Line data Source code
1 : // Copyright 2016 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_CODE_STUB_ASSEMBLER_H_
6 : #define V8_CODE_STUB_ASSEMBLER_H_
7 :
8 : #include <functional>
9 :
10 : #include "src/bailout-reason.h"
11 : #include "src/base/macros.h"
12 : #include "src/compiler/code-assembler.h"
13 : #include "src/frames.h"
14 : #include "src/globals.h"
15 : #include "src/message-template.h"
16 : #include "src/objects.h"
17 : #include "src/objects/arguments.h"
18 : #include "src/objects/bigint.h"
19 : #include "src/objects/shared-function-info.h"
20 : #include "src/objects/smi.h"
21 : #include "src/roots.h"
22 :
23 : #include "torque-generated/builtins-base-from-dsl-gen.h"
24 :
25 : namespace v8 {
26 : namespace internal {
27 :
28 : class CallInterfaceDescriptor;
29 : class CodeStubArguments;
30 : class CodeStubAssembler;
31 : class StatsCounter;
32 : class StubCache;
33 :
34 : enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
35 :
36 : #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
37 : V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
38 : V(PromiseSpeciesProtector, promise_species_protector, \
39 : PromiseSpeciesProtector) \
40 : V(TypedArraySpeciesProtector, typed_array_species_protector, \
41 : TypedArraySpeciesProtector) \
42 : V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector)
43 :
44 : #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \
45 : V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \
46 : V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \
47 : V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \
48 : V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \
49 : AllocationSiteWithoutWeakNextMap) \
50 : V(BooleanMap, boolean_map, BooleanMap) \
51 : V(CodeMap, code_map, CodeMap) \
52 : V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
53 : V(EmptyPropertyDictionary, empty_property_dictionary, \
54 : EmptyPropertyDictionary) \
55 : V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
56 : EmptySlowElementDictionary) \
57 : V(empty_string, empty_string, EmptyString) \
58 : V(FalseValue, false_value, False) \
59 : V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \
60 : V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
61 : V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
62 : V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \
63 : V(FunctionTemplateInfoMap, function_template_info_map, \
64 : FunctionTemplateInfoMap) \
65 : V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
66 : V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
67 : V(HeapNumberMap, heap_number_map, HeapNumberMap) \
68 : V(iterator_symbol, iterator_symbol, IteratorSymbol) \
69 : V(length_string, length_string, LengthString) \
70 : V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
71 : V(MetaMap, meta_map, MetaMap) \
72 : V(MinusZeroValue, minus_zero_value, MinusZero) \
73 : V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \
74 : V(NanValue, nan_value, Nan) \
75 : V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
76 : V(NullValue, null_value, Null) \
77 : V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
78 : V(PreparseDataMap, preparse_data_map, PreparseDataMap) \
79 : V(prototype_string, prototype_string, PrototypeString) \
80 : V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap) \
81 : V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
82 : V(SymbolMap, symbol_map, SymbolMap) \
83 : V(TheHoleValue, the_hole_value, TheHole) \
84 : V(TransitionArrayMap, transition_array_map, TransitionArrayMap) \
85 : V(TrueValue, true_value, True) \
86 : V(Tuple2Map, tuple2_map, Tuple2Map) \
87 : V(Tuple3Map, tuple3_map, Tuple3Map) \
88 : V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map, \
89 : ArrayBoilerplateDescriptionMap) \
90 : V(UncompiledDataWithoutPreparseDataMap, \
91 : uncompiled_data_without_preparse_data_map, \
92 : UncompiledDataWithoutPreparseDataMap) \
93 : V(UncompiledDataWithPreparseDataMap, uncompiled_data_with_preparse_data_map, \
94 : UncompiledDataWithPreparseDataMap) \
95 : V(UndefinedValue, undefined_value, Undefined) \
96 : V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)
97 :
98 : #define HEAP_IMMOVABLE_OBJECT_LIST(V) \
99 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
100 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
101 :
102 : #ifdef DEBUG
103 : #define CSA_CHECK(csa, x) \
104 : (csa)->Check( \
105 : [&]() -> compiler::Node* { \
106 : return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
107 : }, \
108 : #x, __FILE__, __LINE__)
109 : #else
110 : #define CSA_CHECK(csa, x) (csa)->FastCheck(x)
111 : #endif
112 :
113 : #ifdef DEBUG
114 : // Add stringified versions to the given values, except the first. That is,
115 : // transform
116 : // x, a, b, c, d, e, f
117 : // to
118 : // a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
119 : //
120 : // __VA_ARGS__ is ignored to allow the caller to pass through too many
121 : // parameters, and the first element is ignored to support having no extra
122 : // values without empty __VA_ARGS__ (which cause all sorts of problems with
123 : // extra commas).
124 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
125 : v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
126 :
127 : // Stringify the given variable number of arguments. The arguments are trimmed
128 : // to 5 if there are too many, and padded with nullptr if there are not enough.
129 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...) \
130 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
131 : nullptr, nullptr)
132 :
133 : #define CSA_ASSERT_GET_FIRST(x, ...) (x)
134 : #define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
135 :
136 : // CSA_ASSERT(csa, <condition>, <extra values to print...>)
137 :
138 : // We have to jump through some hoops to allow <extra values to print...> to be
139 : // empty.
140 : #define CSA_ASSERT(csa, ...) \
141 : (csa)->Assert( \
142 : [&]() -> compiler::Node* { \
143 : return implicit_cast<compiler::SloppyTNode<Word32T>>( \
144 : EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__))); \
145 : }, \
146 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
147 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
148 :
149 : // CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
150 : // <extra values to print...>)
151 :
152 : #define CSA_ASSERT_BRANCH(csa, ...) \
153 : (csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)), \
154 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
155 : __LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
156 :
157 : #define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
158 : (csa)->Assert( \
159 : [&]() -> compiler::Node* { \
160 : compiler::Node* const argc = \
161 : (csa)->Parameter(Descriptor::kJSActualArgumentsCount); \
162 : return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
163 : }, \
164 : "argc " #op " " #expected, __FILE__, __LINE__, \
165 : SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
166 : "argc")
167 :
168 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
169 : CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
170 :
171 : #define CSA_DEBUG_INFO(name) \
172 : { #name, __FILE__, __LINE__ }
173 : #define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
174 : #define VARIABLE(name, ...) \
175 : Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
176 : #define VARIABLE_CONSTRUCTOR(name, ...) \
177 : name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
178 : #define TYPED_VARIABLE_DEF(type, name, ...) \
179 : TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
180 : #else // DEBUG
181 : #define CSA_ASSERT(csa, ...) ((void)0)
182 : #define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
183 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
184 : #define BIND(label) Bind(label)
185 : #define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
186 : #define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
187 : #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
188 : #endif // DEBUG
189 :
190 : #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
191 :
192 : #ifdef ENABLE_SLOW_DCHECKS
193 : #define CSA_SLOW_ASSERT(csa, ...) \
194 : if (FLAG_enable_slow_asserts) { \
195 : CSA_ASSERT(csa, __VA_ARGS__); \
196 : }
197 : #else
198 : #define CSA_SLOW_ASSERT(csa, ...) ((void)0)
199 : #endif
200 :
201 : // Provides JavaScript-specific "macro-assembler" functionality on top of the
202 : // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
203 : // it's possible to add JavaScript-specific useful CodeAssembler "macros"
204 : // without modifying files in the compiler directory (and requiring a review
205 : // from a compiler directory OWNER).
206 532433 : class V8_EXPORT_PRIVATE CodeStubAssembler
207 : : public compiler::CodeAssembler,
208 : public BaseBuiltinsFromDSLAssembler {
209 : public:
210 : using Node = compiler::Node;
211 : template <class T>
212 : using TNode = compiler::TNode<T>;
213 : template <class T>
214 : using SloppyTNode = compiler::SloppyTNode<T>;
215 :
216 : template <typename T>
217 : using LazyNode = std::function<TNode<T>()>;
218 :
219 : explicit CodeStubAssembler(compiler::CodeAssemblerState* state);
220 :
221 : enum AllocationFlag : uint8_t {
222 : kNone = 0,
223 : kDoubleAlignment = 1,
224 : kPretenured = 1 << 1,
225 : kAllowLargeObjectAllocation = 1 << 2,
226 : };
227 :
228 : enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
229 :
230 : typedef base::Flags<AllocationFlag> AllocationFlags;
231 :
232 : enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
233 :
234 : // On 32-bit platforms, there is a slight performance advantage to doing all
235 : // of the array offset/index arithmetic with SMIs, since it's possible
236 : // to save a few tag/untag operations without paying an extra expense when
237 : // calculating array offset (the smi math can be folded away) and there are
238 : // fewer live ranges. Thus only convert indices to untagged value on 64-bit
239 : // platforms.
240 2592 : ParameterMode OptimalParameterMode() const {
241 2604 : return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
242 : }
243 :
244 1044 : MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
245 : return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
246 1044 : : MachineRepresentation::kTaggedSigned;
247 : }
248 :
249 596 : MachineRepresentation OptimalParameterRepresentation() const {
250 596 : return ParameterRepresentation(OptimalParameterMode());
251 : }
252 :
253 21040 : TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
254 21040 : if (mode == SMI_PARAMETERS) value = SmiUntag(value);
255 21040 : return UncheckedCast<IntPtrT>(value);
256 : }
257 :
258 8324 : Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
259 8324 : if (mode == SMI_PARAMETERS) return SmiTag(value);
260 8324 : return value;
261 : }
262 :
263 : Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
264 : return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
265 : }
266 :
267 22140 : TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
268 22140 : if (mode != SMI_PARAMETERS) return SmiTag(value);
269 3664 : return UncheckedCast<Smi>(value);
270 : }
271 :
272 11624 : Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
273 11624 : if (mode != SMI_PARAMETERS) return SmiUntag(value);
274 4 : return value;
275 : }
276 :
277 11820 : bool ToParameterConstant(Node* node, intptr_t* out, ParameterMode mode) {
278 11820 : if (mode == ParameterMode::SMI_PARAMETERS) {
279 752 : Smi constant;
280 752 : if (ToSmiConstant(node, &constant)) {
281 8 : *out = static_cast<intptr_t>(constant->value());
282 8 : return true;
283 : }
284 : } else {
285 : DCHECK_EQ(mode, ParameterMode::INTPTR_PARAMETERS);
286 : intptr_t constant;
287 11068 : if (ToIntPtrConstant(node, constant)) {
288 640 : *out = constant;
289 640 : return true;
290 : }
291 : }
292 :
293 11172 : return false;
294 : }
295 :
296 : #if defined(V8_HOST_ARCH_32_BIT)
297 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; }
298 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) {
299 : return SmiToIntPtr(source);
300 : }
301 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; }
302 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) {
303 : return SmiFromIntPtr(source);
304 : }
305 : #elif defined(V8_HOST_ARCH_64_BIT)
306 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); }
307 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; }
308 168 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); }
309 168 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; }
310 : #else
311 : #error Unknown architecture.
312 : #endif
313 :
314 1904 : TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
315 1904 : GotoIf(TaggedIsNotSmi(value), fail);
316 1904 : return UncheckedCast<Smi>(value);
317 : }
318 :
319 56 : TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) {
320 56 : GotoIfNot(TaggedIsPositiveSmi(value), fail);
321 56 : return UncheckedCast<Smi>(value);
322 : }
323 :
324 : TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail);
325 :
326 2744 : TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
327 2744 : GotoIfNot(IsNumber(value), fail);
328 2744 : return UncheckedCast<Number>(value);
329 : }
330 :
331 10248 : TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
332 10248 : GotoIf(TaggedIsSmi(value), fail);
333 10248 : return UncheckedCast<HeapObject>(value);
334 : }
335 :
336 1232 : TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
337 : Label* fail) {
338 1232 : GotoIfNot(IsJSArray(heap_object), fail);
339 1232 : return UncheckedCast<JSArray>(heap_object);
340 : }
341 :
342 168 : TNode<JSArrayBuffer> HeapObjectToJSArrayBuffer(TNode<HeapObject> heap_object,
343 : Label* fail) {
344 168 : GotoIfNot(IsJSArrayBuffer(heap_object), fail);
345 168 : return UncheckedCast<JSArrayBuffer>(heap_object);
346 : }
347 :
348 : TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
349 : TNode<Object> value, Label* fail) {
350 : GotoIf(TaggedIsSmi(value), fail);
351 : TNode<HeapObject> heap_object = CAST(value);
352 : GotoIfNot(IsFastJSArray(heap_object, context), fail);
353 : return UncheckedCast<JSArray>(heap_object);
354 : }
355 :
356 1288 : TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
357 : Label* fail) {
358 1288 : GotoIfNot(IsJSDataView(heap_object), fail);
359 1288 : return CAST(heap_object);
360 : }
361 :
362 0 : TNode<JSProxy> HeapObjectToJSProxy(TNode<HeapObject> heap_object,
363 : Label* fail) {
364 0 : GotoIfNot(IsJSProxy(heap_object), fail);
365 0 : return CAST(heap_object);
366 : }
367 :
368 2352 : TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
369 : Label* fail) {
370 2352 : GotoIfNot(IsCallable(heap_object), fail);
371 2352 : return CAST(heap_object);
372 : }
373 :
374 336 : TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) {
375 336 : GotoIfNot(IsString(heap_object), fail);
376 336 : return CAST(heap_object);
377 : }
378 :
379 280 : TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object,
380 : Label* fail) {
381 280 : GotoIfNot(IsConstructor(heap_object), fail);
382 280 : return CAST(heap_object);
383 : }
384 :
385 : Node* MatchesParameterMode(Node* value, ParameterMode mode);
386 :
387 : #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
388 : Node* OpName(Node* a, Node* b, ParameterMode mode) { \
389 : if (mode == SMI_PARAMETERS) { \
390 : return SmiOpName(CAST(a), CAST(b)); \
391 : } else { \
392 : DCHECK_EQ(INTPTR_PARAMETERS, mode); \
393 : return IntPtrOpName(a, b); \
394 : } \
395 : }
396 56 : PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
397 72188 : PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
398 12896 : PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
399 : PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
400 56 : PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
401 : SmiLessThanOrEqual)
402 11936 : PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
403 : PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
404 : SmiGreaterThanOrEqual)
405 : PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
406 17116 : PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
407 : SmiAboveOrEqual)
408 : #undef PARAMETER_BINOP
409 :
410 168 : uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; }
411 : uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; }
412 112 : intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; }
413 : uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; }
414 112 : intptr_t ConstexprWordNot(intptr_t a) { return ~a; }
415 : uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; }
416 :
417 : TNode<Object> NoContextConstant();
418 :
419 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
420 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
421 : std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
422 : name##Constant();
423 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
424 : #undef HEAP_CONSTANT_ACCESSOR
425 :
426 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
427 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
428 : std::declval<Heap>().rootAccessorName())>::type>::type> \
429 : name##Constant();
430 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
431 : #undef HEAP_CONSTANT_ACCESSOR
432 :
433 : #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
434 : TNode<BoolT> Is##name(SloppyTNode<Object> value); \
435 : TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
436 : HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
437 : #undef HEAP_CONSTANT_TEST
438 :
439 : Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
440 :
441 : bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
442 : bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
443 : ParameterMode mode);
444 :
445 : // Round the 32bits payload of the provided word up to the next power of two.
446 : TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
447 : // Select the maximum of the two provided IntPtr values.
448 : TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
449 : SloppyTNode<IntPtrT> right);
450 : // Select the minimum of the two provided IntPtr values.
451 : TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
452 : SloppyTNode<IntPtrT> right);
453 :
454 : // Float64 operations.
455 : TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
456 : TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
457 : TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
458 : TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
459 : TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
460 : // Select the minimum of the two provided Number values.
461 : TNode<Number> NumberMax(SloppyTNode<Number> left, SloppyTNode<Number> right);
462 : // Select the minimum of the two provided Number values.
463 : TNode<Number> NumberMin(SloppyTNode<Number> left, SloppyTNode<Number> right);
464 :
465 : // After converting an index to an integer, calculate a relative index: if
466 : // index < 0, max(length + index, 0); else min(index, length)
467 : TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
468 : TNode<Object> index,
469 : TNode<IntPtrT> length);
470 :
471 : // Returns true iff the given value fits into smi range and is >= 0.
472 : TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
473 :
474 : // Tag an IntPtr as a Smi value.
475 : TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
476 : // Untag a Smi value as an IntPtr.
477 : TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
478 :
479 : // Smi conversions.
480 : TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
481 7792 : TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
482 : TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
483 78292 : TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
484 : TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
485 :
486 : // Smi operations.
