LCOV - code coverage report
Current view: top level - src/x64 - assembler-x64.h (source / functions) Hit Total Coverage
Test: app.info Lines: 188 295 63.7 %
Date: 2019-04-17 Functions: 84 91 92.3 %

          Line data    Source code
       1             : // Copyright (c) 1994-2006 Sun Microsystems Inc.
       2             : // All Rights Reserved.
       3             : //
       4             : // Redistribution and use in source and binary forms, with or without
       5             : // modification, are permitted provided that the following conditions are
       6             : // met:
       7             : //
       8             : // - Redistributions of source code must retain the above copyright notice,
       9             : // this list of conditions and the following disclaimer.
      10             : //
      11             : // - Redistribution in binary form must reproduce the above copyright
      12             : // notice, this list of conditions and the following disclaimer in the
      13             : // documentation and/or other materials provided with the distribution.
      14             : //
      15             : // - Neither the name of Sun Microsystems or the names of contributors may
      16             : // be used to endorse or promote products derived from this software without
      17             : // specific prior written permission.
      18             : //
      19             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
      20             : // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
      21             : // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      22             : // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      23             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
      24             : // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
      25             : // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
      26             : // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      27             : // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      28             : // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      29             : // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             : // The original source code covered by the above license above has been
      32             : // modified significantly by Google Inc.
      33             : // Copyright 2012 the V8 project authors. All rights reserved.
      34             : 
      35             : // A lightweight X64 Assembler.
      36             : 
      37             : #ifndef V8_X64_ASSEMBLER_X64_H_
      38             : #define V8_X64_ASSEMBLER_X64_H_
      39             : 
      40             : #include <deque>
      41             : #include <map>
      42             : #include <vector>
      43             : 
      44             : #include "src/assembler.h"
      45             : #include "src/label.h"
      46             : #include "src/objects/smi.h"
      47             : #include "src/x64/constants-x64.h"
      48             : #include "src/x64/register-x64.h"
      49             : #include "src/x64/sse-instr.h"
      50             : #if defined(V8_OS_WIN_X64)
      51             : #include "src/unwinding-info-win64.h"
      52             : #endif
      53             : 
      54             : namespace v8 {
      55             : namespace internal {
      56             : 
      57             : class SafepointTableBuilder;
      58             : 
      59             : // Utility functions
      60             : 
      61             : enum Condition {
      62             :   // any value < 0 is considered no_condition
      63             :   no_condition  = -1,
      64             : 
      65             :   overflow      =  0,
      66             :   no_overflow   =  1,
      67             :   below         =  2,
      68             :   above_equal   =  3,
      69             :   equal         =  4,
      70             :   not_equal     =  5,
      71             :   below_equal   =  6,
      72             :   above         =  7,
      73             :   negative      =  8,
      74             :   positive      =  9,
      75             :   parity_even   = 10,
      76             :   parity_odd    = 11,
      77             :   less          = 12,
      78             :   greater_equal = 13,
      79             :   less_equal    = 14,
      80             :   greater       = 15,
      81             : 
      82             :   // Fake conditions that are handled by the
      83             :   // opcodes using them.
      84             :   always        = 16,
      85             :   never         = 17,
      86             :   // aliases
      87             :   carry         = below,
      88             :   not_carry     = above_equal,
      89             :   zero          = equal,
      90             :   not_zero      = not_equal,
      91             :   sign          = negative,
      92             :   not_sign      = positive,
      93             :   last_condition = greater
      94             : };
      95             : 
      96             : 
      97             : // Returns the equivalent of !cc.
      98             : // Negation of the default no_condition (-1) results in a non-default
      99             : // no_condition value (-2). As long as tests for no_condition check
     100             : // for condition < 0, this will work as expected.
     101             : inline Condition NegateCondition(Condition cc) {
     102      464172 :   return static_cast<Condition>(cc ^ 1);
     103             : }
     104             : 
     105             : 
     106             : enum RoundingMode {
     107             :   kRoundToNearest = 0x0,
     108             :   kRoundDown = 0x1,
     109             :   kRoundUp = 0x2,
     110             :   kRoundToZero = 0x3
     111             : };
     112             : 
     113             : 
     114             : // -----------------------------------------------------------------------------
     115             : // Machine instruction Immediates
     116             : 
     117             : class Immediate {
     118             :  public:
     119     1225019 :   explicit constexpr Immediate(int32_t value) : value_(value) {}
     120             :   explicit constexpr Immediate(int32_t value, RelocInfo::Mode rmode)
     121             :       : value_(value), rmode_(rmode) {}
     122             :   explicit Immediate(Smi value)
     123             :       : value_(static_cast<int32_t>(static_cast<intptr_t>(value.ptr()))) {
     124             :     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
     125             :   }
     126             : 
     127             :  private:
     128             :   const int32_t value_;
     129             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     130             : 
     131             :   friend class Assembler;
     132             : };
     133             : ASSERT_TRIVIALLY_COPYABLE(Immediate);
     134             : static_assert(sizeof(Immediate) <= kSystemPointerSize,
     135             :               "Immediate must be small enough to pass it by value");
     136             : 
     137             : class Immediate64 {
     138             :  public:
     139             :   explicit constexpr Immediate64(int64_t value) : value_(value) {}
     140             :   explicit constexpr Immediate64(int64_t value, RelocInfo::Mode rmode)
     141             :       : value_(value), rmode_(rmode) {}
     142             :   explicit constexpr Immediate64(Address value, RelocInfo::Mode rmode)
     143    52657087 :       : value_(static_cast<int64_t>(value)), rmode_(rmode) {}
     144             : 
     145             :  private:
     146             :   const int64_t value_;
     147             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     148             : 
     149             :   friend class Assembler;
     150             : };
     151             : 
     152             : // -----------------------------------------------------------------------------
     153             : // Machine instruction Operands
     154             : 
     155             : enum ScaleFactor : int8_t {
     156             :   times_1 = 0,
     157             :   times_2 = 1,
     158             :   times_4 = 2,
     159             :   times_8 = 3,
     160             :   times_int_size = times_4,
     161             :   times_system_pointer_size = (kSystemPointerSize == 8) ? times_8 : times_4,
     162             :   times_tagged_size = (kTaggedSize == 8) ? times_8 : times_4,
     163             : };
     164             : 
     165             : class V8_EXPORT_PRIVATE Operand {
     166             :  public:
     167    54623590 :   struct Data {
     168             :     byte rex = 0;
     169             :     byte buf[9];
     170             :     byte len = 1;   // number of bytes of buf_ in use.
     171             :     int8_t addend;  // for rip + offset + addend.
     172             :   };
     173             : 
     174             :   // [base + disp/r]
     175             :   Operand(Register base, int32_t disp);
     176             : 
     177             :   // [base + index*scale + disp/r]
     178             :   Operand(Register base,
     179             :           Register index,
     180             :           ScaleFactor scale,
     181             :           int32_t disp);
     182             : 
     183             :   // [index*scale + disp/r]
     184             :   Operand(Register index,
     185             :           ScaleFactor scale,
     186             :           int32_t disp);
     187             : 
     188             :   // Offset from existing memory operand.
     189             :   // Offset is added to existing displacement as 32-bit signed values and
     190             :   // this must not overflow.
     191             :   Operand(Operand base, int32_t offset);
     192             : 
     193             :   // [rip + disp/r]
     194             :   explicit Operand(Label* label, int addend = 0);
     195             : 
     196             :   Operand(const Operand&) V8_NOEXCEPT = default;
     197             : 
     198             :   // Checks whether either base or index register is the given register.
     199             :   // Does not check the "reg" part of the Operand.
     200             :   bool AddressUsesRegister(Register reg) const;
     201             : 
     202             :   // Queries related to the size of the generated instruction.
     203             :   // Whether the generated instruction will have a REX prefix.
     204             :   bool requires_rex() const { return data_.rex != 0; }
     205             :   // Size of the ModR/M, SIB and displacement parts of the generated
     206             :   // instruction.
     207             :   int operand_size() const { return data_.len; }
     208             : 
     209             :   const Data& data() const { return data_; }
     210             : 
     211             :  private:
     212             :   const Data data_;
     213             : };
     214             : ASSERT_TRIVIALLY_COPYABLE(Operand);
     215             : static_assert(sizeof(Operand) <= 2 * kSystemPointerSize,
     216             :               "Operand must be small enough to pass it by value");
     217             : 
     218             : #define ASSEMBLER_INSTRUCTION_LIST(V) \
     219             :   V(add)                              \
     220             :   V(and)                              \
     221             :   V(cmp)                              \
     222             :   V(cmpxchg)                          \
     223             :   V(dec)                              \
     224             :   V(idiv)                             \
     225             :   V(div)                              \
     226             :   V(imul)                             \
     227             :   V(inc)                              \
     228             :   V(lea)                              \
     229             :   V(mov)                              \
     230             :   V(movzxb)                           \
     231             :   V(movzxw)                           \
     232             :   V(neg)                              \
     233             :   V(not)                              \
     234             :   V(or)                               \
     235             :   V(repmovs)                          \
     236             :   V(sbb)                              \
     237             :   V(sub)                              \
     238             :   V(test)                             \
     239             :   V(xchg)                             \
     240             :   V(xor)
     241             : 
     242             : // Shift instructions on operands/registers with kInt32Size and kInt64Size.
     243             : #define SHIFT_INSTRUCTION_LIST(V) \
     244             :   V(rol, 0x0)                     \
     245             :   V(ror, 0x1)                     \
     246             :   V(rcl, 0x2)                     \
     247             :   V(rcr, 0x3)                     \
     248             :   V(shl, 0x4)                     \
     249             :   V(shr, 0x5)                     \
     250             :   V(sar, 0x7)
     251             : 
     252             : // Partial Constant Pool
     253             : // Different from complete constant pool (like arm does), partial constant pool
     254             : // only takes effects for shareable constants in order to reduce code size.
     255             : // Partial constant pool does not emit constant pool entries at the end of each
     256             : // code object. Instead, it keeps the first shareable constant inlined in the
     257             : // instructions and uses rip-relative memory loadings for the same constants in
     258             : // subsequent instructions. These rip-relative memory loadings will target at
     259             : // the position of the first inlined constant. For example:
     260             : //
     261             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     262             : //  …
     263             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     264             : //  …
     265             : //
     266             : // turns into
     267             : //
     268             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     269             : //  …
     270             : //  REX.W movq r10,[rip+0xffffff96] ; 7 bytes
     271             : //  …
     272             : 
     273    41346124 : class ConstPool {
     274             :  public:
     275    41349751 :   explicit ConstPool(Assembler* assm) : assm_(assm) {}
     276             :   // Returns true when partial constant pool is valid for this entry.
     277             :   bool TryRecordEntry(intptr_t data, RelocInfo::Mode mode);
     278             :   bool IsEmpty() const { return entries_.empty(); }
     279             : 
     280             :   void PatchEntries();
     281             :   // Discard any pending pool entries.
     282             :   void Clear();
     283             : 
     284             :  private:
     285             :   // Adds a shared entry to entries_. Returns true if this is not the first time
     286             :   // we add this entry, false otherwise.
     287             :   bool AddSharedEntry(uint64_t data, int offset);
     288             : 
     289             :   // Check if the instruction is a rip-relative move.
     290             :   bool IsMoveRipRelative(Address instr);
     291             : 
     292             :   Assembler* assm_;
     293             : 
     294             :   // Values, pc offsets of entries.
     295             :   typedef std::multimap<uint64_t, int> EntryMap;
     296             :   EntryMap entries_;
     297             : 
     298             :   // Number of bytes taken up by the displacement of rip-relative addressing.
     299             :   static constexpr int kRipRelativeDispSize = 4;  // 32-bit displacement.
     300             :   // Distance between the address of the displacement in the rip-relative move
     301             :   // instruction and the head address of the instruction.
     302             :   static constexpr int kMoveRipRelativeDispOffset =
     303             :       3;  // REX Opcode ModRM Displacement
     304             :   // Distance between the address of the imm64 in the 'movq reg, imm64'
     305             :   // instruction and the head address of the instruction.
