zero,
    3969             :           graph()->NewNode(machine()->Word32And(),
    3970             :                            graph()->NewNode(machine()->Int32Sub(), zero, lhs),
    3971             :                            msk));
    3972             : 
    3973          11 :       Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
    3974          11 :       Node* false2 = graph()->NewNode(machine()->Word32And(), lhs, msk);
    3975             : 
    3976             :       if_false1 = graph()->NewNode(merge_op, if_true2, if_false2);
    3977             :       false1 = graph()->NewNode(phi_op, true2, false2, if_false1);
    3978             :     }
    3979             : 
    3980             :     if_true0 = graph()->NewNode(merge_op, if_true1, if_false1);
    3981             :     true0 = graph()->NewNode(phi_op, true1, false1, if_true0);
    3982             :   }
    3983             : 
    3984          11 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3985             :   Node* false0;
    3986             :   {
    3987          11 :     Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minus_one);
    3988          11 :     Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kTrue),
    3989             :                                      check1, if_false0);
    3990             : 
    3991          11 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3992          11 :     Node* true1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
    3993             : 
    3994          11 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3995             :     Node* false1 = zero;
    3996             : 
    3997             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    3998             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    3999             :   }
    4000             : 
    4001             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    4002          11 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    4003             : }
    4004             : 
    4005           7 : Node* SimplifiedLowering::Int32Sign(Node* const node) {
    4006           7 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    4007           7 :   Node* const zero = jsgraph()->Int32Constant(0);
    4008           7 :   Node* const one = jsgraph()->Int32Constant(1);
    4009             : 
    4010             :   Node* const input = node->InputAt(0);
    4011             : 
    4012          28 :   return graph()->NewNode(
    4013             :       common()->Select(MachineRepresentation::kWord32),
    4014             :       graph()->NewNode(machine()->Int32LessThan(), input, zero), minus_one,
    4015             :       graph()->NewNode(
    4016             :           common()->Select(MachineRepresentation::kWord32),
    4017             :           graph()->NewNode(machine()->Int32LessThan(), zero, input), one,
    4018           7 :           zero));
    4019             : }
    4020             : 
    4021         236 : Node* SimplifiedLowering::Uint32Div(Node* const node) {
    4022         236 :   Uint32BinopMatcher m(node);
    4023         236 :   Node* const zero = jsgraph()->Uint32Constant(0);
    4024             :   Node* const lhs = m.left().node();
    4025             :   Node* const rhs = m.right().node();
    4026             : 
    4027         236 :   if (m.right().Is(0)) {
    4028             :     return zero;
    4029         229 :   } else if (machine()->Uint32DivIsSafe() || m.right().HasValue()) {
    4030         390 :     return graph()->NewNode(machine()->Uint32Div(), lhs, rhs, graph()->start());
    4031             :   }
    4032             : 
    4033          34 :   Node* check = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    4034          34 :   Diamond d(graph(), common(), check, BranchHint::kFalse);
    4035          34 :   Node* div = graph()->NewNode(machine()->Uint32Div(), lhs, rhs, d.if_false);
    4036          34 :   return d.Phi(MachineRepresentation::kWord32, zero, div);
    4037             : }
    4038             : 
    4039         216 : Node* SimplifiedLowering::Uint32Mod(Node* const node) {
    4040         216 :   Uint32BinopMatcher m(node);
    4041         216 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    4042         216 :   Node* const zero = jsgraph()->Uint32Constant(0);
    4043             :   Node* const lhs = m.left().node();
    4044             :   Node* const rhs = m.right().node();
    4045             : 
    4046         216 :   if (m.right().Is(0)) {
    4047             :     return zero;
    4048         216 :   } else if (m.right().HasValue()) {
    4049         386 :     return graph()->NewNode(machine()->Uint32Mod(), lhs, rhs, graph()->start());
    4050             :   }
    4051             : 
    4052             :   // General case for unsigned integer modulus, with optimization for (unknown)
    4053             :   // power of 2 right hand side.