487 : #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \
488 : TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
489 : if (SmiValuesAre32Bits()) { \
490 : return BitcastWordToTaggedSigned( \
491 : IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
492 : } else { \
493 : DCHECK(SmiValuesAre31Bits()); \
494 : if (kSystemPointerSize == kInt64Size) { \
495 : CSA_ASSERT(this, IsValidSmi(a)); \
496 : CSA_ASSERT(this, IsValidSmi(b)); \
497 : } \
498 : return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr( \
499 : Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
500 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))))); \
501 : } \
502 : }
503 16732 : SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
504 8216 : SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
505 1120 : SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
506 35672 : SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
507 : #undef SMI_ARITHMETIC_BINOP
508 56 : TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }
509 :
510 : TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b,
511 : Label* if_overflow);
512 : TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
513 : TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
514 :
515 4088 : TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
516 4088 : return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
517 : }
518 :
519 3140 : TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
520 : return BitcastWordToTaggedSigned(
521 6280 : WordAnd(WordShr(BitcastTaggedToWord(a), shift),
522 9420 : BitcastTaggedToWord(SmiConstant(-1))));
523 : }
524 :
525 280 : TNode<Smi> SmiSar(TNode<Smi> a, int shift) {
526 : return BitcastWordToTaggedSigned(
527 560 : WordAnd(WordSar(BitcastTaggedToWord(a), shift),
528 840 : BitcastTaggedToWord(SmiConstant(-1))));
529 : }
530 :
531 : Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
532 : if (mode == SMI_PARAMETERS) {
533 : return SmiShl(CAST(a), shift);
534 : } else {
535 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
536 : return WordShl(a, shift);
537 : }
538 : }
539 :
540 2564 : Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
541 2564 : if (mode == SMI_PARAMETERS) {
542 116 : return SmiShr(CAST(a), shift);
543 : } else {
544 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
545 2448 : return WordShr(a, shift);
546 : }
547 : }
548 :
549 : #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \
550 : TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
551 : if (SmiValuesAre32Bits()) { \
552 : return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
553 : } else { \
554 : DCHECK(SmiValuesAre31Bits()); \
555 : if (kSystemPointerSize == kInt64Size) { \
556 : CSA_ASSERT(this, IsValidSmi(a)); \
557 : CSA_ASSERT(this, IsValidSmi(b)); \
558 : } \
559 : return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
560 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))); \
561 : } \
562 : }
563 24808 : SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
564 616 : SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
565 2912 : SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
566 224 : SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
567 : Uint32GreaterThanOrEqual)
568 9748 : SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
569 13160 : SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
570 5004 : SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
571 : Int32LessThanOrEqual)
572 5336 : SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
573 2408 : SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
574 : Int32GreaterThanOrEqual)
575 : #undef SMI_COMPARISON_OP
576 : TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
577 : TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
578 : // Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
579 : TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
580 : // Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
581 : TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
582 : // Tries to compute dividend / divisor for Smi inputs; branching to bailout
583 : // if the division needs to be performed as a floating point operation.
584 : TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
585 :
586 : // Compares two Smis a and b as if they were converted to strings and then
587 : // compared lexicographically. Returns:
588 : // -1 iff x < y.
589 : // 0 iff x == y.
590 : // 1 iff x > y.
591 : TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y);
592 :
593 : // Smi | HeapNumber operations.
594 : TNode<Number> NumberInc(SloppyTNode<Number> value);
595 : TNode<Number> NumberDec(SloppyTNode<Number> value);
596 : TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
597 : TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
598 : void GotoIfNotNumber(Node* value, Label* is_not_number);
599 : void GotoIfNumber(Node* value, Label* is_number);
600 : TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
601 :
602 : TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
603 :
604 : // Allocate an object of the given size.
605 : TNode<HeapObject> AllocateInNewSpace(TNode<IntPtrT> size,
606 : AllocationFlags flags = kNone);
607 : TNode<HeapObject> AllocateInNewSpace(int size, AllocationFlags flags = kNone);
608 : TNode<HeapObject> Allocate(TNode<IntPtrT> size,
609 : AllocationFlags flags = kNone);
610 : TNode<HeapObject> Allocate(int size, AllocationFlags flags = kNone);
611 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, int offset);
612 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous,
613 : TNode<IntPtrT> offset);
614 :
615 : TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size);
616 :
617 : typedef std::function<void(Label*, Label*)> BranchGenerator;
618 : typedef std::function<Node*()> NodeGenerator;
619 :
620 : void Assert(const BranchGenerator& branch, const char* message = nullptr,
621 : const char* file = nullptr, int line = 0,
622 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
623 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
624 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
625 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
626 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
627 : void Assert(const NodeGenerator& condition_body,
628 : const char* message = nullptr, const char* file = nullptr,
629 : int line = 0, Node* extra_node1 = nullptr,
630 : const char* extra_node1_name = "", Node* extra_node2 = nullptr,
631 : const char* extra_node2_name = "", Node* extra_node3 = nullptr,
632 : const char* extra_node3_name = "", Node* extra_node4 = nullptr,
633 : const char* extra_node4_name = "", Node* extra_node5 = nullptr,
634 : const char* extra_node5_name = "");
635 : void Check(const BranchGenerator& branch, const char* message = nullptr,
636 : const char* file = nullptr, int line = 0,
637 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
638 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
639 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
640 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
641 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
642 : void Check(const NodeGenerator& condition_body, const char* message = nullptr,
643 : const char* file = nullptr, int line = 0,
644 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
645 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
646 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
647 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
648 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
649 : void FailAssert(
650 : const char* message = nullptr, const char* file = nullptr, int line = 0,
651 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
652 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
653 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
654 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
655 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
656 :
657 : void FastCheck(TNode<BoolT> condition);
658 :
659 : // The following Call wrappers call an object according to the semantics that
660 : // one finds in the EcmaScript spec, operating on an Callable (e.g. a
661 : // JSFunction or proxy) rather than a Code object.
662 : template <class... TArgs>
663 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
664 : TNode<JSReceiver> receiver, TArgs... args) {
665 : return UncheckedCast<Object>(CallJS(
666 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
667 : context, callable, receiver, args...));
668 : }
669 : template <class... TArgs>
670 1848 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
671 : TNode<Object> receiver, TArgs... args) {
672 1848 : if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
673 : return UncheckedCast<Object>(CallJS(
674 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
675 280 : context, callable, receiver, args...));
676 : }
677 : return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
678 1568 : callable, receiver, args...));
679 : }
680 :
681 : template <class... TArgs>
682 1064 : TNode<JSReceiver> ConstructWithTarget(TNode<Context> context,
683 : TNode<JSReceiver> target,
684 : TNode<JSReceiver> new_target,
685 : TArgs... args) {
686 1624 : return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()),
687 : context, target, new_target,
688 : implicit_cast<TNode<Object>>(args)...));
689 : }
690 : template <class... TArgs>
691 952 : TNode<JSReceiver> Construct(TNode<Context> context,
692 : TNode<JSReceiver> new_target, TArgs... args) {
693 952 : return ConstructWithTarget(context, new_target, new_target, args...);
694 : }
695 :
696 : template <class A, class F, class G>
697 41884 : TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
698 : const G& false_body) {
699 83768 : return UncheckedCast<A>(SelectImpl(
700 : condition,
701 83768 : [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
702 83768 : [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
703 83768 : MachineRepresentationOf<A>::value));
704 : }
705 :
706 : template <class A>
707 12496 : TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
708 : TNode<A> false_value) {
709 37488 : return Select<A>(condition, [=] { return true_value; },
710 37488 : [=] { return false_value; });
711 : }
712 :
713 : TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
714 : int true_value, int false_value);
715 : TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
716 : int true_value, int false_value);
717 : TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
718 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
719 : Smi false_value);
720 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
721 : Smi false_value) {
722 : return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
723 : }
724 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
725 : int false_value) {
726 : return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
727 : }
728 4144 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
729 : int false_value) {
730 : return SelectSmiConstant(condition, Smi::FromInt(true_value),
731 4144 : Smi::FromInt(false_value));
732 : }
733 :
734 : TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
735 :
736 : // Check a value for smi-ness
737 : TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
738 : TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
739 : TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
740 : // Check that the value is a non-negative smi.
741 : TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
742 : // Check that a word has a word-aligned address.
743 : TNode<BoolT> WordIsAligned(SloppyTNode<WordT> word, size_t alignment);
744 : TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
745 :
746 : #if DEBUG
747 : void Bind(Label* label, AssemblerDebugInfo debug_info);
748 : #endif // DEBUG
749 : void Bind(Label* label);
750 :
751 : template <class... T>
752 : void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label,
753 : TNode<T>*... phis) {
754 : CodeAssembler::Bind(label, phis...);
755 : }
756 :
757 5376 : void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
758 : Label* if_false) {
759 5376 : Branch(SmiEqual(a, b), if_true, if_false);
760 5376 : }
761 :
762 5544 : void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
763 : Label* if_false) {
764 5544 : Branch(SmiLessThan(a, b), if_true, if_false);
765 5544 : }
766 :
767 3828 : void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
768 : Label* if_false) {
769 3828 : Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
770 3828 : }
771 :
772 1680 : void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
773 1680 : Branch(Float64Equal(value, value), if_false, if_true);
774 1680 : }
775 :
776 : // Branches to {if_true} if ToBoolean applied to {value} yields true,
777 : // otherwise goes to {if_false}.
778 : void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
779 :
780 : void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
781 :
782 : // Branches to {if_true} when --force-slow-path flag has been passed.
783 : // It's used for testing to ensure that slow path implementation behave
784 : // equivalent to corresponding fast paths (where applicable).
785 : //
786 : // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
787 : void GotoIfForceSlowPath(Label* if_true);
788 :
789 : // Branches to {if_true} when Debug::ExecutionMode is DebugInfo::kSideEffect.
790 : void GotoIfDebugExecutionModeChecksSideEffects(Label* if_true);
791 :
792 : // Load value from current parent frame by given offset in bytes.
793 : Node* LoadFromParentFrame(int offset,
794 : MachineType rep = MachineType::AnyTagged());
795 :
796 : // Load an object pointer from a buffer that isn't in the heap.
797 : Node* LoadBufferObject(Node* buffer, int offset,
798 : MachineType rep = MachineType::AnyTagged());
799 168 : TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) {
800 : return UncheckedCast<RawPtrT>(
801 168 : LoadBufferObject(buffer, offset, MachineType::Pointer()));
802 : }
803 168 : TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) {
804 168 : return CAST(LoadBufferObject(buffer, offset, MachineType::TaggedSigned()));
805 : }
806 : // Load a field from an object on the heap.
807 : Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
808 : MachineType rep);
809 : template <class T, typename std::enable_if<
810 : std::is_convertible<TNode<T>, TNode<Object>>::value,
811 : int>::type = 0>
812 9860 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
813 9860 : return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
814 : }
815 : template <class T, typename std::enable_if<
816 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
817 : int>::type = 0>
818 49500 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
819 99000 : return UncheckedCast<T>(
820 99000 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
821 : }
822 244600 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
823 : return UncheckedCast<Object>(
824 244780 : LoadObjectField(object, offset, MachineType::AnyTagged()));
825 : }
826 : Node* LoadObjectField(SloppyTNode<HeapObject> object,
827 : SloppyTNode<IntPtrT> offset, MachineType rep);
828 8800 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
829 : SloppyTNode<IntPtrT> offset) {
830 : return UncheckedCast<Object>(
831 8800 : LoadObjectField(object, offset, MachineType::AnyTagged()));
832 : }
833 : template <class T, typename std::enable_if<
834 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
835 : int>::type = 0>
836 0 : TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) {
837 0 : return UncheckedCast<T>(
838 0 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
839 : }
840 : // Load a SMI field and untag it.
841 : TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
842 : int offset);
843 : // Load a SMI field, untag it, and convert to Word32.
844 : TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
845 : // Load a SMI and untag it.
846 : TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
847 :
848 5936 : TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
849 : int offset) {
850 : return UncheckedCast<MaybeObject>(
851 5936 : LoadObjectField(object, offset, MachineType::AnyTagged()));
852 : }
853 :
854 : // Tag a smi and store it.
855 : void StoreAndTagSmi(Node* base, int offset, Node* value);
856 :
857 : // Load the floating point value of a HeapNumber.
858 : TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
859 : // Load the Map of an HeapObject.
860 : TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
861 : // Load the instance type of an HeapObject.
862 : TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
863 : // Compare the instance the type of the object against the provided one.
864 : TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
865 : InstanceType type);
866 : TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
867 : InstanceType type);
868 : TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
869 : InstanceType type);
870 : // Load the properties backing store of a JSObject.
871 : TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
872 : TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
873 : // Load the elements backing store of a JSObject.
874 19480 : TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object) {
875 19480 : return LoadJSObjectElements(object);
876 : }
877 : // Load the length of a JSArray instance.
878 : TNode<Object> LoadJSArgumentsObjectWithLength(
879 : SloppyTNode<JSArgumentsObjectWithLength> array);
880 : // Load the length of a JSArray instance.
881 : TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
882 : // Load the length of a fast JSArray instance. Returns a positive Smi.
883 : TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
884 : // Load the length of a fixed array base instance.
885 : TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
886 : // Load the length of a fixed array base instance.
887 : TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
888 : SloppyTNode<FixedArrayBase> array);
889 : // Load the length of a WeakFixedArray.
890 : TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
891 : TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
892 : SloppyTNode<WeakFixedArray> array);
893 : // Load the number of descriptors in DescriptorArray.
894 : TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array);
895 : // Load the bit field of a Map.
896 : TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
897 : // Load bit field 2 of a map.
898 : TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
899 : // Load bit field 3 of a map.
900 : TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
901 : // Load the instance type of a map.
902 : TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
903 : // Load the ElementsKind of a map.
904 : TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
905 : TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> object);
906 : // Load the instance descriptors of a map.
907 : TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
908 : // Load the prototype of a map.
909 : TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
910 : // Load the prototype info of a map. The result has to be checked if it is a
911 : // prototype info object or not.
912 : TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
913 : Label* if_has_no_proto_info);
914 : // Load the instance size of a Map.
915 : TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
916 : // Load the inobject properties start of a Map (valid only for JSObjects).
917 : TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
918 : // Load the constructor function index of a Map (only for primitive maps).
919 : TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
920 : // Load the constructor of a Map (equivalent to Map::GetConstructor()).
921 : TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
922 : // Load the EnumLength of a Map.
923 : Node* LoadMapEnumLength(SloppyTNode<Map> map);
924 : // Load the back-pointer of a Map.
925 : TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
926 : // Checks that |map| has only simple properties, returns bitfield3.
927 : TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map,
928 : TNode<Int32T> instance_type,
929 : Label* bailout);
930 : // Load the identity hash of a JSRececiver.
931 : TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
932 : Label* if_no_hash = nullptr);
933 :
934 : // This is only used on a newly allocated PropertyArray which
935 : // doesn't have an existing hash.
936 : void InitializePropertyArrayLength(Node* property_array, Node* length,
937 : ParameterMode mode);
938 :
939 : // Check if the map is set for slow properties.
940 : TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
941 :
942 : // Load the hash field of a name as an uint32 value.
943 : TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
944 : // Load the hash value of a name as an uint32 value.
945 : // If {if_hash_not_computed} label is specified then it also checks if
946 : // hash is actually computed.
947 : TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
948 : Label* if_hash_not_computed = nullptr);
949 :
950 : // Load length field of a String object as Smi value.
951 : TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> string);
952 : // Load length field of a String object as intptr_t value.
953 : TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> string);
954 : // Load length field of a String object as uint32_t value.
955 : TNode<Uint32T> LoadStringLengthAsWord32(SloppyTNode<String> string);
956 : // Loads a pointer to the sequential String char array.
957 : Node* PointerToSeqStringData(Node* seq_string);
958 : // Load value field of a JSValue object.
959 : Node* LoadJSValueValue(Node* object);
960 :
961 : // Figures out whether the value of maybe_object is:
962 : // - a SMI (jump to "if_smi", "extracted" will be the SMI value)
963 : // - a cleared weak reference (jump to "if_cleared", "extracted" will be
964 : // untouched)
965 : // - a weak reference (jump to "if_weak", "extracted" will be the object
966 : // pointed to)
967 : // - a strong reference (jump to "if_strong", "extracted" will be the object
968 : // pointed to)
969 : void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
970 : Label* if_cleared, Label* if_weak, Label* if_strong,
971 : TVariable<Object>* extracted);
972 : // See MaybeObject for semantics of these functions.
973 : TNode<BoolT> IsStrong(TNode<MaybeObject> value);
974 : // This variant is for overzealous checking.
975 : TNode<BoolT> IsStrong(TNode<Object> value) {
976 : return IsStrong(ReinterpretCast<MaybeObject>(value));
977 : }
978 : TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value,
979 : Label* if_not_strong);
980 :
981 : TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value);
982 : TNode<BoolT> IsCleared(TNode<MaybeObject> value);
983 : TNode<BoolT> IsNotCleared(TNode<MaybeObject> value);
984 :
985 : // Removes the weak bit + asserts it was set.
986 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value);
987 :
988 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value,
989 : Label* if_cleared);
990 :
991 : TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
992 : TNode<Object> value);
993 : TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
994 : TNode<Object> value);
995 : TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
996 : TNode<Object> value);
997 :
998 : TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
999 :
1000 : void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
1001 : int additional_offset = 0,
1002 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1003 :
1004 : // Array is any array-like type that has a fixed header followed by
1005 : // tagged elements.
1006 : template <typename Array>
1007 : TNode<IntPtrT> LoadArrayLength(TNode<Array> array);
1008 :
1009 : // Array is any array-like type that has a fixed header followed by
1010 : // tagged elements.
1011 : template <typename Array>
1012 : TNode<MaybeObject> LoadArrayElement(
1013 : TNode<Array> array, int array_header_size, Node* index,
1014 : int additional_offset = 0,
1015 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1016 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1017 :
1018 : TNode<Object> LoadFixedArrayElement(
1019 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1020 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1021 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe,
1022 : CheckBounds check_bounds = CheckBounds::kAlways);
1023 :
1024 : // This doesn't emit a bounds-check. As part of the security-performance
1025 : // tradeoff, only use it if it is performance critical.
