LCOV - code coverage report
Current view: top level - src/heap - heap.h (source / functions) Hit Total Coverage
Test: app.info Lines: 108 118 91.5 %
Date: 2019-03-21 Functions: 27 37 73.0 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_HEAP_HEAP_H_
       6             : #define V8_HEAP_HEAP_H_
       7             : 
       8             : #include <cmath>
       9             : #include <map>
      10             : #include <unordered_map>
      11             : #include <unordered_set>
      12             : #include <vector>
      13             : 
      14             : // Clients of this interface shouldn't depend on lots of heap internals.
      15             : // Do not include anything from src/heap here!
      16             : #include "include/v8-internal.h"
      17             : #include "include/v8.h"
      18             : #include "src/accessors.h"
      19             : #include "src/allocation.h"
      20             : #include "src/assert-scope.h"
      21             : #include "src/base/atomic-utils.h"
      22             : #include "src/globals.h"
      23             : #include "src/heap-symbols.h"
      24             : #include "src/objects.h"
      25             : #include "src/objects/allocation-site.h"
      26             : #include "src/objects/fixed-array.h"
      27             : #include "src/objects/heap-object.h"
      28             : #include "src/objects/smi.h"
      29             : #include "src/objects/string-table.h"
      30             : #include "src/roots.h"
      31             : #include "src/visitors.h"
      32             : #include "testing/gtest/include/gtest/gtest_prod.h"
      33             : 
      34             : namespace v8 {
      35             : 
      36             : namespace debug {
      37             : typedef void (*OutOfMemoryCallback)(void* data);
      38             : }  // namespace debug
      39             : 
      40             : namespace internal {
      41             : 
      42             : namespace heap {
      43             : class HeapTester;
      44             : class TestMemoryAllocatorScope;
      45             : }  // namespace heap
      46             : 
      47             : class ObjectBoilerplateDescription;
      48             : class BytecodeArray;
      49             : class CodeDataContainer;
      50             : class DeoptimizationData;
      51             : class HandlerTable;
      52             : class IncrementalMarking;
      53             : class JSArrayBuffer;
      54             : class ExternalString;
      55             : using v8::MemoryPressureLevel;
      56             : 
      57             : class AllocationObserver;
      58             : class ArrayBufferCollector;
      59             : class ArrayBufferTracker;
      60             : class CodeLargeObjectSpace;
      61             : class ConcurrentMarking;
      62             : class GCIdleTimeHandler;
      63             : class GCIdleTimeHeapState;
      64             : class GCTracer;
      65             : class HeapController;
      66             : class HeapObjectAllocationTracker;
      67             : class HeapObjectsFilter;
      68             : class HeapStats;
      69             : class HistogramTimer;
      70             : class Isolate;
      71             : class JSFinalizationGroup;
      72             : class LocalEmbedderHeapTracer;
      73             : class MemoryAllocator;
      74             : class MemoryReducer;
      75             : class MinorMarkCompactCollector;
      76             : class ObjectIterator;
      77             : class ObjectStats;
      78             : class Page;
      79             : class PagedSpace;
      80             : class ReadOnlyHeap;
      81             : class RootVisitor;
      82             : class ScavengeJob;
      83             : class Scavenger;
      84             : class ScavengerCollector;
      85             : class Space;
      86             : class StoreBuffer;
      87             : class StressScavengeObserver;
      88             : class TimedHistogram;
      89             : class TracePossibleWrapperReporter;
      90             : class WeakObjectRetainer;
      91             : 
      92             : enum ArrayStorageAllocationMode {
      93             :   DONT_INITIALIZE_ARRAY_ELEMENTS,
      94             :   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
      95             : };
      96             : 
      97             : enum class ClearRecordedSlots { kYes, kNo };
      98             : 
      99             : enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory };
     100             : 
     101             : enum ExternalBackingStoreType { kArrayBuffer, kExternalString, kNumTypes };
     102             : 
     103             : enum class FixedArrayVisitationMode { kRegular, kIncremental };
     104             : 
     105             : enum class TraceRetainingPathMode { kEnabled, kDisabled };
     106             : 
     107             : enum class RetainingPathOption { kDefault, kTrackEphemeronPath };
     108             : 
     109             : enum class GarbageCollectionReason {
     110             :   kUnknown = 0,
     111             :   kAllocationFailure = 1,
     112             :   kAllocationLimit = 2,
     113             :   kContextDisposal = 3,
     114             :   kCountersExtension = 4,
     115             :   kDebugger = 5,
     116             :   kDeserializer = 6,
     117             :   kExternalMemoryPressure = 7,
     118             :   kFinalizeMarkingViaStackGuard = 8,
     119             :   kFinalizeMarkingViaTask = 9,
     120             :   kFullHashtable = 10,
     121             :   kHeapProfiler = 11,
     122             :   kIdleTask = 12,
     123             :   kLastResort = 13,
     124             :   kLowMemoryNotification = 14,
     125             :   kMakeHeapIterable = 15,
     126             :   kMemoryPressure = 16,
     127             :   kMemoryReducer = 17,
     128             :   kRuntime = 18,
     129             :   kSamplingProfiler = 19,
     130             :   kSnapshotCreator = 20,
     131             :   kTesting = 21,
     132             :   kExternalFinalize = 22
     133             :   // If you add new items here, then update the incremental_marking_reason,
     134             :   // mark_compact_reason, and scavenge_reason counters in counters.h.
     135             :   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
     136             : };
     137             : 
     138             : enum class YoungGenerationHandling {
     139             :   kRegularScavenge = 0,
     140             :   kFastPromotionDuringScavenge = 1,
     141             :   // Histogram::InspectConstructionArguments in chromium requires us to have at
     142             :   // least three buckets.
     143             :   kUnusedBucket = 2,
     144             :   // If you add new items here, then update the young_generation_handling in
     145             :   // counters.h.
     146             :   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
     147             : };
     148             : 
     149             : enum class GCIdleTimeAction : uint8_t;
     150             : 
     151             : class AllocationResult {
     152             :  public:
     153           0 :   static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
     154           0 :     return AllocationResult(space);
     155             :   }
     156             : 
     157             :   // Implicit constructor from Object.
     158        9576 :   AllocationResult(Object object)  // NOLINT
     159        9621 :       : object_(object) {
     160             :     // AllocationResults can't return Smis, which are used to represent
     161             :     // failure and the space to retry in.
     162   506968470 :     CHECK(!object->IsSmi());
     163        9576 :   }
     164             : 
     165           0 :   AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {}
     166             : 
     167       39312 :   inline bool IsRetry() { return object_->IsSmi(); }
     168             :   inline HeapObject ToObjectChecked();
     169             :   inline AllocationSpace RetrySpace();
     170             : 
     171             :   template <typename T>
     172    17490632 :   bool To(T* obj) {
     173  1032631038 :     if (IsRetry()) return false;
     174    69601309 :     *obj = T::cast(object_);
     175    17490718 :     return true;
     176             :   }
     177             : 
     178             :  private:
     179           0 :   explicit AllocationResult(AllocationSpace space)
     180       13775 :       : object_(Smi::FromInt(static_cast<int>(space))) {}
     181             : 
     182             :   Object object_;
     183             : };
     184             : 
     185             : STATIC_ASSERT(sizeof(AllocationResult) == kSystemPointerSize);
     186             : 
     187             : #ifdef DEBUG
     188             : struct CommentStatistic {
     189             :   const char* comment;
     190             :   int size;
     191             :   int count;
     192             :   void Clear() {
     193             :     comment = nullptr;
     194             :     size = 0;
     195             :     count = 0;
     196             :   }
     197             :   // Must be small, since an iteration is used for lookup.
     198             :   static const int kMaxComments = 64;
     199             : };
     200             : #endif
     201             : 
     202      430632 : class Heap {
     203             :  public:
     204             :   enum FindMementoMode { kForRuntime, kForGC };
     205             : 
     206             :   enum HeapState {
     207             :     NOT_IN_GC,
     208             :     SCAVENGE,
     209             :     MARK_COMPACT,
     210             :     MINOR_MARK_COMPACT,
     211             :     TEAR_DOWN
     212             :   };
     213             : 
     214             :   using PretenuringFeedbackMap =
     215             :       std::unordered_map<AllocationSite, size_t, Object::Hasher>;
     216             : 
     217             :   // Taking this mutex prevents the GC from entering a phase that relocates
     218             :   // object references.
     219       94928 :   base::Mutex* relocation_mutex() { return &relocation_mutex_; }
     220             : 
     221             :   // Support for partial snapshots.  After calling this we have a linear
     222             :   // space to write objects in each space.
     223             :   struct Chunk {
     224             :     uint32_t size;
     225             :     Address start;
     226             :     Address end;
     227             :   };
     228             :   typedef std::vector<Chunk> Reservation;
     229             : 
     230             :   static const int kInitalOldGenerationLimitFactor = 2;
     231             : 
     232             : #if V8_OS_ANDROID
     233             :   // Don't apply pointer multiplier on Android since it has no swap space and
     234             :   // should instead adapt it's heap size based on available physical memory.
     235             :   static const int kPointerMultiplier = 1;
     236             : #else
     237             :   // TODO(ishell): kSystePointerMultiplier?
     238             :   static const int kPointerMultiplier = i::kSystemPointerSize / 4;
     239             : #endif
     240             : 
     241             :   // Semi-space size needs to be a multiple of page size.
     242             :   static const size_t kMinSemiSpaceSizeInKB = 512 * kPointerMultiplier;
     243             :   static const size_t kMaxSemiSpaceSizeInKB = 8192 * kPointerMultiplier;
     244             : 
     245             :   STATIC_ASSERT(kMinSemiSpaceSizeInKB* KB % (1 << kPageSizeBits) == 0);
     246             :   STATIC_ASSERT(kMaxSemiSpaceSizeInKB* KB % (1 << kPageSizeBits) == 0);
     247             : 
     248             :   static const int kTraceRingBufferSize = 512;
     249             :   static const int kStacktraceBufferSize = 512;
     250             : 
     251             :   static const int kNoGCFlags = 0;
     252             :   static const int kReduceMemoryFootprintMask = 1;
     253             : 
     254             :   // The minimum size of a HeapObject on the heap.
     255             :   static const int kMinObjectSizeInTaggedWords = 2;
     256             : 
     257             :   static const int kMinPromotedPercentForFastPromotionMode = 90;
     258             : 
     259             :   STATIC_ASSERT(static_cast<int>(RootIndex::kUndefinedValue) ==
     260             :                 Internals::kUndefinedValueRootIndex);
     261             :   STATIC_ASSERT(static_cast<int>(RootIndex::kTheHoleValue) ==
     262             :                 Internals::kTheHoleValueRootIndex);
     263             :   STATIC_ASSERT(static_cast<int>(RootIndex::kNullValue) ==
     264             :                 Internals::kNullValueRootIndex);
     265             :   STATIC_ASSERT(static_cast<int>(RootIndex::kTrueValue) ==
     266             :                 Internals::kTrueValueRootIndex);
     267             :   STATIC_ASSERT(static_cast<int>(RootIndex::kFalseValue) ==
     268             :                 Internals::kFalseValueRootIndex);
     269             :   STATIC_ASSERT(static_cast<int>(RootIndex::kempty_string) ==
     270             :                 Internals::kEmptyStringRootIndex);
     271             : 
     272             :   // Calculates the maximum amount of filler that could be required by the
     273             :   // given alignment.
     274             :   static int GetMaximumFillToAlign(AllocationAlignment alignment);
     275             :   // Calculates the actual amount of filler required for a given address at the
     276             :   // given alignment.
     277             :   static int GetFillToAlign(Address address, AllocationAlignment alignment);
     278             : 
     279             :   void FatalProcessOutOfMemory(const char* location);
     280             : 
     281             :   // Checks whether the space is valid.
     282             :   static bool IsValidAllocationSpace(AllocationSpace space);
     283             : 
     284             :   // Zapping is needed for verify heap, and always done in debug builds.
     285             :   static inline bool ShouldZapGarbage() {
     286             : #ifdef DEBUG
     287             :     return true;
     288             : #else
     289             : #ifdef VERIFY_HEAP
     290             :     return FLAG_verify_heap;
     291             : #else
     292             :     return false;
     293             : #endif
     294             : #endif
     295             :   }
     296             : 
     297             :   static uintptr_t ZapValue() {
     298           0 :     return FLAG_clear_free_memory ? kClearedFreeMemoryValue : kZapValue;
     299             :   }
     300             : 
     301             :   static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
     302      474620 :     return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR;
     303             :   }
     304             : 
     305             :   static inline GarbageCollector YoungGenerationCollector() {
     306             : #if ENABLE_MINOR_MC
     307       20973 :     return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER;
     308             : #else
     309             :     return SCAVENGER;
     310             : #endif  // ENABLE_MINOR_MC
     311             :   }
     312             : 
     313             :   static inline const char* CollectorName(GarbageCollector collector) {
     314           0 :     switch (collector) {
     315             :       case SCAVENGER:
     316             :         return "Scavenger";
     317             :       case MARK_COMPACTOR:
     318             :         return "Mark-Compact";
     319             :       case MINOR_MARK_COMPACTOR:
     320             :         return "Minor Mark-Compact";
     321             :     }
     322             :     return "Unknown collector";
     323             :   }
     324             : 
     325             :   // Copy block of memory from src to dst. Size of block should be aligned
     326             :   // by pointer size.