     306             :   static constexpr int kMoveImm64Offset = 2;  // REX Opcode imm64
     307             :   // A mask for rip-relative move instruction.
     308             :   static constexpr uint32_t kMoveRipRelativeMask = 0x00C7FFFB;
     309             :   // The bits for a rip-relative move instruction after mask.
     310             :   static constexpr uint32_t kMoveRipRelativeInstr = 0x00058B48;
     311             : };
     312             : 
     313             : class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
     314             :  private:
     315             :   // We check before assembling an instruction that there is sufficient
     316             :   // space to write an instruction and its relocation information.
     317             :   // The relocation writer's position must be kGap bytes above the end of
     318             :   // the generated instructions. This leaves enough space for the
     319             :   // longest possible x64 instruction, 15 bytes, and the longest possible
     320             :   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
     321             :   // (There is a 15 byte limit on x64 instruction length that rules out some
     322             :   // otherwise valid instructions.)
     323             :   // This allows for a single, fast space check per instruction.
     324             :   static constexpr int kGap = 32;
     325             : 
     326             :  public:
     327             :   // Create an assembler. Instructions and relocation information are emitted
     328             :   // into a buffer, with the instructions starting from the beginning and the
     329             :   // relocation information starting from the end of the buffer. See CodeDesc
     330             :   // for a detailed comment on the layout (globals.h).
     331             :   //
     332             :   // If the provided buffer is nullptr, the assembler allocates and grows its
     333             :   // own buffer. Otherwise it takes ownership of the provided buffer.
     334             :   explicit Assembler(const AssemblerOptions&,
     335             :                      std::unique_ptr<AssemblerBuffer> = {});
     336    82695987 :   ~Assembler() override = default;
     337             : 
     338             :   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
     339             :   static constexpr int kNoHandlerTable = 0;
     340             :   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
     341             :   void GetCode(Isolate* isolate, CodeDesc* desc,
     342             :                SafepointTableBuilder* safepoint_table_builder,
     343             :                int handler_table_offset);
     344             : 
     345             :   // Convenience wrapper for code without safepoint or handler tables.
     346             :   void GetCode(Isolate* isolate, CodeDesc* desc) {
     347      314282 :     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
     348             :   }
     349             : 
     350             :   void FinalizeJumpOptimizationInfo();
     351             : 
     352             :   // Unused on this architecture.
     353             :   void MaybeEmitOutOfLineConstantPool() {}
     354             : 
     355             :   // Read/Modify the code target in the relative branch/call instruction at pc.
     356             :   // On the x64 architecture, we use relative jumps with a 32-bit displacement
     357             :   // to jump to other Code objects in the Code space in the heap.
     358             :   // Jumps to C functions are done indirectly through a 64-bit register holding
     359             :   // the absolute address of the target.
     360             :   // These functions convert between absolute Addresses of Code objects and
     361             :   // the relative displacements stored in the code.
     362             :   // The isolate argument is unused (and may be nullptr) when skipping flushing.
     363             :   static inline Address target_address_at(Address pc, Address constant_pool);
     364             :   static inline void set_target_address_at(
     365             :       Address pc, Address constant_pool, Address target,
     366             :       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
     367             : 
     368             :   // Return the code target address at a call site from the return address
     369             :   // of that call in the instruction stream.
     370             :   static inline Address target_address_from_return_address(Address pc);
     371             : 
     372             :   // This sets the branch destination (which is in the instruction on x64).
     373             :   // This is for calls and branches within generated code.
     374             :   inline static void deserialization_set_special_target_at(
     375             :       Address instruction_payload, Code code, Address target);
     376             : 
     377             :   // Get the size of the special target encoded at 'instruction_payload'.
     378             :   inline static int deserialization_special_target_size(
     379             :       Address instruction_payload);
     380             : 
     381             :   // This sets the internal reference at the pc.
     382             :   inline static void deserialization_set_target_internal_reference_at(
     383             :       Address pc, Address target,
     384             :       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
     385             : 
     386             :   inline Handle<Code> code_target_object_handle_at(Address pc);
     387             :   inline Address runtime_entry_at(Address pc);
     388             : 
     389             :   // Number of bytes taken up by the branch target in the code.
     390             :   static constexpr int kSpecialTargetSize = 4;  // 32-bit displacement.
     391             :   // Distance between the address of the code target in the call instruction
     392             :   // and the return address pushed on the stack.
     393             :   static constexpr int kCallTargetAddressOffset = 4;  // 32-bit displacement.
     394             : 
     395             :   // One byte opcode for test eax,0xXXXXXXXX.
     396             :   static constexpr byte kTestEaxByte = 0xA9;
     397             :   // One byte opcode for test al, 0xXX.
     398             :   static constexpr byte kTestAlByte = 0xA8;
     399             :   // One byte opcode for nop.
     400             :   static constexpr byte kNopByte = 0x90;
     401             : 
     402             :   // One byte prefix for a short conditional jump.
     403             :   static constexpr byte kJccShortPrefix = 0x70;
     404             :   static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
     405             :   static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
     406             :   static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
     407             :   static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;
     408             : 
     409             :   // VEX prefix encodings.
     410             :   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
     411             :   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
     412             :   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
     413             :   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
     414             : 
     415             :   // ---------------------------------------------------------------------------
     416             :   // Code generation
     417             :   //
     418             :   // Function names correspond one-to-one to x64 instruction mnemonics.
     419             :   // Unless specified otherwise, instructions operate on 64-bit operands.
     420             :   //
     421             :   // If we need versions of an assembly instruction that operate on different
     422             :   // width arguments, we add a single-letter suffix specifying the width.
     423             :   // This is done for the following instructions: mov, cmp, inc, dec,
     424             :   // add, sub, and test.
     425             :   // There are no versions of these instructions without the suffix.
     426             :   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
     427             :   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
     428             :   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
     429             :   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
     430             :   // - Instructions on operands/registers with pointer size use 'p'.
     431             : 
     432             : #define DECLARE_INSTRUCTION(instruction)        \
     433             :   template <class P1>                           \
     434             :   void instruction##_tagged(P1 p1) {            \
     435             :     emit_##instruction(p1, kTaggedSize);        \
     436             :   }                                             \
     437             :                                                 \
     438             :   template <class P1>                           \
     439             :   void instruction##l(P1 p1) {                  \
     440             :     emit_##instruction(p1, kInt32Size);         \
     441             :   }                                             \
     442             :                                                 \
     443             :   template <class P1>                           \
     444             :   void instruction##q(P1 p1) {                  \
     445             :     emit_##instruction(p1, kInt64Size);         \
     446             :   }                                             \
     447             :                                                 \
     448             :   template <class P1, class P2>                 \
     449             :   void instruction##_tagged(P1 p1, P2 p2) {     \
     450             :     emit_##instruction(p1, p2, kTaggedSize);    \
     451             :   }                                             \
     452             :                                                 \
     453             :   template <class P1, class P2>                 \
     454             :   void instruction##l(P1 p1, P2 p2) {           \
     455             :     emit_##instruction(p1, p2, kInt32Size);     \
     456             :   }                                             \
     457             :                                                 \
     458             :   template <class P1, class P2>                 \
     459             :   void instruction##q(P1 p1, P2 p2) {           \
     460             :     emit_##instruction(p1, p2, kInt64Size);     \
     461             :   }                                             \
     462             :                                                 \
     463             :   template <class P1, class P2, class P3>       \
     464             :   void instruction##l(P1 p1, P2 p2, P3 p3) {    \
     465             :     emit_##instruction(p1, p2, p3, kInt32Size); \
     466             :   }                                             \
     467             :                                                 \
     468             :   template <class P1, class P2, class P3>       \
     469             :   void instruction##q(P1 p1, P2 p2, P3 p3) {    \
     470             :     emit_##instruction(p1, p2, p3, kInt64Size); \
     471             :   }
     472   131116807 :   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
     473             : #undef DECLARE_INSTRUCTION
     474             : 
     475             :   // Insert the smallest number of nop instructions
     476             :   // possible to align the pc offset to a multiple
     477             :   // of m, where m must be a power of 2.
     478             :   void Align(int m);
     479             :   // Insert the smallest number of zero bytes possible to align the pc offset
     480             :   // to a mulitple of m. m must be a power of 2 (>= 2).
     481             :   void DataAlign(int m);
     482             :   void Nop(int bytes = 1);
     483             :   // Aligns code to something that's optimal for a jump target for the platform.
     484             :   void CodeTargetAlign();
     485             : 
     486             :   // Stack
     487             :   void pushfq();
     488             :   void popfq();
     489             : 
     490             :   void pushq(Immediate value);
     491             :   // Push a 32 bit integer, and guarantee that it is actually pushed as a
     492             :   // 32 bit value, the normal push will optimize the 8 bit case.
     493             :   void pushq_imm32(int32_t imm32);
     494             :   void pushq(Register src);
     495             :   void pushq(Operand src);
     496             : 
     497             :   void popq(Register dst);
     498             :   void popq(Operand dst);
     499             : 
     500             :   void enter(Immediate size);
     501             :   void leave();
     502             : 
     503             :   // Moves
     504             :   void movb(Register dst, Operand src);
     505             :   void movb(Register dst, Immediate imm);
     506             :   void movb(Operand dst, Register src);
     507             :   void movb(Operand dst, Immediate imm);
     508             : 
     509             :   // Move the low 16 bits of a 64-bit register value to a 16-bit
     510             :   // memory location.
     511             :   void movw(Register dst, Operand src);
     512             :   void movw(Operand dst, Register src);
     513             :   void movw(Operand dst, Immediate imm);
     514             : 
     515             :   // Move the offset of the label location relative to the current
     516             :   // position (after the move) to the destination.
     517             :   void movl(Operand dst, Label* src);
     518             : 
     519             :   // Load a heap number into a register.
     520             :   // The heap number will not be allocated and embedded into the code right
     521             :   // away. Instead, we emit the load of a dummy object. Later, when calling
     522             :   // Assembler::GetCode, the heap number will be allocated and the code will be
     523             :   // patched by replacing the dummy with the actual object. The RelocInfo for
     524             :   // the embedded object gets already recorded correctly when emitting the dummy
     525             :   // move.
     526             :   void movq_heap_number(Register dst, double value);
     527             : 
     528             :   void movq_string(Register dst, const StringConstantBase* str);
     529             : 
     530             :   // Loads a 64-bit immediate into a register.
     531             :   void movq(Register dst, int64_t value) { movq(dst, Immediate64(value)); }
     532             :   void movq(Register dst, uint64_t value) {
     533      143634 :     movq(dst, Immediate64(static_cast<int64_t>(value)));
     534             :   }
     535             : 
     536             :   void movsxbl(Register dst, Register src);
     537             :   void movsxbl(Register dst, Operand src);
     538             :   void movsxbq(Register dst, Register src);
     539             :   void movsxbq(Register dst, Operand src);
     540             :   void movsxwl(Register dst, Register src);
     541             :   void movsxwl(Register dst, Operand src);
     542             :   void movsxwq(Register dst, Register src);
     543             :   void movsxwq(Register dst, Operand src);
     544             :   void movsxlq(Register dst, Register src);
     545             :   void movsxlq(Register dst, Operand src);
     546             : 
     547             :   // Repeated moves.
     548             : 
     549             :   void repmovsb();
     550             :   void repmovsw();
     551             :   void repmovsl() { emit_repmovs(kInt32Size); }
     552             :   void repmovsq() { emit_repmovs(kInt64Size); }
     553             : 
     554             :   // Instruction to load from an immediate 64-bit pointer into RAX.
     555             :   void load_rax(Address value, RelocInfo::Mode rmode);
     556             :   void load_rax(ExternalReference ext);
     557             : 
     558             :   // Conditional moves.