1026 34228 : TNode<Object> UnsafeLoadFixedArrayElement(
1027 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1028 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1029 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1030 : return LoadFixedArrayElement(object, index, additional_offset,
1031 : parameter_mode, needs_poisoning,
1032 34228 : CheckBounds::kDebugOnly);
1033 : }
1034 :
1035 7920 : TNode<Object> LoadFixedArrayElement(
1036 : TNode<FixedArray> object, TNode<IntPtrT> index,
1037 : LoadSensitivity needs_poisoning,
1038 : CheckBounds check_bounds = CheckBounds::kAlways) {
1039 : return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
1040 7920 : needs_poisoning, check_bounds);
1041 : }
1042 : // This doesn't emit a bounds-check. As part of the security-performance
1043 : // tradeoff, only use it if it is performance critical.
1044 7920 : TNode<Object> UnsafeLoadFixedArrayElement(TNode<FixedArray> object,
1045 : TNode<IntPtrT> index,
1046 : LoadSensitivity needs_poisoning) {
1047 : return LoadFixedArrayElement(object, index, needs_poisoning,
1048 7920 : CheckBounds::kDebugOnly);
1049 : }
1050 :
1051 9040 : TNode<Object> LoadFixedArrayElement(
1052 : TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
1053 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1054 : return LoadFixedArrayElement(object, index, additional_offset,
1055 14272 : INTPTR_PARAMETERS, needs_poisoning);
1056 : }
1057 :
1058 9872 : TNode<Object> LoadFixedArrayElement(
1059 : TNode<FixedArray> object, int index, int additional_offset = 0,
1060 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1061 19744 : return LoadFixedArrayElement(object, IntPtrConstant(index),
1062 : additional_offset, INTPTR_PARAMETERS,
1063 19744 : needs_poisoning);
1064 : }
1065 : // This doesn't emit a bounds-check. As part of the security-performance
1066 : // tradeoff, only use it if it is performance critical.
1067 19296 : TNode<Object> UnsafeLoadFixedArrayElement(
1068 : TNode<FixedArray> object, int index, int additional_offset = 0,
1069 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1070 38592 : return LoadFixedArrayElement(object, IntPtrConstant(index),
1071 : additional_offset, INTPTR_PARAMETERS,
1072 38592 : needs_poisoning, CheckBounds::kDebugOnly);
1073 : }
1074 5600 : TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
1075 : TNode<Smi> index) {
1076 5600 : return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
1077 : }
1078 :
1079 : TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object,
1080 : SloppyTNode<IntPtrT> index);
1081 : TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
1082 :
1083 : // Load an element from an array and untag it and return it as Word32.
1084 : // Array is any array-like type that has a fixed header followed by
1085 : // tagged elements.
1086 : template <typename Array>
1087 : TNode<Int32T> LoadAndUntagToWord32ArrayElement(
1088 : TNode<Array> array, int array_header_size, Node* index,
1089 : int additional_offset = 0,
1090 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1091 :
1092 : // Load an array element from a FixedArray, untag it and return it as Word32.
1093 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1094 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1095 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1096 :
1097 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1098 : TNode<FixedArray> object, int index, int additional_offset = 0) {
1099 : return LoadAndUntagToWord32FixedArrayElement(
1100 : object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
1101 : }
1102 :
1103 : // Load an array element from a WeakFixedArray.
1104 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1105 : TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
1106 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1107 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1108 :
1109 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1110 : TNode<WeakFixedArray> object, int index, int additional_offset = 0,
1111 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1112 : return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
1113 : additional_offset, INTPTR_PARAMETERS,
1114 : needs_poisoning);
1115 : }
1116 :
1117 : // Load an array element from a FixedDoubleArray.
1118 : TNode<Float64T> LoadFixedDoubleArrayElement(
1119 : SloppyTNode<FixedDoubleArray> object, Node* index,
1120 : MachineType machine_type, int additional_offset = 0,
1121 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1122 : Label* if_hole = nullptr);
1123 :
1124 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1125 : TNode<Smi> index,
1126 : Label* if_hole = nullptr) {
1127 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1128 : SMI_PARAMETERS, if_hole);
1129 : }
1130 :
1131 56 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1132 : TNode<IntPtrT> index,
1133 : Label* if_hole = nullptr) {
1134 112 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1135 168 : INTPTR_PARAMETERS, if_hole);
1136 : }
1137 :
1138 : // Load an array element from a FixedArray, FixedDoubleArray or a
1139 : // NumberDictionary (depending on the |elements_kind|) and return
1140 : // it as a tagged value. Assumes that the |index| passed a length
1141 : // check before. Bails out to |if_accessor| if the element that
1142 : // was found is an accessor, or to |if_hole| if the element at
1143 : // the given |index| is not found in |elements|.
1144 : TNode<Object> LoadFixedArrayBaseElementAsTagged(
1145 : TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
1146 : TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
1147 :
1148 : // Load a feedback slot from a FeedbackVector.
1149 : TNode<MaybeObject> LoadFeedbackVectorSlot(
1150 : Node* object, Node* index, int additional_offset = 0,
1151 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1152 :
1153 : TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
1154 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1155 : TNode<Smi> index,
1156 : Label* if_hole = nullptr);
1157 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1158 : TNode<IntPtrT> index,
1159 : Label* if_hole = nullptr);
1160 :
1161 : // Load Float64 value by |base| + |offset| address. If the value is a double
1162 : // hole then jump to |if_hole|. If |machine_type| is None then only the hole
1163 : // check is generated.
1164 : TNode<Float64T> LoadDoubleWithHoleCheck(
1165 : SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
1166 : MachineType machine_type = MachineType::Float64());
1167 : TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
1168 : TNode<FixedTypedArrayBase> typed_array);
1169 : TNode<RawPtrT> LoadFixedTypedArrayOnHeapBackingStore(
1170 : TNode<FixedTypedArrayBase> typed_array);
1171 : Node* LoadFixedTypedArrayElementAsTagged(
1172 : Node* data_pointer, Node* index_node, ElementsKind elements_kind,
1173 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1174 : TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
1175 : TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
1176 : // Parts of the above, factored out for readability:
1177 : Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
1178 : Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
1179 : Node* offset);
1180 : // 64-bit platforms only:
1181 : TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value);
1182 : TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value);
1183 : // 32-bit platforms only:
1184 : TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high);
1185 : TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high);
1186 :
1187 : void StoreFixedTypedArrayElementFromTagged(
1188 : TNode<Context> context, TNode<FixedTypedArrayBase> elements,
1189 : TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
1190 : ParameterMode parameter_mode);
1191 :
1192 : // Context manipulation
1193 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1194 : int slot_index);
1195 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1196 : SloppyTNode<IntPtrT> slot_index);
1197 : TNode<Object> LoadContextElement(TNode<Context> context,
1198 : TNode<Smi> slot_index);
1199 : void StoreContextElement(SloppyTNode<Context> context, int slot_index,
1200 : SloppyTNode<Object> value);
1201 : void StoreContextElement(SloppyTNode<Context> context,
1202 : SloppyTNode<IntPtrT> slot_index,
1203 : SloppyTNode<Object> value);
1204 : void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
1205 : int slot_index,
1206 : SloppyTNode<Object> value);
1207 : TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
1208 : // Calling this is only valid if there's a module context in the chain.
1209 : TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
1210 :
1211 : void GotoIfContextElementEqual(Node* value, Node* native_context,
1212 : int slot_index, Label* if_equal) {
1213 : GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
1214 : if_equal);
1215 : }
1216 :
1217 : TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
1218 : SloppyTNode<Context> native_context);
1219 : TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
1220 : SloppyTNode<Context> native_context);
1221 :
1222 : TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
1223 : TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
1224 : void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
1225 : TNode<Map> map, Label* runtime);
1226 : // Load the "prototype" property of a JSFunction.
1227 : Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
1228 :
1229 : TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray(
1230 : SloppyTNode<SharedFunctionInfo> shared);
1231 :
1232 : void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
1233 : TNode<Word32T> value);
1234 :
1235 : // Store the floating point value of a HeapNumber.
1236 : void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
1237 : SloppyTNode<Float64T> value);
1238 : void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
1239 : SloppyTNode<Float64T> value);
1240 : // Store a field to an object on the heap.
1241 : void StoreObjectField(Node* object, int offset, Node* value);
1242 : void StoreObjectField(Node* object, Node* offset, Node* value);
1243 : void StoreObjectFieldNoWriteBarrier(
1244 : Node* object, int offset, Node* value,
1245 : MachineRepresentation rep = MachineRepresentation::kTagged);
1246 : void StoreObjectFieldNoWriteBarrier(
1247 : Node* object, Node* offset, Node* value,
1248 : MachineRepresentation rep = MachineRepresentation::kTagged);
1249 :
1250 : template <class T = Object>
1251 672 : void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
1252 : TNode<IntPtrT> offset, TNode<T> value) {
1253 672 : StoreObjectFieldNoWriteBarrier(object, offset, value,
1254 : MachineRepresentationOf<T>::value);
1255 672 : }
1256 : template <class T = Object>
1257 14916 : void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset,
1258 : TNode<T> value) {
1259 14916 : StoreObjectFieldNoWriteBarrier(object, offset, value,
1260 : MachineRepresentationOf<T>::value);
1261 14916 : }
1262 :
1263 : // Store the Map of an HeapObject.
1264 : void StoreMap(Node* object, Node* map);
1265 : void StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index);
1266 : void StoreMapNoWriteBarrier(Node* object, Node* map);
1267 : void StoreObjectFieldRoot(Node* object, int offset, RootIndex root);
1268 : // Store an array element to a FixedArray.
1269 20428 : void StoreFixedArrayElement(
1270 : TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1271 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1272 : CheckBounds check_bounds = CheckBounds::kAlways) {
1273 40856 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1274 : barrier_mode, 0, INTPTR_PARAMETERS,
1275 40856 : check_bounds);
1276 : }
1277 : // This doesn't emit a bounds-check. As part of the security-performance
1278 : // tradeoff, only use it if it is performance critical.
1279 2800 : void UnsafeStoreFixedArrayElement(
1280 : TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1281 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1282 : return StoreFixedArrayElement(object, index, value, barrier_mode,
1283 2800 : CheckBounds::kDebugOnly);
1284 : }
1285 3184 : void StoreFixedArrayElement(TNode<FixedArray> object, int index,
1286 : TNode<Smi> value,
1287 : CheckBounds check_bounds = CheckBounds::kAlways) {
1288 6368 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1289 : SKIP_WRITE_BARRIER, 0, INTPTR_PARAMETERS,
1290 6368 : check_bounds);
1291 : }
1292 : // This doesn't emit a bounds-check. As part of the security-performance
1293 : // tradeoff, only use it if it is performance critical.
1294 1456 : void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index,
1295 : TNode<Smi> value) {
1296 : return StoreFixedArrayElement(object, index, value,
1297 1456 : CheckBounds::kDebugOnly);
1298 : }
1299 :
1300 : void StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
1301 : void StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);
1302 :
1303 : void StoreFixedArrayOrPropertyArrayElement(
1304 : Node* array, Node* index, Node* value,
1305 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1306 : int additional_offset = 0,
1307 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1308 :
1309 38700 : void StoreFixedArrayElement(
1310 : TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1311 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1312 : int additional_offset = 0,
1313 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1314 : CheckBounds check_bounds = CheckBounds::kAlways) {
1315 38700 : if (NeedsBoundsCheck(check_bounds)) {
1316 33380 : FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
1317 : }
1318 16784 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1319 38700 : additional_offset, parameter_mode);
1320 38700 : }
1321 :
1322 : // This doesn't emit a bounds-check. As part of the security-performance
1323 : // tradeoff, only use it if it is performance critical.
1324 1064 : void UnsafeStoreFixedArrayElement(
1325 : TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1326 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1327 : int additional_offset = 0,
1328 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1329 : return StoreFixedArrayElement(array, index, value, barrier_mode,
1330 : additional_offset, parameter_mode,
1331 1064 : CheckBounds::kDebugOnly);
1332 : }
1333 :
1334 728 : void StorePropertyArrayElement(
1335 : TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
1336 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1337 : int additional_offset = 0,
1338 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1339 728 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1340 728 : additional_offset, parameter_mode);
1341 728 : }
1342 :
1343 2184 : void StoreFixedArrayElementSmi(
1344 : TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
1345 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1346 4368 : StoreFixedArrayElement(array, index, value, barrier_mode, 0,
1347 2184 : SMI_PARAMETERS);
1348 2184 : }
1349 896 : void StoreFixedArrayElement(TNode<FixedArray> array, TNode<IntPtrT> index,
1350 : TNode<Smi> value) {
1351 896 : StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0);
1352 896 : }
1353 336 : void StoreFixedArrayElement(TNode<FixedArray> array, TNode<Smi> index,
1354 : TNode<Smi> value) {
1355 672 : StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0,
1356 336 : SMI_PARAMETERS);
1357 336 : }
1358 :
1359 : void StoreFixedDoubleArrayElement(
1360 : TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1361 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1362 : CheckBounds check_bounds = CheckBounds::kAlways);
1363 : // This doesn't emit a bounds-check. As part of the security-performance
1364 : // tradeoff, only use it if it is performance critical.
1365 : void UnsafeStoreFixedDoubleArrayElement(
1366 : TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1367 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1368 : return StoreFixedDoubleArrayElement(object, index, value, parameter_mode,
1369 : CheckBounds::kDebugOnly);
1370 : }
1371 :
1372 392 : void StoreFixedDoubleArrayElementSmi(TNode<FixedDoubleArray> object,
1373 : TNode<Smi> index,
1374 : TNode<Float64T> value) {
1375 392 : StoreFixedDoubleArrayElement(object, index, value, SMI_PARAMETERS);
1376 392 : }
1377 :
1378 : void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, Node* index,
1379 : ParameterMode mode = INTPTR_PARAMETERS);
1380 56 : void StoreFixedDoubleArrayHoleSmi(TNode<FixedDoubleArray> array,
1381 : TNode<Smi> index) {
1382 56 : StoreFixedDoubleArrayHole(array, index, SMI_PARAMETERS);
1383 56 : }
1384 :
1385 : void StoreFeedbackVectorSlot(
1386 : Node* object, Node* index, Node* value,
1387 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1388 : int additional_offset = 0,
1389 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1390 :
1391 : void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);
1392 :
1393 : // EnsureArrayPushable verifies that receiver with this map is:
1394 : // 1. Is not a prototype.
1395 : // 2. Is not a dictionary.
1396 : // 3. Has a writeable length property.
1397 : // It returns ElementsKind as a node for further division into cases.
1398 : TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);
1399 :
1400 : void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
1401 : Label* bailout, Node* elements, Node* index,
1402 : Node* value);
1403 : // Consumes args into the array, and returns tagged new length.
1404 : TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
1405 : CodeStubArguments* args,
1406 : TVariable<IntPtrT>* arg_index, Label* bailout);
1407 : // Pushes value onto the end of array.
1408 : void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
1409 : Label* bailout);
1410 :
1411 : void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
1412 : Node* value);
1413 :
1414 : Node* AllocateCellWithValue(Node* value,
1415 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1416 : Node* AllocateSmiCell(int value = 0) {
1417 : return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
1418 : }
1419 :
1420 : Node* LoadCellValue(Node* cell);
1421 :
1422 : void StoreCellValue(Node* cell, Node* value,
1423 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1424 :
1425 : // Allocate a HeapNumber without initializing its value.
1426 : TNode<HeapNumber> AllocateHeapNumber();
1427 : // Allocate a HeapNumber with a specific value.
1428 : TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
1429 : TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
1430 : return AllocateHeapNumberWithValue(Float64Constant(value));
1431 : }
1432 :
1433 : // Allocate a MutableHeapNumber with a specific value.
1434 : TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
1435 : SloppyTNode<Float64T> value);
1436 :
1437 : // Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
1438 : // Does not initialize the digits.
1439 : TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
1440 : // Like above, but allowing custom bitfield initialization.
1441 : TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
1442 : void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield);
1443 : void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
1444 : TNode<UintPtrT> digit);
1445 : TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint);
1446 : TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
1447 :
1448 : // Allocate a SeqOneByteString with the given length.
1449 : TNode<String> AllocateSeqOneByteString(uint32_t length,
1450 : AllocationFlags flags = kNone);
1451 : TNode<String> AllocateSeqOneByteString(Node* context, TNode<Uint32T> length,
1452 : AllocationFlags flags = kNone);
1453 : // Allocate a SeqTwoByteString with the given length.
1454 : TNode<String> AllocateSeqTwoByteString(uint32_t length,
1455 : AllocationFlags flags = kNone);
1456 : TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Uint32T> length,
1457 : AllocationFlags flags = kNone);
1458 :
1459 : // Allocate a SlicedOneByteString with the given length, parent and offset.
1460 : // |length| and |offset| are expected to be tagged.
1461 :
1462 : TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length,
1463 : TNode<String> parent,
1464 : TNode<Smi> offset);
1465 : // Allocate a SlicedTwoByteString with the given length, parent and offset.
1466 : // |length| and |offset| are expected to be tagged.