     327             :   static inline void CopyBlock(Address dst, Address src, int byte_size);
     328             : 
     329             :   V8_EXPORT_PRIVATE static void WriteBarrierForCodeSlow(Code host);
     330             :   V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(HeapObject object,
     331             :                                                         Address slot,
     332             :                                                         HeapObject value);
     333             :   V8_EXPORT_PRIVATE static void GenerationalBarrierForElementsSlow(
     334             :       Heap* heap, FixedArray array, int offset, int length);
     335             :   V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow(
     336             :       Code host, RelocInfo* rinfo, HeapObject value);
     337             :   V8_EXPORT_PRIVATE static void MarkingBarrierSlow(HeapObject object,
     338             :                                                    Address slot,
     339             :                                                    HeapObject value);
     340             :   V8_EXPORT_PRIVATE static void MarkingBarrierForElementsSlow(
     341             :       Heap* heap, HeapObject object);
     342             :   V8_EXPORT_PRIVATE static void MarkingBarrierForCodeSlow(Code host,
     343             :                                                           RelocInfo* rinfo,
     344             :                                                           HeapObject value);
     345             :   V8_EXPORT_PRIVATE static void MarkingBarrierForDescriptorArraySlow(
     346             :       Heap* heap, HeapObject host, HeapObject descriptor_array,
     347             :       int number_of_own_descriptors);
     348             :   V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent(HeapObject object);
     349             : 
     350             :   // Notifies the heap that is ok to start marking or other activities that
     351             :   // should not happen during deserialization.
     352             :   void NotifyDeserializationComplete();
     353             : 
     354             :   void NotifyBootstrapComplete();
     355             : 
     356             :   void NotifyOldGenerationExpansion();
     357             : 
     358             :   inline Address* NewSpaceAllocationTopAddress();
     359             :   inline Address* NewSpaceAllocationLimitAddress();
     360             :   inline Address* OldSpaceAllocationTopAddress();
     361             :   inline Address* OldSpaceAllocationLimitAddress();
     362             : 
     363             :   // Move len elements within a given array from src_index index to dst_index
     364             :   // index.
     365             :   void MoveElements(FixedArray array, int dst_index, int src_index, int len,
     366             :                     WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
     367             : 
     368             :   // Copy len elements from src_index of src array to dst_index of dst array.
     369             :   void CopyElements(FixedArray dst, FixedArray src, int dst_index,
     370             :                     int src_index, int len, WriteBarrierMode mode);
     371             : 
     372             :   // Initialize a filler object to keep the ability to iterate over the heap
     373             :   // when introducing gaps within pages. If slots could have been recorded in
     374             :   // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
     375             :   // pass ClearRecordedSlots::kNo. If the memory after the object header of
     376             :   // the filler should be cleared, pass in kClearFreedMemory. The default is
     377             :   // kDontClearFreedMemory.
     378             :   V8_EXPORT_PRIVATE HeapObject CreateFillerObjectAt(
     379             :       Address addr, int size, ClearRecordedSlots clear_slots_mode,
     380             :       ClearFreedMemoryMode clear_memory_mode =
     381             :           ClearFreedMemoryMode::kDontClearFreedMemory);
     382             : 
     383             :   template <typename T>
     384             :   void CreateFillerForArray(T object, int elements_to_trim, int bytes_to_trim);
     385             : 
     386             :   bool CanMoveObjectStart(HeapObject object);
     387             : 
     388             :   bool IsImmovable(HeapObject object);
     389             : 
     390             :   static bool IsLargeObject(HeapObject object);
     391             : 
     392             :   // Trim the given array from the left. Note that this relocates the object
     393             :   // start and hence is only valid if there is only a single reference to it.
     394             :   FixedArrayBase LeftTrimFixedArray(FixedArrayBase obj, int elements_to_trim);
     395             : 
     396             :   // Trim the given array from the right.
     397             :   void RightTrimFixedArray(FixedArrayBase obj, int elements_to_trim);
     398             :   void RightTrimWeakFixedArray(WeakFixedArray obj, int elements_to_trim);
     399             : 
     400             :   // Converts the given boolean condition to JavaScript boolean value.
     401             :   inline Oddball ToBoolean(bool condition);
     402             : 
     403             :   // Notify the heap that a context has been disposed.
     404             :   int NotifyContextDisposed(bool dependant_context);
     405             : 
     406          56 :   void set_native_contexts_list(Object object) {
     407      382436 :     native_contexts_list_ = object;
     408          56 :   }
     409             :   Object native_contexts_list() const { return native_contexts_list_; }
     410             : 
     411          56 :   void set_allocation_sites_list(Object object) {
     412      366602 :     allocation_sites_list_ = object;
     413          56 :   }
     414             :   Object allocation_sites_list() { return allocation_sites_list_; }
     415             : 
     416             :   // Used in CreateAllocationSiteStub and the (de)serializer.
     417             :   Address allocation_sites_list_address() {
     418       61926 :     return reinterpret_cast<Address>(&allocation_sites_list_);
     419             :   }
     420             : 
     421             :   // Traverse all the allocaions_sites [nested_site and weak_next] in the list
     422             :   // and foreach call the visitor
     423             :   void ForeachAllocationSite(
     424             :       Object list, const std::function<void(AllocationSite)>& visitor);
     425             : 
     426             :   // Number of mark-sweeps.
     427          20 :   int ms_count() const { return ms_count_; }
     428             : 
     429             :   // Checks whether the given object is allowed to be migrated from it's
     430             :   // current space into the given destination space. Used for debugging.
     431             :   bool AllowedToBeMigrated(HeapObject object, AllocationSpace dest);
     432             : 
     433             :   void CheckHandleCount();
     434             : 
     435             :   // Number of "runtime allocations" done so far.
     436             :   uint32_t allocations_count() { return allocations_count_; }
     437             : 
     438             :   // Print short heap statistics.
     439             :   void PrintShortHeapStatistics();
     440             : 
     441         112 :   bool write_protect_code_memory() const { return write_protect_code_memory_; }
     442             : 
     443             :   uintptr_t code_space_memory_modification_scope_depth() {
     444             :     return code_space_memory_modification_scope_depth_;
     445             :   }
     446             : 
     447          56 :   void increment_code_space_memory_modification_scope_depth() {
     448      285798 :     code_space_memory_modification_scope_depth_++;
     449          56 :   }
     450             : 
     451          56 :   void decrement_code_space_memory_modification_scope_depth() {
     452      285798 :     code_space_memory_modification_scope_depth_--;
     453          56 :   }
     454             : 
     455             :   void UnprotectAndRegisterMemoryChunk(MemoryChunk* chunk);
     456             :   void UnprotectAndRegisterMemoryChunk(HeapObject object);
     457             :   void UnregisterUnprotectedMemoryChunk(MemoryChunk* chunk);
     458             :   V8_EXPORT_PRIVATE void ProtectUnprotectedMemoryChunks();
     459             : 
     460             :   void EnableUnprotectedMemoryChunksRegistry() {
     461     1773829 :     unprotected_memory_chunks_registry_enabled_ = true;
     462             :   }
     463             : 
     464             :   void DisableUnprotectedMemoryChunksRegistry() {
     465     1773834 :     unprotected_memory_chunks_registry_enabled_ = false;
     466             :   }
     467             : 
     468             :   bool unprotected_memory_chunks_registry_enabled() {
     469             :     return unprotected_memory_chunks_registry_enabled_;
     470             :   }
     471             : 
     472             :   inline HeapState gc_state() { return gc_state_; }
     473             :   void SetGCState(HeapState state);
     474             :   bool IsTearingDown() const { return gc_state_ == TEAR_DOWN; }
     475             : 
     476             :   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
     477             : 
     478             :   // If an object has an AllocationMemento trailing it, return it, otherwise
     479             :   // return a null AllocationMemento.
     480             :   template <FindMementoMode mode>
     481             :   inline AllocationMemento FindAllocationMemento(Map map, HeapObject object);
     482             : 
     483             :   // Returns false if not able to reserve.
     484             :   bool ReserveSpace(Reservation* reservations, std::vector<Address>* maps);
     485             : 
     486             :   //
     487             :   // Support for the API.
     488             :   //
     489             : 
     490             :   void CreateApiObjects();
     491             : 
     492             :   // Implements the corresponding V8 API function.
     493             :   bool IdleNotification(double deadline_in_seconds);
     494             :   bool IdleNotification(int idle_time_in_ms);
     495             : 
     496             :   void MemoryPressureNotification(MemoryPressureLevel level,
     497             :                                   bool is_isolate_locked);
     498             :   void CheckMemoryPressure();
     499             : 
     500             :   void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data);
     501             :   void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
     502             :                                    size_t heap_limit);
     503             :   void AutomaticallyRestoreInitialHeapLimit(double threshold_percent);
     504             : 
     505             :   double MonotonicallyIncreasingTimeInMs();
     506             : 
     507             :   void RecordStats(HeapStats* stats, bool take_snapshot = false);
     508             : 
     509             :   // Check new space expansion criteria and expand semispaces if it was hit.
     510             :   void CheckNewSpaceExpansionCriteria();
     511             : 
     512             :   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
     513             : 
     514             :   // An object should be promoted if the object has survived a
     515             :   // scavenge operation.
     516             :   inline bool ShouldBePromoted(Address old_address);
     517             : 
     518             :   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
     519             : 
     520             :   inline int NextScriptId();
     521             :   inline int NextDebuggingId();
     522             :   inline int GetNextTemplateSerialNumber();
     523             : 
     524             :   void SetSerializedObjects(FixedArray objects);
     525             :   void SetSerializedGlobalProxySizes(FixedArray sizes);
     526             : 
     527             :   // For post mortem debugging.
     528             :   void RememberUnmappedPage(Address page, bool compacted);
     529             : 
     530      979806 :   int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; }
     531             : 
     532             :   V8_INLINE int64_t external_memory();
     533             :   V8_INLINE void update_external_memory(int64_t delta);
     534             :   V8_INLINE void update_external_memory_concurrently_freed(intptr_t freed);
     535             :   V8_INLINE void account_external_memory_concurrently_freed();
     536             : 
     537             :   size_t backing_store_bytes() const { return backing_store_bytes_; }
     538             : 
     539             :   void CompactWeakArrayLists(AllocationType allocation);
     540             : 
     541             :   void AddRetainedMap(Handle<Map> map);
     542             : 
     543             :   // This event is triggered after successful allocation of a new object made
     544             :   // by runtime. Allocations of target space for object evacuation do not
     545             :   // trigger the event. In order to track ALL allocations one must turn off
     546             :   // FLAG_inline_new.
     547             :   inline void OnAllocationEvent(HeapObject object, int size_in_bytes);
     548             : 
     549             :   // This event is triggered after object is moved to a new place.
     550             :   void OnMoveEvent(HeapObject target, HeapObject source, int size_in_bytes);
     551             : 
     552             :   inline bool CanAllocateInReadOnlySpace();
     553             :   bool deserialization_complete() const { return deserialization_complete_; }
     554             : 
     555             :   bool HasLowAllocationRate();
     556             :   bool HasHighFragmentation();
     557             :   bool HasHighFragmentation(size_t used, size_t committed);
     558             : 
     559             :   void ActivateMemoryReducerIfNeeded();
     560             : 
     561             :   bool ShouldOptimizeForMemoryUsage();
     562             : 
     563             :   bool HighMemoryPressure() {
     564             :     return memory_pressure_level_ != MemoryPressureLevel::kNone;
     565             :   }
     566             : 
     567           5 :   void RestoreHeapLimit(size_t heap_limit) {
     568             :     // Do not set the limit lower than the live size + some slack.
     569           5 :     size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4;
     570             :     max_old_generation_size_ =
     571          10 :         Min(max_old_generation_size_, Max(heap_limit, min_limit));
     572           5 :   }
     573             : 
     574             :   // ===========================================================================
     575             :   // Initialization. ===========================================================
     576             :   // ===========================================================================
     577             : 
     578             :   // Configure heap sizes
     579             :   // max_semi_space_size_in_kb: maximum semi-space size in KB
     580             :   // max_old_generation_size_in_mb: maximum old generation size in MB
     581             :   // code_range_size_in_mb: code range size in MB
     582             :   void ConfigureHeap(size_t max_semi_space_size_in_kb,
     583             :                      size_t max_old_generation_size_in_mb,
     584             :                      size_t code_range_size_in_mb);
     585             :   void ConfigureHeapDefault();
     586             : 
     587             :   // Prepares the heap, setting up for deserialization.
     588             :   void SetUp();
     589             : 
     590             :   // Sets read-only heap and space.
     591             :   void SetUpFromReadOnlyHeap(ReadOnlyHeap* ro_heap);
     592             : 
     593             :   // Sets up the heap memory without creating any objects.
     594             :   void SetUpSpaces();
     595             : 
     596             :   // (Re-)Initialize hash seed from flag or RNG.
     597             :   void InitializeHashSeed();
     598             : 
     599             :   // Bootstraps the object heap with the core set of objects required to run.
     600             :   // Returns whether it succeeded.
     601             :   bool CreateHeapObjects();
     602             : 
     603             :   // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
     604             :   void CreateObjectStats();
     605             : 
     606             :   // Sets the TearDown state, so no new GC tasks get posted.
     607             :   void StartTearDown();
     608             : 
     609             :   // Destroys all memory allocated by the heap.
     610             :   void TearDown();
     611             : 
     612             :   // Returns whether SetUp has been called.
