LCOV - code coverage report
Current view: top level - src/x64 - assembler-x64.h (source / functions) Hit Total Coverage
Test: app.info Lines: 219 328 66.8 %
Date: 2019-03-21 Functions: 142 152 93.4 %

          Line data    Source code
       1             : // Copyright (c) 1994-2006 Sun Microsystems Inc.
       2             : // All Rights Reserved.
       3             : //
       4             : // Redistribution and use in source and binary forms, with or without
       5             : // modification, are permitted provided that the following conditions are
       6             : // met:
       7             : //
       8             : // - Redistributions of source code must retain the above copyright notice,
       9             : // this list of conditions and the following disclaimer.
      10             : //
      11             : // - Redistribution in binary form must reproduce the above copyright
      12             : // notice, this list of conditions and the following disclaimer in the
      13             : // documentation and/or other materials provided with the distribution.
      14             : //
      15             : // - Neither the name of Sun Microsystems or the names of contributors may
      16             : // be used to endorse or promote products derived from this software without
      17             : // specific prior written permission.
      18             : //
      19             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
      20             : // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
      21             : // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      22             : // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      23             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
      24             : // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
      25             : // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
      26             : // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      27             : // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      28             : // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      29             : // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             : // The original source code covered by the above license above has been
      32             : // modified significantly by Google Inc.
      33             : // Copyright 2012 the V8 project authors. All rights reserved.
      34             : 
      35             : // A lightweight X64 Assembler.
      36             : 
      37             : #ifndef V8_X64_ASSEMBLER_X64_H_
      38             : #define V8_X64_ASSEMBLER_X64_H_
      39             : 
      40             : #include <deque>
      41             : #include <map>
      42             : #include <vector>
      43             : 
      44             : #include "src/assembler.h"
      45             : #include "src/label.h"
      46             : #include "src/objects/smi.h"
      47             : #include "src/x64/constants-x64.h"
      48             : #include "src/x64/register-x64.h"
      49             : #include "src/x64/sse-instr.h"
      50             : 
      51             : namespace v8 {
      52             : namespace internal {
      53             : 
      54             : class SafepointTableBuilder;
      55             : 
      56             : // Utility functions
      57             : 
      58             : enum Condition {
      59             :   // any value < 0 is considered no_condition
      60             :   no_condition  = -1,
      61             : 
      62             :   overflow      =  0,
      63             :   no_overflow   =  1,
      64             :   below         =  2,
      65             :   above_equal   =  3,
      66             :   equal         =  4,
      67             :   not_equal     =  5,
      68             :   below_equal   =  6,
      69             :   above         =  7,
      70             :   negative      =  8,
      71             :   positive      =  9,
      72             :   parity_even   = 10,
      73             :   parity_odd    = 11,
      74             :   less          = 12,
      75             :   greater_equal = 13,
      76             :   less_equal    = 14,
      77             :   greater       = 15,
      78             : 
      79             :   // Fake conditions that are handled by the
      80             :   // opcodes using them.
      81             :   always        = 16,
      82             :   never         = 17,
      83             :   // aliases
      84             :   carry         = below,
      85             :   not_carry     = above_equal,
      86             :   zero          = equal,
      87             :   not_zero      = not_equal,
      88             :   sign          = negative,
      89             :   not_sign      = positive,
      90             :   last_condition = greater
      91             : };
      92             : 
      93             : 
      94             : // Returns the equivalent of !cc.
      95             : // Negation of the default no_condition (-1) results in a non-default
      96             : // no_condition value (-2). As long as tests for no_condition check
      97             : // for condition < 0, this will work as expected.
      98           0 : inline Condition NegateCondition(Condition cc) {
      99      463852 :   return static_cast<Condition>(cc ^ 1);
     100             : }
     101             : 
     102             : 
     103             : enum RoundingMode {
     104             :   kRoundToNearest = 0x0,
     105             :   kRoundDown = 0x1,
     106             :   kRoundUp = 0x2,
     107             :   kRoundToZero = 0x3
     108             : };
     109             : 
     110             : 
     111             : // -----------------------------------------------------------------------------
     112             : // Machine instruction Immediates
     113             : 
     114             : class Immediate {
     115             :  public:
     116     1251513 :   explicit constexpr Immediate(int32_t value) : value_(value) {}
     117             :   explicit constexpr Immediate(int32_t value, RelocInfo::Mode rmode)
     118             :       : value_(value), rmode_(rmode) {}
     119             :   explicit Immediate(Smi value)
     120           0 :       : value_(static_cast<int32_t>(static_cast<intptr_t>(value.ptr()))) {
     121             :     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
     122             :   }
     123             : 
     124             :  private:
     125             :   const int32_t value_;
     126             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     127             : 
     128             :   friend class Assembler;
     129             : };
     130             : ASSERT_TRIVIALLY_COPYABLE(Immediate);
     131             : static_assert(sizeof(Immediate) <= kSystemPointerSize,
     132             :               "Immediate must be small enough to pass it by value");
     133             : 
     134             : class Immediate64 {
     135             :  public:
     136             :   explicit constexpr Immediate64(int64_t value) : value_(value) {}
     137             :   explicit constexpr Immediate64(int64_t value, RelocInfo::Mode rmode)
     138             :       : value_(value), rmode_(rmode) {}
     139             :   explicit constexpr Immediate64(Address value, RelocInfo::Mode rmode)
     140    55656840 :       : value_(static_cast<int64_t>(value)), rmode_(rmode) {}
     141             : 
     142             :  private:
     143             :   const int64_t value_;
     144             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     145             : 
     146             :   friend class Assembler;
     147             : };
     148             : 
     149             : // -----------------------------------------------------------------------------
     150             : // Machine instruction Operands
     151             : 
     152             : enum ScaleFactor : int8_t {
     153             :   times_1 = 0,
     154             :   times_2 = 1,
     155             :   times_4 = 2,
     156             :   times_8 = 3,
     157             :   times_int_size = times_4,
     158             :   times_system_pointer_size = (kSystemPointerSize == 8) ? times_8 : times_4,
     159             :   times_tagged_size = (kTaggedSize == 8) ? times_8 : times_4,
     160             : };
     161             : 
     162             : class V8_EXPORT_PRIVATE Operand {
     163             :  public:
     164    55739348 :   struct Data {
     165             :     byte rex = 0;
     166             :     byte buf[9];
     167             :     byte len = 1;   // number of bytes of buf_ in use.
     168             :     int8_t addend;  // for rip + offset + addend.
     169             :   };
     170             : 
     171             :   // [base + disp/r]
     172             :   Operand(Register base, int32_t disp);
     173             : 
     174             :   // [base + index*scale + disp/r]
     175             :   Operand(Register base,
     176             :           Register index,
     177             :           ScaleFactor scale,
     178             :           int32_t disp);
     179             : 
     180             :   // [index*scale + disp/r]
     181             :   Operand(Register index,
     182             :           ScaleFactor scale,
     183             :           int32_t disp);
     184             : 
     185             :   // Offset from existing memory operand.
     186             :   // Offset is added to existing displacement as 32-bit signed values and
     187             :   // this must not overflow.