1467 : TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length,
1468 : TNode<String> parent,
1469 : TNode<Smi> offset);
1470 :
1471 : // Allocate an appropriate one- or two-byte ConsString with the first and
1472 : // second parts specified by |left| and |right|.
1473 : TNode<String> AllocateConsString(TNode<Uint32T> length, TNode<String> left,
1474 : TNode<String> right, Variable* var_feedback);
1475 :
1476 : TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
1477 : TNode<NameDictionary> AllocateNameDictionary(
1478 : TNode<IntPtrT> at_least_space_for);
1479 : TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
1480 : TNode<IntPtrT> capacity);
1481 : TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
1482 : Label* large_object_fallback);
1483 :
1484 : template <typename CollectionType>
1485 : Node* AllocateOrderedHashTable();
1486 :
1487 : // Builds code that finds OrderedHashTable entry for a key with hash code
1488 : // {hash} with using the comparison code generated by {key_compare}. The code
1489 : // jumps to {entry_found} if the key is found, or to {not_found} if the key
1490 : // was not found. In the {entry_found} branch, the variable
1491 : // entry_start_position will be bound to the index of the entry (relative to
1492 : // OrderedHashTable::kHashTableStartIndex).
1493 : //
1494 : // The {CollectionType} template parameter stands for the particular instance
1495 : // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
1496 : template <typename CollectionType>
1497 : void FindOrderedHashTableEntry(
1498 : Node* table, Node* hash,
1499 : const std::function<void(Node*, Label*, Label*)>& key_compare,
1500 : Variable* entry_start_position, Label* entry_found, Label* not_found);
1501 :
1502 : template <typename CollectionType>
1503 : TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);
1504 :
1505 : Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
1506 : void InitializeStructBody(Node* object, Node* map, Node* size,
1507 : int start_offset = Struct::kHeaderSize);
1508 :
1509 : Node* AllocateJSObjectFromMap(
1510 : Node* map, Node* properties = nullptr, Node* elements = nullptr,
1511 : AllocationFlags flags = kNone,
1512 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1513 :
1514 : void InitializeJSObjectFromMap(
1515 : Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
1516 : Node* elements = nullptr,
1517 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1518 :
1519 : void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
1520 : Node* instance_size);
1521 : void InitializeJSObjectBodyNoSlackTracking(
1522 : Node* object, Node* map, Node* instance_size,
1523 : int start_offset = JSObject::kHeaderSize);
1524 :
1525 : TNode<BoolT> IsValidFastJSArrayCapacity(Node* capacity,
1526 : ParameterMode capacity_mode);
1527 :
1528 : //
1529 : // Allocate and return a JSArray with initialized header fields and its
1530 : // uninitialized elements.
1531 : // The ParameterMode argument is only used for the capacity parameter.
1532 : std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
1533 : AllocateUninitializedJSArrayWithElements(
1534 : ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
1535 : Node* allocation_site, Node* capacity,
1536 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1537 : AllocationFlags allocation_flags = kNone);
1538 :
1539 : // Allocate a JSArray and fill elements with the hole.
1540 : // The ParameterMode argument is only used for the capacity parameter.
1541 : TNode<JSArray> AllocateJSArray(
1542 : ElementsKind kind, TNode<Map> array_map, Node* capacity,
1543 : TNode<Smi> length, Node* allocation_site = nullptr,
1544 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1545 : AllocationFlags allocation_flags = kNone);
1546 :
1547 224 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1548 : TNode<Smi> capacity, TNode<Smi> length) {
1549 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1550 224 : SMI_PARAMETERS);
1551 : }
1552 :
1553 336 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1554 : TNode<IntPtrT> capacity, TNode<Smi> length) {
1555 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1556 336 : INTPTR_PARAMETERS);
1557 : }
1558 :
1559 : // Allocate a JSArray and initialize the header fields.
1560 : TNode<JSArray> AllocateJSArray(TNode<Map> array_map,
1561 : TNode<FixedArrayBase> elements,
1562 : TNode<Smi> length,
1563 : Node* allocation_site = nullptr);
1564 :
1565 : enum class HoleConversionMode { kDontConvert, kConvertToUndefined };
1566 : // Clone a fast JSArray |array| into a new fast JSArray.
1567 : // |convert_holes| tells the function to convert holes into undefined or not.
1568 : // If |convert_holes| is set to kConvertToUndefined, but the function did not
1569 : // find any hole in |array|, the resulting array will have the same elements
1570 : // kind as |array|. If the function did find a hole, it will convert holes in
1571 : // |array| to undefined in the resulting array, who will now have
1572 : // PACKED_ELEMENTS kind.
1573 : // If |convert_holes| is set kDontConvert, holes are also copied to the
1574 : // resulting array, who will have the same elements kind as |array|. The
1575 : // function generates significantly less code in this case.
1576 : Node* CloneFastJSArray(
1577 : Node* context, Node* array, ParameterMode mode = INTPTR_PARAMETERS,
1578 : Node* allocation_site = nullptr,
1579 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert);
1580 :
1581 : Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
1582 : ParameterMode mode = INTPTR_PARAMETERS,
1583 : Node* capacity = nullptr,
1584 : Node* allocation_site = nullptr);
1585 :
1586 : TNode<FixedArrayBase> AllocateFixedArray(
1587 : ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
1588 : AllocationFlags flags = kNone,
1589 : SloppyTNode<Map> fixed_array_map = nullptr);
1590 :
1591 1848 : TNode<FixedArrayBase> AllocateFixedArray(
1592 : ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
1593 : SloppyTNode<Map> fixed_array_map = nullptr) {
1594 : return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
1595 2304 : fixed_array_map);
1596 : }
1597 :
1598 56 : TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) {
1599 : return UncheckedCast<FixedArray>(AllocateFixedArray(
1600 56 : PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone));
1601 : }
1602 :
1603 1016 : TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
1604 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1605 : AllocateFixedArray(PACKED_ELEMENTS, capacity,
1606 560 : AllocationFlag::kAllowLargeObjectAllocation));
1607 1016 : FillFixedArrayWithSmiZero(result, capacity);
1608 1016 : return result;
1609 : }
1610 :
1611 56 : TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
1612 : TNode<IntPtrT> capacity) {
1613 : TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1614 : AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity,
1615 56 : AllocationFlag::kAllowLargeObjectAllocation));
1616 56 : FillFixedDoubleArrayWithZero(result, capacity);
1617 56 : return result;
1618 : }
1619 :
1620 336 : TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity,
1621 : AllocationFlags flags) {
1622 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1623 336 : AllocateFixedArray(PACKED_ELEMENTS, capacity, flags));
1624 672 : FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0),
1625 336 : capacity, RootIndex::kTheHoleValue);
1626 336 : return result;
1627 : }
1628 :
1629 112 : TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles(
1630 : TNode<IntPtrT> capacity, AllocationFlags flags) {
1631 : TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1632 112 : AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags));
1633 224 : FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0),
1634 112 : capacity, RootIndex::kTheHoleValue);
1635 112 : return result;
1636 : }
1637 :
1638 : Node* AllocatePropertyArray(Node* capacity,
1639 : ParameterMode mode = INTPTR_PARAMETERS,
1640 : AllocationFlags flags = kNone);
1641 :
1642 : // Perform CreateArrayIterator (ES #sec-createarrayiterator).
1643 : TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
1644 : TNode<Object> object,
1645 : IterationKind mode);
1646 :
1647 : Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
1648 : Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
1649 :
1650 : TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context,
1651 : TNode<Object> originalArray,
1652 : TNode<Number> len);
1653 :
1654 : void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
1655 : Node* to_index, RootIndex value_root_index,
1656 : ParameterMode mode = INTPTR_PARAMETERS);
1657 :
1658 : // Uses memset to effectively initialize the given FixedArray with zeroes.
1659 : void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
1660 : TNode<IntPtrT> length);
1661 : void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
1662 : TNode<IntPtrT> length);
1663 :
1664 : void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
1665 : Node* to_index,
1666 : ParameterMode mode = INTPTR_PARAMETERS);
1667 :
1668 : enum class DestroySource { kNo, kYes };
1669 :
1670 : // Specify DestroySource::kYes if {from_array} is being supplanted by
1671 : // {to_array}. This offers a slight performance benefit by simply copying the
1672 : // array word by word. The source may be destroyed at the end of this macro.
1673 : //
1674 : // Otherwise, specify DestroySource::kNo for operations where an Object is
1675 : // being cloned, to ensure that MutableHeapNumbers are unique between the
1676 : // source and cloned object.
1677 : void CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* length,
1678 : WriteBarrierMode barrier_mode,
1679 : ParameterMode mode,
1680 : DestroySource destroy_source);
1681 :
1682 : // Copies all elements from |from_array| of |length| size to
1683 : // |to_array| of the same size respecting the elements kind.
1684 336 : void CopyFixedArrayElements(
1685 : ElementsKind kind, Node* from_array, Node* to_array, Node* length,
1686 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1687 : ParameterMode mode = INTPTR_PARAMETERS) {
1688 336 : CopyFixedArrayElements(kind, from_array, kind, to_array,
1689 : IntPtrOrSmiConstant(0, mode), length, length,
1690 336 : barrier_mode, mode);
1691 336 : }
1692 :
1693 : // Copies |element_count| elements from |from_array| starting from element
1694 : // zero to |to_array| of |capacity| size respecting both array's elements
1695 : // kinds.
1696 5636 : void CopyFixedArrayElements(
1697 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1698 : Node* to_array, Node* element_count, Node* capacity,
1699 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1700 : ParameterMode mode = INTPTR_PARAMETERS) {
1701 5636 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1702 : IntPtrOrSmiConstant(0, mode), element_count,
1703 5636 : capacity, barrier_mode, mode);
1704 5636 : }
1705 :
1706 : // Copies |element_count| elements from |from_array| starting from element
1707 : // |first_element| to |to_array| of |capacity| size respecting both array's
1708 : // elements kinds.
1709 : // |convert_holes| tells the function whether to convert holes to undefined.
1710 : // |var_holes_converted| can be used to signify that the conversion happened
1711 : // (i.e. that there were holes). If |convert_holes_to_undefined| is
1712 : // HoleConversionMode::kConvertToUndefined, then it must not be the case that
1713 : // IsDoubleElementsKind(to_kind).
1714 : void CopyFixedArrayElements(
1715 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1716 : Node* to_array, Node* first_element, Node* element_count, Node* capacity,
1717 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1718 : ParameterMode mode = INTPTR_PARAMETERS,
1719 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1720 : TVariable<BoolT>* var_holes_converted = nullptr);
1721 :
1722 : void CopyFixedArrayElements(
1723 : ElementsKind from_kind, TNode<FixedArrayBase> from_array,
1724 : ElementsKind to_kind, TNode<FixedArrayBase> to_array,
1725 : TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
1726 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1727 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1728 : first_element, element_count, capacity, barrier_mode,
1729 : SMI_PARAMETERS);
1730 : }
1731 :
1732 : void JumpIfPointersFromHereAreInteresting(TNode<Object> object,
1733 : Label* interesting);
1734 :
1735 : // Efficiently copy elements within a single array. The regions
1736 : // [src_index, src_index + length) and [dst_index, dst_index + length)
1737 : // can be overlapping.
1738 : void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements,
1739 : TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index,
1740 : TNode<IntPtrT> length);
1741 :
1742 : // Efficiently copy elements from one array to another. The ElementsKind
1743 : // needs to be the same. Copy from src_elements at
1744 : // [src_index, src_index + length) to dst_elements at
1745 : // [dst_index, dst_index + length).
1746 : // The function decides whether it can use memcpy. In case it cannot,
1747 : // |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is
1748 : // only safe when copying to new space, or when copying to old space and the
1749 : // array does not contain object pointers.
1750 : void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements,
1751 : TNode<IntPtrT> dst_index,
1752 : TNode<FixedArrayBase> src_elements,
1753 : TNode<IntPtrT> src_index, TNode<IntPtrT> length,
1754 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER);
1755 :
1756 : TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
1757 : Label* cast_fail);
1758 :
1759 1008 : TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
1760 : Label* cast_fail) {
1761 2016 : GotoIf(
1762 2016 : WordNotEqual(LoadMap(base), LoadRoot(RootIndex::kFixedDoubleArrayMap)),
1763 1008 : cast_fail);
1764 1008 : return UncheckedCast<FixedDoubleArray>(base);
1765 : }
1766 :
1767 56 : TNode<SloppyArgumentsElements> HeapObjectToSloppyArgumentsElements(
1768 : TNode<HeapObject> base, Label* cast_fail) {
1769 112 : GotoIf(WordNotEqual(LoadMap(base),
1770 112 : LoadRoot(RootIndex::kSloppyArgumentsElementsMap)),
1771 56 : cast_fail);
1772 56 : return UncheckedCast<SloppyArgumentsElements>(base);
1773 : }
1774 :
1775 56 : TNode<Int32T> ConvertElementsKindToInt(TNode<Int32T> elements_kind) {
1776 56 : return UncheckedCast<Int32T>(elements_kind);
1777 : }
1778 :
1779 : enum class ExtractFixedArrayFlag {
1780 : kFixedArrays = 1,
1781 : kFixedDoubleArrays = 2,
1782 : kDontCopyCOW = 4,
1783 : kNewSpaceAllocationOnly = 8,
1784 : kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
1785 : kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
1786 : };
1787 :
1788 : typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
1789 :
1790 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1791 : // array, including special appropriate handling for empty arrays and COW
1792 : // arrays. The result array will be of the same type as the original array.
1793 : //
1794 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1795 : // elements.
1796 : // * |first| is the starting element index to copy from, if nullptr is passed
1797 : // then index zero is used by default.
1798 : // * |count| is the number of elements to copy out of the source array
1799 : // starting from and including the element indexed by |start|. If |count| is
1800 : // nullptr, then all of the elements from |start| to the end of |source| are
1801 : // copied.
1802 : // * |capacity| determines the size of the allocated result array, with
1803 : // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
1804 : // the destination array's capacity.
1805 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1806 : // are detected and copied. Although it's always correct to pass
1807 : // kAllFixedArrays, the generated code is more compact and efficient if the
1808 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1809 : // passed as the |source| parameter.
1810 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1811 : // |capacity|.
1812 : // * If |var_holes_converted| is given, any holes will be converted to
1813 : // undefined and the variable will be set according to whether or not there
1814 : // were any hole.
1815 : // * If |source_elements_kind| is given, the function will try to use the
1816 : // runtime elements kind of source to make copy faster. More specifically, it
1817 : // can skip write barriers.
1818 : TNode<FixedArrayBase> ExtractFixedArray(
1819 : Node* source, Node* first, Node* count = nullptr,
1820 : Node* capacity = nullptr,
1821 : ExtractFixedArrayFlags extract_flags =
1822 : ExtractFixedArrayFlag::kAllFixedArrays,
1823 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1824 : TVariable<BoolT>* var_holes_converted = nullptr,
1825 : Node* source_elements_kind = nullptr);
1826 :
1827 560 : TNode<FixedArrayBase> ExtractFixedArray(
1828 : TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
1829 : TNode<Smi> capacity,
1830 : ExtractFixedArrayFlags extract_flags =
1831 : ExtractFixedArrayFlag::kAllFixedArrays) {
1832 : return ExtractFixedArray(source, first, count, capacity, extract_flags,
1833 560 : SMI_PARAMETERS);
1834 : }
1835 :
1836 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1837 : // FixedArray, including special appropriate handling for COW arrays.
1838 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1839 : // elements. |source| is assumed to be non-empty.
1840 : // * |first| is the starting element index to copy from.
1841 : // * |count| is the number of elements to copy out of the source array
1842 : // starting from and including the element indexed by |start|.
1843 : // * |capacity| determines the size of the allocated result array, with
1844 : // |capacity| >= |count|.
1845 : // * |source_map| is the map of the |source|.
1846 : // * |from_kind| is the elements kind that is consistent with |source| being
1847 : // a FixedArray or FixedDoubleArray. This function only cares about double vs.
1848 : // non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does
1849 : // not care about holeyness. For example, when |source| is a FixedArray,
1850 : // PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS.
1851 : // * |allocation_flags| and |extract_flags| influence how the target
1852 : // FixedArray is allocated.
1853 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1854 : // |capacity|.
1855 : // * |convert_holes| is used to signify that the target array should use
1856 : // undefined in places of holes.
1857 : // * If |convert_holes| is true and |var_holes_converted| not nullptr, then
1858 : // |var_holes_converted| is used to signal whether any holes were found and
1859 : // converted. The caller should use this information to decide which map is
1860 : // compatible with the result array. For example, if the input was of
1861 : // HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be
1862 : // compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS.
1863 : TNode<FixedArray> ExtractToFixedArray(
1864 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1865 : ElementsKind from_kind = PACKED_ELEMENTS,
1866 : AllocationFlags allocation_flags = AllocationFlag::kNone,
1867 : ExtractFixedArrayFlags extract_flags =
1868 : ExtractFixedArrayFlag::kAllFixedArrays,
1869 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1870 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1871 : TVariable<BoolT>* var_holes_converted = nullptr,
1872 : Node* source_runtime_kind = nullptr);
1873 :
1874 : // Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case
1875 : // where the source array has a hole, produce a FixedArray instead where holes
1876 : // are replaced with undefined.
1877 : // * |source| is a FixedDoubleArray from which to copy elements.
1878 : // * |first| is the starting element index to copy from.