    4054             :   //
    4055             :   //   if rhs == 0 then
    4056             :   //     zero
    4057             :   //   else
    4058             :   //     msk = rhs - 1
    4059             :   //     if rhs & msk != 0 then
    4060             :   //       lhs % rhs
    4061             :   //     else
    4062             :   //       lhs & msk
    4063             :   //
    4064             :   // Note: We do not use the Diamond helper class here, because it really hurts
    4065             :   // readability with nested diamonds.
    4066          23 :   const Operator* const merge_op = common()->Merge(2);
    4067             :   const Operator* const phi_op =
    4068          23 :       common()->Phi(MachineRepresentation::kWord32, 2);
    4069             : 
    4070          23 :   Node* check0 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    4071          23 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kFalse), check0,
    4072             :                                    graph()->start());
    4073             : 
    4074          23 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    4075             :   Node* true0 = zero;
    4076             : 
    4077          23 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    4078             :   Node* false0;
    4079             :   {
    4080          23 :     Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minus_one);
    4081             : 
    4082          23 :     Node* check1 = graph()->NewNode(machine()->Word32And(), rhs, msk);
    4083          23 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    4084             : 
    4085          23 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    4086          23 :     Node* true1 = graph()->NewNode(machine()->Uint32Mod(), lhs, rhs, if_true1);
    4087             : 
    4088          23 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    4089          23 :     Node* false1 = graph()->NewNode(machine()->Word32And(), lhs, msk);
    4090             : 
    4091             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    4092             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    4093             :   }
    4094             : 
    4095             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    4096          23 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    4097             : }
    4098             : 
    4099        2360 : void SimplifiedLowering::DoMax(Node* node, Operator const* op,
    4100             :                                MachineRepresentation rep) {
    4101             :   Node* const lhs = node->InputAt(0);
    4102             :   Node* const rhs = node->InputAt(1);
    4103             : 
    4104        2360 :   node->ReplaceInput(0, graph()->NewNode(op, lhs, rhs));
    4105             :   DCHECK_EQ(rhs, node->InputAt(1));
    4106        2360 :   node->AppendInput(graph()->zone(), lhs);
    4107        2360 :   NodeProperties::ChangeOp(node, common()->Select(rep));
    4108        2360 : }
    4109             : 
    4110        3139 : void SimplifiedLowering::DoMin(Node* node, Operator const* op,
    4111             :                                MachineRepresentation rep) {
    4112             :   Node* const lhs = node->InputAt(0);
    4113             :   Node* const rhs = node->InputAt(1);
    4114             : 
    4115        3139 :   node->InsertInput(graph()->zone(), 0, graph()->NewNode(op, lhs, rhs));
    4116             :   DCHECK_EQ(lhs, node->InputAt(1));
    4117             :   DCHECK_EQ(rhs, node->InputAt(2));
    4118        3139 :   NodeProperties::ChangeOp(node, common()->Select(rep));
    4119        3139 : }
    4120             : 
    4121         151 : void SimplifiedLowering::DoIntegral32ToBit(Node* node) {
    4122             :   Node* const input = node->InputAt(0);
    4123         151 :   Node* const zero = jsgraph()->Int32Constant(0);
    4124         151 :   Operator const* const op = machine()->Word32Equal();
    4125             : 
    4126         151 :   node->ReplaceInput(0, graph()->NewNode(op, input, zero));
    4127         151 :   node->AppendInput(graph()->zone(), zero);
    4128         151 :   NodeProperties::ChangeOp(node, op);
    4129         151 : }
    4130             : 
    4131           0 : void SimplifiedLowering::DoOrderedNumberToBit(Node* node) {
    4132             :   Node* const input = node->InputAt(0);
    4133             : 
    4134           0 :   node->ReplaceInput(0, graph()->NewNode(machine()->Float64Equal(), input,