     188             :   Operand(Operand base, int32_t offset);
     189             : 
     190             :   // [rip + disp/r]
     191             :   explicit Operand(Label* label, int addend = 0);
     192             : 
     193             :   Operand(const Operand&) V8_NOEXCEPT = default;
     194             : 
     195             :   // Checks whether either base or index register is the given register.
     196             :   // Does not check the "reg" part of the Operand.
     197             :   bool AddressUsesRegister(Register reg) const;
     198             : 
     199             :   // Queries related to the size of the generated instruction.
     200             :   // Whether the generated instruction will have a REX prefix.
     201             :   bool requires_rex() const { return data_.rex != 0; }
     202             :   // Size of the ModR/M, SIB and displacement parts of the generated
     203             :   // instruction.
     204             :   int operand_size() const { return data_.len; }
     205             : 
     206             :   const Data& data() const { return data_; }
     207             : 
     208             :  private:
     209             :   const Data data_;
     210             : };
     211             : ASSERT_TRIVIALLY_COPYABLE(Operand);
     212             : static_assert(sizeof(Operand) <= 2 * kSystemPointerSize,
     213             :               "Operand must be small enough to pass it by value");
     214             : 
     215             : #define ASSEMBLER_INSTRUCTION_LIST(V) \
     216             :   V(add)                              \
     217             :   V(and)                              \
     218             :   V(cmp)                              \
     219             :   V(cmpxchg)                          \
     220             :   V(dec)                              \
     221             :   V(idiv)                             \
     222             :   V(div)                              \
     223             :   V(imul)                             \
     224             :   V(inc)                              \
     225             :   V(lea)                              \
     226             :   V(mov)                              \
     227             :   V(movzxb)                           \
     228             :   V(movzxw)                           \
     229             :   V(neg)                              \
     230             :   V(not)                              \
     231             :   V(or)                               \
     232             :   V(repmovs)                          \
     233             :   V(sbb)                              \
     234             :   V(sub)                              \
     235             :   V(test)                             \
     236             :   V(xchg)                             \
     237             :   V(xor)
     238             : 
     239             : // Shift instructions on operands/registers with kInt32Size and kInt64Size.
     240             : #define SHIFT_INSTRUCTION_LIST(V) \
     241             :   V(rol, 0x0)                     \
     242             :   V(ror, 0x1)                     \
     243             :   V(rcl, 0x2)                     \
     244             :   V(rcr, 0x3)                     \
     245             :   V(shl, 0x4)                     \
     246             :   V(shr, 0x5)                     \
     247             :   V(sar, 0x7)
     248             : 
     249             : // Partial Constant Pool
     250             : // Different from complete constant pool (like arm does), partial constant pool
     251             : // only takes effects for shareable constants in order to reduce code size.
     252             : // Partial constant pool does not emit constant pool entries at the end of each
     253             : // code object. Instead, it keeps the first shareable constant inlined in the
     254             : // instructions and uses rip-relative memory loadings for the same constants in
     255             : // subsequent instructions. These rip-relative memory loadings will target at
     256             : // the position of the first inlined constant. For example:
     257             : //
     258             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     259             : //  …
     260             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     261             : //  …
     262             : //
     263             : // turns into
     264             : //
     265             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     266             : //  …
     267             : //  REX.W movq r10,[rip+0xffffff96] ; 7 bytes
     268             : //  …
     269             : 
     270    41471444 : class ConstPool {
     271             :  public:
     272    41476083 :   explicit ConstPool(Assembler* assm) : assm_(assm) {}
     273             :   // Returns true when partial constant pool is valid for this entry.
     274             :   bool TryRecordEntry(intptr_t data, RelocInfo::Mode mode);
     275             :   bool IsEmpty() const { return entries_.empty(); }
     276             : 
     277             :   void PatchEntries();
     278             :   // Discard any pending pool entries.
     279             :   void Clear();
     280             : 
     281             :  private:
     282             :   // Adds a shared entry to entries_. Returns true if this is not the first time
     283             :   // we add this entry, false otherwise.
     284             :   bool AddSharedEntry(uint64_t data, int offset);
     285             : 
     286             :   // Check if the instruction is a rip-relative move.
     287             :   bool IsMoveRipRelative(Address instr);
     288             : 
     289             :   Assembler* assm_;
     290             : 
     291             :   // Values, pc offsets of entries.
     292             :   typedef std::multimap<uint64_t, int> EntryMap;
     293             :   EntryMap entries_;
     294             : 
     295             :   // Number of bytes taken up by the displacement of rip-relative addressing.
     296             :   static constexpr int kRipRelativeDispSize = 4;  // 32-bit displacement.
     297             :   // Distance between the address of the displacement in the rip-relative move
     298             :   // instruction and the head address of the instruction.
     299             :   static constexpr int kMoveRipRelativeDispOffset =
     300             :       3;  // REX Opcode ModRM Displacement
     301             :   // Distance between the address of the imm64 in the 'movq reg, imm64'
     302             :   // instruction and the head address of the instruction.
     303             :   static constexpr int kMoveImm64Offset = 2;  // REX Opcode imm64
     304             :   // A mask for rip-relative move instruction.
     305             :   static constexpr uint32_t kMoveRipRelativeMask = 0x00C7FFFB;
     306             :   // The bits for a rip-relative move instruction after mask.
     307             :   static constexpr uint32_t kMoveRipRelativeInstr = 0x00058B48;
     308             : };
     309             : 
     310             : class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
     311             :  private:
     312             :   // We check before assembling an instruction that there is sufficient
     313             :   // space to write an instruction and its relocation information.
     314             :   // The relocation writer's position must be kGap bytes above the end of
     315             :   // the generated instructions. This leaves enough space for the
     316             :   // longest possible x64 instruction, 15 bytes, and the longest possible
     317             :   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
     318             :   // (There is a 15 byte limit on x64 instruction length that rules out some
     319             :   // otherwise valid instructions.)
     320             :   // This allows for a single, fast space check per instruction.
     321             :   static constexpr int kGap = 32;
     322             : 
     323             :  public:
     324             :   // Create an assembler. Instructions and relocation information are emitted
     325             :   // into a buffer, with the instructions starting from the beginning and the
     326             :   // relocation information starting from the end of the buffer. See CodeDesc
     327             :   // for a detailed comment on the layout (globals.h).
     328             :   //
     329             :   // If the provided buffer is nullptr, the assembler allocates and grows its
     330             :   // own buffer. Otherwise it takes ownership of the provided buffer.
     331             :   explicit Assembler(const AssemblerOptions&,
     332             :                      std::unique_ptr<AssemblerBuffer> = {});
     333    82947786 :   ~Assembler() override = default;
     334             : 
     335             :   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
     336             :   static constexpr int kNoHandlerTable = 0;
     337             :   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
     338             :   void GetCode(Isolate* isolate, CodeDesc* desc,
     339             :                SafepointTableBuilder* safepoint_table_builder,
     340             :                int handler_table_offset);
     341             : 
     342             :   // Convenience wrapper for code without safepoint or handler tables.