     613             :   bool HasBeenSetUp();
     614             : 
     615             :   // ===========================================================================
     616             :   // Getters for spaces. =======================================================
     617             :   // ===========================================================================
     618             : 
     619             :   inline Address NewSpaceTop();
     620             : 
     621             :   NewSpace* new_space() { return new_space_; }
     622             :   OldSpace* old_space() { return old_space_; }
     623         112 :   CodeSpace* code_space() { return code_space_; }
     624             :   MapSpace* map_space() { return map_space_; }
     625             :   LargeObjectSpace* lo_space() { return lo_space_; }
     626         112 :   CodeLargeObjectSpace* code_lo_space() { return code_lo_space_; }
     627             :   NewLargeObjectSpace* new_lo_space() { return new_lo_space_; }
     628             :   ReadOnlySpace* read_only_space() { return read_only_space_; }
     629             : 
     630             :   inline PagedSpace* paged_space(int idx);
     631             :   inline Space* space(int idx);
     632             : 
     633             :   // Returns name of the space.
     634             :   const char* GetSpaceName(int idx);
     635             : 
     636             :   // ===========================================================================
     637             :   // Getters to other components. ==============================================
     638             :   // ===========================================================================
     639             : 
     640             :   ReadOnlyHeap* read_only_heap() const { return read_only_heap_; }
     641             : 
     642             :   GCTracer* tracer() { return tracer_.get(); }
     643             : 
     644       84840 :   MemoryAllocator* memory_allocator() { return memory_allocator_.get(); }
     645             : 
     646             :   inline Isolate* isolate();
     647             : 
     648             :   MarkCompactCollector* mark_compact_collector() {
     649             :     return mark_compact_collector_.get();
     650             :   }
     651             : 
     652             :   MinorMarkCompactCollector* minor_mark_compact_collector() {
     653             :     return minor_mark_compact_collector_;
     654             :   }
     655             : 
     656             :   ArrayBufferCollector* array_buffer_collector() {
     657             :     return array_buffer_collector_.get();
     658             :   }
     659             : 
     660             :   // ===========================================================================
     661             :   // Root set access. ==========================================================
     662             :   // ===========================================================================
     663             : 
     664             :   // Shortcut to the roots table stored in the Isolate.
     665             :   V8_INLINE RootsTable& roots_table();
     666             : 
     667             : // Heap root getters.
     668             : #define ROOT_ACCESSOR(type, name, CamelName) inline type name();
     669             :   MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
     670             : #undef ROOT_ACCESSOR
     671             : 
     672             :   V8_INLINE void SetRootMaterializedObjects(FixedArray objects);
     673             :   V8_INLINE void SetRootScriptList(Object value);
     674             :   V8_INLINE void SetRootStringTable(StringTable value);
     675             :   V8_INLINE void SetRootNoScriptSharedFunctionInfos(Object value);
     676             :   V8_INLINE void SetMessageListeners(TemplateList value);
     677             :   V8_INLINE void SetPendingOptimizeForTestBytecode(Object bytecode);
     678             : 
     679             :   // Set the stack limit in the roots table.  Some architectures generate
     680             :   // code that looks here, because it is faster than loading from the static
     681             :   // jslimit_/real_jslimit_ variable in the StackGuard.
     682             :   void SetStackLimits();
     683             : 
     684             :   // The stack limit is thread-dependent. To be able to reproduce the same
     685             :   // snapshot blob, we need to reset it before serializing.
     686             :   void ClearStackLimits();
     687             : 
     688             :   void RegisterStrongRoots(FullObjectSlot start, FullObjectSlot end);
     689             :   void UnregisterStrongRoots(FullObjectSlot start);
     690             : 
     691             :   void SetBuiltinsConstantsTable(FixedArray cache);
     692             : 
     693             :   // A full copy of the interpreter entry trampoline, used as a template to
     694             :   // create copies of the builtin at runtime. The copies are used to create
     695             :   // better profiling information for ticks in bytecode execution. Note that
     696             :   // this is always a copy of the full builtin, i.e. not the off-heap
     697             :   // trampoline.
     698             :   // See also: FLAG_interpreted_frames_native_stack.
     699             :   void SetInterpreterEntryTrampolineForProfiling(Code code);
     700             : 
     701             :   // Add finalization_group into the dirty_js_finalization_groups list.
     702             :   void AddDirtyJSFinalizationGroup(
     703             :       JSFinalizationGroup finalization_group,
     704             :       std::function<void(HeapObject object, ObjectSlot slot, Object target)>
     705             :           gc_notify_updated_slot);
     706             : 
     707             :   void AddKeepDuringJobTarget(Handle<JSReceiver> target);
     708             :   void ClearKeepDuringJobSet();
     709             : 
     710             :   // ===========================================================================
     711             :   // Inline allocation. ========================================================
     712             :   // ===========================================================================
     713             : 
     714             :   // Indicates whether inline bump-pointer allocation has been disabled.
     715             :   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
     716             : 
     717             :   // Switch whether inline bump-pointer allocation should be used.
     718             :   void EnableInlineAllocation();
     719             :   void DisableInlineAllocation();
     720             : 
     721             :   // ===========================================================================
     722             :   // Methods triggering GCs. ===================================================
     723             :   // ===========================================================================
     724             : 
     725             :   // Performs garbage collection operation.
     726             :   // Returns whether there is a chance that another major GC could
     727             :   // collect more garbage.
     728             :   V8_EXPORT_PRIVATE bool CollectGarbage(
     729             :       AllocationSpace space, GarbageCollectionReason gc_reason,
     730             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     731             : 
     732             :   // Performs a full garbage collection.
     733             :   V8_EXPORT_PRIVATE void CollectAllGarbage(
     734             :       int flags, GarbageCollectionReason gc_reason,
     735             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     736             : 
     737             :   // Last hope GC, should try to squeeze as much as possible.
     738             :   void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason);
     739             : 
     740             :   // Precise garbage collection that potentially finalizes already running
     741             :   // incremental marking before performing an atomic garbage collection.
     742             :   // Only use if absolutely necessary or in tests to avoid floating garbage!
     743             :   void PreciseCollectAllGarbage(
     744             :       int flags, GarbageCollectionReason gc_reason,
     745             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     746             : 
     747             :   // Reports and external memory pressure event, either performs a major GC or
     748             :   // completes incremental marking in order to free external resources.
     749             :   void ReportExternalMemoryPressure();
     750             : 
     751             :   typedef v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback
     752             :       GetExternallyAllocatedMemoryInBytesCallback;
     753             : 
     754             :   void SetGetExternallyAllocatedMemoryInBytesCallback(
     755             :       GetExternallyAllocatedMemoryInBytesCallback callback) {
     756       61534 :     external_memory_callback_ = callback;
     757             :   }
     758             : 
     759             :   // Invoked when GC was requested via the stack guard.
     760             :   void HandleGCRequest();
     761             : 
     762             :   // ===========================================================================
     763             :   // Builtins. =================================================================
     764             :   // ===========================================================================
     765             : 
     766             :   Code builtin(int index);
     767             :   Address builtin_address(int index);
     768             :   void set_builtin(int index, Code builtin);
     769             : 
     770             :   // ===========================================================================
     771             :   // Iterators. ================================================================
     772             :   // ===========================================================================
     773             : 
     774             :   // None of these methods iterate over the read-only roots. To do this use
     775             :   // ReadOnlyRoots::Iterate. Read-only root iteration is not necessary for
     776             :   // garbage collection and is usually only performed as part of
     777             :   // (de)serialization or heap verification.
     778             : 
     779             :   // Iterates over the strong roots and the weak roots.
     780             :   void IterateRoots(RootVisitor* v, VisitMode mode);
     781             :   // Iterates over the strong roots.
     782             :   void IterateStrongRoots(RootVisitor* v, VisitMode mode);
     783             :   // Iterates over entries in the smi roots list.  Only interesting to the
     784             :   // serializer/deserializer, since GC does not care about smis.
     785             :   void IterateSmiRoots(RootVisitor* v);
     786             :   // Iterates over weak string tables.
     787             :   void IterateWeakRoots(RootVisitor* v, VisitMode mode);
     788             :   // Iterates over weak global handles.
     789             :   void IterateWeakGlobalHandles(RootVisitor* v);
     790             :   // Iterates over builtins.
     791             :   void IterateBuiltins(RootVisitor* v);
     792             : 
     793             :   // ===========================================================================
     794             :   // Store buffer API. =========================================================
     795             :   // ===========================================================================
     796             : 
     797             :   // Used for query incremental marking status in generated code.
     798             :   Address* IsMarkingFlagAddress() {
     799       61590 :     return reinterpret_cast<Address*>(&is_marking_flag_);
     800             :   }
     801             : 
     802      155278 :   void SetIsMarkingFlag(uint8_t flag) { is_marking_flag_ = flag; }
     803             : 
     804             :   Address* store_buffer_top_address();
     805             :   static intptr_t store_buffer_mask_constant();
     806             :   static Address store_buffer_overflow_function_address();
     807             : 
     808             :   void ClearRecordedSlot(HeapObject object, ObjectSlot slot);
     809             :   void ClearRecordedSlotRange(Address start, Address end);
     810             : 
     811             : #ifdef DEBUG
     812             :   void VerifyClearedSlot(HeapObject object, ObjectSlot slot);
     813             : #endif
     814             : 
     815             :   // ===========================================================================
     816             :   // Incremental marking API. ==================================================
     817             :   // ===========================================================================
     818             : 
     819             :   int GCFlagsForIncrementalMarking() {
     820     1641532 :     return ShouldOptimizeForMemoryUsage() ? kReduceMemoryFootprintMask
     821     1641537 :                                           : kNoGCFlags;
     822             :   }
     823             : 
     824             :   // Start incremental marking and ensure that idle time handler can perform
     825             :   // incremental steps.
     826             :   void StartIdleIncrementalMarking(
     827             :       GarbageCollectionReason gc_reason,
     828             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     829             : 
     830             :   // Starts incremental marking assuming incremental marking is currently
     831             :   // stopped.
     832             :   void StartIncrementalMarking(
     833             :       int gc_flags, GarbageCollectionReason gc_reason,
     834             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     835             : 
     836             :   void StartIncrementalMarkingIfAllocationLimitIsReached(
     837             :       int gc_flags,
     838             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     839             : 
     840             :   void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason);
     841             :   // Synchronously finalizes incremental marking.
     842             :   void FinalizeIncrementalMarkingAtomically(GarbageCollectionReason gc_reason);
     843             : 
     844             :   void RegisterDeserializedObjectsForBlackAllocation(
     845             :       Reservation* reservations, const std::vector<HeapObject>& large_objects,
     846             :       const std::vector<Address>& maps);
     847             : 
     848             :   IncrementalMarking* incremental_marking() {
     849             :     return incremental_marking_.get();
     850             :   }
     851             : 
     852             :   // ===========================================================================
     853             :   // Concurrent marking API. ===================================================
     854             :   // ===========================================================================
     855             : 
     856             :   ConcurrentMarking* concurrent_marking() { return concurrent_marking_.get(); }
     857             : 
     858             :   // The runtime uses this function to notify potentially unsafe object layout
     859             :   // changes that require special synchronization with the concurrent marker.
     860             :   // The old size is the size of the object before layout change.
     861             :   void NotifyObjectLayoutChange(HeapObject object, int old_size,
     862             :                                 const DisallowHeapAllocation&);
     863             : 
     864             : #ifdef VERIFY_HEAP
     865             :   // This function checks that either
     866             :   // - the map transition is safe,
     867             :   // - or it was communicated to GC using NotifyObjectLayoutChange.
     868             :   void VerifyObjectLayoutChange(HeapObject object, Map new_map);
     869             : #endif
     870             : 
     871             :   // ===========================================================================
     872             :   // Deoptimization support API. ===============================================
     873             :   // ===========================================================================
     874             : 
     875             :   // Setters for code offsets of well-known deoptimization targets.
     876             :   void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
     877             :   void SetConstructStubCreateDeoptPCOffset(int pc_offset);
     878             :   void SetConstructStubInvokeDeoptPCOffset(int pc_offset);
     879             :   void SetInterpreterEntryReturnPCOffset(int pc_offset);
     880             : 
     881             :   // Invalidates references in the given {code} object that are referenced
     882             :   // transitively from the deoptimization data. Mutates write-protected code.
     883             :   void InvalidateCodeDeoptimizationData(Code code);
     884             : 
     885             :   void DeoptMarkedAllocationSites();
     886             : 
     887             :   bool DeoptMaybeTenuredAllocationSites();
     888             : 
     889             :   // ===========================================================================
     890             :   // Embedder heap tracer support. =============================================
     891             :   // ===========================================================================
     892             : 
     893             :   LocalEmbedderHeapTracer* local_embedder_heap_tracer() const {
     894             :     return local_embedder_heap_tracer_.get();
     895             :   }
     896             : 
     897             :   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
     898             :   EmbedderHeapTracer* GetEmbedderHeapTracer() const;
     899             : 
     900             :   void RegisterExternallyReferencedObject(Address* location);
     901             :   void SetEmbedderStackStateForNextFinalizaton(
     902             :       EmbedderHeapTracer::EmbedderStackState stack_state);
     903             : 
     904             :   // ===========================================================================
     905             :   // External string table API. ================================================
     906             :   // ===========================================================================
     907             : 
     908             :   // Registers an external string.
     909             :   inline void RegisterExternalString(String string);
     910             : 
     911             :   // Called when a string's resource is changed. The size of the payload is sent
     912             :   // as argument of the method.
     913             :   void UpdateExternalString(String string, size_t old_payload,
     914             :                             size_t new_payload);
     915             : 
     916             :   // Finalizes an external string by deleting the associated external
     917             :   // data and clearing the resource pointer.