     559             :   void cmovq(Condition cc, Register dst, Register src);
     560             :   void cmovq(Condition cc, Register dst, Operand src);
     561             :   void cmovl(Condition cc, Register dst, Register src);
     562             :   void cmovl(Condition cc, Register dst, Operand src);
     563             : 
     564             :   void cmpb(Register dst, Immediate src) {
     565        7070 :     immediate_arithmetic_op_8(0x7, dst, src);
     566             :   }
     567             : 
     568             :   void cmpb_al(Immediate src);
     569             : 
     570             :   void cmpb(Register dst, Register src) {
     571        3358 :     arithmetic_op_8(0x3A, dst, src);
     572             :   }
     573             : 
     574         453 :   void cmpb(Register dst, Operand src) { arithmetic_op_8(0x3A, dst, src); }
     575             : 
     576         460 :   void cmpb(Operand dst, Register src) { arithmetic_op_8(0x38, src, dst); }
     577             : 
     578             :   void cmpb(Operand dst, Immediate src) {
     579       15210 :     immediate_arithmetic_op_8(0x7, dst, src);
     580             :   }
     581             : 
     582             :   void cmpw(Operand dst, Immediate src) {
     583      224357 :     immediate_arithmetic_op_16(0x7, dst, src);
     584             :   }
     585             : 
     586             :   void cmpw(Register dst, Immediate src) {
     587      155163 :     immediate_arithmetic_op_16(0x7, dst, src);
     588             :   }
     589             : 
     590          60 :   void cmpw(Register dst, Operand src) { arithmetic_op_16(0x3B, dst, src); }
     591             : 
     592             :   void cmpw(Register dst, Register src) {
     593         448 :     arithmetic_op_16(0x3B, dst, src);
     594             :   }
     595             : 
     596         455 :   void cmpw(Operand dst, Register src) { arithmetic_op_16(0x39, src, dst); }
     597             : 
     598           0 :   void testb(Register reg, Operand op) { testb(op, reg); }
     599             : 
     600           0 :   void testw(Register reg, Operand op) { testw(op, reg); }
     601             : 
     602             :   void andb(Register dst, Immediate src) {
     603             :     immediate_arithmetic_op_8(0x4, dst, src);
     604             :   }
     605             : 
     606             :   void decb(Register dst);
     607             :   void decb(Operand dst);
     608             : 
     609             :   // Lock prefix.
     610             :   void lock();
     611             : 
     612             :   void xchgb(Register reg, Operand op);
     613             :   void xchgw(Register reg, Operand op);
     614             : 
     615             :   void cmpxchgb(Operand dst, Register src);
     616             :   void cmpxchgw(Operand dst, Register src);
     617             : 
     618             :   // Sign-extends rax into rdx:rax.
     619             :   void cqo();
     620             :   // Sign-extends eax into edx:eax.
     621             :   void cdq();
     622             : 
     623             :   // Multiply eax by src, put the result in edx:eax.
     624             :   void mull(Register src);
     625             :   void mull(Operand src);
     626             :   // Multiply rax by src, put the result in rdx:rax.
     627             :   void mulq(Register src);
     628             : 
     629             : #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                     \
     630             :   void instruction##l(Register dst, Immediate imm8) {                       \
     631             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     632             :   }                                                                         \
     633             :                                                                             \
     634             :   void instruction##q(Register dst, Immediate imm8) {                       \
     635             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     636             :   }                                                                         \
     637             :                                                                             \
     638             :   void instruction##l(Operand dst, Immediate imm8) {                        \
     639             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     640             :   }                                                                         \
     641             :                                                                             \
     642             :   void instruction##q(Operand dst, Immediate imm8) {                        \
     643             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     644             :   }                                                                         \
     645             :                                                                             \
     646             :   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \
     647             :                                                                             \
     648             :   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \
     649             :                                                                             \
     650             :   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }  \
     651             :                                                                             \
     652             :   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
     653     1309416 :   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
     654             : #undef DECLARE_SHIFT_INSTRUCTION
     655             : 
     656             :   // Shifts dst:src left by cl bits, affecting only dst.
     657             :   void shld(Register dst, Register src);
     658             : 
     659             :   // Shifts src:dst right by cl bits, affecting only dst.
     660             :   void shrd(Register dst, Register src);
     661             : 
     662             :   void store_rax(Address dst, RelocInfo::Mode mode);
     663             :   void store_rax(ExternalReference ref);
     664             : 
     665             :   void subb(Register dst, Immediate src) {
     666        2334 :     immediate_arithmetic_op_8(0x5, dst, src);
     667             :   }
     668             : 
     669             :   void sub_sp_32(uint32_t imm);
     670             : 
     671             :   void testb(Register dst, Register src);
     672             :   void testb(Register reg, Immediate mask);
     673             :   void testb(Operand op, Immediate mask);
     674             :   void testb(Operand op, Register reg);
     675             : 
     676             :   void testw(Register dst, Register src);
     677             :   void testw(Register reg, Immediate mask);
     678             :   void testw(Operand op, Immediate mask);
     679             :   void testw(Operand op, Register reg);
     680             : 
     681             :   // Bit operations.
     682             :   void bswapl(Register dst);
     683             :   void bswapq(Register dst);
     684             :   void btq(Operand dst, Register src);
     685             :   void btsq(Operand dst, Register src);
     686             :   void btsq(Register dst, Immediate imm8);
     687             :   void btrq(Register dst, Immediate imm8);
     688             :   void bsrq(Register dst, Register src);
     689             :   void bsrq(Register dst, Operand src);
     690             :   void bsrl(Register dst, Register src);
     691             :   void bsrl(Register dst, Operand src);
     692             :   void bsfq(Register dst, Register src);
     693             :   void bsfq(Register dst, Operand src);
     694             :   void bsfl(Register dst, Register src);
     695             :   void bsfl(Register dst, Operand src);
     696             : 
     697             :   // Miscellaneous
     698             :   void clc();
     699             :   void cld();
     700             :   void cpuid();
     701             :   void hlt();
     702             :   void int3();
     703             :   void nop();
     704             :   void ret(int imm16);
     705             :   void ud2();
     706             :   void setcc(Condition cc, Register reg);
     707             : 
     708             :   void pshufw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
     709             :   void pshufw(XMMRegister dst, Operand src, uint8_t shuffle);
     710             :   void pblendw(XMMRegister dst, Operand src, uint8_t mask);
     711             :   void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask);
     712             :   void palignr(XMMRegister dst, Operand src, uint8_t mask);
     713             :   void palignr(XMMRegister dst, XMMRegister src, uint8_t mask);
     714             : 
     715             :   // Label operations & relative jumps (PPUM Appendix D)
     716             :   //
     717             :   // Takes a branch opcode (cc) and a label (L) and generates
     718             :   // either a backward branch or a forward branch and links it
     719             :   // to the label fixup chain. Usage:
     720             :   //
     721             :   // Label L;    // unbound label
     722             :   // j(cc, &L);  // forward branch to unbound label
     723             :   // bind(&L);   // bind label to the current pc
     724             :   // j(cc, &L);  // backward branch to bound label
     725             :   // bind(&L);   // illegal: a label may be bound only once
     726             :   //
     727             :   // Note: The same Label can be used for forward and backward branches
     728             :   // but it may be bound only once.
     729             : 
     730             :   void bind(Label* L);  // binds an unbound label L to the current code position
     731             : 
     732             :   // Calls
     733             :   // Call near relative 32-bit displacement, relative to next instruction.
     734             :   void call(Label* L);
     735             :   void call(Address entry, RelocInfo::Mode rmode);
     736             : 
     737             :   // Explicitly emit a near call / near jump. The displacement is relative to
     738             :   // the next instructions (which starts at {pc_offset() + kNearJmpInstrSize}).
     739             :   static constexpr int kNearJmpInstrSize = 5;
     740             :   void near_call(intptr_t disp, RelocInfo::Mode rmode);
     741             :   void near_jmp(intptr_t disp, RelocInfo::Mode rmode);
     742             : 
     743             :   void call(Handle<Code> target,
     744             :             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
     745             : 
     746             :   // Calls directly to the given address using a relative offset.
     747             :   // Should only ever be used in Code objects for calls within the
     748             :   // same Code object. Should not be used when generating new code (use labels),
     749             :   // but only when patching existing code.
     750             :   void call(Address target);
     751             : 
     752             :   // Call near absolute indirect, address in register
     753             :   void call(Register adr);
     754             : 
     755             :   // Jumps
     756             :   // Jump short or near relative.
     757             :   // Use a 32-bit signed displacement.
     758             :   // Unconditional jump to L
     759             :   void jmp(Label* L, Label::Distance distance = Label::kFar);
     760             :   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
     761             : 
     762             :   // Jump near absolute indirect (r64)
     763             :   void jmp(Register adr);
     764             :   void jmp(Operand src);
     765             : 
     766             :   // Conditional jumps
     767             :   void j(Condition cc,
     768             :          Label* L,
     769             :          Label::Distance distance = Label::kFar);
     770             :   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
     771             :   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
     772             : 
     773             :   // Floating-point operations
     774             :   void fld(int i);
     775             : 
     776             :   void fld1();
     777             :   void fldz();
     778             :   void fldpi();
     779             :   void fldln2();
     780             : 
     781             :   void fld_s(Operand adr);
     782             :   void fld_d(Operand adr);
     783             : 
     784             :   void fstp_s(Operand adr);
     785             :   void fstp_d(Operand adr);
     786             :   void fstp(int index);
     787             : 
     788             :   void fild_s(Operand adr);
     789             :   void fild_d(Operand adr);
     790             : 
     791             :   void fist_s(Operand adr);
     792             : 
     793             :   void fistp_s(Operand adr);
     794             :   void fistp_d(Operand adr);
     795             : 
     796             :   void fisttp_s(Operand adr);
     797             :   void fisttp_d(Operand adr);
     798             : 
     799             :   void fabs();
     800             :   void fchs();
     801             : 
     802             :   void fadd(int i);
     803             :   void fsub(int i);
     804             :   void fmul(int i);
     805             :   void fdiv(int i);
     806             : 
     807             :   void fisub_s(Operand adr);
     808             : 
     809             :   void faddp(int i = 1);
     810             :   void fsubp(int i = 1);
     811             :   void fsubrp(int i = 1);
     812             :   void fmulp(int i = 1);
     813             :   void fdivp(int i = 1);
     814             :   void fprem();
     815             :   void fprem1();
     816             : 
     817             :   void fxch(int i = 1);
     818             :   void fincstp();
     819             :   void ffree(int i = 0);
     820             : 
     821             :   void ftst();
     822             :   void fucomp(int i);
     823             :   void fucompp();
     824             :   void fucomi(int i);
     825             :   void fucomip();
     826             : 
     827             :   void fcompp();
     828             :   void fnstsw_ax();
     829             :   void fwait();
     830             :   void fnclex();
     831             : 
     832             :   void fsin();
     833             :   void fcos();
     834             :   void fptan();
     835             :   void fyl2x();
     836             :   void f2xm1();
     837             :   void fscale();
     838             :   void fninit();
     839             : 
     840             :   void frndint();
     841             : 
     842             :   void sahf();
     843             : 
     844             :   // SSE instructions
     845             :   void addss(XMMRegister dst, XMMRegister src);
     846             :   void addss(XMMRegister dst, Operand src);
     847             :   void subss(XMMRegister dst, XMMRegister src);
     848             :   void subss(XMMRegister dst, Operand src);
     849             :   void mulss(XMMRegister dst, XMMRegister src);
     850             :   void mulss(XMMRegister dst, Operand src);
     851             :   void divss(XMMRegister dst, XMMRegister src);
     852             :   void divss(XMMRegister dst, Operand src);
     853             : 
     854             :   void maxss(XMMRegister dst, XMMRegister src);
     855             :   void maxss(XMMRegister dst, Operand src);
     856             :   void minss(XMMRegister dst, XMMRegister src);
     857             :   void minss(XMMRegister dst, Operand src);
     858             : 
     859             :   void sqrtss(XMMRegister dst, XMMRegister src);
     860             :   void sqrtss(XMMRegister dst, Operand src);
     861             : 
     862             :   void ucomiss(XMMRegister dst, XMMRegister src);
     863             :   void ucomiss(XMMRegister dst, Operand src);
     864             :   void movaps(XMMRegister dst, XMMRegister src);
     865             : 
     866             :   // Don't use this unless it's important to keep the
     867             :   // top half of the destination register unchanged.
     868             :   // Use movaps when moving float values and movd for integer
     869             :   // values in xmm registers.