    4135           0 :                                          jsgraph()->Float64Constant(0.0)));
    4136           0 :   node->AppendInput(graph()->zone(), jsgraph()->Int32Constant(0));
    4137           0 :   NodeProperties::ChangeOp(node, machine()->Word32Equal());
    4138           0 : }
    4139             : 
    4140          32 : void SimplifiedLowering::DoNumberToBit(Node* node) {
    4141             :   Node* const input = node->InputAt(0);
    4142             : 
    4143          32 :   node->ReplaceInput(0, jsgraph()->Float64Constant(0.0));
    4144          32 :   node->AppendInput(graph()->zone(),
    4145          32 :                     graph()->NewNode(machine()->Float64Abs(), input));
    4146          32 :   NodeProperties::ChangeOp(node, machine()->Float64LessThan());
    4147          32 : }
    4148             : 
    4149          21 : void SimplifiedLowering::DoIntegerToUint8Clamped(Node* node) {
    4150             :   Node* const input = node->InputAt(0);
    4151          21 :   Node* const min = jsgraph()->Float64Constant(0.0);
    4152          21 :   Node* const max = jsgraph()->Float64Constant(255.0);
    4153             : 
    4154          21 :   node->ReplaceInput(
    4155          21 :       0, graph()->NewNode(machine()->Float64LessThan(), min, input));
    4156          42 :   node->AppendInput(
    4157             :       graph()->zone(),
    4158             :       graph()->NewNode(
    4159             :           common()->Select(MachineRepresentation::kFloat64),
    4160             :           graph()->NewNode(machine()->Float64LessThan(), input, max), input,
    4161          21 :           max));
    4162          21 :   node->AppendInput(graph()->zone(), min);
    4163          21 :   NodeProperties::ChangeOp(node,
    4164          21 :                            common()->Select(MachineRepresentation::kFloat64));
    4165          21 : }
    4166             : 
    4167         294 : void SimplifiedLowering::DoNumberToUint8Clamped(Node* node) {
    4168             :   Node* const input = node->InputAt(0);
    4169         294 :   Node* const min = jsgraph()->Float64Constant(0.0);
    4170         294 :   Node* const max = jsgraph()->Float64Constant(255.0);
    4171             : 
    4172        1176 :   node->ReplaceInput(
    4173             :       0, graph()->NewNode(
    4174             :              common()->Select(MachineRepresentation::kFloat64),
    4175             :              graph()->NewNode(machine()->Float64LessThan(), min, input),
    4176             :              graph()->NewNode(
    4177             :                  common()->Select(MachineRepresentation::kFloat64),
    4178             :                  graph()->NewNode(machine()->Float64LessThan(), input, max),
    4179             :                  input, max),
    4180         294 :              min));
    4181             :   NodeProperties::ChangeOp(node,
    4182         294 :                            machine()->Float64RoundTiesEven().placeholder());
    4183         294 : }
    4184             : 
    4185          64 : void SimplifiedLowering::DoSigned32ToUint8Clamped(Node* node) {
    4186             :   Node* const input = node->InputAt(0);
    4187          64 :   Node* const min = jsgraph()->Int32Constant(0);
    4188          64 :   Node* const max = jsgraph()->Int32Constant(255);
    4189             : 
    4190          64 :   node->ReplaceInput(
    4191          64 :       0, graph()->NewNode(machine()->Int32LessThanOrEqual(), input, max));
    4192         128 :   node->AppendInput(
    4193             :       graph()->zone(),
    4194             :       graph()->NewNode(common()->Select(MachineRepresentation::kWord32),
    4195             :                        graph()->NewNode(machine()->Int32LessThan(), input, min),
    4196          64 :                        min, input));
    4197          64 :   node->AppendInput(graph()->zone(), max);
    4198          64 :   NodeProperties::ChangeOp(node,
    4199          64 :                            common()->Select(MachineRepresentation::kWord32));
    4200          64 : }
    4201             : 
    4202          72 : void SimplifiedLowering::DoUnsigned32ToUint8Clamped(Node* node) {
    4203             :   Node* const input = node->InputAt(0);
    4204          72 :   Node* const max = jsgraph()->Uint32Constant(255u);
    4205             : 
    4206          72 :   node->ReplaceInput(
    4207          72 :       0, graph()->NewNode(machine()->Uint32LessThanOrEqual(), input, max));