1879 : // * |count| is the number of elements to copy out of the source array
1880 : // starting from and including the element indexed by |start|.
1881 : // * |capacity| determines the size of the allocated result array, with
1882 : // |capacity| >= |count|.
1883 : // * |source_map| is the map of |source|. It will be used as the map of the
1884 : // target array if the target can stay a FixedDoubleArray. Otherwise if the
1885 : // target array needs to be a FixedArray, the FixedArrayMap will be used.
1886 : // * |var_holes_converted| is used to signal whether a FixedAray
1887 : // is produced or not.
1888 : // * |allocation_flags| and |extract_flags| influence how the target array is
1889 : // allocated.
1890 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1891 : // |capacity|.
1892 : TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles(
1893 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1894 : TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags,
1895 : ExtractFixedArrayFlags extract_flags =
1896 : ExtractFixedArrayFlag::kAllFixedArrays,
1897 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1898 :
1899 : // Copy the entire contents of a FixedArray or FixedDoubleArray to a new
1900 : // array, including special appropriate handling for empty arrays and COW
1901 : // arrays.
1902 : //
1903 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1904 : // elements.
1905 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1906 : // are detected and copied. Although it's always correct to pass
1907 : // kAllFixedArrays, the generated code is more compact and efficient if the
1908 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1909 : // passed as the |source| parameter.
1910 348 : Node* CloneFixedArray(Node* source,
1911 : ExtractFixedArrayFlags flags =
1912 : ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
1913 336 : ParameterMode mode = OptimalParameterMode();
1914 696 : return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
1915 1032 : nullptr, flags, mode);
1916 : }
1917 :
1918 : // Copies |character_count| elements from |from_string| to |to_string|
1919 : // starting at the |from_index|'th character. |from_string| and |to_string|
1920 : // can either be one-byte strings or two-byte strings, although if
1921 : // |from_string| is two-byte, then |to_string| must be two-byte.
1922 : // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
1923 : // |from_index| <= |from_index| + |character_count| <= from_string.length and
1924 : // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
1925 : void CopyStringCharacters(Node* from_string, Node* to_string,
1926 : TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
1927 : TNode<IntPtrT> character_count,
1928 : String::Encoding from_encoding,
1929 : String::Encoding to_encoding);
1930 :
1931 : // Loads an element from |array| of |from_kind| elements by given |offset|
1932 : // (NOTE: not index!), does a hole check if |if_hole| is provided and
1933 : // converts the value so that it becomes ready for storing to array of
1934 : // |to_kind| elements.
1935 : Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
1936 : ElementsKind from_kind,
1937 : ElementsKind to_kind, Label* if_hole);
1938 :
1939 : Node* CalculateNewElementsCapacity(Node* old_capacity,
1940 : ParameterMode mode = INTPTR_PARAMETERS);
1941 :
1942 112 : TNode<Smi> CalculateNewElementsCapacity(TNode<Smi> old_capacity) {
1943 112 : return CAST(CalculateNewElementsCapacity(old_capacity, SMI_PARAMETERS));
1944 : }
1945 :
1946 : // Tries to grow the |elements| array of given |object| to store the |key|
1947 : // or bails out if the growing gap is too big. Returns new elements.
1948 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1949 : Node* key, Label* bailout);
1950 :
1951 : // Tries to grow the |capacity|-length |elements| array of given |object|
1952 : // to store the |key| or bails out if the growing gap is too big. Returns
1953 : // new elements.
1954 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1955 : Node* key, Node* capacity, ParameterMode mode,
1956 : Label* bailout);
1957 :
1958 : // Grows elements capacity of given object. Returns new elements.
1959 : Node* GrowElementsCapacity(Node* object, Node* elements,
1960 : ElementsKind from_kind, ElementsKind to_kind,
1961 : Node* capacity, Node* new_capacity,
1962 : ParameterMode mode, Label* bailout);
1963 :
1964 : // Given a need to grow by |growth|, allocate an appropriate new capacity
1965 : // if necessary, and return a new elements FixedArray object. Label |bailout|
1966 : // is followed for allocation failure.
1967 : void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
1968 : Node* array, Node* length,
1969 : Variable* var_elements, Node* growth,
1970 : Label* bailout);
1971 :
1972 : // Allocation site manipulation
1973 : void InitializeAllocationMemento(Node* base_allocation,
1974 : Node* base_allocation_size,
1975 : Node* allocation_site);
1976 :
1977 : Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
1978 : Node* TruncateTaggedToFloat64(Node* context, Node* value);
1979 : Node* TruncateTaggedToWord32(Node* context, Node* value);
1980 : void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
1981 : Variable* var_word32, Label* if_bigint,
1982 : Variable* var_bigint);
1983 : void TaggedToWord32OrBigIntWithFeedback(
1984 : Node* context, Node* value, Label* if_number, Variable* var_word32,
1985 : Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
1986 :
1987 : // Truncate the floating point value of a HeapNumber to an Int32.
1988 : Node* TruncateHeapNumberValueToWord32(Node* object);
1989 :
1990 : // Conversions.
1991 : void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
1992 : Label* if_smi);
1993 : void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
1994 : Label* if_smi);
1995 : TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
1996 : TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
1997 : TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
1998 : TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value);
1999 : TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
2000 : TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
2001 : TNode<UintPtrT> TryNumberToUintPtr(TNode<Number> value, Label* if_negative);
2002 280 : TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value) {
2003 280 : return TryNumberToUintPtr(value, nullptr);
2004 : }
2005 :
2006 : void TaggedToNumeric(Node* context, Node* value, Label* done,
2007 : Variable* var_numeric);
2008 : void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
2009 : Variable* var_numeric,
2010 : Variable* var_feedback);
2011 :
2012 : TNode<WordT> TimesSystemPointerSize(SloppyTNode<WordT> value);
2013 448 : TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) {
2014 896 : return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
2015 : }
2016 : TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) {
2017 : return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
2018 : }
2019 :
2020 : TNode<WordT> TimesTaggedSize(SloppyTNode<WordT> value);
2021 5912 : TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) {
2022 11824 : return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
2023 : }
2024 504 : TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) {
2025 1008 : return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
2026 : }
2027 :
2028 : TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
2029 : TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
2030 : return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
2031 : }
2032 56 : TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
2033 112 : return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
2034 : }
2035 :
2036 : // Type conversions.
2037 : // Throws a TypeError for {method_name} if {value} is not coercible to Object,
2038 : // or returns the {value} converted to a String otherwise.
2039 : TNode<String> ToThisString(TNode<Context> context, TNode<Object> value,
2040 : TNode<String> method_name);
2041 784 : TNode<String> ToThisString(TNode<Context> context, TNode<Object> value,
2042 : char const* method_name) {
2043 784 : return ToThisString(context, value, StringConstant(method_name));
2044 : }
2045 :
2046 : // Throws a TypeError for {method_name} if {value} is neither of the given
2047 : // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
2048 : // returns the {value} (or wrapped value) otherwise.
2049 : Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
2050 : char const* method_name);
2051 :
2052 : // Throws a TypeError for {method_name} if {value} is not of the given
2053 : // instance type. Returns {value}'s map.
2054 : Node* ThrowIfNotInstanceType(Node* context, Node* value,
2055 : InstanceType instance_type,
2056 : char const* method_name);
2057 : // Throws a TypeError for {method_name} if {value} is not a JSReceiver.
2058 : // Returns the {value}'s map.
2059 : Node* ThrowIfNotJSReceiver(Node* context, Node* value,
2060 : MessageTemplate msg_template,
2061 : const char* method_name = nullptr);
2062 :
2063 : void ThrowRangeError(Node* context, MessageTemplate message,
2064 : Node* arg0 = nullptr, Node* arg1 = nullptr,
2065 : Node* arg2 = nullptr);
2066 : void ThrowTypeError(Node* context, MessageTemplate message,
2067 : char const* arg0 = nullptr, char const* arg1 = nullptr);
2068 : void ThrowTypeError(Node* context, MessageTemplate message, Node* arg0,
2069 : Node* arg1 = nullptr, Node* arg2 = nullptr);
2070 :
2071 : // Type checks.
2072 : // Check whether the map is for an object with special properties, such as a
2073 : // JSProxy or an object with interceptors.
2074 : TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
2075 : TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
2076 : TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
2077 : TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
2078 : TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
2079 : TNode<BoolT> IsNoElementsProtectorCellInvalid();
2080 : TNode<BoolT> IsArrayIteratorProtectorCellInvalid();
2081 : TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
2082 : TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
2083 : TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
2084 : TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
2085 : TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
2086 : TNode<BoolT> TaggedIsCallable(TNode<Object> object);
2087 : TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
2088 : TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
2089 : TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
2090 : TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
2091 : TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
2092 : TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
2093 : TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
2094 : TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
2095 : TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
2096 : TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map);
2097 : TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
2098 : TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
2099 : TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
2100 : TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
2101 : TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
2102 : TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
2103 : TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
2104 : ElementsKind kind);
2105 : TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
2106 : ElementsKind kind);
2107 : TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
2108 : TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
2109 : TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
2110 : TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
2111 : TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
2112 : TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
2113 : TNode<BoolT> IsHeapNumberInstanceType(SloppyTNode<Int32T> instance_type);
2114 : TNode<BoolT> IsOddball(SloppyTNode<HeapObject> object);
2115 : TNode<BoolT> IsOddballInstanceType(SloppyTNode<Int32T> instance_type);
2116 : TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
2117 : TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
2118 : TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
2119 : TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
2120 : TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
2121 : TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
2122 : TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
2123 : TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
2124 : TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
2125 : TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
2126 : TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
2127 : TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
2128 : TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
2129 : TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
2130 : TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
2131 : TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
2132 : TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
2133 : TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
2134 : TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
2135 : TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
2136 : TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
2137 : TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
2138 : TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
2139 : TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
2140 : TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
2141 : TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
2142 : TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
2143 : TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
2144 : TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
2145 : TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
2146 : TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
2147 : TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
2148 : TNode<BoolT> IsNameInstanceType(SloppyTNode<Int32T> instance_type);
2149 : TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
2150 : TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
2151 : TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
2152 : TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
2153 : TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
2154 : TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
2155 : TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
2156 : TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
2157 : TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
2158 : TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
2159 : TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
2160 : SloppyTNode<Map> map);
2161 : TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
2162 : SloppyTNode<Map> map);
2163 :
2164 : TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context,
2165 : TNode<Map> map);
2166 : TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context,
2167 : TNode<Map> map);
2168 : TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map);
2169 : TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map);
2170 :
2171 : TNode<BoolT> IsSequentialStringInstanceType(
2172 : SloppyTNode<Int32T> instance_type);
2173 : TNode<BoolT> IsUncachedExternalStringInstanceType(
2174 : SloppyTNode<Int32T> instance_type);
2175 : TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
2176 : TNode<BoolT> IsCustomElementsReceiverInstanceType(
2177 : TNode<Int32T> instance_type);
2178 : TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
2179 : // Returns true if the map corresponds to non-special fast or dictionary
2180 : // object.
2181 : TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
2182 : TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
2183 : TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
2184 : TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
2185 : TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
2186 : TNode<BoolT> IsInternalizedStringInstanceType(TNode<Int32T> instance_type);
2187 : TNode<BoolT> IsUniqueName(TNode<HeapObject> object);
2188 : TNode<BoolT> IsUniqueNameNoIndex(TNode<HeapObject> object);
2189 : TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
2190 : TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
2191 : TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);
2192 :
2193 : inline Node* IsSharedFunctionInfo(Node* object) {
2194 : return IsSharedFunctionInfoMap(LoadMap(object));
2195 : }
2196 :
2197 : TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
2198 : TNode<BoolT> IsPromiseThenProtectorCellInvalid();
2199 : TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
2200 : TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
2201 : TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid();
2202 : TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();
2203 :
2204 : TNode<BoolT> IsMockArrayBufferAllocatorFlag() {
2205 : TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load(
2206 : MachineType::Uint8(),
2207 : ExternalConstant(
2208 : ExternalReference::address_of_mock_arraybuffer_allocator_flag())));
2209 : return Word32NotEqual(Word32And(flag_value, Int32Constant(0xFF)),
2210 : Int32Constant(0));
2211 : }
2212 :
2213 : // True iff |object| is a Smi or a HeapNumber.
2214 : TNode<BoolT> IsNumber(SloppyTNode<Object> object);
2215 : // True iff |object| is a Smi or a HeapNumber or a BigInt.
2216 : TNode<BoolT> IsNumeric(SloppyTNode<Object> object);
2217 :
2218 : // True iff |number| is either a Smi, or a HeapNumber whose value is not
2219 : // within Smi range.
2220 : TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
2221 : TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
2222 : TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);
2223 :
2224 : // True iff {number} is non-negative and less or equal than 2**53-1.
2225 : TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);
2226 :
2227 : // True iff {number} represents an integer value.
2228 : TNode<BoolT> IsInteger(TNode<Object> number);
2229 : TNode<BoolT> IsInteger(TNode<HeapNumber> number);
2230 :
2231 : // True iff abs({number}) <= 2**53 -1
2232 : TNode<BoolT> IsSafeInteger(TNode<Object> number);
2233 : TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);
2234 :
2235 : // True iff {number} represents a valid uint32t value.
2236 : TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);
2237 :
2238 : // True iff {number} is a positive number and a valid array index in the range
2239 : // [0, 2^32-1).
2240 : TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);
2241 :
2242 : Node* FixedArraySizeDoesntFitInNewSpace(
2243 : Node* element_count, int base_size = FixedArray::kHeaderSize,
2244 : ParameterMode mode = INTPTR_PARAMETERS);
2245 :
2246 : // ElementsKind helpers:
2247 8120 : TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
2248 8120 : return Word32Equal(a, b);
2249 : }
2250 18816 : bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
2251 : Node* IsFastElementsKind(Node* elements_kind);
2252 0 : bool IsFastElementsKind(ElementsKind kind) {
2253 0 : return v8::internal::IsFastElementsKind(kind);
2254 : }
2255 : TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
2256 : return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
2257 : }
2258 : TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
2259 141328 : bool IsDoubleElementsKind(ElementsKind kind) {
2260 141328 : return v8::internal::IsDoubleElementsKind(kind);
2261 : }
2262 : Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
2263 : Node* IsFastSmiElementsKind(Node* elements_kind);
2264 : Node* IsHoleyFastElementsKind(Node* elements_kind);
2265 : Node* IsElementsKindGreaterThan(Node* target_kind,
2266 : ElementsKind reference_kind);
2267 : TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind,
2268 : ElementsKind reference_kind);
2269 :
2270 : // String helpers.
2271 : // Load a character from a String (might flatten a ConsString).
2272 : TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
2273 : SloppyTNode<IntPtrT> index);
2274 : // Return the single character string with only {code}.
2275 : TNode<String> StringFromSingleCharCode(TNode<Int32T> code);
2276 :
2277 : // Return a new string object which holds a substring containing the range
2278 : // [from,to[ of string.
2279 : TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
2280 : TNode<IntPtrT> to);
2281 :
2282 : // Return a new string object produced by concatenating |first| with |second|.
2283 : TNode<String> StringAdd(Node* context, TNode<String> first,
2284 : TNode<String> second,
2285 : Variable* var_feedback = nullptr);
2286 :
2287 : // Check if |string| is an indirect (thin or flat cons) string type that can
2288 : // be dereferenced by DerefIndirectString.
2289 : void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
2290 : Label* can_deref, Label* cannot_deref);
2291 : // Unpack an indirect (thin or flat cons) string type.
2292 : void DerefIndirectString(Variable* var_string, Node* instance_type);
2293 : // Check if |var_string| has an indirect (thin or flat cons) string type,
2294 : // and unpack it if so.
2295 : void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
2296 : Label* did_deref, Label* cannot_deref);
2297 : // Check if |var_left| or |var_right| has an indirect (thin or flat cons)
2298 : // string type, and unpack it/them if so. Fall through if nothing was done.
2299 : void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
2300 : Variable* var_right, Node* right_instance_type,
2301 : Label* did_something);
2302 : Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
2303 : Label* cannot_deref);
2304 :
2305 : TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
2306 : UnicodeEncoding encoding);
2307 :
2308 : // Type conversion helpers.
2309 : enum class BigIntHandling { kConvertToNumber, kThrow };
2310 : // Convert a String to a Number.
2311 : TNode<Number> StringToNumber(TNode<String> input);
2312 : // Convert a Number to a String.
2313 : TNode<String> NumberToString(TNode<Number> input);
2314 : // Convert a Non-Number object to a Number.
2315 : TNode<Number> NonNumberToNumber(
2316 : SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
2317 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2318 : // Convert a Non-Number object to a Numeric.
2319 : TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
2320 : SloppyTNode<HeapObject> input);
2321 : // Convert any object to a Number.
2322 : // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
2323 : // With {bigint_handling} == kConvertToNumber, matches behavior of
2324 : // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
2325 : TNode<Number> ToNumber(
2326 : SloppyTNode<Context> context, SloppyTNode<Object> input,
2327 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2328 : TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
2329 : SloppyTNode<Object> input);
2330 :
2331 : // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
2332 : // https://tc39.github.io/proposal-bigint/#sec-to-bigint
2333 : TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
2334 : SloppyTNode<Object> input);
2335 :
2336 : // Converts |input| to one of 2^32 integer values in the range 0 through
2337 : // 2^32-1, inclusive.