     918             :   inline void FinalizeExternalString(String string);
     919             : 
     920             :   static String UpdateYoungReferenceInExternalStringTableEntry(
     921             :       Heap* heap, FullObjectSlot pointer);
     922             : 
     923             :   // ===========================================================================
     924             :   // Methods checking/returning the space of a given object/address. ===========
     925             :   // ===========================================================================
     926             : 
     927             :   // Returns whether the object resides in new space.
     928             :   static inline bool InYoungGeneration(Object object);
     929             :   static inline bool InYoungGeneration(MaybeObject object);
     930             :   static inline bool InYoungGeneration(HeapObject heap_object);
     931             :   static inline bool InFromPage(Object object);
     932             :   static inline bool InFromPage(MaybeObject object);
     933             :   static inline bool InFromPage(HeapObject heap_object);
     934             :   static inline bool InToPage(Object object);
     935             :   static inline bool InToPage(MaybeObject object);
     936             :   static inline bool InToPage(HeapObject heap_object);
     937             : 
     938             :   // Returns whether the object resides in old space.
     939             :   inline bool InOldSpace(Object object);
     940             : 
     941             :   // Checks whether an address/object in the heap (including auxiliary
     942             :   // area and unused area).
     943             :   bool Contains(HeapObject value);
     944             : 
     945             :   // Checks whether an address/object in a space.
     946             :   // Currently used by tests, serialization and heap verification only.
     947             :   bool InSpace(HeapObject value, AllocationSpace space);
     948             : 
     949             :   // Slow methods that can be used for verification as they can also be used
     950             :   // with off-heap Addresses.
     951             :   bool InSpaceSlow(Address addr, AllocationSpace space);
     952             : 
     953             :   static inline Heap* FromWritableHeapObject(const HeapObject obj);
     954             : 
     955             :   // ===========================================================================
     956             :   // Object statistics tracking. ===============================================
     957             :   // ===========================================================================
     958             : 
     959             :   // Returns the number of buckets used by object statistics tracking during a
     960             :   // major GC. Note that the following methods fail gracefully when the bounds
     961             :   // are exceeded though.
     962             :   size_t NumberOfTrackedHeapObjectTypes();
     963             : 
     964             :   // Returns object statistics about count and size at the last major GC.
     965             :   // Objects are being grouped into buckets that roughly resemble existing
     966             :   // instance types.
     967             :   size_t ObjectCountAtLastGC(size_t index);
     968             :   size_t ObjectSizeAtLastGC(size_t index);
     969             : 
     970             :   // Retrieves names of buckets used by object statistics tracking.
     971             :   bool GetObjectTypeName(size_t index, const char** object_type,
     972             :                          const char** object_sub_type);
     973             : 
     974             :   // The total number of native contexts object on the heap.
     975             :   size_t NumberOfNativeContexts();
     976             :   // The total number of native contexts that were detached but were not
     977             :   // garbage collected yet.
     978             :   size_t NumberOfDetachedContexts();
     979             : 
     980             :   // ===========================================================================
     981             :   // Code statistics. ==========================================================
     982             :   // ===========================================================================
     983             : 
     984             :   // Collect code (Code and BytecodeArray objects) statistics.
     985             :   void CollectCodeStatistics();
     986             : 
     987             :   // ===========================================================================
     988             :   // GC statistics. ============================================================
     989             :   // ===========================================================================
     990             : 
     991             :   // Returns the maximum amount of memory reserved for the heap.
     992             :   size_t MaxReserved();
     993             :   size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
     994             :   size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
     995             :   size_t MaxOldGenerationSize() { return max_old_generation_size_; }
     996             : 
     997             :   V8_EXPORT_PRIVATE static size_t ComputeMaxOldGenerationSize(
     998             :       uint64_t physical_memory);
     999             : 
    1000             :   static size_t ComputeMaxSemiSpaceSize(uint64_t physical_memory) {
    1001             :     const uint64_t min_physical_memory = 512 * MB;
    1002             :     const uint64_t max_physical_memory = 3 * static_cast<uint64_t>(GB);
    1003             : 
    1004             :     uint64_t capped_physical_memory =
    1005             :         Max(Min(physical_memory, max_physical_memory), min_physical_memory);
    1006             :     // linearly scale max semi-space size: (X-A)/(B-A)*(D-C)+C
    1007             :     size_t semi_space_size_in_kb =
    1008       29802 :         static_cast<size_t>(((capped_physical_memory - min_physical_memory) *
    1009       29802 :                              (kMaxSemiSpaceSizeInKB - kMinSemiSpaceSizeInKB)) /
    1010             :                                 (max_physical_memory - min_physical_memory) +
    1011             :                             kMinSemiSpaceSizeInKB);
    1012             :     return RoundUp(semi_space_size_in_kb, (1 << kPageSizeBits) / KB);
    1013             :   }
    1014             : 
    1015             :   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
    1016             :   // more spaces are needed until it reaches the limit.
    1017             :   size_t Capacity();
    1018             : 
    1019             :   // Returns the capacity of the old generation.
    1020             :   size_t OldGenerationCapacity();
    1021             : 
    1022             :   // Returns the amount of memory currently held alive by the unmapper.
    1023             :   size_t CommittedMemoryOfUnmapper();
    1024             : 
    1025             :   // Returns the amount of memory currently committed for the heap.
    1026             :   size_t CommittedMemory();
    1027             : 
    1028             :   // Returns the amount of memory currently committed for the old space.
    1029             :   size_t CommittedOldGenerationMemory();
    1030             : 
    1031             :   // Returns the amount of executable memory currently committed for the heap.
    1032             :   size_t CommittedMemoryExecutable();
    1033             : 
    1034             :   // Returns the amount of phyical memory currently committed for the heap.
    1035             :   size_t CommittedPhysicalMemory();
    1036             : 
    1037             :   // Returns the maximum amount of memory ever committed for the heap.
    1038             :   size_t MaximumCommittedMemory() { return maximum_committed_; }
    1039             : 
    1040             :   // Updates the maximum committed memory for the heap. Should be called
    1041             :   // whenever a space grows.
    1042             :   void UpdateMaximumCommitted();
    1043             : 
    1044             :   // Returns the available bytes in space w/o growing.
    1045             :   // Heap doesn't guarantee that it can allocate an object that requires
    1046             :   // all available bytes. Check MaxHeapObjectSize() instead.
    1047             :   size_t Available();
    1048             : 
    1049             :   // Returns of size of all objects residing in the heap.
    1050             :   size_t SizeOfObjects();
    1051             : 
    1052             :   void UpdateSurvivalStatistics(int start_new_space_size);
    1053             : 
    1054             :   inline void IncrementPromotedObjectsSize(size_t object_size) {
    1055      111048 :     promoted_objects_size_ += object_size;
    1056             :   }
    1057             :   inline size_t promoted_objects_size() { return promoted_objects_size_; }
    1058             : 
    1059             :   inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) {
    1060      111048 :     semi_space_copied_object_size_ += object_size;
    1061             :   }
    1062             :   inline size_t semi_space_copied_object_size() {
    1063             :     return semi_space_copied_object_size_;
    1064             :   }
    1065             : 
    1066             :   inline size_t SurvivedYoungObjectSize() {
    1067      136854 :     return promoted_objects_size_ + semi_space_copied_object_size_;
    1068             :   }
    1069             : 
    1070     2511751 :   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
    1071             : 
    1072     1518643 :   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
    1073             : 
    1074      327870 :   inline void IncrementNodesPromoted() { nodes_promoted_++; }
    1075             : 
    1076             :   inline void IncrementYoungSurvivorsCounter(size_t survived) {
    1077       98087 :     survived_last_scavenge_ = survived;
    1078       98087 :     survived_since_last_expansion_ += survived;
    1079             :   }
    1080             : 
    1081      453619 :   inline uint64_t OldGenerationObjectsAndPromotedExternalMemorySize() {
    1082      907849 :     return OldGenerationSizeOfObjects() + PromotedExternalMemorySize();
    1083             :   }
    1084             : 
    1085             :   inline void UpdateNewSpaceAllocationCounter();
    1086             : 
    1087             :   inline size_t NewSpaceAllocationCounter();
    1088             : 
    1089             :   // This should be used only for testing.
    1090             :   void set_new_space_allocation_counter(size_t new_value) {
    1091           5 :     new_space_allocation_counter_ = new_value;
    1092             :   }
    1093             : 
    1094             :   void UpdateOldGenerationAllocationCounter() {
    1095             :     old_generation_allocation_counter_at_last_gc_ =
    1096       73955 :         OldGenerationAllocationCounter();
    1097       73955 :     old_generation_size_at_last_gc_ = 0;
    1098             :   }
    1099             : 
    1100             :   size_t OldGenerationAllocationCounter() {
    1101      230299 :     return old_generation_allocation_counter_at_last_gc_ +
    1102      230304 :            PromotedSinceLastGC();
    1103             :   }
    1104             : 
    1105             :   // This should be used only for testing.
    1106             :   void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
    1107           5 :     old_generation_allocation_counter_at_last_gc_ = new_value;
    1108             :   }
    1109             : 
    1110             :   size_t PromotedSinceLastGC() {
    1111      230304 :     size_t old_generation_size = OldGenerationSizeOfObjects();
    1112             :     DCHECK_GE(old_generation_size, old_generation_size_at_last_gc_);
    1113      230304 :     return old_generation_size - old_generation_size_at_last_gc_;
    1114             :   }
    1115             : 
    1116             :   // This is called by the sweeper when it discovers more free space
    1117             :   // than expected at the end of the preceding GC.
    1118             :   void NotifyRefinedOldGenerationSize(size_t decreased_bytes) {
    1119       11940 :     if (old_generation_size_at_last_gc_ != 0) {
    1120             :       // OldGenerationSizeOfObjects() is now smaller by |decreased_bytes|.
    1121             :       // Adjust old_generation_size_at_last_gc_ too, so that PromotedSinceLastGC
    1122             :       // continues to increase monotonically, rather than decreasing here.
    1123             :       DCHECK_GE(old_generation_size_at_last_gc_, decreased_bytes);
    1124        6373 :       old_generation_size_at_last_gc_ -= decreased_bytes;
    1125             :     }
    1126             :   }
    1127             : 
    1128    68384291 :   int gc_count() const { return gc_count_; }
    1129             : 
    1130             :   bool is_current_gc_forced() const { return is_current_gc_forced_; }
    1131             : 
    1132             :   // Returns the size of objects residing in non-new spaces.
    1133             :   // Excludes external memory held by those objects.
    1134             :   size_t OldGenerationSizeOfObjects();
    1135             : 
    1136             :   // ===========================================================================
    1137             :   // Prologue/epilogue callback methods.========================================
    1138             :   // ===========================================================================
    1139             : 
    1140             :   void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
    1141             :                              GCType gc_type_filter, void* data);
    1142             :   void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
    1143             :                                 void* data);
    1144             : 
    1145             :   void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
    1146             :                              GCType gc_type_filter, void* data);
    1147             :   void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
    1148             :                                 void* data);
    1149             : 
    1150             :   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
    1151             :   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
    1152             : 
    1153             :   // ===========================================================================
    1154             :   // Allocation methods. =======================================================
    1155             :   // ===========================================================================
    1156             : 
    1157             :   // Creates a filler object and returns a heap object immediately after it.
    1158             :   V8_WARN_UNUSED_RESULT HeapObject PrecedeWithFiller(HeapObject object,
    1159             :                                                      int filler_size);
    1160             : 
    1161             :   // Creates a filler object if needed for alignment and returns a heap object
    1162             :   // immediately after it. If any space is left after the returned object,
    1163             :   // another filler object is created so the over allocated memory is iterable.
    1164             :   V8_WARN_UNUSED_RESULT HeapObject
    1165             :   AlignWithFiller(HeapObject object, int object_size, int allocation_size,
    1166             :                   AllocationAlignment alignment);
    1167             : 
    1168             :   // ===========================================================================
    1169             :   // ArrayBuffer tracking. =====================================================
    1170             :   // ===========================================================================
    1171             : 
    1172             :   // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external
    1173             :   // in the registration/unregistration APIs. Consider dropping the "New" from
    1174             :   // "RegisterNewArrayBuffer" because one can re-register a previously
    1175             :   // unregistered buffer, too, and the name is confusing.
    1176             :   void RegisterNewArrayBuffer(JSArrayBuffer buffer);
    1177             :   void UnregisterArrayBuffer(JSArrayBuffer buffer);
    1178             : 
    1179             :   // ===========================================================================
    1180             :   // Allocation site tracking. =================================================
    1181             :   // ===========================================================================
    1182             : 
    1183             :   // Updates the AllocationSite of a given {object}. The entry (including the
    1184             :   // count) is cached on the local pretenuring feedback.
    1185             :   inline void UpdateAllocationSite(
    1186             :       Map map, HeapObject object, PretenuringFeedbackMap* pretenuring_feedback);
    1187             : 
    1188             :   // Merges local pretenuring feedback into the global one. Note that this
    1189             :   // method needs to be called after evacuation, as allocation sites may be
    1190             :   // evacuated and this method resolves forward pointers accordingly.
    1191             :   void MergeAllocationSitePretenuringFeedback(
    1192             :       const PretenuringFeedbackMap& local_pretenuring_feedback);
    1193             : 
    1194             :   // ===========================================================================
    1195             :   // Allocation tracking. ======================================================
    1196             :   // ===========================================================================
    1197             : 
    1198             :   // Adds {new_space_observer} to new space and {observer} to any other space.
    1199             :   void AddAllocationObserversToAllSpaces(
    1200             :       AllocationObserver* observer, AllocationObserver* new_space_observer);
    1201             : 
    1202             :   // Removes {new_space_observer} from new space and {observer} from any other
    1203             :   // space.