     343      100296 :   void GetCode(Isolate* isolate, CodeDesc* desc) {
     344      312681 :     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
     345      100296 :   }
     346             : 
     347             :   void FinalizeJumpOptimizationInfo();
     348             : 
     349             :   // Unused on this architecture.
     350             :   void MaybeEmitOutOfLineConstantPool() {}
     351             : 
     352             :   // Read/Modify the code target in the relative branch/call instruction at pc.
     353             :   // On the x64 architecture, we use relative jumps with a 32-bit displacement
     354             :   // to jump to other Code objects in the Code space in the heap.
     355             :   // Jumps to C functions are done indirectly through a 64-bit register holding
     356             :   // the absolute address of the target.
     357             :   // These functions convert between absolute Addresses of Code objects and
     358             :   // the relative displacements stored in the code.
     359             :   // The isolate argument is unused (and may be nullptr) when skipping flushing.
     360             :   static inline Address target_address_at(Address pc, Address constant_pool);
     361             :   static inline void set_target_address_at(
     362             :       Address pc, Address constant_pool, Address target,
     363             :       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
     364             : 
     365             :   // Return the code target address at a call site from the return address
     366             :   // of that call in the instruction stream.
     367             :   static inline Address target_address_from_return_address(Address pc);
     368             : 
     369             :   // This sets the branch destination (which is in the instruction on x64).
     370             :   // This is for calls and branches within generated code.
     371             :   inline static void deserialization_set_special_target_at(
     372             :       Address instruction_payload, Code code, Address target);
     373             : 
     374             :   // Get the size of the special target encoded at 'instruction_payload'.
     375             :   inline static int deserialization_special_target_size(
     376             :       Address instruction_payload);
     377             : 
     378             :   // This sets the internal reference at the pc.
     379             :   inline static void deserialization_set_target_internal_reference_at(
     380             :       Address pc, Address target,
     381             :       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
     382             : 
     383             :   inline Handle<Code> code_target_object_handle_at(Address pc);
     384             :   inline Address runtime_entry_at(Address pc);
     385             : 
     386             :   // Number of bytes taken up by the branch target in the code.
     387             :   static constexpr int kSpecialTargetSize = 4;  // 32-bit displacement.
     388             :   // Distance between the address of the code target in the call instruction
     389             :   // and the return address pushed on the stack.
     390             :   static constexpr int kCallTargetAddressOffset = 4;  // 32-bit displacement.
     391             : 
     392             :   // One byte opcode for test eax,0xXXXXXXXX.
     393             :   static constexpr byte kTestEaxByte = 0xA9;
     394             :   // One byte opcode for test al, 0xXX.
     395             :   static constexpr byte kTestAlByte = 0xA8;
     396             :   // One byte opcode for nop.
     397             :   static constexpr byte kNopByte = 0x90;
     398             : 
     399             :   // One byte prefix for a short conditional jump.
     400             :   static constexpr byte kJccShortPrefix = 0x70;
     401             :   static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
     402             :   static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
     403             :   static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
     404             :   static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;
     405             : 
     406             :   // VEX prefix encodings.
     407             :   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
     408             :   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
     409             :   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
     410             :   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
     411             : 
     412             :   // ---------------------------------------------------------------------------
     413             :   // Code generation
     414             :   //
     415             :   // Function names correspond one-to-one to x64 instruction mnemonics.
     416             :   // Unless specified otherwise, instructions operate on 64-bit operands.
     417             :   //
     418             :   // If we need versions of an assembly instruction that operate on different
     419             :   // width arguments, we add a single-letter suffix specifying the width.
     420             :   // This is done for the following instructions: mov, cmp, inc, dec,
     421             :   // add, sub, and test.
     422             :   // There are no versions of these instructions without the suffix.
     423             :   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
     424             :   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
     425             :   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
     426             :   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
     427             :   // - Instructions on operands/registers with pointer size use 'p'.
     428             : 
     429             : #define DECLARE_INSTRUCTION(instruction)        \
     430             :   template <class P1>                           \
     431             :   void instruction##_tagged(P1 p1) {            \
     432             :     emit_##instruction(p1, kTaggedSize);        \
     433             :   }                                             \
     434             :                                                 \
     435             :   template <class P1>                           \
     436             :   void instruction##l(P1 p1) {                  \
     437             :     emit_##instruction(p1, kInt32Size);         \
     438             :   }                                             \
     439             :                                                 \
     440             :   template <class P1>                           \
     441             :   void instruction##q(P1 p1) {                  \
     442             :     emit_##instruction(p1, kInt64Size);         \
     443             :   }                                             \
     444             :                                                 \
     445             :   template <class P1, class P2>                 \
     446             :   void instruction##_tagged(P1 p1, P2 p2) {     \
     447             :     emit_##instruction(p1, p2, kTaggedSize);    \
     448             :   }                                             \
     449             :                                                 \
     450             :   template <class P1, class P2>                 \
     451             :   void instruction##l(P1 p1, P2 p2) {           \
     452             :     emit_##instruction(p1, p2, kInt32Size);     \
     453             :   }                                             \
     454             :                                                 \
     455             :   template <class P1, class P2>                 \
     456             :   void instruction##q(P1 p1, P2 p2) {           \
     457             :     emit_##instruction(p1, p2, kInt64Size);     \
     458             :   }                                             \
     459             :                                                 \
     460             :   template <class P1, class P2, class P3>       \
     461             :   void instruction##l(P1 p1, P2 p2, P3 p3) {    \
     462             :     emit_##instruction(p1, p2, p3, kInt32Size); \
     463             :   }                                             \
     464             :                                                 \
     465             :   template <class P1, class P2, class P3>       \
     466             :   void instruction##q(P1 p1, P2 p2, P3 p3) {    \
     467             :     emit_##instruction(p1, p2, p3, kInt64Size); \
     468             :   }
     469   136596948 :   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
     470             : #undef DECLARE_INSTRUCTION
     471             : 
     472             :   // Insert the smallest number of nop instructions
     473             :   // possible to align the pc offset to a multiple
     474             :   // of m, where m must be a power of 2.
     475             :   void Align(int m);
     476             :   // Insert the smallest number of zero bytes possible to align the pc offset
     477             :   // to a mulitple of m. m must be a power of 2 (>= 2).
     478             :   void DataAlign(int m);
     479             :   void Nop(int bytes = 1);
     480             :   // Aligns code to something that's optimal for a jump target for the platform.
     481             :   void CodeTargetAlign();
     482             : 
     483             :   // Stack
     484             :   void pushfq();
     485             :   void popfq();
     486             : 
     487             :   void pushq(Immediate value);
     488             :   // Push a 32 bit integer, and guarantee that it is actually pushed as a
     489             :   // 32 bit value, the normal push will optimize the 8 bit case.
     490             :   void pushq_imm32(int32_t imm32);
     491             :   void pushq(Register src);
     492             :   void pushq(Operand src);
     493             : 
     494             :   void popq(Register dst);
     495             :   void popq(Operand dst);
     496             : 
     497             :   void enter(Immediate size);
     498             :   void leave();
     499             : 
     500             :   // Moves
     501             :   void movb(Register dst, Operand src);
     502             :   void movb(Register dst, Immediate imm);
     503             :   void movb(Operand dst, Register src);
     504             :   void movb(Operand dst, Immediate imm);
     505             : 
     506             :   // Move the low 16 bits of a 64-bit register value to a 16-bit
     507             :   // memory location.