    4208          72 :   node->AppendInput(graph()->zone(), input);
    4209          72 :   node->AppendInput(graph()->zone(), max);
    4210          72 :   NodeProperties::ChangeOp(node,
    4211          72 :                            common()->Select(MachineRepresentation::kWord32));
    4212          72 : }
    4213             : 
    4214        1424 : Node* SimplifiedLowering::ToNumberCode() {
    4215        1424 :   if (!to_number_code_.is_set()) {
    4216        1424 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumber);
    4217        2848 :     to_number_code_.set(jsgraph()->HeapConstant(callable.code()));
    4218             :   }
    4219        1424 :   return to_number_code_.get();
    4220             : }
    4221             : 
    4222          64 : Node* SimplifiedLowering::ToNumberConvertBigIntCode() {
    4223          64 :   if (!to_number_convert_big_int_code_.is_set()) {
    4224             :     Callable callable =
    4225          64 :         Builtins::CallableFor(isolate(), Builtins::kToNumberConvertBigInt);
    4226         128 :     to_number_convert_big_int_code_.set(
    4227             :         jsgraph()->HeapConstant(callable.code()));
    4228             :   }
    4229          64 :   return to_number_convert_big_int_code_.get();
    4230             : }
    4231             : 
    4232           0 : Node* SimplifiedLowering::ToNumericCode() {
    4233           0 :   if (!to_numeric_code_.is_set()) {
    4234           0 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumeric);
    4235           0 :     to_numeric_code_.set(jsgraph()->HeapConstant(callable.code()));
    4236             :   }
    4237           0 :   return to_numeric_code_.get();
    4238             : }
    4239             : 
    4240        1424 : Operator const* SimplifiedLowering::ToNumberOperator() {
    4241        1424 :   if (!to_number_operator_.is_set()) {
    4242        1424 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumber);
    4243             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4244        1424 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4245        1424 :         graph()->zone(), callable.descriptor(),
    4246             :         callable.descriptor().GetStackParameterCount(), flags,
    4247        1424 :         Operator::kNoProperties);
    4248        1424 :     to_number_operator_.set(common()->Call(call_descriptor));
    4249             :   }
    4250        1424 :   return to_number_operator_.get();
    4251             : }
    4252             : 
    4253           0 : Operator const* SimplifiedLowering::ToNumberConvertBigIntOperator() {
    4254           0 :   if (!to_number_convert_big_int_operator_.is_set()) {
    4255             :     Callable callable =
    4256           0 :         Builtins::CallableFor(isolate(), Builtins::kToNumberConvertBigInt);
    4257             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4258           0 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4259           0 :         graph()->zone(), callable.descriptor(),
    4260             :         callable.descriptor().GetStackParameterCount(), flags,
    4261           0 :         Operator::kNoProperties);
    4262           0 :     to_number_convert_big_int_operator_.set(common()->Call(call_descriptor));
    4263             :   }
    4264           0 :   return to_number_convert_big_int_operator_.get();
    4265             : }
    4266             : 
    4267          64 : Operator const* SimplifiedLowering::ToNumericOperator() {
    4268          64 :   if (!to_numeric_operator_.is_set()) {
    4269          64 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumeric);
    4270             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4271          64 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4272          64 :         graph()->zone(), callable.descriptor(),
    4273             :         callable.descriptor().GetStackParameterCount(), flags,
    4274          64 :         Operator::kNoProperties);
    4275          64 :     to_numeric_operator_.set(common()->Call(call_descriptor));
    4276             :   }
    4277          64 :   return to_numeric_operator_.get();
    4278             : }
    4279             : 
    4280             : #undef TRACE
    4281             : 
    4282             : }  // namespace compiler
    4283             : }  // namespace internal
    4284      122004 : }  // namespace v8

Generated by: LCOV version 1.10