    1204             :   void RemoveAllocationObserversFromAllSpaces(
    1205             :       AllocationObserver* observer, AllocationObserver* new_space_observer);
    1206             : 
    1207             :   bool allocation_step_in_progress() { return allocation_step_in_progress_; }
    1208             :   void set_allocation_step_in_progress(bool val) {
    1209    44705506 :     allocation_step_in_progress_ = val;
    1210             :   }
    1211             : 
    1212             :   // ===========================================================================
    1213             :   // Heap object allocation tracking. ==========================================
    1214             :   // ===========================================================================
    1215             : 
    1216             :   void AddHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
    1217             :   void RemoveHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
    1218             :   bool has_heap_object_allocation_tracker() const {
    1219             :     return !allocation_trackers_.empty();
    1220             :   }
    1221             : 
    1222             :   // ===========================================================================
    1223             :   // Retaining path tracking. ==================================================
    1224             :   // ===========================================================================
    1225             : 
    1226             :   // Adds the given object to the weak table of retaining path targets.
    1227             :   // On each GC if the marker discovers the object, it will print the retaining
    1228             :   // path. This requires --track-retaining-path flag.
    1229             :   void AddRetainingPathTarget(Handle<HeapObject> object,
    1230             :                               RetainingPathOption option);
    1231             : 
    1232             :   // ===========================================================================
    1233             :   // Stack frame support. ======================================================
    1234             :   // ===========================================================================
    1235             : 
    1236             :   // Returns the Code object for a given interior pointer.
    1237             :   Code GcSafeFindCodeForInnerPointer(Address inner_pointer);
    1238             : 
    1239             :   // Returns true if {addr} is contained within {code} and false otherwise.
    1240             :   // Mostly useful for debugging.
    1241             :   bool GcSafeCodeContains(Code code, Address addr);
    1242             : 
    1243             : // =============================================================================
    1244             : #ifdef VERIFY_HEAP
    1245             :   // Verify the heap is in its normal state before or after a GC.
    1246             :   void Verify();
    1247             :   void VerifyRememberedSetFor(HeapObject object);
    1248             : #endif
    1249             : 
    1250             : #ifdef V8_ENABLE_ALLOCATION_TIMEOUT
    1251             :   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
    1252             : #endif
    1253             : 
    1254             : #ifdef DEBUG
    1255             :   void VerifyCountersAfterSweeping();
    1256             :   void VerifyCountersBeforeConcurrentSweeping();
    1257             : 
    1258             :   void Print();
    1259             :   void PrintHandles();
    1260             : 
    1261             :   // Report code statistics.
    1262             :   void ReportCodeStatistics(const char* title);
    1263             : #endif
    1264             :   void* GetRandomMmapAddr() {
    1265      930618 :     void* result = v8::internal::GetRandomMmapAddr();
    1266             : #if V8_TARGET_ARCH_X64
    1267             : #if V8_OS_MACOSX
    1268             :     // The Darwin kernel [as of macOS 10.12.5] does not clean up page
    1269             :     // directory entries [PDE] created from mmap or mach_vm_allocate, even
    1270             :     // after the region is destroyed. Using a virtual address space that is
    1271             :     // too large causes a leak of about 1 wired [can never be paged out] page
    1272             :     // per call to mmap(). The page is only reclaimed when the process is
    1273             :     // killed. Confine the hint to a 32-bit section of the virtual address
    1274             :     // space. See crbug.com/700928.
    1275             :     uintptr_t offset =
    1276             :         reinterpret_cast<uintptr_t>(v8::internal::GetRandomMmapAddr()) &
    1277             :         kMmapRegionMask;
    1278             :     result = reinterpret_cast<void*>(mmap_region_base_ + offset);
    1279             : #endif  // V8_OS_MACOSX
    1280             : #endif  // V8_TARGET_ARCH_X64
    1281             :     return result;
    1282             :   }
    1283             : 
    1284             :   static const char* GarbageCollectionReasonToString(
    1285             :       GarbageCollectionReason gc_reason);
    1286             : 
    1287             :   // Calculates the nof entries for the full sized number to string cache.
    1288             :   inline int MaxNumberToStringCacheSize() const;
    1289             : 
    1290             :  private:
    1291             :   class SkipStoreBufferScope;
    1292             : 
    1293             :   typedef String (*ExternalStringTableUpdaterCallback)(Heap* heap,
    1294             :                                                        FullObjectSlot pointer);
    1295             : 
    1296             :   // External strings table is a place where all external strings are
    1297             :   // registered.  We need to keep track of such strings to properly
    1298             :   // finalize them.
    1299      123038 :   class ExternalStringTable {
    1300             :    public:
    1301       61534 :     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
    1302             : 
    1303             :     // Registers an external string.
    1304             :     inline void AddString(String string);
    1305             :     bool Contains(String string);
    1306             : 
    1307             :     void IterateAll(RootVisitor* v);
    1308             :     void IterateYoung(RootVisitor* v);
    1309             :     void PromoteYoung();
    1310             : 
    1311             :     // Restores internal invariant and gets rid of collected strings. Must be
    1312             :     // called after each Iterate*() that modified the strings.
    1313             :     void CleanUpAll();
    1314             :     void CleanUpYoung();
    1315             : 
    1316             :     // Finalize all registered external strings and clear tables.
    1317             :     void TearDown();
    1318             : 
    1319             :     void UpdateYoungReferences(
    1320             :         Heap::ExternalStringTableUpdaterCallback updater_func);
    1321             :     void UpdateReferences(
    1322             :         Heap::ExternalStringTableUpdaterCallback updater_func);
    1323             : 
    1324             :    private:
    1325             :     void Verify();
    1326             :     void VerifyYoung();
    1327             : 
    1328             :     Heap* const heap_;
    1329             : 
    1330             :     // To speed up scavenge collections young string are kept separate from old
    1331             :     // strings.
    1332             :     std::vector<Object> young_strings_;
    1333             :     std::vector<Object> old_strings_;
    1334             : 
    1335             :     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
    1336             :   };
    1337             : 
    1338             :   struct StrongRootsList;
    1339             : 
    1340             :   struct StringTypeTable {
    1341             :     InstanceType type;
    1342             :     int size;
    1343             :     RootIndex index;
    1344             :   };
    1345             : 
    1346             :   struct ConstantStringTable {
    1347             :     const char* contents;
    1348             :     RootIndex index;
    1349             :   };
    1350             : 
    1351             :   struct StructTable {
    1352             :     InstanceType type;
    1353             :     int size;
    1354             :     RootIndex index;
    1355             :   };
    1356             : 
    1357        8417 :   struct GCCallbackTuple {
    1358             :     GCCallbackTuple(v8::Isolate::GCCallbackWithData callback, GCType gc_type,
    1359             :                     void* data)
    1360       69951 :         : callback(callback), gc_type(gc_type), data(data) {}
    1361             : 
    1362             :     bool operator==(const GCCallbackTuple& other) const;
    1363             :     GCCallbackTuple& operator=(const GCCallbackTuple& other) V8_NOEXCEPT;
    1364             : 
    1365             :     v8::Isolate::GCCallbackWithData callback;
    1366             :     GCType gc_type;
    1367             :     void* data;
    1368             :   };
    1369             : 
    1370             :   static const int kInitialStringTableSize = StringTable::kMinCapacity;
    1371             :   static const int kInitialEvalCacheSize = 64;
    1372             :   static const int kInitialNumberStringCacheSize = 256;
    1373             : 
    1374             :   static const int kRememberedUnmappedPages = 128;
    1375             : 
    1376             :   static const StringTypeTable string_type_table[];
    1377             :   static const ConstantStringTable constant_string_table[];
    1378             :   static const StructTable struct_table[];
    1379             : 
    1380             :   static const int kYoungSurvivalRateHighThreshold = 90;
    1381             :   static const int kYoungSurvivalRateAllowedDeviation = 15;
    1382             :   static const int kOldSurvivalRateLowThreshold = 10;
    1383             : 
    1384             :   static const int kMaxMarkCompactsInIdleRound = 7;
    1385             :   static const int kIdleScavengeThreshold = 5;
    1386             : 
    1387             :   static const int kInitialFeedbackCapacity = 256;
    1388             : 
    1389             :   Heap();
    1390             :   ~Heap();
    1391             : 
    1392             :   static bool IsRegularObjectAllocation(AllocationType allocation) {
    1393             :     return AllocationType::kYoung == allocation ||
    1394             :            AllocationType::kOld == allocation;
    1395             :   }
    1396             : 
    1397           0 :   static size_t DefaultGetExternallyAllocatedMemoryInBytesCallback() {
    1398           0 :     return 0;
    1399             :   }
    1400             : 
    1401             : #define ROOT_ACCESSOR(type, name, CamelName) inline void set_##name(type value);
    1402             :   ROOT_LIST(ROOT_ACCESSOR)
    1403             : #undef ROOT_ACCESSOR
    1404             : 
    1405             :   StoreBuffer* store_buffer() { return store_buffer_.get(); }
    1406             : 
    1407             :   void set_current_gc_flags(int flags) {
    1408      116994 :     current_gc_flags_ = flags;
    1409             :   }
    1410             : 
    1411             :   inline bool ShouldReduceMemory() const {
    1412     1126836 :     return (current_gc_flags_ & kReduceMemoryFootprintMask) != 0;
    1413             :   }
    1414             : 
    1415             :   int NumberOfScavengeTasks();
    1416             : 
    1417             :   // Checks whether a global GC is necessary
    1418             :   GarbageCollector SelectGarbageCollector(AllocationSpace space,
    1419             :                                           const char** reason);
    1420             : 
    1421             :   // Make sure there is a filler value behind the top of the new space
    1422             :   // so that the GC does not confuse some unintialized/stale memory
    1423             :   // with the allocation memento of the object at the top
    1424             :   void EnsureFillerObjectAtTop();
    1425             : 
    1426             :   // Ensure that we have swept all spaces in such a way that we can iterate
    1427             :   // over all objects.  May cause a GC.
    1428             :   void MakeHeapIterable();
    1429             : 
    1430             :   // Performs garbage collection
    1431             :   // Returns whether there is a chance another major GC could
    1432             :   // collect more garbage.
    1433             :   bool PerformGarbageCollection(
    1434             :       GarbageCollector collector,
    1435             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
    1436             : 
    1437             :   inline void UpdateOldSpaceLimits();
    1438             : 
    1439             :   bool CreateInitialMaps();
    1440             :   void CreateInternalAccessorInfoObjects();
    1441             :   void CreateInitialObjects();
    1442             : 
    1443             :   // Commits from space if it is uncommitted.
    1444             :   void EnsureFromSpaceIsCommitted();
    1445             : 
    1446             :   // Uncommit unused semi space.
    1447             :   bool UncommitFromSpace();
    1448             : 
    1449             :   // Fill in bogus values in from space
    1450             :   void ZapFromSpace();
    1451             : 
    1452             :   // Zaps the memory of a code object.
    1453             :   void ZapCodeObject(Address start_address, int size_in_bytes);
    1454             : 
    1455             :   // Deopts all code that contains allocation instruction which are tenured or
    1456             :   // not tenured. Moreover it clears the pretenuring allocation site statistics.
    1457             :   void ResetAllAllocationSitesDependentCode(AllocationType allocation);
    1458             : 
    1459             :   // Evaluates local pretenuring for the old space and calls
    1460             :   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
    1461             :   // the old space.
    1462             :   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
    1463             : 
    1464             :   // Record statistics after garbage collection.
    1465             :   void ReportStatisticsAfterGC();
    1466             : 
    1467             :   // Flush the number to string cache.
    1468             :   void FlushNumberStringCache();
    1469             : 
    1470             :   void ConfigureInitialOldGenerationSize();
    1471             : 
    1472             :   bool HasLowYoungGenerationAllocationRate();
    1473             :   bool HasLowOldGenerationAllocationRate();
    1474             :   double YoungGenerationMutatorUtilization();
    1475             :   double OldGenerationMutatorUtilization();
    1476             : 
    1477             :   void ReduceNewSpaceSize();
    1478             : 
    1479             :   GCIdleTimeHeapState ComputeHeapState();
    1480             : 
    1481             :   bool PerformIdleTimeAction(GCIdleTimeAction action,
    1482             :                              GCIdleTimeHeapState heap_state,
    1483             :                              double deadline_in_ms);
    1484             : 
    1485             :   void IdleNotificationEpilogue(GCIdleTimeAction action,
    1486             :                                 GCIdleTimeHeapState heap_state, double start_ms,
    1487             :                                 double deadline_in_ms);
    1488             : 
    1489             :   int NextAllocationTimeout(int current_timeout = 0);
    1490             :   inline void UpdateAllocationsHash(HeapObject object);
    1491             :   inline void UpdateAllocationsHash(uint32_t value);
    1492             :   void PrintAllocationsHash();
    1493             : 
    1494             :   void PrintMaxMarkingLimitReached();
    1495             :   void PrintMaxNewSpaceSizeReached();
    1496             : 
    1497             :   int NextStressMarkingLimit();
    1498             : 
    1499             :   void AddToRingBuffer(const char* string);
    1500             :   void GetFromRingBuffer(char* buffer);
    1501             : 
    1502             :   void CompactRetainedMaps(WeakArrayList retained_maps);
    1503             : 
    1504             :   void CollectGarbageOnMemoryPressure();
    1505             : 
    1506             :   void EagerlyFreeExternalMemory();
    1507             : 
    1508             :   bool InvokeNearHeapLimitCallback();
    1509             : 
    1510             :   void ComputeFastPromotionMode();
    1511             : 
    1512             :   // Attempt to over-approximate the weak closure by marking object groups and
    1513             :   // implicit references from global handles, but don't atomically complete
    1514             :   // marking. If we continue to mark incrementally, we might have marked
    1515             :   // objects that die later.