     508             :   void movw(Register dst, Operand src);
     509             :   void movw(Operand dst, Register src);
     510             :   void movw(Operand dst, Immediate imm);
     511             : 
     512             :   // Move the offset of the label location relative to the current
     513             :   // position (after the move) to the destination.
     514             :   void movl(Operand dst, Label* src);
     515             : 
     516             :   // Load a heap number into a register.
     517             :   // The heap number will not be allocated and embedded into the code right
     518             :   // away. Instead, we emit the load of a dummy object. Later, when calling
     519             :   // Assembler::GetCode, the heap number will be allocated and the code will be
     520             :   // patched by replacing the dummy with the actual object. The RelocInfo for
     521             :   // the embedded object gets already recorded correctly when emitting the dummy
     522             :   // move.
     523             :   void movq_heap_number(Register dst, double value);
     524             : 
     525             :   void movq_string(Register dst, const StringConstantBase* str);
     526             : 
     527             :   // Loads a 64-bit immediate into a register.
     528             :   void movq(Register dst, int64_t value) { movq(dst, Immediate64(value)); }
     529             :   void movq(Register dst, uint64_t value) {
     530     1592138 :     movq(dst, Immediate64(static_cast<int64_t>(value)));
     531             :   }
     532             : 
     533             :   void movsxbl(Register dst, Register src);
     534             :   void movsxbl(Register dst, Operand src);
     535             :   void movsxbq(Register dst, Register src);
     536             :   void movsxbq(Register dst, Operand src);
     537             :   void movsxwl(Register dst, Register src);
     538             :   void movsxwl(Register dst, Operand src);
     539             :   void movsxwq(Register dst, Register src);
     540             :   void movsxwq(Register dst, Operand src);
     541             :   void movsxlq(Register dst, Register src);
     542             :   void movsxlq(Register dst, Operand src);
     543             : 
     544             :   // Repeated moves.
     545             : 
     546             :   void repmovsb();
     547             :   void repmovsw();
     548             :   void repmovsl() { emit_repmovs(kInt32Size); }
     549             :   void repmovsq() { emit_repmovs(kInt64Size); }
     550             : 
     551             :   // Instruction to load from an immediate 64-bit pointer into RAX.
     552             :   void load_rax(Address value, RelocInfo::Mode rmode);
     553             :   void load_rax(ExternalReference ext);
     554             : 
     555             :   // Conditional moves.
     556             :   void cmovq(Condition cc, Register dst, Register src);
     557             :   void cmovq(Condition cc, Register dst, Operand src);
     558             :   void cmovl(Condition cc, Register dst, Register src);
     559             :   void cmovl(Condition cc, Register dst, Operand src);
     560             : 
     561         336 :   void cmpb(Register dst, Immediate src) {
     562        7070 :     immediate_arithmetic_op_8(0x7, dst, src);
     563         336 :   }
     564             : 
     565             :   void cmpb_al(Immediate src);
     566             : 
     567             :   void cmpb(Register dst, Register src) {
     568        3358 :     arithmetic_op_8(0x3A, dst, src);
     569             :   }
     570             : 
     571         453 :   void cmpb(Register dst, Operand src) { arithmetic_op_8(0x3A, dst, src); }
     572             : 
     573         460 :   void cmpb(Operand dst, Register src) { arithmetic_op_8(0x38, src, dst); }
     574             : 
     575         168 :   void cmpb(Operand dst, Immediate src) {
     576       14791 :     immediate_arithmetic_op_8(0x7, dst, src);
     577         168 :   }
     578             : 
     579             :   void cmpw(Operand dst, Immediate src) {
     580      223291 :     immediate_arithmetic_op_16(0x7, dst, src);
     581             :   }
     582             : 
     583             :   void cmpw(Register dst, Immediate src) {
     584      154537 :     immediate_arithmetic_op_16(0x7, dst, src);
     585             :   }
     586             : 
     587          60 :   void cmpw(Register dst, Operand src) { arithmetic_op_16(0x3B, dst, src); }
     588             : 
     589             :   void cmpw(Register dst, Register src) {
     590         448 :     arithmetic_op_16(0x3B, dst, src);
     591             :   }
     592             : 
     593         455 :   void cmpw(Operand dst, Register src) { arithmetic_op_16(0x39, src, dst); }
     594             : 
     595           0 :   void testb(Register reg, Operand op) { testb(op, reg); }
     596             : 
     597           0 :   void testw(Register reg, Operand op) { testw(op, reg); }
     598             : 
     599             :   void andb(Register dst, Immediate src) {
     600             :     immediate_arithmetic_op_8(0x4, dst, src);
     601             :   }
     602             : 
     603             :   void decb(Register dst);
     604             :   void decb(Operand dst);
     605             : 
     606             :   // Lock prefix.
     607             :   void lock();
     608             : 
     609             :   void xchgb(Register reg, Operand op);
     610             :   void xchgw(Register reg, Operand op);
     611             : 
     612             :   void cmpxchgb(Operand dst, Register src);
     613             :   void cmpxchgw(Operand dst, Register src);
     614             : 
     615             :   // Sign-extends rax into rdx:rax.
     616             :   void cqo();
     617             :   // Sign-extends eax into edx:eax.
     618             :   void cdq();
     619             : 
     620             :   // Multiply eax by src, put the result in edx:eax.
     621             :   void mull(Register src);
     622             :   void mull(Operand src);
     623             :   // Multiply rax by src, put the result in rdx:rax.
     624             :   void mulq(Register src);
     625             : 
     626             : #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                     \
     627             :   void instruction##l(Register dst, Immediate imm8) {                       \
     628             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     629             :   }                                                                         \
     630             :                                                                             \
     631             :   void instruction##q(Register dst, Immediate imm8) {                       \
     632             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     633             :   }                                                                         \
     634             :                                                                             \
     635             :   void instruction##l(Operand dst, Immediate imm8) {                        \
     636             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     637             :   }                                                                         \
     638             :                                                                             \
     639             :   void instruction##q(Operand dst, Immediate imm8) {                        \
     640             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     641             :   }                                                                         \
     642             :                                                                             \
     643             :   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \
     644             :                                                                             \
     645             :   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \
     646             :                                                                             \
     647             :   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }  \
     648             :                                                                             \
     649             :   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
     650     1434893 :   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
     651             : #undef DECLARE_SHIFT_INSTRUCTION
     652             : 
     653             :   // Shifts dst:src left by cl bits, affecting only dst.
     654             :   void shld(Register dst, Register src);
     655             : 
     656             :   // Shifts src:dst right by cl bits, affecting only dst.