     870             :   void movss(XMMRegister dst, XMMRegister src);
     871             : 
     872             :   void movss(XMMRegister dst, Operand src);
     873             :   void movss(Operand dst, XMMRegister src);
     874             :   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
     875             : 
     876             :   void cvttss2si(Register dst, Operand src);
     877             :   void cvttss2si(Register dst, XMMRegister src);
     878             :   void cvtlsi2ss(XMMRegister dst, Operand src);
     879             :   void cvtlsi2ss(XMMRegister dst, Register src);
     880             : 
     881             :   void andps(XMMRegister dst, XMMRegister src);
     882             :   void andps(XMMRegister dst, Operand src);
     883             :   void andnps(XMMRegister dst, XMMRegister src);
     884             :   void andnps(XMMRegister dst, Operand src);
     885             :   void orps(XMMRegister dst, XMMRegister src);
     886             :   void orps(XMMRegister dst, Operand src);
     887             :   void xorps(XMMRegister dst, XMMRegister src);
     888             :   void xorps(XMMRegister dst, Operand src);
     889             : 
     890             :   void addps(XMMRegister dst, XMMRegister src);
     891             :   void addps(XMMRegister dst, Operand src);
     892             :   void subps(XMMRegister dst, XMMRegister src);
     893             :   void subps(XMMRegister dst, Operand src);
     894             :   void mulps(XMMRegister dst, XMMRegister src);
     895             :   void mulps(XMMRegister dst, Operand src);
     896             :   void divps(XMMRegister dst, XMMRegister src);
     897             :   void divps(XMMRegister dst, Operand src);
     898             : 
     899             :   void movmskps(Register dst, XMMRegister src);
     900             : 
     901             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
     902             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     903             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
     904             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     905             : 
     906             :   // SSE2 instructions
     907             :   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
     908             :                   byte opcode);
     909             :   void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
     910             :                   byte opcode);
     911             : #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
     912             :   void instruction(XMMRegister dst, XMMRegister src) {                \
     913             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     914             :   }                                                                   \
     915             :   void instruction(XMMRegister dst, Operand src) {                    \
     916             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     917             :   }
     918             : 
     919        4073 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
     920             : #undef DECLARE_SSE2_INSTRUCTION
     921             : 
     922             : #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
     923             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
     924             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     925             :   }                                                                          \
     926             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {     \
     927             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     928             :   }
     929             : 
     930      312564 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
     931             : #undef DECLARE_SSE2_AVX_INSTRUCTION
     932             : 
     933             :   // SSE3
     934             :   void lddqu(XMMRegister dst, Operand src);
     935             : 
     936             :   // SSSE3
     937             :   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     938             :                    byte escape2, byte opcode);
     939             :   void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     940             :                    byte escape2, byte opcode);
     941             : 
     942             : #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     943             :                                   opcode)                                    \
     944             :   void instruction(XMMRegister dst, XMMRegister src) {                       \
     945             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     946             :   }                                                                          \
     947             :   void instruction(XMMRegister dst, Operand src) {                           \
     948             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     949             :   }
     950             : 
     951        2822 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
     952             : #undef DECLARE_SSSE3_INSTRUCTION
     953             : 
     954             :   // SSE4
     955             :   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     956             :                   byte escape2, byte opcode);
     957             :   void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     958             :                   byte escape2, byte opcode);
     959             : #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     960             :                                  opcode)                                    \
     961             :   void instruction(XMMRegister dst, XMMRegister src) {                      \
     962             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     963             :   }                                                                         \
     964             :   void instruction(XMMRegister dst, Operand src) {                          \
     965             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     966             :   }
     967             : 
     968         652 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
     969             : #undef DECLARE_SSE4_INSTRUCTION
     970             : 
     971             : #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
     972             :                                       opcode)                                 \
     973             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
     974             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     975             :   }                                                                           \
     976             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {      \
     977             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     978             :   }
     979             : 
     980          90 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     981         150 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     982             : #undef DECLARE_SSE34_AVX_INSTRUCTION
     983             : 
     984             :   void movd(XMMRegister dst, Register src);
     985             :   void movd(XMMRegister dst, Operand src);
     986             :   void movd(Register dst, XMMRegister src);
     987             :   void movq(XMMRegister dst, Register src);
     988             :   void movq(Register dst, XMMRegister src);
     989             :   void movq(XMMRegister dst, XMMRegister src);
     990             : 
     991             :   // Don't use this unless it's important to keep the
     992             :   // top half of the destination register unchanged.
     993             :   // Use movapd when moving double values and movq for integer
     994             :   // values in xmm registers.
     995             :   void movsd(XMMRegister dst, XMMRegister src);
     996             : 
     997             :   void movsd(Operand dst, XMMRegister src);
     998             :   void movsd(XMMRegister dst, Operand src);
     999             : 
    1000             :   void movdqa(Operand dst, XMMRegister src);
    1001             :   void movdqa(XMMRegister dst, Operand src);
    1002             : 
    1003             :   void movdqu(Operand dst, XMMRegister src);
    1004             :   void movdqu(XMMRegister dst, Operand src);
    1005             : 
    1006             :   void movapd(XMMRegister dst, XMMRegister src);
    1007             :   void movupd(XMMRegister dst, Operand src);
    1008             :   void movupd(Operand dst, XMMRegister src);
    1009             : 
    1010             :   void psllq(XMMRegister reg, byte imm8);
    1011             :   void psrlq(XMMRegister reg, byte imm8);
    1012             :   void psllw(XMMRegister reg, byte imm8);
    1013             :   void pslld(XMMRegister reg, byte imm8);
    1014             :   void psrlw(XMMRegister reg, byte imm8);
    1015             :   void psrld(XMMRegister reg, byte imm8);
    1016             :   void psraw(XMMRegister reg, byte imm8);
    1017             :   void psrad(XMMRegister reg, byte imm8);
    1018             : 
    1019             :   void cvttsd2si(Register dst, Operand src);
    1020             :   void cvttsd2si(Register dst, XMMRegister src);
    1021             :   void cvttss2siq(Register dst, XMMRegister src);
    1022             :   void cvttss2siq(Register dst, Operand src);
    1023             :   void cvttsd2siq(Register dst, XMMRegister src);
    1024             :   void cvttsd2siq(Register dst, Operand src);
    1025             :   void cvttps2dq(XMMRegister dst, Operand src);
    1026             :   void cvttps2dq(XMMRegister dst, XMMRegister src);
    1027             : 
    1028             :   void cvtlsi2sd(XMMRegister dst, Operand src);
    1029             :   void cvtlsi2sd(XMMRegister dst, Register src);
    1030             : 
    1031             :   void cvtqsi2ss(XMMRegister dst, Operand src);
    1032             :   void cvtqsi2ss(XMMRegister dst, Register src);
    1033             : 
    1034             :   void cvtqsi2sd(XMMRegister dst, Operand src);
    1035             :   void cvtqsi2sd(XMMRegister dst, Register src);
    1036             : 
    1037             : 
    1038             :   void cvtss2sd(XMMRegister dst, XMMRegister src);
    1039             :   void cvtss2sd(XMMRegister dst, Operand src);
    1040             :   void cvtsd2ss(XMMRegister dst, XMMRegister src);
    1041             :   void cvtsd2ss(XMMRegister dst, Operand src);
    1042             : 
    1043             :   void cvtsd2si(Register dst, XMMRegister src);
    1044             :   void cvtsd2siq(Register dst, XMMRegister src);
    1045             : 
    1046             :   void addsd(XMMRegister dst, XMMRegister src);
    1047             :   void addsd(XMMRegister dst, Operand src);
    1048             :   void subsd(XMMRegister dst, XMMRegister src);
    1049             :   void subsd(XMMRegister dst, Operand src);
    1050             :   void mulsd(XMMRegister dst, XMMRegister src);
    1051             :   void mulsd(XMMRegister dst, Operand src);
    1052             :   void divsd(XMMRegister dst, XMMRegister src);
    1053             :   void divsd(XMMRegister dst, Operand src);
    1054             : 
    1055             :   void maxsd(XMMRegister dst, XMMRegister src);
    1056             :   void maxsd(XMMRegister dst, Operand src);
    1057             :   void minsd(XMMRegister dst, XMMRegister src);
    1058             :   void minsd(XMMRegister dst, Operand src);
    1059             : 
    1060             :   void andpd(XMMRegister dst, XMMRegister src);
    1061             :   void andpd(XMMRegister dst, Operand src);
    1062             :   void orpd(XMMRegister dst, XMMRegister src);
    1063             :   void orpd(XMMRegister dst, Operand src);
    1064             :   void xorpd(XMMRegister dst, XMMRegister src);
    1065             :   void xorpd(XMMRegister dst, Operand src);
    1066             :   void sqrtsd(XMMRegister dst, XMMRegister src);
    1067             :   void sqrtsd(XMMRegister dst, Operand src);
    1068             : 
    1069             :   void haddps(XMMRegister dst, XMMRegister src);
    1070             :   void haddps(XMMRegister dst, Operand src);
    1071             : 
    1072             :   void ucomisd(XMMRegister dst, XMMRegister src);
    1073             :   void ucomisd(XMMRegister dst, Operand src);
    1074             :   void cmpltsd(XMMRegister dst, XMMRegister src);
    1075             : 
    1076             :   void movmskpd(Register dst, XMMRegister src);
    1077             : 
    1078             :   // SSE 4.1 instruction
    1079             :   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
    1080             :   void insertps(XMMRegister dst, Operand src, byte imm8);
    1081             :   void extractps(Register dst, XMMRegister src, byte imm8);
    1082             :   void pextrb(Register dst, XMMRegister src, int8_t imm8);
    1083             :   void pextrb(Operand dst, XMMRegister src, int8_t imm8);
    1084             :   void pextrw(Register dst, XMMRegister src, int8_t imm8);
    1085             :   void pextrw(Operand dst, XMMRegister src, int8_t imm8);
    1086             :   void pextrd(Register dst, XMMRegister src, int8_t imm8);
    1087             :   void pextrd(Operand dst, XMMRegister src, int8_t imm8);
    1088             :   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
    1089             :   void pinsrb(XMMRegister dst, Operand src, int8_t imm8);
    1090             :   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
    1091             :   void pinsrw(XMMRegister dst, Operand src, int8_t imm8);
    1092             :   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
    1093             :   void pinsrd(XMMRegister dst, Operand src, int8_t imm8);
    1094             : 
    1095             :   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1096             :   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1097             : 
    1098             :   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
    1099             :   void cmpps(XMMRegister dst, Operand src, int8_t cmp);
    1100             :   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
    1101             :   void cmppd(XMMRegister dst, Operand src, int8_t cmp);
    1102             : 
    1103             : #define SSE_CMP_P(instr, imm8)                                                \
    1104             :   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
    1105             :   void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); }     \
    1106             :   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
    1107             :   void instr##pd(XMMRegister dst, Operand src) { cmppd(dst, src, imm8); }
    1108             : 
    1109          24 :   SSE_CMP_P(cmpeq, 0x0)
    1110          28 :   SSE_CMP_P(cmplt, 0x1)
    1111          32 :   SSE_CMP_P(cmple, 0x2)
    1112          20 :   SSE_CMP_P(cmpneq, 0x4)
    1113          20 :   SSE_CMP_P(cmpnlt, 0x5)
    1114          20 :   SSE_CMP_P(cmpnle, 0x6)
    1115             : 
    1116             : #undef SSE_CMP_P
    1117             : 
    1118             :   void minps(XMMRegister dst, XMMRegister src);
    1119             :   void minps(XMMRegister dst, Operand src);
    1120             :   void maxps(XMMRegister dst, XMMRegister src);
    1121             :   void maxps(XMMRegister dst, Operand src);
    1122             :   void rcpps(XMMRegister dst, XMMRegister src);
    1123             :   void rcpps(XMMRegister dst, Operand src);
    1124             :   void rsqrtps(XMMRegister dst, XMMRegister src);
    1125             :   void rsqrtps(XMMRegister dst, Operand src);
    1126             :   void sqrtps(XMMRegister dst, XMMRegister src);
    1127             :   void sqrtps(XMMRegister dst, Operand src);
    1128             :   void movups(XMMRegister dst, XMMRegister src);
    1129             :   void movups(XMMRegister dst, Operand src);
    1130             :   void movups(Operand dst, XMMRegister src);
    1131             :   void psrldq(XMMRegister dst, uint8_t shift);
    1132             :   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1133             :   void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
    1134             :   void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1135             :   void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
    1136             :   void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1137             :   void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
    1138             :   void cvtdq2ps(XMMRegister dst, XMMRegister src);
    1139             :   void cvtdq2ps(XMMRegister dst, Operand src);
    1140             : 
    1141             :   // AVX instruction
    1142             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1143           0 :     vfmasd(0x99, dst, src1, src2);
    1144             :   }
    1145             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1146           0 :     vfmasd(0xa9, dst, src1, src2);