    1516             :   void FinalizeIncrementalMarkingIncrementally(
    1517             :       GarbageCollectionReason gc_reason);
    1518             : 
    1519             :   // Returns the timer used for a given GC type.
    1520             :   // - GCScavenger: young generation GC
    1521             :   // - GCCompactor: full GC
    1522             :   // - GCFinalzeMC: finalization of incremental full GC
    1523             :   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
    1524             :   // memory reduction
    1525             :   TimedHistogram* GCTypeTimer(GarbageCollector collector);
    1526             :   TimedHistogram* GCTypePriorityTimer(GarbageCollector collector);
    1527             : 
    1528             :   // ===========================================================================
    1529             :   // Pretenuring. ==============================================================
    1530             :   // ===========================================================================
    1531             : 
    1532             :   // Pretenuring decisions are made based on feedback collected during new space
    1533             :   // evacuation. Note that between feedback collection and calling this method
    1534             :   // object in old space must not move.
    1535             :   void ProcessPretenuringFeedback();
    1536             : 
    1537             :   // Removes an entry from the global pretenuring storage.
    1538             :   void RemoveAllocationSitePretenuringFeedback(AllocationSite site);
    1539             : 
    1540             :   // ===========================================================================
    1541             :   // Actual GC. ================================================================
    1542             :   // ===========================================================================
    1543             : 
    1544             :   // Code that should be run before and after each GC.  Includes some
    1545             :   // reporting/verification activities when compiled with DEBUG set.
    1546             :   void GarbageCollectionPrologue();
    1547             :   void GarbageCollectionEpilogue();
    1548             : 
    1549             :   // Performs a major collection in the whole heap.
    1550             :   void MarkCompact();
    1551             :   // Performs a minor collection of just the young generation.
    1552             :   void MinorMarkCompact();
    1553             : 
    1554             :   // Code to be run before and after mark-compact.
    1555             :   void MarkCompactPrologue();
    1556             :   void MarkCompactEpilogue();
    1557             : 
    1558             :   // Performs a minor collection in new generation.
    1559             :   void Scavenge();
    1560             :   void EvacuateYoungGeneration();
    1561             : 
    1562             :   void UpdateYoungReferencesInExternalStringTable(
    1563             :       ExternalStringTableUpdaterCallback updater_func);
    1564             : 
    1565             :   void UpdateReferencesInExternalStringTable(
    1566             :       ExternalStringTableUpdaterCallback updater_func);
    1567             : 
    1568             :   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
    1569             :   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
    1570             :   void ProcessNativeContexts(WeakObjectRetainer* retainer);
    1571             :   void ProcessAllocationSites(WeakObjectRetainer* retainer);
    1572             :   void ProcessWeakListRoots(WeakObjectRetainer* retainer);
    1573             : 
    1574             :   // ===========================================================================
    1575             :   // GC statistics. ============================================================
    1576             :   // ===========================================================================
    1577             : 
    1578      226678 :   inline size_t OldGenerationSpaceAvailable() {
    1579      453356 :     if (old_generation_allocation_limit_ <=
    1580      226373 :         OldGenerationObjectsAndPromotedExternalMemorySize())
    1581             :       return 0;
    1582      225860 :     return old_generation_allocation_limit_ -
    1583             :            static_cast<size_t>(
    1584      225860 :                OldGenerationObjectsAndPromotedExternalMemorySize());
    1585             :   }
    1586             : 
    1587             :   // We allow incremental marking to overshoot the allocation limit for
    1588             :   // performace reasons. If the overshoot is too large then we are more
    1589             :   // eager to finalize incremental marking.
    1590         943 :   inline bool AllocationLimitOvershotByLargeMargin() {
    1591             :     // This guards against too eager finalization in small heaps.
    1592             :     // The number is chosen based on v8.browsing_mobile on Nexus 7v2.
    1593             :     size_t kMarginForSmallHeaps = 32u * MB;
    1594        1886 :     if (old_generation_allocation_limit_ >=
    1595         943 :         OldGenerationObjectsAndPromotedExternalMemorySize())
    1596             :       return false;
    1597         748 :     uint64_t overshoot = OldGenerationObjectsAndPromotedExternalMemorySize() -
    1598         748 :                          old_generation_allocation_limit_;
    1599             :     // Overshoot margin is 50% of allocation limit or half-way to the max heap
    1600             :     // with special handling of small heaps.
    1601             :     uint64_t margin =
    1602         748 :         Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps),
    1603         748 :             (max_old_generation_size_ - old_generation_allocation_limit_) / 2);
    1604         748 :     return overshoot >= margin;
    1605             :   }
    1606             : 
    1607             :   void UpdateTotalGCTime(double duration);
    1608             : 
    1609       94928 :   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
    1610             : 
    1611             :   bool IsIneffectiveMarkCompact(size_t old_generation_size,
    1612             :                                 double mutator_utilization);
    1613             :   void CheckIneffectiveMarkCompact(size_t old_generation_size,
    1614             :                                    double mutator_utilization);
    1615             : 
    1616             :   inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
    1617             :                                                  size_t amount);
    1618             : 
    1619             :   inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
    1620             :                                                  size_t amount);
    1621             : 
    1622             :   // ===========================================================================
    1623             :   // Growing strategy. =========================================================
    1624             :   // ===========================================================================
    1625             : 
    1626             :   HeapController* heap_controller() { return heap_controller_.get(); }
    1627             :   MemoryReducer* memory_reducer() { return memory_reducer_.get(); }
    1628             : 
    1629             :   // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD.
    1630             :   // This constant limits the effect of load RAIL mode on GC.
    1631             :   // The value is arbitrary and chosen as the largest load time observed in
    1632             :   // v8 browsing benchmarks.
    1633             :   static const int kMaxLoadTimeMs = 7000;
    1634             : 
    1635             :   bool ShouldOptimizeForLoadTime();
    1636             : 
    1637             :   size_t old_generation_allocation_limit() const {
    1638             :     return old_generation_allocation_limit_;
    1639             :   }
    1640             : 
    1641             :   bool always_allocate() { return always_allocate_scope_count_ != 0; }
    1642             : 
    1643             :   bool CanExpandOldGeneration(size_t size);
    1644             : 
    1645             :   bool ShouldExpandOldGenerationOnSlowAllocation();
    1646             : 
    1647             :   enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault };
    1648             : 
    1649             :   HeapGrowingMode CurrentHeapGrowingMode();
    1650             : 
    1651             :   enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit };
    1652             :   IncrementalMarkingLimit IncrementalMarkingLimitReached();
    1653             : 
    1654             :   // ===========================================================================
    1655             :   // Idle notification. ========================================================
    1656             :   // ===========================================================================
    1657             : 
    1658             :   bool RecentIdleNotificationHappened();
    1659             :   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
    1660             : 
    1661             :   // ===========================================================================
    1662             :   // HeapIterator helpers. =====================================================
    1663             :   // ===========================================================================
    1664             : 
    1665        7820 :   void heap_iterator_start() { heap_iterator_depth_++; }
    1666             : 
    1667        7820 :   void heap_iterator_end() { heap_iterator_depth_--; }
    1668             : 
    1669             :   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
    1670             : 
    1671             :   // ===========================================================================
    1672             :   // Allocation methods. =======================================================
    1673             :   // ===========================================================================
    1674             : 
    1675             :   // Allocates a JS Map in the heap.
    1676             :   V8_WARN_UNUSED_RESULT AllocationResult
    1677             :   AllocateMap(InstanceType instance_type, int instance_size,
    1678             :               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
    1679             :               int inobject_properties = 0);
    1680             : 
    1681             :   // Allocate an uninitialized object.  The memory is non-executable if the
    1682             :   // hardware and OS allow.  This is the single choke-point for allocations
    1683             :   // performed by the runtime and should not be bypassed (to extend this to
    1684             :   // inlined allocations, use the Heap::DisableInlineAllocation() support).
    1685             :   V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
    1686             :       int size_in_bytes, AllocationType allocation,
    1687             :       AllocationAlignment aligment = kWordAligned);
    1688             : 
    1689             :   // This method will try to perform an allocation of a given size of a given
    1690             :   // AllocationType. If the allocation fails, a regular full garbage collection
    1691             :   // is triggered and the allocation is retried. This is performed multiple
    1692             :   // times. If after that retry procedure the allocation still fails nullptr is
    1693             :   // returned.
    1694             :   HeapObject AllocateRawWithLightRetry(
    1695             :       int size, AllocationType allocation,
    1696             :       AllocationAlignment alignment = kWordAligned);
    1697             : 
    1698             :   // This method will try to perform an allocation of a given size of a given
    1699             :   // AllocationType. If the allocation fails, a regular full garbage collection
    1700             :   // is triggered and the allocation is retried. This is performed multiple
    1701             :   // times. If after that retry procedure the allocation still fails a "hammer"
    1702             :   // garbage collection is triggered which tries to significantly reduce memory.
    1703             :   // If the allocation still fails after that a fatal error is thrown.
    1704             :   HeapObject AllocateRawWithRetryOrFail(
    1705             :       int size, AllocationType allocation,
    1706             :       AllocationAlignment alignment = kWordAligned);
    1707             :   HeapObject AllocateRawCodeInLargeObjectSpace(int size);
    1708             : 
    1709             :   // Allocates a heap object based on the map.
    1710             :   V8_WARN_UNUSED_RESULT AllocationResult Allocate(Map map,
    1711             :                                                   AllocationType allocation);
    1712             : 
    1713             :   // Takes a code object and checks if it is on memory which is not subject to
    1714             :   // compaction. This method will return a new code object on an immovable
    1715             :   // memory location if the original code object was movable.
    1716             :   HeapObject EnsureImmovableCode(HeapObject heap_object, int object_size);
    1717             : 
    1718             :   // Allocates a partial map for bootstrapping.
    1719             :   V8_WARN_UNUSED_RESULT AllocationResult
    1720             :   AllocatePartialMap(InstanceType instance_type, int instance_size);
    1721             : 
    1722             :   void FinalizePartialMap(Map map);
    1723             : 
    1724             :   // Allocate empty fixed typed array of given type.
    1725             :   V8_WARN_UNUSED_RESULT AllocationResult
    1726             :   AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
    1727             : 
    1728          70 :   void set_force_oom(bool value) { force_oom_ = value; }
    1729             : 
    1730             :   // ===========================================================================
    1731             :   // Retaining path tracing ====================================================
    1732             :   // ===========================================================================
    1733             : 
    1734             :   void AddRetainer(HeapObject retainer, HeapObject object);
    1735             :   void AddEphemeronRetainer(HeapObject retainer, HeapObject object);
    1736             :   void AddRetainingRoot(Root root, HeapObject object);
    1737             :   // Returns true if the given object is a target of retaining path tracking.
    1738             :   // Stores the option corresponding to the object in the provided *option.
    1739             :   bool IsRetainingPathTarget(HeapObject object, RetainingPathOption* option);
    1740             :   void PrintRetainingPath(HeapObject object, RetainingPathOption option);
    1741             : 
    1742             : #ifdef DEBUG
    1743             :   void IncrementObjectCounters();
    1744             : #endif  // DEBUG
    1745             : 
    1746             :   // The amount of memory that has been freed concurrently.
    1747             :   std::atomic<intptr_t> external_memory_concurrently_freed_{0};
    1748             : 
    1749             :   // This can be calculated directly from a pointer to the heap; however, it is
    1750             :   // more expedient to get at the isolate directly from within Heap methods.
    1751             :   Isolate* isolate_ = nullptr;
    1752             : 
    1753             :   size_t code_range_size_ = 0;
    1754             :   size_t max_semi_space_size_ = 8 * (kSystemPointerSize / 4) * MB;
    1755             :   size_t initial_semispace_size_ = kMinSemiSpaceSizeInKB * KB;
    1756             :   size_t max_old_generation_size_ = 700ul * (kSystemPointerSize / 4) * MB;
    1757             :   size_t initial_max_old_generation_size_;
    1758             :   size_t initial_max_old_generation_size_threshold_;
    1759             :   size_t initial_old_generation_size_;
    1760             :   bool old_generation_size_configured_ = false;
    1761             :   size_t maximum_committed_ = 0;
    1762             :   size_t old_generation_capacity_after_bootstrap_ = 0;
    1763             : 
    1764             :   // Backing store bytes (array buffers and external strings).
    1765             :   std::atomic<size_t> backing_store_bytes_{0};
    1766             : 
    1767             :   // For keeping track of how much data has survived
    1768             :   // scavenge since last new space expansion.
    1769             :   size_t survived_since_last_expansion_ = 0;
    1770             : 
    1771             :   // ... and since the last scavenge.
    1772             :   size_t survived_last_scavenge_ = 0;
    1773             : 
    1774             :   // This is not the depth of nested AlwaysAllocateScope's but rather a single
    1775             :   // count, as scopes can be acquired from multiple tasks (read: threads).
    1776             :   std::atomic<size_t> always_allocate_scope_count_{0};
    1777             : 
    1778             :   // Stores the memory pressure level that set by MemoryPressureNotification
    1779             :   // and reset by a mark-compact garbage collection.
    1780             :   std::atomic<MemoryPressureLevel> memory_pressure_level_;
    1781             : 
    1782             :   std::vector<std::pair<v8::NearHeapLimitCallback, void*> >
    1783             :       near_heap_limit_callbacks_;
    1784             : 
    1785             :   // For keeping track of context disposals.