2338 : // ES#sec-touint32
2339 : TNode<Number> ToUint32(SloppyTNode<Context> context,
2340 : SloppyTNode<Object> input);
2341 :
2342 : // Convert any object to a String.
2343 : TNode<String> ToString(SloppyTNode<Context> context,
2344 : SloppyTNode<Object> input);
2345 : TNode<String> ToString_Inline(SloppyTNode<Context> context,
2346 : SloppyTNode<Object> input);
2347 :
2348 : // Convert any object to a Primitive.
2349 : Node* JSReceiverToPrimitive(Node* context, Node* input);
2350 :
2351 : TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
2352 : SloppyTNode<Object> input);
2353 :
2354 : // Same as ToObject but avoids the Builtin call if |input| is already a
2355 : // JSReceiver.
2356 : TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
2357 : TNode<Object> input);
2358 :
2359 : enum ToIntegerTruncationMode {
2360 : kNoTruncation,
2361 : kTruncateMinusZero,
2362 : };
2363 :
2364 : // ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
2365 : TNode<Smi> ToSmiIndex(TNode<Context> context, TNode<Object> input,
2366 : Label* range_error);
2367 :
2368 : // ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
2369 : TNode<Smi> ToSmiLength(TNode<Context> context, TNode<Object> input,
2370 : Label* range_error);
2371 :
2372 : // ES6 7.1.15 ToLength, but with inlined fast path.
2373 : TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
2374 : SloppyTNode<Object> input);
2375 :
2376 : // ES6 7.1.4 ToInteger ( argument )
2377 : TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
2378 : SloppyTNode<Object> input,
2379 : ToIntegerTruncationMode mode = kNoTruncation);
2380 : TNode<Number> ToInteger(SloppyTNode<Context> context,
2381 : SloppyTNode<Object> input,
2382 : ToIntegerTruncationMode mode = kNoTruncation);
2383 :
2384 : // Returns a node that contains a decoded (unsigned!) value of a bit
2385 : // field |BitField| in |word32|. Returns result as an uint32 node.
2386 : template <typename BitField>
2387 35212 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
2388 35212 : return DecodeWord32(word32, BitField::kShift, BitField::kMask);
2389 : }
2390 :
2391 : // Returns a node that contains a decoded (unsigned!) value of a bit
2392 : // field |BitField| in |word|. Returns result as a word-size node.
2393 : template <typename BitField>
2394 21236 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
2395 21240 : return DecodeWord(word, BitField::kShift, BitField::kMask);
2396 : }
2397 :
2398 : // Returns a node that contains a decoded (unsigned!) value of a bit
2399 : // field |BitField| in |word32|. Returns result as a word-size node.
2400 : template <typename BitField>
2401 6624 : TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
2402 6628 : return DecodeWord<BitField>(ChangeUint32ToWord(word32));
2403 : }
2404 :
2405 : // Returns a node that contains a decoded (unsigned!) value of a bit
2406 : // field |BitField| in |word|. Returns result as an uint32 node.
2407 : template <typename BitField>
2408 112 : TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
2409 : return UncheckedCast<Uint32T>(
2410 112 : TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
2411 : }
2412 :
2413 : // Decodes an unsigned (!) value from |word32| to an uint32 node.
2414 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
2415 : uint32_t mask);
2416 :
2417 : // Decodes an unsigned (!) value from |word| to a word-size node.
2418 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
2419 : uint32_t mask);
2420 :
2421 : // Returns a node that contains the updated values of a |BitField|.
2422 : template <typename BitField>
2423 392 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
2424 392 : return UpdateWord(word, value, BitField::kShift, BitField::kMask);
2425 : }
2426 :
2427 : // Returns a node that contains the updated {value} inside {word} starting
2428 : // at {shift} and fitting in {mask}.
2429 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
2430 : uint32_t mask);
2431 :
2432 : // Returns true if any of the |T|'s bits in given |word32| are set.
2433 : template <typename T>
2434 41632 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
2435 41632 : return IsSetWord32(word32, T::kMask);
2436 : }
2437 :
2438 : // Returns true if any of the mask's bits in given |word32| are set.
2439 56432 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2440 112864 : return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
2441 169296 : Int32Constant(0));
2442 : }
2443 :
2444 : // Returns true if none of the mask's bits in given |word32| are set.
2445 392 : TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2446 784 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2447 1176 : Int32Constant(0));
2448 : }
2449 :
2450 : // Returns true if all of the mask's bits in a given |word32| are set.
2451 3980 : TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2452 3980 : TNode<Int32T> const_mask = Int32Constant(mask);
2453 3980 : return Word32Equal(Word32And(word32, const_mask), const_mask);
2454 : }
2455 :
2456 : // Returns true if any of the |T|'s bits in given |word| are set.
2457 : template <typename T>
2458 7112 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
2459 7112 : return IsSetWord(word, T::kMask);
2460 : }
2461 :
2462 : // Returns true if any of the mask's bits in given |word| are set.
2463 11260 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
2464 11260 : return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2465 : }
2466 :
2467 : // Returns true if any of the mask's bit are set in the given Smi.
2468 : // Smi-encoding of the mask is performed implicitly!
2469 280 : TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
2470 560 : intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
2471 : return WordNotEqual(
2472 560 : WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
2473 840 : IntPtrConstant(0));
2474 : }
2475 :
2476 : // Returns true if all of the |T|'s bits in given |word32| are clear.
2477 : template <typename T>
2478 504 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
2479 504 : return IsClearWord32(word32, T::kMask);
2480 : }
2481 :
2482 : // Returns true if all of the mask's bits in given |word32| are clear.
2483 3536 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2484 7072 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2485 10608 : Int32Constant(0));
2486 : }
2487 :
2488 : // Returns true if all of the |T|'s bits in given |word| are clear.
2489 : template <typename T>
2490 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
2491 : return IsClearWord(word, T::kMask);
2492 : }
2493 :
2494 : // Returns true if all of the mask's bits in given |word| are clear.
2495 728 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
2496 728 : return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2497 : }
2498 :
2499 : void SetCounter(StatsCounter* counter, int value);
2500 : void IncrementCounter(StatsCounter* counter, int delta);
2501 : void DecrementCounter(StatsCounter* counter, int delta);
2502 :
2503 : void Increment(Variable* variable, int value = 1,
2504 : ParameterMode mode = INTPTR_PARAMETERS);
2505 56 : void Decrement(Variable* variable, int value = 1,
2506 : ParameterMode mode = INTPTR_PARAMETERS) {
2507 56 : Increment(variable, -value, mode);
2508 56 : }
2509 :
2510 : // Generates "if (false) goto label" code. Useful for marking a label as
2511 : // "live" to avoid assertion failures during graph building. In the resulting
2512 : // code this check will be eliminated.
2513 : void Use(Label* label);
2514 :
2515 : // Various building blocks for stubs doing property lookups.
2516 :
2517 : // |if_notinternalized| is optional; |if_bailout| will be used by default.
2518 : // Note: If |key| does not yet have a hash, |if_notinternalized| will be taken
2519 : // even if |key| is an array index. |if_keyisunique| will never
2520 : // be taken for array indices.
2521 : void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
2522 : Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
2523 : Label* if_notinternalized = nullptr);
2524 :
2525 : // Performs a hash computation and string table lookup for the given string,
2526 : // and jumps to:
2527 : // - |if_index| if the string is an array index like "123"; |var_index|
2528 : // will contain the intptr representation of that index.
2529 : // - |if_internalized| if the string exists in the string table; the
2530 : // internalized version will be in |var_internalized|.
2531 : // - |if_not_internalized| if the string is not in the string table (but
2532 : // does not add it).
2533 : // - |if_bailout| for unsupported cases (e.g. uncachable array index).
2534 : void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
2535 : Label* if_internalized, Variable* var_internalized,
2536 : Label* if_not_internalized, Label* if_bailout);
2537 :
2538 : // Calculates array index for given dictionary entry and entry field.
2539 : // See Dictionary::EntryToIndex().
2540 : template <typename Dictionary>
2541 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index);
2542 : template <typename Dictionary>
2543 32276 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
2544 32284 : return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
2545 : }
2546 :
2547 : // Loads the details for the entry with the given key_index.
2548 : // Returns an untagged int32.
2549 : template <class ContainerType>
2550 3756 : TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
2551 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2552 : "Use the non-templatized version for DescriptorArray");
2553 : const int kKeyToDetailsOffset =
2554 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2555 3756 : kTaggedSize;
2556 7512 : return Unsigned(LoadAndUntagToWord32FixedArrayElement(
2557 11268 : CAST(container), key_index, kKeyToDetailsOffset));
2558 : }
2559 :
2560 : // Loads the value for the entry with the given key_index.
2561 : // Returns a tagged value.
2562 : template <class ContainerType>
2563 3532 : TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
2564 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2565 : "Use the non-templatized version for DescriptorArray");
2566 : const int kKeyToValueOffset =
2567 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2568 3532 : kTaggedSize;
2569 3532 : return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
2570 : }
2571 :
2572 : // Stores the details for the entry with the given key_index.
2573 : // |details| must be a Smi.
2574 : template <class ContainerType>
2575 1064 : void StoreDetailsByKeyIndex(TNode<ContainerType> container,
2576 : TNode<IntPtrT> key_index, TNode<Smi> details) {
2577 : const int kKeyToDetailsOffset =
2578 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2579 1064 : kTaggedSize;
2580 1064 : StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
2581 : kKeyToDetailsOffset);
2582 1064 : }
2583 :
2584 : // Stores the value for the entry with the given key_index.
2585 : template <class ContainerType>
2586 1680 : void StoreValueByKeyIndex(
2587 : TNode<ContainerType> container, TNode<IntPtrT> key_index,
2588 : TNode<Object> value,
2589 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
2590 : const int kKeyToValueOffset =
2591 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2592 1680 : kTaggedSize;
2593 1680 : StoreFixedArrayElement(container, key_index, value, write_barrier,
2594 : kKeyToValueOffset);
2595 1680 : }
2596 :
2597 : // Calculate a valid size for the a hash table.
2598 : TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);
2599 :
2600 : template <class Dictionary>
2601 1400 : TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
2602 1400 : return CAST(
2603 : LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
2604 : }
2605 :
2606 112 : TNode<Smi> GetNumberDictionaryNumberOfElements(
2607 : TNode<NumberDictionary> dictionary) {
2608 112 : return GetNumberOfElements<NumberDictionary>(dictionary);
2609 : }
2610 :
2611 : template <class Dictionary>
2612 1064 : void SetNumberOfElements(TNode<Dictionary> dictionary,
2613 : TNode<Smi> num_elements_smi) {
2614 1064 : StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
2615 : num_elements_smi, SKIP_WRITE_BARRIER);
2616 1064 : }
2617 :
2618 : template <class Dictionary>
2619 1064 : TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
2620 1064 : return CAST(LoadFixedArrayElement(
2621 : dictionary, Dictionary::kNumberOfDeletedElementsIndex));
2622 : }
2623 :
2624 : template <class Dictionary>
2625 56 : void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
2626 : TNode<Smi> num_deleted_smi) {
2627 56 : StoreFixedArrayElement(dictionary,
2628 : Dictionary::kNumberOfDeletedElementsIndex,
2629 : num_deleted_smi, SKIP_WRITE_BARRIER);
2630 56 : }
2631 :
2632 : template <class Dictionary>
2633 9160 : TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
2634 9160 : return CAST(
2635 : UnsafeLoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
2636 : }
2637 :
2638 : template <class Dictionary>
2639 1008 : TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
2640 1008 : return CAST(LoadFixedArrayElement(dictionary,
2641 : Dictionary::kNextEnumerationIndexIndex));
2642 : }
2643 :
2644 : template <class Dictionary>
2645 1008 : void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
2646 : TNode<Smi> next_enum_index_smi) {
2647 1008 : StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
2648 : next_enum_index_smi, SKIP_WRITE_BARRIER);
2649 1008 : }
2650 :
2651 : // Looks up an entry in a NameDictionaryBase successor. If the entry is found
2652 : // control goes to {if_found} and {var_name_index} contains an index of the
2653 : // key field of the entry found. If the key is not found control goes to
2654 : // {if_not_found}.
2655 : static const int kInlinedDictionaryProbes = 4;
2656 : enum LookupMode { kFindExisting, kFindInsertionIndex };
2657 :
2658 : template <typename Dictionary>
2659 : TNode<HeapObject> LoadName(TNode<HeapObject> key);
2660 :
2661 : template <typename Dictionary>
2662 : void NameDictionaryLookup(TNode<Dictionary> dictionary,
2663 : TNode<Name> unique_name, Label* if_found,
2664 : TVariable<IntPtrT>* var_name_index,
2665 : Label* if_not_found,
2666 : int inlined_probes = kInlinedDictionaryProbes,
2667 : LookupMode mode = kFindExisting);
2668 :
2669 : Node* ComputeUnseededHash(Node* key);
2670 : Node* ComputeSeededHash(Node* key);
2671 :
2672 : void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
2673 : TNode<IntPtrT> intptr_index, Label* if_found,
2674 : TVariable<IntPtrT>* var_entry,
2675 : Label* if_not_found);
2676 :
2677 : TNode<Object> BasicLoadNumberDictionaryElement(
2678 : TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
2679 : Label* not_data, Label* if_hole);
2680 : void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
2681 : TNode<IntPtrT> intptr_index,
2682 : TNode<Object> value, Label* not_data,
2683 : Label* if_hole, Label* read_only);
2684 :
2685 : template <class Dictionary>
2686 : void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2687 : TVariable<IntPtrT>* var_key_index);
2688 :
2689 : template <class Dictionary>
2690 : void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2691 : TNode<Object> value, TNode<IntPtrT> index,
2692 : TNode<Smi> enum_index);
2693 :
2694 : template <class Dictionary>
2695 : void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
2696 : Label* bailout);
2697 :
2698 : // Tries to check if {object} has own {unique_name} property.
2699 : void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
2700 : Node* unique_name, Label* if_found,
2701 : Label* if_not_found, Label* if_bailout);
2702 :
2703 : // Operating mode for TryGetOwnProperty and CallGetterIfAccessor
2704 : // kReturnAccessorPair is used when we're only getting the property descriptor
2705 : enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
2706 : // Tries to get {object}'s own {unique_name} property value. If the property
2707 : // is an accessor then it also calls a getter. If the property is a double
2708 : // field it re-wraps value in an immutable heap number. {unique_name} must be
2709 : // a unique name (Symbol or InternalizedString) that is not an array index.
2710 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2711 : Node* instance_type, Node* unique_name,
2712 : Label* if_found, Variable* var_value,
2713 : Label* if_not_found, Label* if_bailout);
2714 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2715 : Node* instance_type, Node* unique_name,
2716 : Label* if_found, Variable* var_value,
2717 : Variable* var_details, Variable* var_raw_value,
2718 : Label* if_not_found, Label* if_bailout,
2719 : GetOwnPropertyMode mode);
2720 :
2721 8344 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2722 : SloppyTNode<Object> receiver, Handle<Name> name) {
2723 8344 : return GetProperty(context, receiver, HeapConstant(name));
2724 : }
2725 :
2726 12264 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2727 : SloppyTNode<Object> receiver,
2728 : SloppyTNode<Object> name) {
2729 12264 : return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
2730 : }
2731 :
2732 1680 : TNode<Object> SetPropertyStrict(TNode<Context> context,
2733 : TNode<Object> receiver, TNode<Object> key,
2734 : TNode<Object> value) {
2735 1680 : return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
2736 : }
2737 :
2738 56 : TNode<Object> SetPropertyInLiteral(TNode<Context> context,
2739 : TNode<JSObject> receiver,
2740 : TNode<Object> key, TNode<Object> value) {
2741 : return CallBuiltin(Builtins::kSetPropertyInLiteral, context, receiver, key,
2742 56 : value);
2743 : }
2744 :
2745 : Node* GetMethod(Node* context, Node* object, Handle<Name> name,
2746 : Label* if_null_or_undefined);
2747 :
2748 : TNode<Object> GetIteratorMethod(TNode<Context> context,
2749 : TNode<HeapObject> heap_obj,
2750 : Label* if_iteratorundefined);
2751 :
2752 : template <class... TArgs>
2753 78300 : TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2754 : TArgs... args) {
2755 : return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
2756 78308 : args...);
2757 : }
2758 :
2759 : template <class... TArgs>
2760 3024 : void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2761 : TArgs... args) {
2762 3024 : return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
2763 : }
2764 :
2765 : void LoadPropertyFromFastObject(Node* object, Node* map,
2766 : TNode<DescriptorArray> descriptors,
2767 : Node* name_index, Variable* var_details,
2768 : Variable* var_value);
2769 :
2770 : void LoadPropertyFromFastObject(Node* object, Node* map,
2771 : TNode<DescriptorArray> descriptors,
2772 : Node* name_index, Node* details,
2773 : Variable* var_value);
2774 :
2775 : void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
2776 : Variable* var_details,
2777 : Variable* var_value);
2778 :
2779 : void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
2780 : Variable* var_details,
2781 : Variable* var_value, Label* if_deleted);
2782 :
2783 : // Generic property lookup generator. If the {object} is fast and
2784 : // {unique_name} property is found then the control goes to {if_found_fast}
2785 : // label and {var_meta_storage} and {var_name_index} will contain
2786 : // DescriptorArray and an index of the descriptor's name respectively.