    1147             :   }
    1148             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1149           0 :     vfmasd(0xb9, dst, src1, src2);
    1150             :   }
    1151             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1152           0 :     vfmasd(0x99, dst, src1, src2);
    1153             :   }
    1154             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1155           0 :     vfmasd(0xa9, dst, src1, src2);
    1156             :   }
    1157             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1158           0 :     vfmasd(0xb9, dst, src1, src2);
    1159             :   }
    1160             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1161           0 :     vfmasd(0x9b, dst, src1, src2);
    1162             :   }
    1163             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1164           0 :     vfmasd(0xab, dst, src1, src2);
    1165             :   }
    1166             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1167           0 :     vfmasd(0xbb, dst, src1, src2);
    1168             :   }
    1169             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1170           0 :     vfmasd(0x9b, dst, src1, src2);
    1171             :   }
    1172             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1173           0 :     vfmasd(0xab, dst, src1, src2);
    1174             :   }
    1175             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1176           0 :     vfmasd(0xbb, dst, src1, src2);
    1177             :   }
    1178             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1179           0 :     vfmasd(0x9d, dst, src1, src2);
    1180             :   }
    1181             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1182           0 :     vfmasd(0xad, dst, src1, src2);
    1183             :   }
    1184             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1185           0 :     vfmasd(0xbd, dst, src1, src2);
    1186             :   }
    1187             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1188           0 :     vfmasd(0x9d, dst, src1, src2);
    1189             :   }
    1190             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1191           0 :     vfmasd(0xad, dst, src1, src2);
    1192             :   }
    1193             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1194           0 :     vfmasd(0xbd, dst, src1, src2);
    1195             :   }
    1196             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1197           0 :     vfmasd(0x9f, dst, src1, src2);
    1198             :   }
    1199             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1200           0 :     vfmasd(0xaf, dst, src1, src2);
    1201             :   }
    1202             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1203           0 :     vfmasd(0xbf, dst, src1, src2);
    1204             :   }
    1205             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1206           0 :     vfmasd(0x9f, dst, src1, src2);
    1207             :   }
    1208             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1209           0 :     vfmasd(0xaf, dst, src1, src2);
    1210             :   }
    1211             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1212           0 :     vfmasd(0xbf, dst, src1, src2);
    1213             :   }
    1214             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1215             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1216             : 
    1217             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1218           0 :     vfmass(0x99, dst, src1, src2);
    1219             :   }
    1220             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1221           0 :     vfmass(0xa9, dst, src1, src2);
    1222             :   }
    1223             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1224           0 :     vfmass(0xb9, dst, src1, src2);
    1225             :   }
    1226             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1227           0 :     vfmass(0x99, dst, src1, src2);
    1228             :   }
    1229             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1230           0 :     vfmass(0xa9, dst, src1, src2);
    1231             :   }
    1232             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1233           0 :     vfmass(0xb9, dst, src1, src2);
    1234             :   }
    1235             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1236           0 :     vfmass(0x9b, dst, src1, src2);
    1237             :   }
    1238             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1239           0 :     vfmass(0xab, dst, src1, src2);
    1240             :   }
    1241             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1242           0 :     vfmass(0xbb, dst, src1, src2);
    1243             :   }
    1244             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1245           0 :     vfmass(0x9b, dst, src1, src2);
    1246             :   }
    1247             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1248           0 :     vfmass(0xab, dst, src1, src2);
    1249             :   }
    1250             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1251           0 :     vfmass(0xbb, dst, src1, src2);
    1252             :   }
    1253             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1254           0 :     vfmass(0x9d, dst, src1, src2);
    1255             :   }
    1256             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1257           0 :     vfmass(0xad, dst, src1, src2);
    1258             :   }
    1259             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1260           0 :     vfmass(0xbd, dst, src1, src2);
    1261             :   }
    1262             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1263           0 :     vfmass(0x9d, dst, src1, src2);
    1264             :   }
    1265             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1266           0 :     vfmass(0xad, dst, src1, src2);
    1267             :   }
    1268             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1269           0 :     vfmass(0xbd, dst, src1, src2);
    1270             :   }
    1271             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1272           0 :     vfmass(0x9f, dst, src1, src2);
    1273             :   }
    1274             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1275           0 :     vfmass(0xaf, dst, src1, src2);
    1276             :   }
    1277             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1278           0 :     vfmass(0xbf, dst, src1, src2);
    1279             :   }
    1280             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1281           0 :     vfmass(0x9f, dst, src1, src2);
    1282             :   }
    1283             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1284           0 :     vfmass(0xaf, dst, src1, src2);
    1285             :   }
    1286             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1287           0 :     vfmass(0xbf, dst, src1, src2);
    1288             :   }
    1289             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1290             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1291             : 
    1292             :   void vmovd(XMMRegister dst, Register src);
    1293             :   void vmovd(XMMRegister dst, Operand src);
    1294             :   void vmovd(Register dst, XMMRegister src);
    1295             :   void vmovq(XMMRegister dst, Register src);
    1296             :   void vmovq(XMMRegister dst, Operand src);
    1297             :   void vmovq(Register dst, XMMRegister src);
    1298             : 
    1299       42489 :   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1300             :     vsd(0x10, dst, src1, src2);
    1301       42491 :   }
    1302     3279205 :   void vmovsd(XMMRegister dst, Operand src) { vsd(0x10, dst, xmm0, src); }
    1303     2629883 :   void vmovsd(Operand dst, XMMRegister src) { vsd(0x11, src, xmm0, dst); }
    1304             : 
    1305             : #define AVX_SP_3(instr, opcode) \
    1306             :   AVX_S_3(instr, opcode)        \
    1307             :   AVX_P_3(instr, opcode)
    1308             : 
    1309             : #define AVX_S_3(instr, opcode)  \
    1310             :   AVX_3(instr##ss, opcode, vss) \
    1311             :   AVX_3(instr##sd, opcode, vsd)
    1312             : 
    1313             : #define AVX_P_3(instr, opcode)  \
    1314             :   AVX_3(instr##ps, opcode, vps) \
    1315             :   AVX_3(instr##pd, opcode, vpd)
    1316             : 
    1317             : #define AVX_3(instr, opcode, impl)                                  \
    1318             :   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1319             :     impl(opcode, dst, src1, src2);                                  \
    1320             :   }                                                                 \
    1321             :   void instr(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1322             :     impl(opcode, dst, src1, src2);                                  \
    1323             :   }
    1324             : 
    1325        1042 :   AVX_SP_3(vsqrt, 0x51)
    1326      161164 :   AVX_SP_3(vadd, 0x58)
    1327       46988 :   AVX_SP_3(vsub, 0x5c)
    1328       25341 :   AVX_SP_3(vmul, 0x59)
    1329       26205 :   AVX_SP_3(vdiv, 0x5e)
    1330          42 :   AVX_SP_3(vmin, 0x5d)
    1331          42 :   AVX_SP_3(vmax, 0x5f)
    1332         765 :   AVX_P_3(vand, 0x54)
    1333          10 :   AVX_P_3(vandn, 0x55)
    1334          14 :   AVX_P_3(vor, 0x56)
    1335      534400 :   AVX_P_3(vxor, 0x57)
    1336       36050 :   AVX_3(vcvtsd2ss, 0x5a, vsd)
    1337          20 :   AVX_3(vhaddps, 0x7c, vsd)
    1338             : 
    1339             : #undef AVX_3
    1340             : #undef AVX_S_3
    1341             : #undef AVX_P_3
    1342             : #undef AVX_SP_3
    1343             : 
    1344             :   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
    1345      200206 :     vpd(0x73, xmm2, dst, src);
    1346             :     emit(imm8);
    1347             :   }
    1348             :   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
    1349      233827 :     vpd(0x73, xmm6, dst, src);
    1350             :     emit(imm8);
    1351             :   }
    1352             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1353        9147 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1354             :   }
    1355             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1356       11358 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1357             :   }
    1358             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1359      373410 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1360      373410 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
    1361             :   }
    1362             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1363        3865 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
    1364             :   }
    1365             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1366        1081 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1367        1081 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
    1368             :   }
    1369             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1370           8 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
    1371             :   }
    1372             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1373         291 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1374         291 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
    1375             :   }
    1376             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1377           0 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
    1378             :   }
    1379             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1380       20224 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1381       20224 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
    1382             :   }
    1383             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1384        1966 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
    1385             :   }
    1386             :   void vcvttss2si(Register dst, XMMRegister src) {
    1387         435 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1388         435 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1389             :   }
    1390             :   void vcvttss2si(Register dst, Operand src) {
    1391           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1392           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1393             :   }
    1394             :   void vcvttsd2si(Register dst, XMMRegister src) {
    1395      107455 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1396      107455 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1397             :   }
    1398             :   void vcvttsd2si(Register dst, Operand src) {
    1399       20283 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1400       20283 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1401             :   }
    1402             :   void vcvttss2siq(Register dst, XMMRegister src) {
    1403         278 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1404         278 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1405             :   }
    1406             :   void vcvttss2siq(Register dst, Operand src) {
    1407           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1408           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1409             :   }
    1410             :   void vcvttsd2siq(Register dst, XMMRegister src) {
    1411       61928 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1412       61928 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1413             :   }
    1414             :   void vcvttsd2siq(Register dst, Operand src) {
    1415          10 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1416          10 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1417             :   }
    1418             :   void vcvtsd2si(Register dst, XMMRegister src) {
    1419           9 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1420           9 :     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
    1421             :   }
    1422             :   void vucomisd(XMMRegister dst, XMMRegister src) {
    1423      243354 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1424             :   }
    1425             :   void vucomisd(XMMRegister dst, Operand src) {
    1426       20661 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1427             :   }
    1428             :   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1429             :                 RoundingMode mode) {
    1430         479 :     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
    1431         479 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1432             :   }
    1433             :   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1434             :                 RoundingMode mode) {
    1435       45055 :     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
    1436       45045 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1437             :   }
    1438             : 
    1439             :   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1440      173714 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1441             :   }
    1442             :   void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
    1443     2968452 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1444             :   }
    1445             : 
    1446             :   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1447       36686 :     vss(0x10, dst, src1, src2);
    1448             :   }
    1449       14617 :   void vmovss(XMMRegister dst, Operand src) { vss(0x10, dst, xmm0, src); }
    1450      685099 :   void vmovss(Operand dst, XMMRegister src) { vss(0x11, src, xmm0, dst); }
    1451             :   void vucomiss(XMMRegister dst, XMMRegister src);
    1452             :   void vucomiss(XMMRegister dst, Operand src);
    1453             :   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1454             :   void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1455             : 
    1456         394 :   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
    1457        1797 :   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
    1458        6415 :   void vmovups(XMMRegister dst, Operand src) { vps(0x10, dst, xmm0, src); }
    1459        8717 :   void vmovups(Operand dst, XMMRegister src) { vps(0x11, src, xmm0, dst); }
    1460      160697 :   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
    1461           5 :   void vmovupd(XMMRegister dst, Operand src) { vpd(0x10, dst, xmm0, src); }
    1462           5 :   void vmovupd(Operand dst, XMMRegister src) { vpd(0x11, src, xmm0, dst); }