    1786             :   int contexts_disposed_ = 0;
    1787             : 
    1788             :   // The length of the retained_maps array at the time of context disposal.
    1789             :   // This separates maps in the retained_maps array that were created before
    1790             :   // and after context disposal.
    1791             :   int number_of_disposed_maps_ = 0;
    1792             : 
    1793             :   ReadOnlyHeap* read_only_heap_ = nullptr;
    1794             : 
    1795             :   NewSpace* new_space_ = nullptr;
    1796             :   OldSpace* old_space_ = nullptr;
    1797             :   CodeSpace* code_space_ = nullptr;
    1798             :   MapSpace* map_space_ = nullptr;
    1799             :   LargeObjectSpace* lo_space_ = nullptr;
    1800             :   CodeLargeObjectSpace* code_lo_space_ = nullptr;
    1801             :   NewLargeObjectSpace* new_lo_space_ = nullptr;
    1802             :   ReadOnlySpace* read_only_space_ = nullptr;
    1803             :   // Map from the space id to the space.
    1804             :   Space* space_[LAST_SPACE + 1];
    1805             : 
    1806             :   // Determines whether code space is write-protected. This is essentially a
    1807             :   // race-free copy of the {FLAG_write_protect_code_memory} flag.
    1808             :   bool write_protect_code_memory_ = false;
    1809             : 
    1810             :   // Holds the number of open CodeSpaceMemoryModificationScopes.
    1811             :   uintptr_t code_space_memory_modification_scope_depth_ = 0;
    1812             : 
    1813             :   HeapState gc_state_ = NOT_IN_GC;
    1814             : 
    1815             :   int gc_post_processing_depth_ = 0;
    1816             : 
    1817             :   // Returns the amount of external memory registered since last global gc.
    1818             :   uint64_t PromotedExternalMemorySize();
    1819             : 
    1820             :   // How many "runtime allocations" happened.
    1821             :   uint32_t allocations_count_ = 0;
    1822             : 
    1823             :   // Running hash over allocations performed.
    1824             :   uint32_t raw_allocations_hash_ = 0;
    1825             : 
    1826             :   // Starts marking when stress_marking_percentage_% of the marking start limit
    1827             :   // is reached.
    1828             :   int stress_marking_percentage_ = 0;
    1829             : 
    1830             :   // Observer that causes more frequent checks for reached incremental marking
    1831             :   // limit.
    1832             :   AllocationObserver* stress_marking_observer_ = nullptr;
    1833             : 
    1834             :   // Observer that can cause early scavenge start.
    1835             :   StressScavengeObserver* stress_scavenge_observer_ = nullptr;
    1836             : 
    1837             :   bool allocation_step_in_progress_ = false;
    1838             : 
    1839             :   // The maximum percent of the marking limit reached wihout causing marking.
    1840             :   // This is tracked when specyfing --fuzzer-gc-analysis.
    1841             :   double max_marking_limit_reached_ = 0.0;
    1842             : 
    1843             :   // How many mark-sweep collections happened.
    1844             :   unsigned int ms_count_ = 0;
    1845             : 
    1846             :   // How many gc happened.
    1847             :   unsigned int gc_count_ = 0;
    1848             : 
    1849             :   // The number of Mark-Compact garbage collections that are considered as
    1850             :   // ineffective. See IsIneffectiveMarkCompact() predicate.
    1851             :   int consecutive_ineffective_mark_compacts_ = 0;
    1852             : 
    1853             :   static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu;
    1854             :   uintptr_t mmap_region_base_ = 0;
    1855             : 
    1856             :   // For post mortem debugging.
    1857             :   int remembered_unmapped_pages_index_ = 0;
    1858             :   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
    1859             : 
    1860             :   // Limit that triggers a global GC on the next (normally caused) GC.  This
    1861             :   // is checked when we have already decided to do a GC to help determine
    1862             :   // which collector to invoke, before expanding a paged space in the old
    1863             :   // generation and on every allocation in large object space.
    1864             :   size_t old_generation_allocation_limit_;
    1865             : 
    1866             :   // Indicates that inline bump-pointer allocation has been globally disabled
    1867             :   // for all spaces. This is used to disable allocations in generated code.
    1868             :   bool inline_allocation_disabled_ = false;
    1869             : 
    1870             :   // Weak list heads, threaded through the objects.
    1871             :   // List heads are initialized lazily and contain the undefined_value at start.
    1872             :   Object native_contexts_list_;
    1873             :   Object allocation_sites_list_;
    1874             : 
    1875             :   std::vector<GCCallbackTuple> gc_epilogue_callbacks_;
    1876             :   std::vector<GCCallbackTuple> gc_prologue_callbacks_;
    1877             : 
    1878             :   GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_;
    1879             : 
    1880             :   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
    1881             : 
    1882             :   size_t promoted_objects_size_ = 0;
    1883             :   double promotion_ratio_ = 0.0;
    1884             :   double promotion_rate_ = 0.0;
    1885             :   size_t semi_space_copied_object_size_ = 0;
    1886             :   size_t previous_semi_space_copied_object_size_ = 0;
    1887             :   double semi_space_copied_rate_ = 0.0;
    1888             :   int nodes_died_in_new_space_ = 0;
    1889             :   int nodes_copied_in_new_space_ = 0;
    1890             :   int nodes_promoted_ = 0;
    1891             : 
    1892             :   // This is the pretenuring trigger for allocation sites that are in maybe
    1893             :   // tenure state. When we switched to the maximum new space size we deoptimize
    1894             :   // the code that belongs to the allocation site and derive the lifetime
    1895             :   // of the allocation site.
    1896             :   unsigned int maximum_size_scavenges_ = 0;
    1897             : 
    1898             :   // Total time spent in GC.
    1899             :   double total_gc_time_ms_;
    1900             : 
    1901             :   // Last time an idle notification happened.
    1902             :   double last_idle_notification_time_ = 0.0;
    1903             : 
    1904             :   // Last time a garbage collection happened.
    1905             :   double last_gc_time_ = 0.0;
    1906             : 
    1907             :   std::unique_ptr<GCTracer> tracer_;
    1908             :   std::unique_ptr<MarkCompactCollector> mark_compact_collector_;
    1909             :   MinorMarkCompactCollector* minor_mark_compact_collector_ = nullptr;
    1910             :   std::unique_ptr<ScavengerCollector> scavenger_collector_;
    1911             :   std::unique_ptr<ArrayBufferCollector> array_buffer_collector_;
    1912             :   std::unique_ptr<MemoryAllocator> memory_allocator_;
    1913             :   std::unique_ptr<StoreBuffer> store_buffer_;
    1914             :   std::unique_ptr<HeapController> heap_controller_;
    1915             :   std::unique_ptr<IncrementalMarking> incremental_marking_;
    1916             :   std::unique_ptr<ConcurrentMarking> concurrent_marking_;
    1917             :   std::unique_ptr<GCIdleTimeHandler> gc_idle_time_handler_;
    1918             :   std::unique_ptr<MemoryReducer> memory_reducer_;
    1919             :   std::unique_ptr<ObjectStats> live_object_stats_;
    1920             :   std::unique_ptr<ObjectStats> dead_object_stats_;
    1921             :   std::unique_ptr<ScavengeJob> scavenge_job_;
    1922             :   std::unique_ptr<AllocationObserver> idle_scavenge_observer_;
    1923             :   std::unique_ptr<LocalEmbedderHeapTracer> local_embedder_heap_tracer_;
    1924             :   StrongRootsList* strong_roots_list_ = nullptr;
    1925             : 
    1926             :   // This counter is increased before each GC and never reset.
    1927             :   // To account for the bytes allocated since the last GC, use the
    1928             :   // NewSpaceAllocationCounter() function.
    1929             :   size_t new_space_allocation_counter_ = 0;
    1930             : 
    1931             :   // This counter is increased before each GC and never reset. To
    1932             :   // account for the bytes allocated since the last GC, use the
    1933             :   // OldGenerationAllocationCounter() function.
    1934             :   size_t old_generation_allocation_counter_at_last_gc_ = 0;
    1935             : 
    1936             :   // The size of objects in old generation after the last MarkCompact GC.
    1937             :   size_t old_generation_size_at_last_gc_ = 0;
    1938             : 
    1939             :   // The feedback storage is used to store allocation sites (keys) and how often
    1940             :   // they have been visited (values) by finding a memento behind an object. The
    1941             :   // storage is only alive temporary during a GC. The invariant is that all
    1942             :   // pointers in this map are already fixed, i.e., they do not point to
    1943             :   // forwarding pointers.
    1944             :   PretenuringFeedbackMap global_pretenuring_feedback_;
    1945             : 
    1946             :   char trace_ring_buffer_[kTraceRingBufferSize];
    1947             : 
    1948             :   // Used as boolean.
    1949             :   uint8_t is_marking_flag_ = 0;
    1950             : 
    1951             :   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
    1952             :   // full then the data is from ring_buffer_end_ to the end of the buffer and
    1953             :   // from 0 to ring_buffer_end_.
    1954             :   bool ring_buffer_full_ = false;
    1955             :   size_t ring_buffer_end_ = 0;
    1956             : 
    1957             :   // Flag is set when the heap has been configured.  The heap can be repeatedly
    1958             :   // configured through the API until it is set up.
    1959             :   bool configured_ = false;
    1960             : 
    1961             :   // Currently set GC flags that are respected by all GC components.
    1962             :   int current_gc_flags_ = Heap::kNoGCFlags;
    1963             : 
    1964             :   // Currently set GC callback flags that are used to pass information between
    1965             :   // the embedder and V8's GC.
    1966             :   GCCallbackFlags current_gc_callback_flags_;
    1967             : 
    1968             :   bool is_current_gc_forced_;
    1969             : 
    1970             :   ExternalStringTable external_string_table_;
    1971             : 
    1972             :   base::Mutex relocation_mutex_;
    1973             : 
    1974             :   int gc_callbacks_depth_ = 0;
    1975             : 
    1976             :   bool deserialization_complete_ = false;
    1977             : 
    1978             :   // The depth of HeapIterator nestings.
    1979             :   int heap_iterator_depth_ = 0;
    1980             : 
    1981             :   bool fast_promotion_mode_ = false;
    1982             : 
    1983             :   // Used for testing purposes.
    1984             :   bool force_oom_ = false;
    1985             :   bool delay_sweeper_tasks_for_testing_ = false;
    1986             : 
    1987             :   HeapObject pending_layout_change_object_;
    1988             : 
    1989             :   base::Mutex unprotected_memory_chunks_mutex_;
    1990             :   std::unordered_set<MemoryChunk*> unprotected_memory_chunks_;
    1991             :   bool unprotected_memory_chunks_registry_enabled_ = false;
    1992             : 
    1993             : #ifdef V8_ENABLE_ALLOCATION_TIMEOUT
    1994             :   // If the --gc-interval flag is set to a positive value, this
    1995             :   // variable holds the value indicating the number of allocations
    1996             :   // remain until the next failure and garbage collection.
    1997             :   int allocation_timeout_ = 0;
    1998             : #endif  // V8_ENABLE_ALLOCATION_TIMEOUT
    1999             : 
    2000             :   std::map<HeapObject, HeapObject, Object::Comparer> retainer_;
    2001             :   std::map<HeapObject, Root, Object::Comparer> retaining_root_;
    2002             :   // If an object is retained by an ephemeron, then the retaining key of the
    2003             :   // ephemeron is stored in this map.
    2004             :   std::map<HeapObject, HeapObject, Object::Comparer> ephemeron_retainer_;
    2005             :   // For each index inthe retaining_path_targets_ array this map
    2006             :   // stores the option of the corresponding target.
    2007             :   std::map<int, RetainingPathOption> retaining_path_target_option_;
    2008             : 
    2009             :   std::vector<HeapObjectAllocationTracker*> allocation_trackers_;
    2010             : 
    2011             :   // Classes in "heap" can be friends.
    2012             :   friend class AlwaysAllocateScope;
    2013             :   friend class ArrayBufferCollector;
    2014             :   friend class ConcurrentMarking;
    2015             :   friend class GCCallbacksScope;
    2016             :   friend class GCTracer;
    2017             :   friend class MemoryController;
    2018             :   friend class HeapIterator;
    2019             :   friend class IdleScavengeObserver;
    2020             :   friend class IncrementalMarking;
    2021             :   friend class IncrementalMarkingJob;
    2022             :   friend class LargeObjectSpace;
    2023             :   template <FixedArrayVisitationMode fixed_array_mode,
    2024             :             TraceRetainingPathMode retaining_path_mode, typename MarkingState>
    2025             :   friend class MarkingVisitor;
    2026             :   friend class MarkCompactCollector;
    2027             :   friend class MarkCompactCollectorBase;
    2028             :   friend class MinorMarkCompactCollector;
    2029             :   friend class NewLargeObjectSpace;
    2030             :   friend class NewSpace;
    2031             :   friend class ObjectStatsCollector;
    2032             :   friend class Page;
    2033             :   friend class PagedSpace;
    2034             :   friend class ReadOnlyRoots;
    2035             :   friend class Scavenger;
    2036             :   friend class ScavengerCollector;
    2037             :   friend class Space;
    2038             :   friend class StoreBuffer;
    2039             :   friend class Sweeper;
    2040             :   friend class heap::TestMemoryAllocatorScope;
    2041             : 
    2042             :   // The allocator interface.
    2043             :   friend class Factory;
    2044             : 
    2045             :   // The Isolate constructs us.
    2046             :   friend class Isolate;
    2047             : 
    2048             :   // Used in cctest.