2787 : // If the {object} is slow or global then the control goes to {if_found_dict}
2788 : // or {if_found_global} and the {var_meta_storage} and {var_name_index} will
2789 : // contain a dictionary and an index of the key field of the found entry.
2790 : // If property is not found or given lookup is not supported then
2791 : // the control goes to {if_not_found} or {if_bailout} respectively.
2792 : //
2793 : // Note: this code does not check if the global dictionary points to deleted
2794 : // entry! This has to be done by the caller.
2795 : void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
2796 : SloppyTNode<Int32T> instance_type,
2797 : SloppyTNode<Name> unique_name, Label* if_found_fast,
2798 : Label* if_found_dict, Label* if_found_global,
2799 : TVariable<HeapObject>* var_meta_storage,
2800 : TVariable<IntPtrT>* var_name_index,
2801 : Label* if_not_found, Label* if_bailout);
2802 :
2803 : // This is a building block for TryLookupProperty() above. Supports only
2804 : // non-special fast and dictionary objects.
2805 : void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
2806 : TNode<Name> unique_name,
2807 : Label* if_found_fast,
2808 : Label* if_found_dict,
2809 : TVariable<HeapObject>* var_meta_storage,
2810 : TVariable<IntPtrT>* var_name_index,
2811 : Label* if_not_found);
2812 :
2813 : // This method jumps to if_found if the element is known to exist. To
2814 : // if_absent if it's known to not exist. To if_not_found if the prototype
2815 : // chain needs to be checked. And if_bailout if the lookup is unsupported.
2816 : void TryLookupElement(Node* object, Node* map,
2817 : SloppyTNode<Int32T> instance_type,
2818 : SloppyTNode<IntPtrT> intptr_index, Label* if_found,
2819 : Label* if_absent, Label* if_not_found,
2820 : Label* if_bailout);
2821 :
2822 : // This is a type of a lookup in holder generator function. In case of a
2823 : // property lookup the {key} is guaranteed to be an unique name and in case of
2824 : // element lookup the key is an Int32 index.
2825 : typedef std::function<void(Node* receiver, Node* holder, Node* map,
2826 : Node* instance_type, Node* key, Label* next_holder,
2827 : Label* if_bailout)>
2828 : LookupInHolder;
2829 :
2830 : // For integer indexed exotic cases, check if the given string cannot be a
2831 : // special index. If we are not sure that the given string is not a special
2832 : // index with a simple check, return False. Note that "False" return value
2833 : // does not mean that the name_string is a special index in the current
2834 : // implementation.
2835 : void BranchIfMaybeSpecialIndex(TNode<String> name_string,
2836 : Label* if_maybe_special_index,
2837 : Label* if_not_special_index);
2838 :
2839 : // Generic property prototype chain lookup generator.
2840 : // For properties it generates lookup using given {lookup_property_in_holder}
2841 : // and for elements it uses {lookup_element_in_holder}.
2842 : // Upon reaching the end of prototype chain the control goes to {if_end}.
2843 : // If it can't handle the case {receiver}/{key} case then the control goes
2844 : // to {if_bailout}.
2845 : // If {if_proxy} is nullptr, proxies go to if_bailout.
2846 : void TryPrototypeChainLookup(Node* receiver, Node* key,
2847 : const LookupInHolder& lookup_property_in_holder,
2848 : const LookupInHolder& lookup_element_in_holder,
2849 : Label* if_end, Label* if_bailout,
2850 : Label* if_proxy = nullptr);
2851 :
2852 : // Instanceof helpers.
2853 : // Returns true if {object} has {prototype} somewhere in it's prototype
2854 : // chain, otherwise false is returned. Might cause arbitrary side effects
2855 : // due to [[GetPrototypeOf]] invocations.
2856 : Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
2857 : // ES6 section 7.3.19 OrdinaryHasInstance (C, O)
2858 : Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
2859 :
2860 : // Load type feedback vector from the stub caller's frame.
2861 : TNode<FeedbackVector> LoadFeedbackVectorForStub();
2862 :
2863 : // Load the value from closure's feedback cell.
2864 : TNode<HeapObject> LoadFeedbackCellValue(SloppyTNode<JSFunction> closure);
2865 :
2866 : // Load the object from feedback vector cell for the given closure.
2867 : // The returned object could be undefined if the closure does not have
2868 : // a feedback vector associated with it.
2869 : TNode<HeapObject> LoadFeedbackVector(SloppyTNode<JSFunction> closure);
2870 :
2871 : // Load the ClosureFeedbackCellArray that contains the feedback cells
2872 : // used when creating closures from this function. This array could be
2873 : // directly hanging off the FeedbackCell when there is no feedback vector
2874 : // or available from the feedback vector's header.
2875 : TNode<FixedArray> LoadClosureFeedbackArray(SloppyTNode<JSFunction> closure);
2876 :
2877 : // Update the type feedback vector.
2878 : void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
2879 :
2880 :
2881 : // Report that there was a feedback update, performing any tasks that should
2882 : // be done after a feedback update.
2883 : void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
2884 : SloppyTNode<IntPtrT> slot_id, const char* reason);
2885 :
2886 : // Combine the new feedback with the existing_feedback. Do nothing if
2887 : // existing_feedback is nullptr.
2888 : void CombineFeedback(Variable* existing_feedback, int feedback);
2889 : void CombineFeedback(Variable* existing_feedback, Node* feedback);
2890 :
2891 : // Overwrite the existing feedback with new_feedback. Do nothing if
2892 : // existing_feedback is nullptr.
2893 : void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
2894 :
2895 : // Check if a property name might require protector invalidation when it is
2896 : // used for a property store or deletion.
2897 : void CheckForAssociatedProtector(Node* name, Label* if_protector);
2898 :
2899 : TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);
2900 :
2901 : enum class ArgumentsAccessMode { kLoad, kStore, kHas };
2902 : // Emits keyed sloppy arguments has. Returns whether the key is in the
2903 : // arguments.
2904 56 : Node* HasKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
2905 : return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout,
2906 56 : ArgumentsAccessMode::kHas);
2907 : }
2908 :
2909 : // Emits keyed sloppy arguments load. Returns either the loaded value.
2910 56 : Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
2911 : return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout,
2912 56 : ArgumentsAccessMode::kLoad);
2913 : }
2914 :
2915 : // Emits keyed sloppy arguments store.
2916 224 : void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
2917 : Label* bailout) {
2918 : DCHECK_NOT_NULL(value);
2919 : EmitKeyedSloppyArguments(receiver, key, value, bailout,
2920 224 : ArgumentsAccessMode::kStore);
2921 224 : }
2922 :
2923 : // Loads script context from the script context table.
2924 : TNode<Context> LoadScriptContext(TNode<Context> context,
2925 : TNode<IntPtrT> context_index);
2926 :
2927 : Node* Int32ToUint8Clamped(Node* int32_value);
2928 : Node* Float64ToUint8Clamped(Node* float64_value);
2929 :
2930 : Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
2931 : ElementsKind elements_kind,
2932 : TNode<Context> context);
2933 :
2934 : // Store value to an elements array with given elements kind.
2935 : void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
2936 : ParameterMode mode);
2937 :
2938 : void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
2939 : TNode<FixedTypedArrayBase> elements,
2940 : TNode<IntPtrT> intptr_key,
2941 : TNode<Object> value,
2942 : TNode<Context> context,
2943 : Label* opt_if_detached);
2944 : // Part of the above, refactored out to reuse in another place.
2945 : void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
2946 : TNode<RawPtrT> backing_store,
2947 : TNode<IntPtrT> offset,
2948 : TNode<BigInt> bigint_value);
2949 : // Implements the BigInt part of
2950 : // https://tc39.github.io/proposal-bigint/#sec-numbertorawbytes,
2951 : // including truncation to 64 bits (i.e. modulo 2^64).
2952 : // {var_high} is only used on 32-bit platforms.
2953 : void BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low,
2954 : TVariable<UintPtrT>* var_high);
2955 :
2956 : void EmitElementStore(Node* object, Node* key, Node* value,
2957 : ElementsKind elements_kind,
2958 : KeyedAccessStoreMode store_mode, Label* bailout,
2959 : Node* context);
2960 :
2961 : Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
2962 : Node* length, Node* key, ParameterMode mode,
2963 : Label* bailout);
2964 :
2965 : Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
2966 : Node* length, ParameterMode mode, Label* bailout);
2967 :
2968 : void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
2969 : ElementsKind to_kind, Label* bailout);
2970 :
2971 : void TrapAllocationMemento(Node* object, Label* memento_found);
2972 :
2973 : TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);
2974 :
2975 : // Store a weak in-place reference into the FeedbackVector.
2976 : TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
2977 : SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
2978 : SloppyTNode<HeapObject> value, int additional_offset = 0,
2979 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
2980 :
2981 : // Create a new AllocationSite and install it into a feedback vector.
2982 : TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
2983 : SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);
2984 :
2985 : // TODO(ishell, cbruni): Change to HasBoilerplate.
2986 : TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
2987 : TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
2988 : TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
2989 : TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);
2990 :
2991 : enum class IndexAdvanceMode { kPre, kPost };
2992 :
2993 : typedef std::function<void(Node* index)> FastLoopBody;
2994 :
2995 : Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
2996 : Node* end_index, const FastLoopBody& body, int increment,
2997 : ParameterMode parameter_mode,
2998 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
2999 :
3000 8660 : Node* BuildFastLoop(Node* start_index, Node* end_index,
3001 : const FastLoopBody& body, int increment,
3002 : ParameterMode parameter_mode,
3003 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
3004 17320 : return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
3005 17320 : increment, parameter_mode, advance_mode);
3006 : }
3007 :
3008 : enum class ForEachDirection { kForward, kReverse };
3009 :
3010 : typedef std::function<void(Node* fixed_array, Node* offset)>
3011 : FastFixedArrayForEachBody;
3012 :
3013 : void BuildFastFixedArrayForEach(
3014 : const CodeStubAssembler::VariableList& vars, Node* fixed_array,
3015 : ElementsKind kind, Node* first_element_inclusive,
3016 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
3017 : ParameterMode mode = INTPTR_PARAMETERS,
3018 : ForEachDirection direction = ForEachDirection::kReverse);
3019 :
3020 16772 : void BuildFastFixedArrayForEach(
3021 : Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
3022 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
3023 : ParameterMode mode = INTPTR_PARAMETERS,
3024 : ForEachDirection direction = ForEachDirection::kReverse) {
3025 33544 : CodeStubAssembler::VariableList list(0, zone());
3026 16772 : BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
3027 16772 : last_element_exclusive, body, mode, direction);
3028 16772 : }
3029 :
3030 16076 : TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
3031 : ParameterMode mode, int header_size) {
3032 16076 : return ElementOffsetFromIndex(element_count, kind, mode, header_size);
3033 : }
3034 :
3035 12044 : TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
3036 : ElementsKind kind,
3037 : ParameterMode mode) {
3038 : return GetArrayAllocationSize(element_count, kind, mode,
3039 12044 : FixedArray::kHeaderSize);
3040 : }
3041 :
3042 504 : TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
3043 : ParameterMode mode) {
3044 : return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
3045 504 : PropertyArray::kHeaderSize);
3046 : }
3047 :
3048 : void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
3049 : Label* doesnt_fit, int base_size,
3050 : ParameterMode mode);
3051 :
3052 : void InitializeFieldsWithRoot(Node* object, Node* start_offset,
3053 : Node* end_offset, RootIndex root);
3054 :
3055 : Node* RelationalComparison(Operation op, Node* left, Node* right,
3056 : Node* context,
3057 : Variable* var_type_feedback = nullptr);
3058 :
3059 : void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
3060 : Label* if_true, Label* if_false);
3061 :
3062 336 : void BranchIfNumberEqual(TNode<Number> left, TNode<Number> right,
3063 : Label* if_true, Label* if_false) {
3064 336 : BranchIfNumberRelationalComparison(Operation::kEqual, left, right, if_true,
3065 336 : if_false);
3066 336 : }
3067 :
3068 : void BranchIfNumberNotEqual(TNode<Number> left, TNode<Number> right,
3069 : Label* if_true, Label* if_false) {
3070 : BranchIfNumberEqual(left, right, if_false, if_true);
3071 : }
3072 :
3073 3136 : void BranchIfNumberLessThan(TNode<Number> left, TNode<Number> right,
3074 : Label* if_true, Label* if_false) {
3075 3136 : BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
3076 3136 : if_true, if_false);
3077 3136 : }
3078 :
3079 56 : void BranchIfNumberLessThanOrEqual(TNode<Number> left, TNode<Number> right,
3080 : Label* if_true, Label* if_false) {
3081 56 : BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
3082 56 : if_true, if_false);
3083 56 : }
3084 :
3085 1904 : void BranchIfNumberGreaterThan(TNode<Number> left, TNode<Number> right,
3086 : Label* if_true, Label* if_false) {
3087 1904 : BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
3088 1904 : if_true, if_false);
3089 1904 : }
3090 :
3091 336 : void BranchIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right,
3092 : Label* if_true, Label* if_false) {
3093 336 : BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
3094 336 : right, if_true, if_false);
3095 336 : }
3096 :
3097 168 : void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
3098 : Label* if_not_accessor_pair) {
3099 168 : GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
3100 168 : Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
3101 168 : }
3102 :
3103 : void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
3104 :
3105 : Node* Equal(Node* lhs, Node* rhs, Node* context,
3106 : Variable* var_type_feedback = nullptr);
3107 :
3108 : Node* StrictEqual(Node* lhs, Node* rhs,
3109 : Variable* var_type_feedback = nullptr);
3110 :
3111 : // ECMA#sec-samevalue
3112 : // Similar to StrictEqual except that NaNs are treated as equal and minus zero
3113 : // differs from positive zero.
3114 : void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);
3115 :
3116 : enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
3117 :
3118 : TNode<Oddball> HasProperty(SloppyTNode<Context> context,
3119 : SloppyTNode<Object> object,
3120 : SloppyTNode<Object> key,
3121 : HasPropertyLookupMode mode);
3122 :
3123 : // Due to naming conflict with the builtin function namespace.
3124 392 : TNode<Oddball> HasProperty_Inline(TNode<Context> context,
3125 : TNode<JSReceiver> object,
3126 : TNode<Object> key) {
3127 : return HasProperty(context, object, key,
3128 392 : HasPropertyLookupMode::kHasProperty);
3129 : }
3130 :
3131 : Node* Typeof(Node* value);
3132 :
3133 : TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
3134 : SloppyTNode<JSFunction> active_function);
3135 :
3136 : TNode<JSReceiver> SpeciesConstructor(
3137 : SloppyTNode<Context> context, SloppyTNode<Object> object,
3138 : SloppyTNode<JSReceiver> default_constructor);
3139 :
3140 : Node* InstanceOf(Node* object, Node* callable, Node* context);
3141 :
3142 : // Debug helpers
3143 : Node* IsDebugActive();
3144 :
3145 : TNode<BoolT> IsRuntimeCallStatsEnabled();
3146 :
3147 : // JSArrayBuffer helpers
3148 : TNode<Uint32T> LoadJSArrayBufferBitField(TNode<JSArrayBuffer> array_buffer);
3149 : TNode<RawPtrT> LoadJSArrayBufferBackingStore(
3150 : TNode<JSArrayBuffer> array_buffer);
3151 : Node* IsDetachedBuffer(Node* buffer);
3152 : void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
3153 : TNode<JSArrayBuffer> array_buffer,
3154 : const char* method_name);
3155 :
3156 : // JSArrayBufferView helpers
3157 : TNode<JSArrayBuffer> LoadJSArrayBufferViewBuffer(
3158 : TNode<JSArrayBufferView> array_buffer_view);
3159 : TNode<UintPtrT> LoadJSArrayBufferViewByteLength(
3160 : TNode<JSArrayBufferView> array_buffer_view);
3161 : TNode<UintPtrT> LoadJSArrayBufferViewByteOffset(
3162 : TNode<JSArrayBufferView> array_buffer_view);
3163 : void ThrowIfArrayBufferViewBufferIsDetached(
3164 : SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
3165 : const char* method_name);
3166 :
3167 : // JSTypedArray helpers
3168 : TNode<Smi> LoadJSTypedArrayLength(TNode<JSTypedArray> typed_array);
3169 :
3170 : TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
3171 : ParameterMode mode, int base_size = 0);
3172 :
3173 : // Check that a field offset is within the bounds of the an object.
3174 : TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
3175 : SloppyTNode<IntPtrT> length, int header_size,
3176 : ElementsKind kind = HOLEY_ELEMENTS);
3177 :
3178 : // Load a builtin's code from the builtin array in the isolate.
3179 : TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);
3180 :
3181 : // Figure out the SFI's code object using its data field.
3182 : // If |if_compile_lazy| is provided then the execution will go to the given
3183 : // label in case of an CompileLazy code object.
3184 : TNode<Code> GetSharedFunctionInfoCode(
3185 : SloppyTNode<SharedFunctionInfo> shared_info,
3186 : Label* if_compile_lazy = nullptr);
3187 :
3188 : Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
3189 : Node* context);
3190 :
3191 : // Promise helpers
3192 : Node* IsPromiseHookEnabled();
3193 : Node* HasAsyncEventDelegate();
3194 : Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();
3195 : Node* IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate();
3196 :
3197 : // Helpers for StackFrame markers.