     657             :   void shrd(Register dst, Register src);
     658             : 
     659             :   void store_rax(Address dst, RelocInfo::Mode mode);
     660             :   void store_rax(ExternalReference ref);
     661             : 
     662             :   void subb(Register dst, Immediate src) {
     663        2334 :     immediate_arithmetic_op_8(0x5, dst, src);
     664             :   }
     665             : 
     666             :   void sub_sp_32(uint32_t imm);
     667             : 
     668             :   void testb(Register dst, Register src);
     669             :   void testb(Register reg, Immediate mask);
     670             :   void testb(Operand op, Immediate mask);
     671             :   void testb(Operand op, Register reg);
     672             : 
     673             :   void testw(Register dst, Register src);
     674             :   void testw(Register reg, Immediate mask);
     675             :   void testw(Operand op, Immediate mask);
     676             :   void testw(Operand op, Register reg);
     677             : 
     678             :   // Bit operations.
     679             :   void bswapl(Register dst);
     680             :   void bswapq(Register dst);
     681             :   void btq(Operand dst, Register src);
     682             :   void btsq(Operand dst, Register src);
     683             :   void btsq(Register dst, Immediate imm8);
     684             :   void btrq(Register dst, Immediate imm8);
     685             :   void bsrq(Register dst, Register src);
     686             :   void bsrq(Register dst, Operand src);
     687             :   void bsrl(Register dst, Register src);
     688             :   void bsrl(Register dst, Operand src);
     689             :   void bsfq(Register dst, Register src);
     690             :   void bsfq(Register dst, Operand src);
     691             :   void bsfl(Register dst, Register src);
     692             :   void bsfl(Register dst, Operand src);
     693             : 
     694             :   // Miscellaneous
     695             :   void clc();
     696             :   void cld();
     697             :   void cpuid();
     698             :   void hlt();
     699             :   void int3();
     700             :   void nop();
     701             :   void ret(int imm16);
     702             :   void ud2();
     703             :   void setcc(Condition cc, Register reg);
     704             : 
     705             :   void pshufw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
     706             :   void pshufw(XMMRegister dst, Operand src, uint8_t shuffle);
     707             :   void pblendw(XMMRegister dst, Operand src, uint8_t mask);
     708             :   void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask);
     709             :   void palignr(XMMRegister dst, Operand src, uint8_t mask);
     710             :   void palignr(XMMRegister dst, XMMRegister src, uint8_t mask);
     711             : 
     712             :   // Label operations & relative jumps (PPUM Appendix D)
     713             :   //
     714             :   // Takes a branch opcode (cc) and a label (L) and generates
     715             :   // either a backward branch or a forward branch and links it
     716             :   // to the label fixup chain. Usage:
     717             :   //
     718             :   // Label L;    // unbound label
     719             :   // j(cc, &L);  // forward branch to unbound label
     720             :   // bind(&L);   // bind label to the current pc
     721             :   // j(cc, &L);  // backward branch to bound label
     722             :   // bind(&L);   // illegal: a label may be bound only once
     723             :   //
     724             :   // Note: The same Label can be used for forward and backward branches
     725             :   // but it may be bound only once.
     726             : 
     727             :   void bind(Label* L);  // binds an unbound label L to the current code position
     728             : 
     729             :   // Calls
     730             :   // Call near relative 32-bit displacement, relative to next instruction.
     731             :   void call(Label* L);
     732             :   void call(Address entry, RelocInfo::Mode rmode);
     733             :   void near_call(Address entry, RelocInfo::Mode rmode);
     734             :   void near_jmp(Address entry, RelocInfo::Mode rmode);
     735             :   void call(Handle<Code> target,
     736             :             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
     737             : 
     738             :   // Calls directly to the given address using a relative offset.
     739             :   // Should only ever be used in Code objects for calls within the
     740             :   // same Code object. Should not be used when generating new code (use labels),
     741             :   // but only when patching existing code.
     742             :   void call(Address target);
     743             : 
     744             :   // Call near absolute indirect, address in register
     745             :   void call(Register adr);
     746             : 
     747             :   // Jumps
     748             :   // Jump short or near relative.
     749             :   // Use a 32-bit signed displacement.
     750             :   // Unconditional jump to L
     751             :   void jmp(Label* L, Label::Distance distance = Label::kFar);
     752             :   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
     753             : 
     754             :   // Jump near absolute indirect (r64)
     755             :   void jmp(Register adr);
     756             :   void jmp(Operand src);
     757             : 
     758             :   // Conditional jumps
     759             :   void j(Condition cc,
     760             :          Label* L,
     761             :          Label::Distance distance = Label::kFar);
     762             :   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
     763             :   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
     764             : 
     765             :   // Floating-point operations
     766             :   void fld(int i);
     767             : 
     768             :   void fld1();
     769             :   void fldz();
     770             :   void fldpi();
     771             :   void fldln2();
     772             : 
     773             :   void fld_s(Operand adr);
     774             :   void fld_d(Operand adr);
     775             : 
     776             :   void fstp_s(Operand adr);
     777             :   void fstp_d(Operand adr);
     778             :   void fstp(int index);
     779             : 
     780             :   void fild_s(Operand adr);
     781             :   void fild_d(Operand adr);
     782             : 
     783             :   void fist_s(Operand adr);
     784             : 
     785             :   void fistp_s(Operand adr);
     786             :   void fistp_d(Operand adr);
     787             : 
     788             :   void fisttp_s(Operand adr);
     789             :   void fisttp_d(Operand adr);
     790             : 
     791             :   void fabs();
     792             :   void fchs();
     793             : 
     794             :   void fadd(int i);
     795             :   void fsub(int i);
     796             :   void fmul(int i);
     797             :   void fdiv(int i);
     798             : 
     799             :   void fisub_s(Operand adr);
     800             : 
     801             :   void faddp(int i = 1);
     802             :   void fsubp(int i = 1);
     803             :   void fsubrp(int i = 1);
     804             :   void fmulp(int i = 1);
     805             :   void fdivp(int i = 1);
     806             :   void fprem();
     807             :   void fprem1();
     808             : 
     809             :   void fxch(int i = 1);
     810             :   void fincstp();
     811             :   void ffree(int i = 0);
     812             : 
     813             :   void ftst();
     814             :   void fucomp(int i);
     815             :   void fucompp();
     816             :   void fucomi(int i);
     817             :   void fucomip();
     818             : 
     819             :   void fcompp();
     820             :   void fnstsw_ax();
     821             :   void fwait();
     822             :   void fnclex();
     823             : 
     824             :   void fsin();
     825             :   void fcos();
     826             :   void fptan();
     827             :   void fyl2x();
     828             :   void f2xm1();
     829             :   void fscale();
     830             :   void fninit();
     831             : 
     832             :   void frndint();
     833             : 
     834             :   void sahf();
     835             : 
     836             :   // SSE instructions
     837             :   void addss(XMMRegister dst, XMMRegister src);
     838             :   void addss(XMMRegister dst, Operand src);
     839             :   void subss(XMMRegister dst, XMMRegister src);
     840             :   void subss(XMMRegister dst, Operand src);
     841             :   void mulss(XMMRegister dst, XMMRegister src);
     842             :   void mulss(XMMRegister dst, Operand src);
     843             :   void divss(XMMRegister dst, XMMRegister src);
     844             :   void divss(XMMRegister dst, Operand src);
     845             : 
     846             :   void maxss(XMMRegister dst, XMMRegister src);
     847             :   void maxss(XMMRegister dst, Operand src);
     848             :   void minss(XMMRegister dst, XMMRegister src);
     849             :   void minss(XMMRegister dst, Operand src);
     850             : 
     851             :   void sqrtss(XMMRegister dst, XMMRegister src);
     852             :   void sqrtss(XMMRegister dst, Operand src);
     853             : 
     854             :   void ucomiss(XMMRegister dst, XMMRegister src);
     855             :   void ucomiss(XMMRegister dst, Operand src);
     856             :   void movaps(XMMRegister dst, XMMRegister src);
     857             : 
     858             :   // Don't use this unless it's important to keep the
     859             :   // top half of the destination register unchanged.