    2049             :   friend class heap::HeapTester;
    2050             : 
    2051             :   FRIEND_TEST(HeapControllerTest, OldGenerationAllocationLimit);
    2052             :   FRIEND_TEST(HeapTest, ExternalLimitDefault);
    2053             :   FRIEND_TEST(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling);
    2054             :   DISALLOW_COPY_AND_ASSIGN(Heap);
    2055             : };
    2056             : 
    2057             : 
    2058             : class HeapStats {
    2059             :  public:
    2060             :   static const int kStartMarker = 0xDECADE00;
    2061             :   static const int kEndMarker = 0xDECADE01;
    2062             : 
    2063             :   intptr_t* start_marker;                  //  0
    2064             :   size_t* ro_space_size;                   //  1
    2065             :   size_t* ro_space_capacity;               //  2
    2066             :   size_t* new_space_size;                  //  3
    2067             :   size_t* new_space_capacity;              //  4
    2068             :   size_t* old_space_size;                  //  5
    2069             :   size_t* old_space_capacity;              //  6
    2070             :   size_t* code_space_size;                 //  7
    2071             :   size_t* code_space_capacity;             //  8
    2072             :   size_t* map_space_size;                  //  9
    2073             :   size_t* map_space_capacity;              // 10
    2074             :   size_t* lo_space_size;                   // 11
    2075             :   size_t* code_lo_space_size;              // 12
    2076             :   size_t* global_handle_count;             // 13
    2077             :   size_t* weak_global_handle_count;        // 14
    2078             :   size_t* pending_global_handle_count;     // 15
    2079             :   size_t* near_death_global_handle_count;  // 16
    2080             :   size_t* free_global_handle_count;        // 17
    2081             :   size_t* memory_allocator_size;           // 18
    2082             :   size_t* memory_allocator_capacity;       // 19
    2083             :   size_t* malloced_memory;                 // 20
    2084             :   size_t* malloced_peak_memory;            // 21
    2085             :   size_t* objects_per_type;                // 22
    2086             :   size_t* size_per_type;                   // 23
    2087             :   int* os_error;                           // 24
    2088             :   char* last_few_messages;                 // 25
    2089             :   char* js_stacktrace;                     // 26
    2090             :   intptr_t* end_marker;                    // 27
    2091             : };
    2092             : 
    2093             : 
    2094             : class AlwaysAllocateScope {
    2095             :  public:
    2096             :   explicit inline AlwaysAllocateScope(Heap* heap);
    2097             :   explicit inline AlwaysAllocateScope(Isolate* isolate);
    2098             :   inline ~AlwaysAllocateScope();
    2099             : 
    2100             :  private:
    2101             :   Heap* heap_;
    2102             : };
    2103             : 
    2104             : // The CodeSpaceMemoryModificationScope can only be used by the main thread.
    2105             : class CodeSpaceMemoryModificationScope {
    2106             :  public:
    2107             :   explicit inline CodeSpaceMemoryModificationScope(Heap* heap);
    2108             :   inline ~CodeSpaceMemoryModificationScope();
    2109             : 
    2110             :  private:
    2111             :   Heap* heap_;
    2112             : };
    2113             : 
    2114             : // The CodePageCollectionMemoryModificationScope can only be used by the main
    2115             : // thread. It will not be enabled if a CodeSpaceMemoryModificationScope is
    2116             : // already active.
    2117             : class CodePageCollectionMemoryModificationScope {
    2118             :  public:
    2119             :   explicit inline CodePageCollectionMemoryModificationScope(Heap* heap);
    2120             :   inline ~CodePageCollectionMemoryModificationScope();
    2121             : 
    2122             :  private:
    2123             :   Heap* heap_;
    2124             : };
    2125             : 
    2126             : // The CodePageMemoryModificationScope does not check if tansitions to
    2127             : // writeable and back to executable are actually allowed, i.e. the MemoryChunk
    2128             : // was registered to be executable. It can be used by concurrent threads.
    2129             : class CodePageMemoryModificationScope {
    2130             :  public:
    2131             :   explicit inline CodePageMemoryModificationScope(MemoryChunk* chunk);
    2132             :   inline ~CodePageMemoryModificationScope();
    2133             : 
    2134             :  private:
    2135             :   MemoryChunk* chunk_;
    2136             :   bool scope_active_;
    2137             : 
    2138             :   // Disallow any GCs inside this scope, as a relocation of the underlying
    2139             :   // object would change the {MemoryChunk} that this scope targets.
    2140             :   DISALLOW_HEAP_ALLOCATION(no_heap_allocation_)
    2141             : };
    2142             : 
    2143             : // Visitor class to verify interior pointers in spaces that do not contain
    2144             : // or care about intergenerational references. All heap object pointers have to
    2145             : // point into the heap to a location that has a map pointer at its first word.
    2146             : // Caveat: Heap::Contains is an approximation because it can return true for
    2147             : // objects in a heap space but above the allocation pointer.
    2148           0 : class VerifyPointersVisitor : public ObjectVisitor, public RootVisitor {
    2149             :  public:
    2150             :   explicit VerifyPointersVisitor(Heap* heap) : heap_(heap) {}
    2151             :   void VisitPointers(HeapObject host, ObjectSlot start,
    2152             :                      ObjectSlot end) override;
    2153             :   void VisitPointers(HeapObject host, MaybeObjectSlot start,
    2154             :                      MaybeObjectSlot end) override;
    2155             :   void VisitCodeTarget(Code host, RelocInfo* rinfo) override;
    2156             :   void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) override;
    2157             : 
    2158             :   void VisitRootPointers(Root root, const char* description,
    2159             :                          FullObjectSlot start, FullObjectSlot end) override;
    2160             : 
    2161             :  protected:
    2162             :   V8_INLINE void VerifyHeapObjectImpl(HeapObject heap_object);
    2163             : 
    2164             :   template <typename TSlot>
    2165             :   V8_INLINE void VerifyPointersImpl(TSlot start, TSlot end);
    2166             : 
    2167             :   virtual void VerifyPointers(HeapObject host, MaybeObjectSlot start,
    2168             :                               MaybeObjectSlot end);
    2169             : 
    2170             :   Heap* heap_;
    2171             : };
    2172             : 
    2173             : 
    2174             : // Verify that all objects are Smis.
    2175           0 : class VerifySmisVisitor : public RootVisitor {
    2176             :  public:
    2177             :   void VisitRootPointers(Root root, const char* description,
    2178             :                          FullObjectSlot start, FullObjectSlot end) override;
    2179             : };
    2180             : 
    2181             : // Space iterator for iterating over all the paged spaces of the heap: Map
    2182             : // space, old space, code space and optionally read only space. Returns each
    2183             : // space in turn, and null when it is done.
    2184             : class V8_EXPORT_PRIVATE PagedSpaces {
    2185             :  public:
    2186             :   enum class SpacesSpecifier { kSweepablePagedSpaces, kAllPagedSpaces };
    2187             : 
    2188             :   explicit PagedSpaces(Heap* heap, SpacesSpecifier specifier =
    2189             :                                        SpacesSpecifier::kSweepablePagedSpaces)
    2190             :       : heap_(heap),
    2191             :         counter_(specifier == SpacesSpecifier::kAllPagedSpaces ? RO_SPACE
    2192     5403339 :                                                                : OLD_SPACE) {}
    2193             :   PagedSpace* next();
    2194             : 
    2195             :  private:
    2196             :   Heap* heap_;
    2197             :   int counter_;
    2198             : };
    2199             : 
    2200             : 
    2201      234385 : class SpaceIterator : public Malloced {
    2202             :  public:
    2203             :   explicit SpaceIterator(Heap* heap);
    2204             :   virtual ~SpaceIterator();
    2205             : 
    2206             :   bool has_next();
    2207             :   Space* next();
    2208             : 
    2209             :  private:
    2210             :   Heap* heap_;
    2211             :   int current_space_;         // from enum AllocationSpace.
    2212             : };
    2213             : 
    2214             : 
    2215             : // A HeapIterator provides iteration over the whole heap. It
    2216             : // aggregates the specific iterators for the different spaces as
    2217             : // these can only iterate over one space only.
    2218             : //
    2219             : // HeapIterator ensures there is no allocation during its lifetime
    2220             : // (using an embedded DisallowHeapAllocation instance).
    2221             : //
    2222             : // HeapIterator can skip free list nodes (that is, de-allocated heap
    2223             : // objects that still remain in the heap). As implementation of free
    2224             : // nodes filtering uses GC marks, it can't be used during MS/MC GC
    2225             : // phases. Also, it is forbidden to interrupt iteration in this mode,
    2226             : // as this will leave heap objects marked (and thus, unusable).
    2227             : class HeapIterator {
    2228             :  public:
    2229             :   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
    2230             : 
    2231             :   explicit HeapIterator(Heap* heap,
    2232             :                         HeapObjectsFiltering filtering = kNoFiltering);
    2233             :   ~HeapIterator();
    2234             : 
    2235             :   HeapObject next();
    2236             : 
    2237             :  private:
    2238             :   HeapObject NextObject();
    2239             : 
    2240             :   DISALLOW_HEAP_ALLOCATION(no_heap_allocation_)
    2241             : 
    2242             :   Heap* heap_;
    2243             :   HeapObjectsFiltering filtering_;
    2244             :   HeapObjectsFilter* filter_;
    2245             :   // Space iterator for iterating all the spaces.
    2246             :   SpaceIterator* space_iterator_;
    2247             :   // Object iterator for the space currently being iterated.
    2248             :   std::unique_ptr<ObjectIterator> object_iterator_;
    2249             : };
    2250             : 
    2251             : // Abstract base class for checking whether a weak object should be retained.
    2252       73955 : class WeakObjectRetainer {
    2253             :  public:
    2254      168883 :   virtual ~WeakObjectRetainer() = default;
    2255             : 
    2256             :   // Return whether this object should be retained. If nullptr is returned the
    2257             :   // object has no references. Otherwise the address of the retained object
    2258             :   // should be returned as in some GC situations the object has been moved.
    2259             :   virtual Object RetainAs(Object object) = 0;
    2260             : };
    2261             : 
    2262             : // -----------------------------------------------------------------------------
    2263             : // Allows observation of allocations.
    2264             : class AllocationObserver {
    2265             :  public:
    2266             :   explicit AllocationObserver(intptr_t step_size)
    2267      184767 :       : step_size_(step_size), bytes_to_next_step_(step_size) {
    2268             :     DCHECK_LE(kTaggedSize, step_size);
    2269             :   }
    2270      184722 :   virtual ~AllocationObserver() = default;
    2271             : 
    2272             :   // Called each time the observed space does an allocation step. This may be
    2273             :   // more frequently than the step_size we are monitoring (e.g. when there are
    2274             :   // multiple observers, or when page or space boundary is encountered.)
    2275             :   void AllocationStep(int bytes_allocated, Address soon_object, size_t size);
    2276             : 
    2277             :  protected:
    2278             :   intptr_t step_size() const { return step_size_; }
    2279             :   intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
    2280             : 
    2281             :   // Pure virtual method provided by the subclasses that gets called when at
    2282             :   // least step_size bytes have been allocated. soon_object is the address just
    2283             :   // allocated (but not yet initialized.) size is the size of the object as
    2284             :   // requested (i.e. w/o the alignment fillers). Some complexities to be aware
    2285             :   // of:
    2286             :   // 1) soon_object will be nullptr in cases where we end up observing an
    2287             :   //    allocation that happens to be a filler space (e.g. page boundaries.)
    2288             :   // 2) size is the requested size at the time of allocation. Right-trimming
    2289             :   //    may change the object size dynamically.
    2290             :   // 3) soon_object may actually be the first object in an allocation-folding
    2291             :   //    group. In such a case size is the size of the group rather than the
    2292             :   //    first object.
    2293             :   virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
    2294             : 
    2295             :   // Subclasses can override this method to make step size dynamic.
    2296       56504 :   virtual intptr_t GetNextStepSize() { return step_size_; }
    2297             : 
    2298             :   intptr_t step_size_;
    2299             :   intptr_t bytes_to_next_step_;
    2300             : 
    2301             :  private:
    2302             :   friend class Space;
    2303             :   DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
    2304             : };
    2305             : 
    2306             : V8_EXPORT_PRIVATE const char* AllocationSpaceName(AllocationSpace space);
    2307             : 
    2308             : // -----------------------------------------------------------------------------
    2309             : // Allows observation of heap object allocations.
    2310       69671 : class HeapObjectAllocationTracker {
    2311             :  public:
    2312             :   virtual void AllocationEvent(Address addr, int size) = 0;
    2313       14155 :   virtual void MoveEvent(Address from, Address to, int size) {}
    2314        2887 :   virtual void UpdateObjectSizeEvent(Address addr, int size) {}
    2315       69658 :   virtual ~HeapObjectAllocationTracker() = default;
    2316             : };
    2317             : 
    2318             : template <typename T>
    2319      230981 : T ForwardingAddress(T heap_obj) {
    2320             :   MapWord map_word = heap_obj->map_word();
    2321             : 
    2322      230981 :   if (map_word.IsForwardingAddress()) {
    2323             :     return T::cast(map_word.ToForwardingAddress());
    2324      205667 :   } else if (Heap::InFromPage(heap_obj)) {
    2325        2277 :     return T();
    2326             :   } else {
    2327             :     // TODO(ulan): Support minor mark-compactor here.
    2328      203390 :     return heap_obj;
    2329             :   }
    2330             : }
    2331             : 
    2332             : }  // namespace internal
    2333             : }  // namespace v8
    2334             : 
    2335             : #endif  // V8_HEAP_HEAP_H_

Generated by: LCOV version 1.10