3198 : Node* MarkerIsFrameType(Node* marker_or_function,
3199 : StackFrame::Type frame_type);
3200 : Node* MarkerIsNotFrameType(Node* marker_or_function,
3201 : StackFrame::Type frame_type);
3202 :
3203 : // for..in helpers
3204 : void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
3205 : Label* if_fast, Label* if_slow);
3206 : Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
3207 :
3208 : TNode<IntPtrT> GetArgumentsLength(CodeStubArguments* args);
3209 : TNode<Object> GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index);
3210 :
3211 : // Support for printf-style debugging
3212 : void Print(const char* s);
3213 : void Print(const char* prefix, Node* tagged_value);
3214 : inline void Print(SloppyTNode<Object> tagged_value) {
3215 : return Print(nullptr, tagged_value);
3216 : }
3217 : inline void Print(TNode<MaybeObject> tagged_value) {
3218 : return Print(nullptr, tagged_value);
3219 : }
3220 :
3221 : template <class... TArgs>
3222 504 : Node* MakeTypeError(MessageTemplate message, Node* context, TArgs... args) {
3223 : STATIC_ASSERT(sizeof...(TArgs) <= 3);
3224 1008 : Node* const make_type_error = LoadContextElement(
3225 1512 : LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
3226 : return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
3227 504 : UndefinedConstant(), SmiConstant(message), args...);
3228 : }
3229 :
3230 224 : void Abort(AbortReason reason) {
3231 224 : CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
3232 224 : Unreachable();
3233 224 : }
3234 :
3235 56 : bool ConstexprBoolNot(bool value) { return !value; }
3236 :
3237 224 : bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }
3238 : bool ConstexprInt31GreaterThanEqual(int31_t a, int31_t b) { return a >= b; }
3239 112 : uint32_t ConstexprUint32Add(uint32_t a, uint32_t b) { return a + b; }
3240 :
3241 : void PerformStackCheck(TNode<Context> context);
3242 :
3243 : void SetPropertyLength(TNode<Context> context, TNode<Object> array,
3244 : TNode<Number> length);
3245 :
3246 : // Checks that {object_map}'s prototype map is the {initial_prototype_map} and
3247 : // makes sure that the field with name at index {descriptor} is still
3248 : // constant. If it is not, go to label {if_modified}.
3249 : //
3250 : // To make the checks robust, the method also asserts that the descriptor has
3251 : // the right key, the caller must pass the root index of the key
3252 : // in {field_name_root_index}.
3253 : //
3254 : // This is useful for checking that given function has not been patched
3255 : // on the prototype.
3256 : void GotoIfInitialPrototypePropertyModified(TNode<Map> object_map,
3257 : TNode<Map> initial_prototype_map,
3258 : int descfriptor,
3259 : RootIndex field_name_root_index,
3260 : Label* if_modified);
3261 : struct DescriptorIndexAndName {
3262 2016 : DescriptorIndexAndName() {}
3263 1456 : DescriptorIndexAndName(int descriptor_index, RootIndex name_root_index)
3264 : : descriptor_index(descriptor_index),
3265 1456 : name_root_index(name_root_index) {}
3266 :
3267 : int descriptor_index;
3268 : RootIndex name_root_index;
3269 : };
3270 : void GotoIfInitialPrototypePropertiesModified(
3271 : TNode<Map> object_map, TNode<Map> initial_prototype_map,
3272 : Vector<DescriptorIndexAndName> properties, Label* if_modified);
3273 :
3274 : // Implements DescriptorArray::Search().
3275 : void DescriptorLookup(SloppyTNode<Name> unique_name,
3276 : SloppyTNode<DescriptorArray> descriptors,
3277 : SloppyTNode<Uint32T> bitfield3, Label* if_found,
3278 : TVariable<IntPtrT>* var_name_index,
3279 : Label* if_not_found);
3280 :
3281 : // Implements TransitionArray::SearchName() - searches for first transition
3282 : // entry with given name (note that there could be multiple entries with
3283 : // the same name).
3284 : void TransitionLookup(SloppyTNode<Name> unique_name,
3285 : SloppyTNode<TransitionArray> transitions,
3286 : Label* if_found, TVariable<IntPtrT>* var_name_index,
3287 : Label* if_not_found);
3288 :
3289 : // Implements generic search procedure like i::Search<Array>().
3290 : template <typename Array>
3291 : void Lookup(TNode<Name> unique_name, TNode<Array> array,
3292 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3293 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3294 :
3295 : // Implements generic linear search procedure like i::LinearSearch<Array>().
3296 : template <typename Array>
3297 : void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
3298 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3299 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3300 :
3301 : // Implements generic binary search procedure like i::BinarySearch<Array>().
3302 : template <typename Array>
3303 : void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
3304 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3305 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3306 :
3307 : // Converts [Descriptor/Transition]Array entry number to a fixed array index.
3308 : template <typename Array>
3309 : TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);
3310 :
3311 : // Implements [Descriptor/Transition]Array::ToKeyIndex.
3312 : template <typename Array>
3313 : TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);
3314 :
3315 : // Implements [Descriptor/Transition]Array::GetKey.
3316 : template <typename Array>
3317 : TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);
3318 :
3319 : // Implements DescriptorArray::GetDetails.
3320 : TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
3321 : TNode<Uint32T> descriptor_number);
3322 :
3323 : typedef std::function<void(TNode<IntPtrT> descriptor_key_index)>
3324 : ForEachDescriptorBodyFunction;
3325 :
3326 : // Descriptor array accessors based on key_index, which is equal to
3327 : // DescriptorArray::ToKeyIndex(descriptor).
3328 : TNode<Name> LoadKeyByKeyIndex(TNode<DescriptorArray> container,
3329 : TNode<IntPtrT> key_index);
3330 : TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
3331 : TNode<IntPtrT> key_index);
3332 : TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
3333 : TNode<IntPtrT> key_index);
3334 : TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
3335 : TNode<IntPtrT> key_index);
3336 :
3337 : TNode<IntPtrT> DescriptorEntryToIndex(TNode<IntPtrT> descriptor);
3338 :
3339 : // Descriptor array accessors based on descriptor.
3340 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3341 : TNode<IntPtrT> descriptor);
3342 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3343 : int descriptor);
3344 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3345 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3346 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3347 : TNode<DescriptorArray> descriptors, int descriptor);
3348 : TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors,
3349 : int descriptor);
3350 : TNode<MaybeObject> LoadFieldTypeByDescriptorEntry(
3351 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3352 :
3353 : typedef std::function<void(TNode<Name> key, TNode<Object> value)>
3354 : ForEachKeyValueFunction;
3355 :
3356 : enum ForEachEnumerationMode {
3357 : // String and then Symbol properties according to the spec
3358 : // ES#sec-object.assign
3359 : kEnumerationOrder,
3360 : // Order of property addition
3361 : kPropertyAdditionOrder,
3362 : };
3363 :
3364 : // For each JSObject property (in DescriptorArray order), check if the key is
3365 : // enumerable, and if so, load the value from the receiver and evaluate the
3366 : // closure.
3367 : void ForEachEnumerableOwnProperty(TNode<Context> context, TNode<Map> map,
3368 : TNode<JSObject> object,
3369 : ForEachEnumerationMode mode,
3370 : const ForEachKeyValueFunction& body,
3371 : Label* bailout);
3372 :
3373 : TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
3374 : Node* receiver, Label* if_bailout,
3375 : GetOwnPropertyMode mode = kCallJSGetter);
3376 :
3377 : TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
3378 :
3379 : void BranchIfPrototypesHaveNoElements(Node* receiver_map,
3380 : Label* definitely_no_elements,
3381 : Label* possibly_elements);
3382 :
3383 : void InitializeFunctionContext(Node* native_context, Node* context,
3384 : int slots);
3385 :
3386 : TNode<JSArray> ArrayCreate(TNode<Context> context, TNode<Number> length);
3387 :
3388 : // Allocate a clone of a mutable primitive, if {object} is a
3389 : // MutableHeapNumber.
3390 : TNode<Object> CloneIfMutablePrimitive(TNode<Object> object);
3391 :
3392 : private:
3393 : friend class CodeStubArguments;
3394 :
3395 : void HandleBreakOnNode();
3396 :
3397 : TNode<HeapObject> AllocateRawDoubleAligned(TNode<IntPtrT> size_in_bytes,
3398 : AllocationFlags flags,
3399 : TNode<RawPtrT> top_address,
3400 : TNode<RawPtrT> limit_address);
3401 : TNode<HeapObject> AllocateRawUnaligned(TNode<IntPtrT> size_in_bytes,
3402 : AllocationFlags flags,
3403 : TNode<RawPtrT> top_address,
3404 : TNode<RawPtrT> limit_address);
3405 : TNode<HeapObject> AllocateRaw(TNode<IntPtrT> size_in_bytes,
3406 : AllocationFlags flags,
3407 : TNode<RawPtrT> top_address,
3408 : TNode<RawPtrT> limit_address);
3409 :
3410 : // Allocate and return a JSArray of given total size in bytes with header
3411 : // fields initialized.
3412 : TNode<JSArray> AllocateUninitializedJSArray(TNode<Map> array_map,
3413 : TNode<Smi> length,
3414 : Node* allocation_site,
3415 : TNode<IntPtrT> size_in_bytes);
3416 :
3417 : TNode<BoolT> IsValidSmi(TNode<Smi> smi);
3418 : Node* SmiShiftBitsConstant();
3419 :
3420 : // Emits keyed sloppy arguments load if the |value| is nullptr or store
3421 : // otherwise. Returns either the loaded value or |value|.
3422 : Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
3423 : Label* bailout,
3424 : ArgumentsAccessMode access_mode);
3425 :
3426 : TNode<String> AllocateSlicedString(RootIndex map_root_index,
3427 : TNode<Uint32T> length,
3428 : TNode<String> parent, TNode<Smi> offset);
3429 :
3430 : // Allocate a MutableHeapNumber without initializing its value.
3431 : TNode<MutableHeapNumber> AllocateMutableHeapNumber();
3432 :
3433 : Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
3434 : const NodeGenerator& false_body, MachineRepresentation rep);
3435 :
3436 : // Implements [Descriptor/Transition]Array::number_of_entries.
3437 : template <typename Array>
3438 : TNode<Uint32T> NumberOfEntries(TNode<Array> array);
3439 :
3440 : // Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
3441 : template <typename Array>
3442 : TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
3443 : TNode<Uint32T> entry_index);
3444 :
3445 : TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
3446 : void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
3447 : Variable* var_type_feedback = nullptr);
3448 : TNode<String> AllocAndCopyStringCharacters(Node* from,
3449 : Node* from_instance_type,
3450 : TNode<IntPtrT> from_index,
3451 : TNode<IntPtrT> character_count);
3452 :
3453 : static const int kElementLoopUnrollThreshold = 8;
3454 :
3455 : // {convert_bigint} is only meaningful when {mode} == kToNumber.
3456 : Node* NonNumberToNumberOrNumeric(
3457 : Node* context, Node* input, Object::Conversion mode,
3458 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
3459 :
3460 : void TaggedToNumeric(Node* context, Node* value, Label* done,
3461 : Variable* var_numeric, Variable* var_feedback);
3462 :
3463 : template <Object::Conversion conversion>
3464 : void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
3465 : Variable* var_word32,
3466 : Label* if_bigint = nullptr,
3467 : Variable* var_bigint = nullptr,
3468 : Variable* var_feedback = nullptr);
3469 :
3470 : private:
3471 : // Low-level accessors for Descriptor arrays.
3472 : TNode<MaybeObject> LoadDescriptorArrayElement(TNode<DescriptorArray> object,
3473 : Node* index,
3474 : int additional_offset = 0);
3475 : };
3476 :
3477 : class CodeStubArguments {
3478 : public:
3479 : typedef compiler::Node Node;
3480 : template <class T>
3481 : using TNode = compiler::TNode<T>;
3482 : template <class T>
3483 : using SloppyTNode = compiler::SloppyTNode<T>;
3484 : enum ReceiverMode { kHasReceiver, kNoReceiver };
3485 :
3486 : // |argc| is an intptr value which specifies the number of arguments passed
3487 : // to the builtin excluding the receiver. The arguments will include a
3488 : // receiver iff |receiver_mode| is kHasReceiver.
3489 7448 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
3490 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
3491 : : CodeStubArguments(assembler, argc, nullptr,
3492 7492 : CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
3493 7448 : }
3494 :
3495 : // |argc| is either a smi or intptr depending on |param_mode|. The arguments
3496 : // include a receiver iff |receiver_mode| is kHasReceiver.
3497 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
3498 : CodeStubAssembler::ParameterMode param_mode,
3499 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
3500 :
3501 : TNode<Object> GetReceiver() const;
3502 : // Replaces receiver argument on the expression stack. Should be used only
3503 : // for manipulating arguments in trampoline builtins before tail calling
3504 : // further with passing all the JS arguments as is.
3505 : void SetReceiver(TNode<Object> object) const;
3506 :
3507 : // Computes address of the index'th argument.
3508 : TNode<WordT> AtIndexPtr(Node* index,
3509 : CodeStubAssembler::ParameterMode mode =
3510 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3511 :
3512 : // |index| is zero-based and does not include the receiver
3513 : TNode<Object> AtIndex(Node* index,
3514 : CodeStubAssembler::ParameterMode mode =
3515 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3516 :
3517 : TNode<Object> AtIndex(int index) const;
3518 :
3519 2800 : TNode<Object> GetOptionalArgumentValue(int index) {
3520 2800 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3521 : }
3522 : TNode<Object> GetOptionalArgumentValue(int index,
3523 : TNode<Object> default_value);
3524 :
3525 316 : Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
3526 : DCHECK_EQ(mode, argc_mode_);
3527 316 : return argc_;
3528 : }
3529 :
3530 7672 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
3531 7672 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3532 : }
3533 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
3534 : TNode<Object> default_value);
3535 4536 : TNode<IntPtrT> GetLength() const {
3536 : DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
3537 4536 : return assembler_->UncheckedCast<IntPtrT>(argc_);
3538 : }
3539 :
3540 : typedef std::function<void(Node* arg)> ForEachBodyFunction;
3541 :
3542 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3543 112 : void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
3544 : Node* last = nullptr,
3545 : CodeStubAssembler::ParameterMode mode =
3546 : CodeStubAssembler::INTPTR_PARAMETERS) {
3547 224 : CodeStubAssembler::VariableList list(0, assembler_->zone());
3548 112 : ForEach(list, body, first, last);
3549 112 : }
3550 :
3551 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3552 : void ForEach(const CodeStubAssembler::VariableList& vars,
3553 : const ForEachBodyFunction& body, Node* first = nullptr,
3554 : Node* last = nullptr,
3555 : CodeStubAssembler::ParameterMode mode =
3556 : CodeStubAssembler::INTPTR_PARAMETERS);
3557 :
3558 : void PopAndReturn(Node* value);
3559 :
3560 : private:
3561 : Node* GetArguments();
3562 :
3563 : CodeStubAssembler* assembler_;
3564 : CodeStubAssembler::ParameterMode argc_mode_;
3565 : ReceiverMode receiver_mode_;
3566 : Node* argc_;
3567 : TNode<WordT> arguments_;
3568 : Node* fp_;
3569 : };
3570 :
3571 4704 : class ToDirectStringAssembler : public CodeStubAssembler {
3572 : private:
3573 : enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
3574 :
3575 : public:
3576 : enum Flag {
3577 : kDontUnpackSlicedStrings = 1 << 0,
3578 : };
3579 : typedef base::Flags<Flag> Flags;
3580 :
3581 : ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
3582 : Flags flags = Flags());
3583 :
3584 : // Converts flat cons, thin, and sliced strings and returns the direct
3585 : // string. The result can be either a sequential or external string.
3586 : // Jumps to if_bailout if the string if the string is indirect and cannot
3587 : // be unpacked.
3588 : TNode<String> TryToDirect(Label* if_bailout);
3589 :
3590 : // Returns a pointer to the beginning of the string data.
3591 : // Jumps to if_bailout if the external string cannot be unpacked.
3592 4256 : TNode<RawPtrT> PointerToData(Label* if_bailout) {
3593 4256 : return TryToSequential(PTR_TO_DATA, if_bailout);
3594 : }
3595 :
3596 : // Returns a pointer that, offset-wise, looks like a String.
3597 : // Jumps to if_bailout if the external string cannot be unpacked.
3598 448 : TNode<RawPtrT> PointerToString(Label* if_bailout) {
3599 448 : return TryToSequential(PTR_TO_STRING, if_bailout);
3600 : }
3601 :
3602 56 : Node* string() { return var_string_.value(); }
3603 4872 : Node* instance_type() { return var_instance_type_.value(); }
3604 4984 : TNode<IntPtrT> offset() {
3605 4984 : return UncheckedCast<IntPtrT>(var_offset_.value());
3606 : }
3607 5152 : Node* is_external() { return var_is_external_.value(); }
3608 :
3609 : private:
3610 : TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
3611 :
3612 : Variable var_string_;
3613 : Variable var_instance_type_;
3614 : Variable var_offset_;
3615 : Variable var_is_external_;
3616 :
3617 : const Flags flags_;
3618 : };
3619 :
3620 5308 : DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags)
3621 :
3622 : } // namespace internal
3623 : } // namespace v8
3624 : #endif // V8_CODE_STUB_ASSEMBLER_H_
|