     860             :   // Use movaps when moving float values and movd for integer
     861             :   // values in xmm registers.
     862             :   void movss(XMMRegister dst, XMMRegister src);
     863             : 
     864             :   void movss(XMMRegister dst, Operand src);
     865             :   void movss(Operand dst, XMMRegister src);
     866             :   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
     867             : 
     868             :   void cvttss2si(Register dst, Operand src);
     869             :   void cvttss2si(Register dst, XMMRegister src);
     870             :   void cvtlsi2ss(XMMRegister dst, Operand src);
     871             :   void cvtlsi2ss(XMMRegister dst, Register src);
     872             : 
     873             :   void andps(XMMRegister dst, XMMRegister src);
     874             :   void andps(XMMRegister dst, Operand src);
     875             :   void orps(XMMRegister dst, XMMRegister src);
     876             :   void orps(XMMRegister dst, Operand src);
     877             :   void xorps(XMMRegister dst, XMMRegister src);
     878             :   void xorps(XMMRegister dst, Operand src);
     879             : 
     880             :   void addps(XMMRegister dst, XMMRegister src);
     881             :   void addps(XMMRegister dst, Operand src);
     882             :   void subps(XMMRegister dst, XMMRegister src);
     883             :   void subps(XMMRegister dst, Operand src);
     884             :   void mulps(XMMRegister dst, XMMRegister src);
     885             :   void mulps(XMMRegister dst, Operand src);
     886             :   void divps(XMMRegister dst, XMMRegister src);
     887             :   void divps(XMMRegister dst, Operand src);
     888             : 
     889             :   void movmskps(Register dst, XMMRegister src);
     890             : 
     891             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
     892             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     893             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
     894             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     895             : 
     896             :   // SSE2 instructions
     897             :   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
     898             :                   byte opcode);
     899             :   void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
     900             :                   byte opcode);
     901             : #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
     902             :   void instruction(XMMRegister dst, XMMRegister src) {                \
     903             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     904             :   }                                                                   \
     905             :   void instruction(XMMRegister dst, Operand src) {                    \
     906             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     907             :   }
     908             : 
     909        3905 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
     910             : #undef DECLARE_SSE2_INSTRUCTION
     911             : 
     912             : #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
     913             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
     914             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     915             :   }                                                                          \
     916             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {     \
     917             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     918             :   }
     919             : 
     920      281031 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
     921             : #undef DECLARE_SSE2_AVX_INSTRUCTION
     922             : 
     923             :   // SSE3
     924             :   void lddqu(XMMRegister dst, Operand src);
     925             : 
     926             :   // SSSE3
     927             :   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     928             :                    byte escape2, byte opcode);
     929             :   void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     930             :                    byte escape2, byte opcode);
     931             : 
     932             : #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     933             :                                   opcode)                                    \
     934             :   void instruction(XMMRegister dst, XMMRegister src) {                       \
     935             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     936             :   }                                                                          \
     937             :   void instruction(XMMRegister dst, Operand src) {                           \
     938             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     939             :   }
     940             : 
     941        2566 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
     942             : #undef DECLARE_SSSE3_INSTRUCTION
     943             : 
     944             :   // SSE4
     945             :   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     946             :                   byte escape2, byte opcode);
     947             :   void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     948             :                   byte escape2, byte opcode);
     949             : #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     950             :                                  opcode)                                    \
     951             :   void instruction(XMMRegister dst, XMMRegister src) {                      \
     952             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     953             :   }                                                                         \
     954             :   void instruction(XMMRegister dst, Operand src) {                          \
     955             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     956             :   }
     957             : 
     958         560 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
     959             : #undef DECLARE_SSE4_INSTRUCTION
     960             : 
     961             : #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
     962             :                                       opcode)                                 \
     963             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
     964             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     965             :   }                                                                           \
     966             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {      \
     967             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     968             :   }
     969             : 
     970          90 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     971         150 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     972             : #undef DECLARE_SSE34_AVX_INSTRUCTION
     973             : 
     974             :   void movd(XMMRegister dst, Register src);
     975             :   void movd(XMMRegister dst, Operand src);
     976             :   void movd(Register dst, XMMRegister src);
     977             :   void movq(XMMRegister dst, Register src);
     978             :   void movq(Register dst, XMMRegister src);
     979             :   void movq(XMMRegister dst, XMMRegister src);
     980             : 
     981             :   // Don't use this unless it's important to keep the
     982             :   // top half of the destination register unchanged.
     983             :   // Use movapd when moving double values and movq for integer
     984             :   // values in xmm registers.