    1463             :   void vmovmskps(Register dst, XMMRegister src) {
    1464         166 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1465         166 :     vps(0x50, idst, xmm0, src);
    1466             :   }
    1467             :   void vmovmskpd(Register dst, XMMRegister src) {
    1468         634 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1469         634 :     vpd(0x50, idst, xmm0, src);
    1470             :   }
    1471             :   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1472          35 :     vps(0xC2, dst, src1, src2);
    1473             :     emit(cmp);
    1474             :   }
    1475             :   void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1476          35 :     vps(0xC2, dst, src1, src2);
    1477             :     emit(cmp);
    1478             :   }
    1479             :   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1480          35 :     vpd(0xC2, dst, src1, src2);
    1481             :     emit(cmp);
    1482             :   }
    1483             :   void vcmppd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1484          35 :     vpd(0xC2, dst, src1, src2);
    1485             :     emit(cmp);
    1486             :   }
    1487             : 
    1488             : #define AVX_CMP_P(instr, imm8)                                          \
    1489             :   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1490             :     vcmpps(dst, src1, src2, imm8);                                      \
    1491             :   }                                                                     \
    1492             :   void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1493             :     vcmpps(dst, src1, src2, imm8);                                      \
    1494             :   }                                                                     \
    1495             :   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1496             :     vcmppd(dst, src1, src2, imm8);                                      \
    1497             :   }                                                                     \
    1498             :   void instr##pd(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1499             :     vcmppd(dst, src1, src2, imm8);                                      \
    1500             :   }
    1501             : 
    1502          40 :   AVX_CMP_P(vcmpeq, 0x0)
    1503          40 :   AVX_CMP_P(vcmplt, 0x1)
    1504          40 :   AVX_CMP_P(vcmple, 0x2)
    1505          40 :   AVX_CMP_P(vcmpneq, 0x4)
    1506          40 :   AVX_CMP_P(vcmpnlt, 0x5)
    1507          40 :   AVX_CMP_P(vcmpnle, 0x6)
    1508             : 
    1509             : #undef AVX_CMP_P
    1510             : 
    1511             :   void vlddqu(XMMRegister dst, Operand src) {
    1512           5 :     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
    1513             :   }
    1514             :   void vpsllw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1515           5 :     vinstr(0x71, xmm6, dst, src, k66, k0F, kWIG);
    1516             :     emit(imm8);
    1517             :   }
    1518             :   void vpsrlw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1519           5 :     vinstr(0x71, xmm2, dst, src, k66, k0F, kWIG);
    1520             :     emit(imm8);
    1521             :   }
    1522             :   void vpsraw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1523           5 :     vinstr(0x71, xmm4, dst, src, k66, k0F, kWIG);
    1524             :     emit(imm8);
    1525             :   }
    1526             :   void vpslld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1527       64000 :     vinstr(0x72, xmm6, dst, src, k66, k0F, kWIG);
    1528             :     emit(imm8);
    1529             :   }
    1530             :   void vpsrld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1531       48177 :     vinstr(0x72, xmm2, dst, src, k66, k0F, kWIG);
    1532             :     emit(imm8);
    1533             :   }
    1534             :   void vpsrad(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1535           5 :     vinstr(0x72, xmm4, dst, src, k66, k0F, kWIG);
    1536             :     emit(imm8);
    1537             :   }
    1538           5 :   void vpextrb(Register dst, XMMRegister src, uint8_t imm8) {
    1539           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1540           5 :     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
    1541             :     emit(imm8);
    1542           5 :   }
    1543             :   void vpextrb(Operand dst, XMMRegister src, uint8_t imm8) {
    1544           5 :     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
    1545             :     emit(imm8);
    1546             :   }
    1547           5 :   void vpextrw(Register dst, XMMRegister src, uint8_t imm8) {
    1548           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1549           5 :     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
    1550             :     emit(imm8);
    1551           5 :   }
    1552             :   void vpextrw(Operand dst, XMMRegister src, uint8_t imm8) {
    1553           5 :     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
    1554             :     emit(imm8);
    1555             :   }
    1556           5 :   void vpextrd(Register dst, XMMRegister src, uint8_t imm8) {
    1557           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1558           5 :     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
    1559             :     emit(imm8);
    1560           5 :   }
    1561             :   void vpextrd(Operand dst, XMMRegister src, uint8_t imm8) {
    1562           5 :     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
    1563             :     emit(imm8);
    1564             :   }
    1565             :   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1566           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1567           5 :     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
    1568             :     emit(imm8);
    1569             :   }
    1570             :   void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1571           5 :     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
    1572             :     emit(imm8);
    1573             :   }
    1574             :   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1575           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1576           5 :     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
    1577             :     emit(imm8);
    1578             :   }
    1579             :   void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1580           5 :     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
    1581             :     emit(imm8);
    1582             :   }
    1583             :   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1584           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1585           5 :     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
    1586             :     emit(imm8);
    1587             :   }
    1588             :   void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1589           5 :     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
    1590             :     emit(imm8);
    1591             :   }
    1592             :   void vpshufd(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1593           5 :     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
    1594             :     emit(imm8);
    1595             :   }
    1596             : 
    1597             :   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1598             :   void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1599             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1600             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1601             : 
    1602             :   // BMI instruction
    1603             :   void andnq(Register dst, Register src1, Register src2) {
    1604           0 :     bmi1q(0xf2, dst, src1, src2);
    1605             :   }
    1606             :   void andnq(Register dst, Register src1, Operand src2) {
    1607           0 :     bmi1q(0xf2, dst, src1, src2);
    1608             :   }
    1609             :   void andnl(Register dst, Register src1, Register src2) {
    1610           0 :     bmi1l(0xf2, dst, src1, src2);
    1611             :   }
    1612             :   void andnl(Register dst, Register src1, Operand src2) {
    1613           0 :     bmi1l(0xf2, dst, src1, src2);
    1614             :   }
    1615             :   void bextrq(Register dst, Register src1, Register src2) {
    1616           0 :     bmi1q(0xf7, dst, src2, src1);
    1617             :   }
    1618             :   void bextrq(Register dst, Operand src1, Register src2) {
    1619           0 :     bmi1q(0xf7, dst, src2, src1);
    1620             :   }
    1621             :   void bextrl(Register dst, Register src1, Register src2) {
    1622           0 :     bmi1l(0xf7, dst, src2, src1);
    1623             :   }
    1624             :   void bextrl(Register dst, Operand src1, Register src2) {
    1625           0 :     bmi1l(0xf7, dst, src2, src1);
    1626             :   }
    1627           0 :   void blsiq(Register dst, Register src) { bmi1q(0xf3, rbx, dst, src); }
    1628           0 :   void blsiq(Register dst, Operand src) { bmi1q(0xf3, rbx, dst, src); }
    1629           0 :   void blsil(Register dst, Register src) { bmi1l(0xf3, rbx, dst, src); }
    1630           0 :   void blsil(Register dst, Operand src) { bmi1l(0xf3, rbx, dst, src); }
    1631           0 :   void blsmskq(Register dst, Register src) { bmi1q(0xf3, rdx, dst, src); }
    1632           0 :   void blsmskq(Register dst, Operand src) { bmi1q(0xf3, rdx, dst, src); }
    1633           0 :   void blsmskl(Register dst, Register src) { bmi1l(0xf3, rdx, dst, src); }
    1634           0 :   void blsmskl(Register dst, Operand src) { bmi1l(0xf3, rdx, dst, src); }
    1635           0 :   void blsrq(Register dst, Register src) { bmi1q(0xf3, rcx, dst, src); }
    1636           0 :   void blsrq(Register dst, Operand src) { bmi1q(0xf3, rcx, dst, src); }
    1637           0 :   void blsrl(Register dst, Register src) { bmi1l(0xf3, rcx, dst, src); }
    1638           0 :   void blsrl(Register dst, Operand src) { bmi1l(0xf3, rcx, dst, src); }
    1639             :   void tzcntq(Register dst, Register src);
    1640             :   void tzcntq(Register dst, Operand src);
    1641             :   void tzcntl(Register dst, Register src);
    1642             :   void tzcntl(Register dst, Operand src);
    1643             : 
    1644             :   void lzcntq(Register dst, Register src);
    1645             :   void lzcntq(Register dst, Operand src);
    1646             :   void lzcntl(Register dst, Register src);
    1647             :   void lzcntl(Register dst, Operand src);
    1648             : 
    1649             :   void popcntq(Register dst, Register src);
    1650             :   void popcntq(Register dst, Operand src);
    1651             :   void popcntl(Register dst, Register src);
    1652             :   void popcntl(Register dst, Operand src);
    1653             : 
    1654             :   void bzhiq(Register dst, Register src1, Register src2) {
    1655           0 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1656             :   }
    1657             :   void bzhiq(Register dst, Operand src1, Register src2) {
    1658           0 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1659             :   }
    1660             :   void bzhil(Register dst, Register src1, Register src2) {
    1661           0 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1662             :   }
    1663             :   void bzhil(Register dst, Operand src1, Register src2) {
    1664           0 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1665             :   }
    1666             :   void mulxq(Register dst1, Register dst2, Register src) {
    1667           0 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1668             :   }
    1669             :   void mulxq(Register dst1, Register dst2, Operand src) {
    1670           0 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1671             :   }
    1672             :   void mulxl(Register dst1, Register dst2, Register src) {
    1673           0 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1674             :   }
    1675             :   void mulxl(Register dst1, Register dst2, Operand src) {
    1676           0 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1677             :   }
    1678             :   void pdepq(Register dst, Register src1, Register src2) {
    1679           0 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1680             :   }
    1681             :   void pdepq(Register dst, Register src1, Operand src2) {
    1682           0 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1683             :   }
    1684             :   void pdepl(Register dst, Register src1, Register src2) {
    1685           0 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1686             :   }
    1687             :   void pdepl(Register dst, Register src1, Operand src2) {
    1688           0 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1689             :   }
    1690             :   void pextq(Register dst, Register src1, Register src2) {
    1691           0 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1692             :   }
    1693             :   void pextq(Register dst, Register src1, Operand src2) {
    1694           0 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1695             :   }
    1696             :   void pextl(Register dst, Register src1, Register src2) {
    1697           0 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1698             :   }
    1699             :   void pextl(Register dst, Register src1, Operand src2) {
    1700           0 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1701             :   }
    1702             :   void sarxq(Register dst, Register src1, Register src2) {
    1703           0 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1704             :   }
    1705             :   void sarxq(Register dst, Operand src1, Register src2) {
    1706           0 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1707             :   }
    1708             :   void sarxl(Register dst, Register src1, Register src2) {
    1709           0 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1710             :   }
    1711             :   void sarxl(Register dst, Operand src1, Register src2) {
    1712           0 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1713             :   }
    1714             :   void shlxq(Register dst, Register src1, Register src2) {
    1715           0 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1716             :   }
    1717             :   void shlxq(Register dst, Operand src1, Register src2) {
    1718           0 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1719             :   }
    1720             :   void shlxl(Register dst, Register src1, Register src2) {
    1721           0 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1722             :   }
    1723             :   void shlxl(Register dst, Operand src1, Register src2) {
    1724           0 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1725             :   }
    1726             :   void shrxq(Register dst, Register src1, Register src2) {
    1727           0 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1728             :   }
    1729             :   void shrxq(Register dst, Operand src1, Register src2) {
    1730           0 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1731             :   }
    1732             :   void shrxl(Register dst, Register src1, Register src2) {
    1733           0 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1734             :   }
    1735             :   void shrxl(Register dst, Operand src1, Register src2) {
    1736           0 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1737             :   }
    1738             :   void rorxq(Register dst, Register src, byte imm8);
    1739             :   void rorxq(Register dst, Operand src, byte imm8);
    1740             :   void rorxl(Register dst, Register src, byte imm8);
    1741             :   void rorxl(Register dst, Operand src, byte imm8);
    1742             : 
    1743             :   void lfence();
    1744             :   void pause();
    1745             : 
    1746             :   // Check the code size generated from label to here.
    1747             :   int SizeOfCodeGeneratedSince(Label* label) {
    1748             :     return pc_offset() - label->pos();
    1749             :   }
    1750             : 
    1751             :   // Record a deoptimization reason that can be used by a log or cpu profiler.
    1752             :   // Use --trace-deopt to enable.
    1753             :   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
    1754             :                          int id);
    1755             : 
    1756             : 
    1757             :   // Writes a single word of data in the code stream.