     985             :   void movsd(XMMRegister dst, XMMRegister src);
     986             : 
     987             :   void movsd(Operand dst, XMMRegister src);
     988             :   void movsd(XMMRegister dst, Operand src);
     989             : 
     990             :   void movdqa(Operand dst, XMMRegister src);
     991             :   void movdqa(XMMRegister dst, Operand src);
     992             : 
     993             :   void movdqu(Operand dst, XMMRegister src);
     994             :   void movdqu(XMMRegister dst, Operand src);
     995             : 
     996             :   void movapd(XMMRegister dst, XMMRegister src);
     997             :   void movupd(XMMRegister dst, Operand src);
     998             :   void movupd(Operand dst, XMMRegister src);
     999             : 
    1000             :   void psllq(XMMRegister reg, byte imm8);
    1001             :   void psrlq(XMMRegister reg, byte imm8);
    1002             :   void psllw(XMMRegister reg, byte imm8);
    1003             :   void pslld(XMMRegister reg, byte imm8);
    1004             :   void psrlw(XMMRegister reg, byte imm8);
    1005             :   void psrld(XMMRegister reg, byte imm8);
    1006             :   void psraw(XMMRegister reg, byte imm8);
    1007             :   void psrad(XMMRegister reg, byte imm8);
    1008             : 
    1009             :   void cvttsd2si(Register dst, Operand src);
    1010             :   void cvttsd2si(Register dst, XMMRegister src);
    1011             :   void cvttss2siq(Register dst, XMMRegister src);
    1012             :   void cvttss2siq(Register dst, Operand src);
    1013             :   void cvttsd2siq(Register dst, XMMRegister src);
    1014             :   void cvttsd2siq(Register dst, Operand src);
    1015             :   void cvttps2dq(XMMRegister dst, Operand src);
    1016             :   void cvttps2dq(XMMRegister dst, XMMRegister src);
    1017             : 
    1018             :   void cvtlsi2sd(XMMRegister dst, Operand src);
    1019             :   void cvtlsi2sd(XMMRegister dst, Register src);
    1020             : 
    1021             :   void cvtqsi2ss(XMMRegister dst, Operand src);
    1022             :   void cvtqsi2ss(XMMRegister dst, Register src);
    1023             : 
    1024             :   void cvtqsi2sd(XMMRegister dst, Operand src);
    1025             :   void cvtqsi2sd(XMMRegister dst, Register src);
    1026             : 
    1027             : 
    1028             :   void cvtss2sd(XMMRegister dst, XMMRegister src);
    1029             :   void cvtss2sd(XMMRegister dst, Operand src);
    1030             :   void cvtsd2ss(XMMRegister dst, XMMRegister src);
    1031             :   void cvtsd2ss(XMMRegister dst, Operand src);
    1032             : 
    1033             :   void cvtsd2si(Register dst, XMMRegister src);
    1034             :   void cvtsd2siq(Register dst, XMMRegister src);
    1035             : 
    1036             :   void addsd(XMMRegister dst, XMMRegister src);
    1037             :   void addsd(XMMRegister dst, Operand src);
    1038             :   void subsd(XMMRegister dst, XMMRegister src);
    1039             :   void subsd(XMMRegister dst, Operand src);
    1040             :   void mulsd(XMMRegister dst, XMMRegister src);
    1041             :   void mulsd(XMMRegister dst, Operand src);
    1042             :   void divsd(XMMRegister dst, XMMRegister src);
    1043             :   void divsd(XMMRegister dst, Operand src);
    1044             : 
    1045             :   void maxsd(XMMRegister dst, XMMRegister src);
    1046             :   void maxsd(XMMRegister dst, Operand src);
    1047             :   void minsd(XMMRegister dst, XMMRegister src);
    1048             :   void minsd(XMMRegister dst, Operand src);
    1049             : 
    1050             :   void andpd(XMMRegister dst, XMMRegister src);
    1051             :   void andpd(XMMRegister dst, Operand src);
    1052             :   void orpd(XMMRegister dst, XMMRegister src);
    1053             :   void orpd(XMMRegister dst, Operand src);
    1054             :   void xorpd(XMMRegister dst, XMMRegister src);
    1055             :   void xorpd(XMMRegister dst, Operand src);
    1056             :   void sqrtsd(XMMRegister dst, XMMRegister src);
    1057             :   void sqrtsd(XMMRegister dst, Operand src);
    1058             : 
    1059             :   void haddps(XMMRegister dst, XMMRegister src);
    1060             :   void haddps(XMMRegister dst, Operand src);
    1061             : 
    1062             :   void ucomisd(XMMRegister dst, XMMRegister src);
    1063             :   void ucomisd(XMMRegister dst, Operand src);
    1064             :   void cmpltsd(XMMRegister dst, XMMRegister src);
    1065             : 
    1066             :   void movmskpd(Register dst, XMMRegister src);
    1067             : 
    1068             :   // SSE 4.1 instruction
    1069             :   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
    1070             :   void insertps(XMMRegister dst, Operand src, byte imm8);
    1071             :   void extractps(Register dst, XMMRegister src, byte imm8);
    1072             :   void pextrb(Register dst, XMMRegister src, int8_t imm8);
    1073             :   void pextrb(Operand dst, XMMRegister src, int8_t imm8);
    1074             :   void pextrw(Register dst, XMMRegister src, int8_t imm8);
    1075             :   void pextrw(Operand dst, XMMRegister src, int8_t imm8);
    1076             :   void pextrd(Register dst, XMMRegister src, int8_t imm8);
    1077             :   void pextrd(Operand dst, XMMRegister src, int8_t imm8);
    1078             :   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
    1079             :   void pinsrb(XMMRegister dst, Operand src, int8_t imm8);
    1080             :   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
    1081             :   void pinsrw(XMMRegister dst, Operand src, int8_t imm8);
    1082             :   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
    1083             :   void pinsrd(XMMRegister dst, Operand src, int8_t imm8);
    1084             : 
    1085             :   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1086             :   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1087             : 
    1088             :   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
    1089             :   void cmpps(XMMRegister dst, Operand src, int8_t cmp);
    1090             :   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
    1091             :   void cmppd(XMMRegister dst, Operand src, int8_t cmp);
    1092             : 
    1093             : #define SSE_CMP_P(instr, imm8)                                                \
    1094             :   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
    1095             :   void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); }     \
    1096             :   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
    1097             :   void instr##pd(XMMRegister dst, Operand src) { cmppd(dst, src, imm8); }
    1098             : 
    1099          24 :   SSE_CMP_P(cmpeq, 0x0)
    1100          28 :   SSE_CMP_P(cmplt, 0x1)
    1101          32 :   SSE_CMP_P(cmple, 0x2)
    1102          20 :   SSE_CMP_P(cmpneq, 0x4)
    1103          20 :   SSE_CMP_P(cmpnlt, 0x5)
    1104          20 :   SSE_CMP_P(cmpnle, 0x6)
    1105             : 
    1106             : #undef SSE_CMP_P
    1107             : 
    1108             :   void minps(XMMRegister dst, XMMRegister src);
    1109             :   void minps(XMMRegister dst, Operand src);
    1110             :   void maxps(XMMRegister dst, XMMRegister src);
    1111             :   void maxps(XMMRegister dst, Operand src);
    1112             :   void rcpps(XMMRegister dst, XMMRegister src);
    1113             :   void rcpps(XMMRegister dst, Operand src);
    1114             :   void rsqrtps(XMMRegister dst, XMMRegister src);
    1115             :   void rsqrtps(XMMRegister dst, Operand src);
    1116             :   void sqrtps(XMMRegister dst, XMMRegister src);
    1117             :   void sqrtps(XMMRegister dst, Operand src);
    1118             :   void movups(XMMRegister dst, XMMRegister src);
    1119             :   void movups(XMMRegister dst, Operand src);
    1120             :   void movups(Operand dst, XMMRegister src);
    1121             :   void psrldq(XMMRegister dst, uint8_t shift);
    1122             :   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1123             :   void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
    1124             :   void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1125             :   void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
    1126             :   void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1127             :   void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
    1128             :   void cvtdq2ps(XMMRegister dst, XMMRegister src);
    1129             :   void cvtdq2ps(XMMRegister dst, Operand src);
    1130             : 
    1131             :   // AVX instruction
    1132             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1133           0 :     vfmasd(0x99, dst, src1, src2);
    1134             :   }
    1135             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1136           0 :     vfmasd(0xa9, dst, src1, src2);
    1137             :   }
    1138             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1139           0 :     vfmasd(0xb9, dst, src1, src2);
    1140             :   }
    1141             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1142           0 :     vfmasd(0x99, dst, src1, src2);
    1143             :   }
    1144             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1145           0 :     vfmasd(0xa9, dst, src1, src2);
    1146             :   }