    1758             :   // Used for inline tables, e.g., jump-tables.
    1759             :   void db(uint8_t data);
    1760             :   void dd(uint32_t data);
    1761             :   void dq(uint64_t data);
    1762             :   void dp(uintptr_t data) { dq(data); }
    1763             :   void dq(Label* label);
    1764             : 
    1765             :   // Patch entries for partial constant pool.
    1766             :   void PatchConstPool();
    1767             : 
    1768             :   // Check if use partial constant pool for this rmode.
    1769             :   static bool UseConstPoolFor(RelocInfo::Mode rmode);
    1770             : 
    1771             :   // Check if there is less than kGap bytes available in the buffer.
    1772             :   // If this is the case, we need to grow the buffer before emitting
    1773             :   // an instruction or relocation information.
    1774             :   inline bool buffer_overflow() const {
    1775   350008094 :     return pc_ >= reloc_info_writer.pos() - kGap;
    1776             :   }
    1777             : 
    1778             :   // Get the number of bytes available in the buffer.
    1779             :   inline int available_space() const {
    1780             :     return static_cast<int>(reloc_info_writer.pos() - pc_);
    1781             :   }
    1782             : 
    1783             :   static bool IsNop(Address addr);
    1784             : 
    1785             :   // Avoid overflows for displacements etc.
    1786             :   static constexpr int kMaximalBufferSize = 512 * MB;
    1787             : 
    1788             :   byte byte_at(int pos) { return buffer_start_[pos]; }
    1789     1815205 :   void set_byte_at(int pos, byte value) { buffer_start_[pos] = value; }
    1790             : 
    1791             : #if defined(V8_OS_WIN_X64)
    1792             :   win64_unwindinfo::BuiltinUnwindInfo GetUnwindInfo() const;
    1793             : #endif
    1794             : 
    1795             :  protected:
    1796             :   // Call near indirect
    1797             :   void call(Operand operand);
    1798             : 
    1799             :  private:
    1800             :   Address addr_at(int pos) {
    1801    60350455 :     return reinterpret_cast<Address>(buffer_start_ + pos);
    1802             :   }
    1803             :   uint32_t long_at(int pos) {
    1804             :     return ReadUnalignedValue<uint32_t>(addr_at(pos));
    1805             :   }
    1806             :   void long_at_put(int pos, uint32_t x)  {
    1807             :     WriteUnalignedValue(addr_at(pos), x);
    1808             :   }
    1809             : 
    1810             :   // code emission
    1811             :   void GrowBuffer();
    1812             : 
    1813   476036796 :   void emit(byte x) { *pc_++ = x; }
    1814             :   inline void emitl(uint32_t x);
    1815             :   inline void emitq(uint64_t x);
    1816             :   inline void emitw(uint16_t x);
    1817             :   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
    1818             :   inline void emit(Immediate x);
    1819             :   inline void emit(Immediate64 x);
    1820             : 
    1821             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1822             :   // the top bit of both register codes.
    1823             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1824             :   // REX.W is set.
    1825             :   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
    1826             :   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
    1827             :   inline void emit_rex_64(Register reg, Register rm_reg);
    1828             :   inline void emit_rex_64(XMMRegister reg, XMMRegister rm_reg);
    1829             : 
    1830             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1831             :   // the top bit of the destination, index, and base register codes.
    1832             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1833             :   // register is used for REX.B, and the high bit of op's index register
    1834             :   // is used for REX.X.  REX.W is set.
    1835             :   inline void emit_rex_64(Register reg, Operand op);
    1836             :   inline void emit_rex_64(XMMRegister reg, Operand op);
    1837             : 
    1838             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1839             :   // the top bit of the register code.
    1840             :   // The high bit of register is used for REX.B.
    1841             :   // REX.W is set and REX.R and REX.X are clear.
    1842             :   inline void emit_rex_64(Register rm_reg);
    1843             : 
    1844             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1845             :   // the top bit of the index and base register codes.
    1846             :   // The high bit of op's base register is used for REX.B, and the high
    1847             :   // bit of op's index register is used for REX.X.
    1848             :   // REX.W is set and REX.R clear.
    1849             :   inline void emit_rex_64(Operand op);
    1850             : 
    1851             :   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
    1852             :   void emit_rex_64() { emit(0x48); }
    1853             : 
    1854             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1855             :   // REX.W is clear.
    1856             :   inline void emit_rex_32(Register reg, Register rm_reg);
    1857             : 
    1858             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1859             :   // register is used for REX.B, and the high bit of op's index register
    1860             :   // is used for REX.X.  REX.W is cleared.
    1861             :   inline void emit_rex_32(Register reg, Operand op);
    1862             : 
    1863             :   // High bit of rm_reg goes to REX.B.
    1864             :   // REX.W, REX.R and REX.X are clear.
    1865             :   inline void emit_rex_32(Register rm_reg);
    1866             : 
    1867             :   // High bit of base goes to REX.B and high bit of index to REX.X.
    1868             :   // REX.W and REX.R are clear.
    1869             :   inline void emit_rex_32(Operand op);
    1870             : 
    1871             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1872             :   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
    1873             :   inline void emit_optional_rex_32(Register reg, Register rm_reg);
    1874             : 
    1875             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1876             :   // register is used for REX.B, and the high bit of op's index register
    1877             :   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
    1878             :   // is emitted.
    1879             :   inline void emit_optional_rex_32(Register reg, Operand op);
    1880             : 
    1881             :   // As for emit_optional_rex_32(Register, Register), except that
    1882             :   // the registers are XMM registers.
    1883             :   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
    1884             : 
    1885             :   // As for emit_optional_rex_32(Register, Register), except that
    1886             :   // one of the registers is an XMM registers.
    1887             :   inline void emit_optional_rex_32(XMMRegister reg, Register base);
    1888             : 
    1889             :   // As for emit_optional_rex_32(Register, Register), except that
    1890             :   // one of the registers is an XMM registers.
    1891             :   inline void emit_optional_rex_32(Register reg, XMMRegister base);
    1892             : 
    1893             :   // As for emit_optional_rex_32(Register, Operand), except that
    1894             :   // the register is an XMM register.
    1895             :   inline void emit_optional_rex_32(XMMRegister reg, Operand op);
    1896             : 
    1897             :   // Optionally do as emit_rex_32(Register) if the register number has
    1898             :   // the high bit set.
    1899             :   inline void emit_optional_rex_32(Register rm_reg);
    1900             :   inline void emit_optional_rex_32(XMMRegister rm_reg);
    1901             : 
    1902             :   // Optionally do as emit_rex_32(Operand) if the operand register
    1903             :   // numbers have a high bit set.
    1904             :   inline void emit_optional_rex_32(Operand op);
    1905             : 
    1906             :   void emit_rex(int size) {
    1907           0 :     if (size == kInt64Size) {
    1908             :       emit_rex_64();
    1909             :     } else {
    1910             :       DCHECK_EQ(size, kInt32Size);
    1911             :     }
    1912             :   }
    1913             : 
    1914             :   template<class P1>
    1915             :   void emit_rex(P1 p1, int size) {
    1916    71496887 :     if (size == kInt64Size) {
    1917             :       emit_rex_64(p1);
    1918             :     } else {
    1919             :       DCHECK_EQ(size, kInt32Size);
    1920             :       emit_optional_rex_32(p1);
    1921             :     }
    1922             :   }
    1923             : 
    1924             :   template<class P1, class P2>
    1925    21315572 :   void emit_rex(P1 p1, P2 p2, int size) {
    1926    70812055 :     if (size == kInt64Size) {
    1927             :       emit_rex_64(p1, p2);
    1928             :     } else {
    1929             :       DCHECK_EQ(size, kInt32Size);
    1930             :       emit_optional_rex_32(p1, p2);
    1931             :     }
    1932    21315572 :   }
    1933             : 
    1934             :   // Emit vex prefix
    1935             :   void emit_vex2_byte0() { emit(0xc5); }
    1936             :   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
    1937             :                               SIMDPrefix pp);
    1938             :   void emit_vex3_byte0() { emit(0xc4); }
    1939             :   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
    1940             :   inline void emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m);
    1941             :   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
    1942             :                               SIMDPrefix pp);
    1943             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
    1944             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1945             :                               VexW w);
    1946             :   inline void emit_vex_prefix(Register reg, Register v, Register rm,
    1947             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1948             :                               VexW w);
    1949             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, Operand rm,
    1950             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1951             :                               VexW w);
    1952             :   inline void emit_vex_prefix(Register reg, Register v, Operand rm,
    1953             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1954             :                               VexW w);
    1955             : 
    1956             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1957             :   // 1- or 4-byte offset for a memory operand.  Also encodes
    1958             :   // the second operand of the operation, a register or operation
    1959             :   // subcode, into the reg field of the ModR/M byte.
    1960             :   void emit_operand(Register reg, Operand adr) {
    1961    55400079 :     emit_operand(reg.low_bits(), adr);
    1962             :   }
    1963             : 
    1964             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1965             :   // 1- or 4-byte offset for a memory operand.  Also used to encode
    1966             :   // a three-bit opcode extension into the ModR/M byte.
    1967             :   void emit_operand(int rm, Operand adr);
    1968             : 
    1969             :   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
    1970             :   void emit_modrm(Register reg, Register rm_reg) {
    1971    27824637 :     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
    1972             :   }
    1973             : 
    1974             :   // Emit a ModR/M byte with an operation subcode in the reg field and
    1975             :   // a register in the rm_reg field.
    1976             :   void emit_modrm(int code, Register rm_reg) {
    1977             :     DCHECK(is_uint3(code));
    1978    72965004 :     emit(0xC0 | code << 3 | rm_reg.low_bits());
    1979             :   }
    1980             : 
    1981             :   // Emit the code-object-relative offset of the label's position
    1982             :   inline void emit_code_relative_offset(Label* label);
    1983             : 
    1984             :   // The first argument is the reg field, the second argument is the r/m field.
    1985             :   void emit_sse_operand(XMMRegister dst, XMMRegister src);
    1986             :   void emit_sse_operand(XMMRegister reg, Operand adr);
    1987             :   void emit_sse_operand(Register reg, Operand adr);
    1988             :   void emit_sse_operand(XMMRegister dst, Register src);
    1989             :   void emit_sse_operand(Register dst, XMMRegister src);
    1990             :   void emit_sse_operand(XMMRegister dst);
    1991             : 
    1992             :   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
    1993             :   // AND, OR, XOR, or CMP.  The encodings of these operations are all
    1994             :   // similar, differing just in the opcode or in the reg field of the
    1995             :   // ModR/M byte.
    1996             :   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
    1997             :   void arithmetic_op_8(byte opcode, Register reg, Operand rm_reg);
    1998             :   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
    1999             :   void arithmetic_op_16(byte opcode, Register reg, Operand rm_reg);
    2000             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    2001             :   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
    2002             :   void arithmetic_op(byte opcode, Register reg, Operand rm_reg, int size);
    2003             :   // Operate on a byte in memory or register.
    2004             :   void immediate_arithmetic_op_8(byte subcode,
    2005             :                                  Register dst,
    2006             :                                  Immediate src);
    2007             :   void immediate_arithmetic_op_8(byte subcode, Operand dst, Immediate src);
    2008             :   // Operate on a word in memory or register.
    2009             :   void immediate_arithmetic_op_16(byte subcode,
    2010             :                                   Register dst,
    2011             :                                   Immediate src);
    2012             :   void immediate_arithmetic_op_16(byte subcode, Operand dst, Immediate src);
    2013             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    2014             :   void immediate_arithmetic_op(byte subcode,
    2015             :                                Register dst,
    2016             :                                Immediate src,
    2017             :                                int size);
    2018             :   void immediate_arithmetic_op(byte subcode, Operand dst, Immediate src,
    2019             :                                int size);
    2020             : 
    2021             :   // Emit machine code for a shift operation.
    2022             :   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
    2023             :   void shift(Register dst, Immediate shift_amount, int subcode, int size);
    2024             :   // Shift dst by cl % 64 bits.
    2025             :   void shift(Register dst, int subcode, int size);
    2026             :   void shift(Operand dst, int subcode, int size);
    2027             : 
    2028             :   void emit_farith(int b1, int b2, int i);
    2029             : 
    2030             :   // labels
    2031             :   // void print(Label* L);
    2032             :   void bind_to(Label* L, int pos);
    2033             : 
    2034             :   // record reloc info for current pc_
    2035             :   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
    2036             : 
    2037             :   // Arithmetics
    2038             :   void emit_add(Register dst, Register src, int size) {
    2039      790192 :     arithmetic_op(0x03, dst, src, size);
    2040             :   }
    2041             : 
    2042             :   void emit_add(Register dst, Immediate src, int size) {
    2043     2382591 :     immediate_arithmetic_op(0x0, dst, src, size);
    2044             :   }
    2045             : 
    2046             :   void emit_add(Register dst, Operand src, int size) {
    2047       14290 :     arithmetic_op(0x03, dst, src, size);
    2048             :   }
    2049             : 
    2050             :   void emit_add(Operand dst, Register src, int size) {
    2051      164286 :     arithmetic_op(0x1, src, dst, size);
    2052             :   }
    2053             : 
    2054             :   void emit_add(Operand dst, Immediate src, int size) {
    2055        6486 :     immediate_arithmetic_op(0x0, dst, src, size);
    2056             :   }
    2057             : 
    2058             :   void emit_and(Register dst, Register src, int size) {
    2059      777415 :     arithmetic_op(0x23, dst, src, size);
    2060             :   }
    2061             : 
    2062             :   void emit_and(Register dst, Operand src, int size) {
    2063        4705 :     arithmetic_op(0x23, dst, src, size);
    2064             :   }
    2065             : 
    2066             :   void emit_and(Operand dst, Register src, int size) {
    2067             :     arithmetic_op(0x21, src, dst, size);
    2068             :   }
    2069             : 
    2070             :   void emit_and(Register dst, Immediate src, int size) {
    2071     1126011 :     immediate_arithmetic_op(0x4, dst, src, size);
    2072             :   }
    2073             : 
    2074             :   void emit_and(Operand dst, Immediate src, int size) {
    2075           0 :     immediate_arithmetic_op(0x4, dst, src, size);
    2076             :   }
    2077             : 
    2078             :   void emit_cmp(Register dst, Register src, int size) {
    2079     1667441 :     arithmetic_op(0x3B, dst, src, size);
    2080             :   }
    2081             : 
    2082             :   void emit_cmp(Register dst, Operand src, int size) {
    2083      724816 :     arithmetic_op(0x3B, dst, src, size);
    2084             :   }
    2085             : 
    2086             :   void emit_cmp(Operand dst, Register src, int size) {
    2087     1645279 :     arithmetic_op(0x39, src, dst, size);
    2088             :   }
    2089             : 
    2090             :   void emit_cmp(Register dst, Immediate src, int size) {
    2091     3043887 :     immediate_arithmetic_op(0x7, dst, src, size);
    2092             :   }
    2093             : 
    2094             :   void emit_cmp(Operand dst, Immediate src, int size) {
    2095      179612 :     immediate_arithmetic_op(0x7, dst, src, size);
    2096             :   }
    2097             : 
    2098             :   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
    2099             :   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
    2100             :   // operation is only atomic if prefixed by the lock instruction.
    2101             :   void emit_cmpxchg(Operand dst, Register src, int size);
    2102             : 
    2103             :   void emit_dec(Register dst, int size);
    2104             :   void emit_dec(Operand dst, int size);
    2105             : 
    2106             :   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
    2107             :   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
    2108             :   // when size is 32.
    2109             :   void emit_idiv(Register src, int size);
    2110             :   void emit_div(Register src, int size);
    2111             : 
    2112             :   // Signed multiply instructions.
    2113             :   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
    2114             :   void emit_imul(Register src, int size);
    2115             :   void emit_imul(Operand src, int size);
    2116             :   void emit_imul(Register dst, Register src, int size);
    2117             :   void emit_imul(Register dst, Operand src, int size);
    2118             :   void emit_imul(Register dst, Register src, Immediate imm, int size);
    2119             :   void emit_imul(Register dst, Operand src, Immediate imm, int size);
    2120             : 
    2121             :   void emit_inc(Register dst, int size);
    2122             :   void emit_inc(Operand dst, int size);
    2123             : 
    2124             :   void emit_lea(Register dst, Operand src, int size);
    2125             : 
    2126             :   void emit_mov(Register dst, Operand src, int size);
    2127             :   void emit_mov(Register dst, Register src, int size);
    2128             :   void emit_mov(Operand dst, Register src, int size);
    2129             :   void emit_mov(Register dst, Immediate value, int size);
    2130             :   void emit_mov(Operand dst, Immediate value, int size);
    2131             :   void emit_mov(Register dst, Immediate64 value, int size);
    2132             : 
    2133             :   void emit_movzxb(Register dst, Operand src, int size);
    2134             :   void emit_movzxb(Register dst, Register src, int size);
    2135             :   void emit_movzxw(Register dst, Operand src, int size);
    2136             :   void emit_movzxw(Register dst, Register src, int size);
    2137             : 
    2138             :   void emit_neg(Register dst, int size);
    2139             :   void emit_neg(Operand dst, int size);
    2140             : 
    2141             :   void emit_not(Register dst, int size);
    2142             :   void emit_not(Operand dst, int size);
    2143             : 
    2144             :   void emit_or(Register dst, Register src, int size) {
    2145      168336 :     arithmetic_op(0x0B, dst, src, size);
    2146             :   }
    2147             : 
    2148             :   void emit_or(Register dst, Operand src, int size) {
    2149        7477 :     arithmetic_op(0x0B, dst, src, size);
    2150             :   }
    2151             : 
    2152             :   void emit_or(Operand dst, Register src, int size) {
    2153           4 :     arithmetic_op(0x9, src, dst, size);
    2154             :   }
    2155             : 
    2156             :   void emit_or(Register dst, Immediate src, int size) {
    2157       29562 :     immediate_arithmetic_op(0x1, dst, src, size);
    2158             :   }
    2159             : 
    2160             :   void emit_or(Operand dst, Immediate src, int size) {
    2161           0 :     immediate_arithmetic_op(0x1, dst, src, size);
    2162             :   }
    2163             : 
    2164             :   void emit_repmovs(int size);
    2165             : 
    2166             :   void emit_sbb(Register dst, Register src, int size) {
    2167           5 :     arithmetic_op(0x1b, dst, src, size);
    2168             :   }
    2169             : 
    2170             :   void emit_sub(Register dst, Register src, int size) {
    2171      215621 :     arithmetic_op(0x2B, dst, src, size);
    2172             :   }
    2173             : 
    2174             :   void emit_sub(Register dst, Immediate src, int size) {
    2175     4030120 :     immediate_arithmetic_op(0x5, dst, src, size);
    2176             :   }
    2177             : 
    2178             :   void emit_sub(Register dst, Operand src, int size) {
    2179      172254 :     arithmetic_op(0x2B, dst, src, size);
    2180             :   }
    2181             : 
    2182             :   void emit_sub(Operand dst, Register src, int size) {
    2183      164290 :     arithmetic_op(0x29, src, dst, size);
    2184             :   }
    2185             : 
    2186             :   void emit_sub(Operand dst, Immediate src, int size) {
    2187         117 :     immediate_arithmetic_op(0x5, dst, src, size);
    2188             :   }
    2189             : 
    2190             :   void emit_test(Register dst, Register src, int size);
    2191             :   void emit_test(Register reg, Immediate mask, int size);
    2192             :   void emit_test(Operand op, Register reg, int size);
    2193             :   void emit_test(Operand op, Immediate mask, int size);
    2194             :   void emit_test(Register reg, Operand op, int size) {
    2195         365 :     return emit_test(op, reg, size);
    2196             :   }
    2197             : 
    2198             :   void emit_xchg(Register dst, Register src, int size);
    2199             :   void emit_xchg(Register dst, Operand src, int size);
    2200             : 
    2201     2926548 :   void emit_xor(Register dst, Register src, int size) {
    2202     2933417 :     if (size == kInt64Size && dst.code() == src.code()) {
    2203             :     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
    2204             :     // there is no need to make this a 64 bit operation.
    2205        3735 :       arithmetic_op(0x33, dst, src, kInt32Size);
    2206             :     } else {
    2207     2922813 :       arithmetic_op(0x33, dst, src, size);
    2208             :     }
    2209     2926555 :   }
    2210             : 
    2211             :   void emit_xor(Register dst, Operand src, int size) {
    2212         530 :     arithmetic_op(0x33, dst, src, size);
    2213             :   }
    2214             : 
    2215             :   void emit_xor(Register dst, Immediate src, int size) {
    2216       22788 :     immediate_arithmetic_op(0x6, dst, src, size);
    2217             :   }
    2218             : 
    2219             :   void emit_xor(Operand dst, Immediate src, int size) {
    2220           0 :     immediate_arithmetic_op(0x6, dst, src, size);
    2221             :   }
    2222             : 
    2223             :   void emit_xor(Operand dst, Register src, int size) {
    2224           4 :     arithmetic_op(0x31, src, dst, size);
    2225             :   }
    2226             : 
    2227             :   // Most BMI instructions are similar.
    2228             :   void bmi1q(byte op, Register reg, Register vreg, Register rm);
    2229             :   void bmi1q(byte op, Register reg, Register vreg, Operand rm);
    2230             :   void bmi1l(byte op, Register reg, Register vreg, Register rm);
    2231             :   void bmi1l(byte op, Register reg, Register vreg, Operand rm);
    2232             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2233             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2234             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2235             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2236             : 
    2237             :   // record the position of jmp/jcc instruction
    2238             :   void record_farjmp_position(Label* L, int pos);
    2239             : 
    2240             :   bool is_optimizable_farjmp(int idx);
    2241             : 
    2242             :   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
    2243             : 
    2244             :   int WriteCodeComments();
    2245             : 
    2246             :   friend class EnsureSpace;
    2247             :   friend class RegExpMacroAssemblerX64;
    2248             : 
    2249             :   // code generation
    2250             :   RelocInfoWriter reloc_info_writer;
    2251             : 
    2252             :   // Internal reference positions, required for (potential) patching in
    2253             :   // GrowBuffer(); contains only those internal references whose labels
    2254             :   // are already bound.
    2255             :   std::deque<int> internal_reference_positions_;
    2256             : 
    2257             :   // Variables for this instance of assembler
    2258             :   int farjmp_num_ = 0;
    2259             :   std::deque<int> farjmp_positions_;
    2260             :   std::map<Label*, std::vector<int>> label_farjmp_maps_;
    2261             : 
    2262             :   ConstPool constpool_;
    2263             : 
    2264             :   friend class ConstPool;
    2265             : 
    2266             : #if defined(V8_OS_WIN_X64)
    2267             :   std::unique_ptr<win64_unwindinfo::XdataEncoder> xdata_encoder_;
    2268             : #endif
    2269             : };
    2270             : 
    2271             : 
    2272             : // Helper class that ensures that there is enough space for generating
    2273             : // instructions and relocation information.  The constructor makes
    2274             : // sure that there is enough space and (in debug mode) the destructor
    2275             : // checks that we did not generate too much.
    2276             : class EnsureSpace {
    2277             :  public:
    2278             :   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    2279   350008094 :     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
    2280             : #ifdef DEBUG
    2281             :     space_before_ = assembler_->available_space();
    2282             : #endif
    2283             :   }
    2284             : 
    2285             : #ifdef DEBUG
    2286             :   ~EnsureSpace() {
    2287             :     int bytes_generated = space_before_ - assembler_->available_space();
    2288             :     DCHECK(bytes_generated < assembler_->kGap);
    2289             :   }
    2290             : #endif
    2291             : 
    2292             :  private:
    2293             :   Assembler* assembler_;
    2294             : #ifdef DEBUG
    2295             :   int space_before_;
    2296             : #endif
    2297             : };
    2298             : 
    2299             : }  // namespace internal
    2300             : }  // namespace v8
    2301             : 
    2302             : #endif  // V8_X64_ASSEMBLER_X64_H_

Generated by: LCOV version 1.10