    1147             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1148           0 :     vfmasd(0xb9, dst, src1, src2);
    1149             :   }
    1150             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1151           0 :     vfmasd(0x9b, dst, src1, src2);
    1152             :   }
    1153             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1154           0 :     vfmasd(0xab, dst, src1, src2);
    1155             :   }
    1156             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1157           0 :     vfmasd(0xbb, dst, src1, src2);
    1158             :   }
    1159             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1160           0 :     vfmasd(0x9b, dst, src1, src2);
    1161             :   }
    1162             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1163           0 :     vfmasd(0xab, dst, src1, src2);
    1164             :   }
    1165             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1166           0 :     vfmasd(0xbb, dst, src1, src2);
    1167             :   }
    1168             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1169           0 :     vfmasd(0x9d, dst, src1, src2);
    1170             :   }
    1171             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1172           0 :     vfmasd(0xad, dst, src1, src2);
    1173             :   }
    1174             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1175           0 :     vfmasd(0xbd, dst, src1, src2);
    1176             :   }
    1177             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1178           0 :     vfmasd(0x9d, dst, src1, src2);
    1179             :   }
    1180             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1181           0 :     vfmasd(0xad, dst, src1, src2);
    1182             :   }
    1183             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1184           0 :     vfmasd(0xbd, dst, src1, src2);
    1185             :   }
    1186             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1187           0 :     vfmasd(0x9f, dst, src1, src2);
    1188             :   }
    1189             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1190           0 :     vfmasd(0xaf, dst, src1, src2);
    1191             :   }
    1192             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1193           0 :     vfmasd(0xbf, dst, src1, src2);
    1194             :   }
    1195             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1196           0 :     vfmasd(0x9f, dst, src1, src2);
    1197             :   }
    1198             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1199           0 :     vfmasd(0xaf, dst, src1, src2);
    1200             :   }
    1201             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1202           0 :     vfmasd(0xbf, dst, src1, src2);
    1203             :   }
    1204             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1205             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1206             : 
    1207             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1208           0 :     vfmass(0x99, dst, src1, src2);
    1209             :   }
    1210             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1211           0 :     vfmass(0xa9, dst, src1, src2);
    1212             :   }
    1213             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1214           0 :     vfmass(0xb9, dst, src1, src2);
    1215             :   }
    1216             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1217           0 :     vfmass(0x99, dst, src1, src2);
    1218             :   }
    1219             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1220           0 :     vfmass(0xa9, dst, src1, src2);
    1221             :   }
    1222             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1223           0 :     vfmass(0xb9, dst, src1, src2);
    1224             :   }
    1225             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1226           0 :     vfmass(0x9b, dst, src1, src2);
    1227             :   }
    1228             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1229           0 :     vfmass(0xab, dst, src1, src2);
    1230             :   }
    1231             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1232           0 :     vfmass(0xbb, dst, src1, src2);
    1233             :   }
    1234             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1235           0 :     vfmass(0x9b, dst, src1, src2);
    1236             :   }
    1237             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1238           0 :     vfmass(0xab, dst, src1, src2);
    1239             :   }
    1240             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1241           0 :     vfmass(0xbb, dst, src1, src2);
    1242             :   }
    1243             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1244           0 :     vfmass(0x9d, dst, src1, src2);
    1245             :   }
    1246             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1247           0 :     vfmass(0xad, dst, src1, src2);
    1248             :   }
    1249             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1250           0 :     vfmass(0xbd, dst, src1, src2);
    1251             :   }
    1252             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1253           0 :     vfmass(0x9d, dst, src1, src2);
    1254             :   }
    1255             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1256           0 :     vfmass(0xad, dst, src1, src2);
    1257             :   }
    1258             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1259           0 :     vfmass(0xbd, dst, src1, src2);
    1260             :   }
    1261             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1262           0 :     vfmass(0x9f, dst, src1, src2);
    1263             :   }
    1264             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1265           0 :     vfmass(0xaf, dst, src1, src2);
    1266             :   }
    1267             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1268           0 :     vfmass(0xbf, dst, src1, src2);
    1269             :   }
    1270             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1271           0 :     vfmass(0x9f, dst, src1, src2);
    1272             :   }
    1273             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1274           0 :     vfmass(0xaf, dst, src1, src2);
    1275             :   }
    1276             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1277           0 :     vfmass(0xbf, dst, src1, src2);
    1278             :   }
    1279             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1280             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1281             : 
    1282             :   void vmovd(XMMRegister dst, Register src);
    1283             :   void vmovd(XMMRegister dst, Operand src);
    1284             :   void vmovd(Register dst, XMMRegister src);
    1285             :   void vmovq(XMMRegister dst, Register src);
    1286             :   void vmovq(XMMRegister dst, Operand src);
    1287             :   void vmovq(Register dst, XMMRegister src);
    1288             : 
    1289      103035 :   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1290             :     vsd(0x10, dst, src1, src2);
    1291      103038 :   }
    1292     3089091 :   void vmovsd(XMMRegister dst, Operand src) { vsd(0x10, dst, xmm0, src); }
    1293     2801518 :   void vmovsd(Operand dst, XMMRegister src) { vsd(0x11, src, xmm0, dst); }
    1294             : 
    1295             : #define AVX_SP_3(instr, opcode) \
    1296             :   AVX_S_3(instr, opcode)        \
    1297             :   AVX_P_3(instr, opcode)
    1298             : 
    1299             : #define AVX_S_3(instr, opcode)  \
    1300             :   AVX_3(instr##ss, opcode, vss) \
    1301             :   AVX_3(instr##sd, opcode, vsd)
    1302             : 
    1303             : #define AVX_P_3(instr, opcode)  \
    1304             :   AVX_3(instr##ps, opcode, vps) \
    1305             :   AVX_3(instr##pd, opcode, vpd)
    1306             : 
    1307             : #define AVX_3(instr, opcode, impl)                                  \
    1308             :   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1309             :     impl(opcode, dst, src1, src2);                                  \
    1310             :   }                                                                 \
    1311             :   void instr(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1312             :     impl(opcode, dst, src1, src2);                                  \
    1313             :   }
    1314             : 
    1315        1280 :   AVX_SP_3(vsqrt, 0x51)
    1316      163255 :   AVX_SP_3(vadd, 0x58)
    1317       46822 :   AVX_SP_3(vsub, 0x5c)
    1318       26229 :   AVX_SP_3(vmul, 0x59)
    1319       27035 :   AVX_SP_3(vdiv, 0x5e)
    1320          42 :   AVX_SP_3(vmin, 0x5d)
    1321          42 :   AVX_SP_3(vmax, 0x5f)
    1322         784 :   AVX_P_3(vand, 0x54)
    1323          14 :   AVX_P_3(vor, 0x56)
    1324      585908 :   AVX_P_3(vxor, 0x57)
    1325       36021 :   AVX_3(vcvtsd2ss, 0x5a, vsd)
    1326          20 :   AVX_3(vhaddps, 0x7c, vsd)
    1327             : 
    1328             : #undef AVX_3
    1329             : #undef AVX_S_3
    1330             : #undef AVX_P_3
    1331             : #undef AVX_SP_3
    1332             : 
    1333             :   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
    1334      189976 :     vpd(0x73, xmm2, dst, src);
    1335             :     emit(imm8);
    1336             :   }
    1337             :   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
    1338      220614 :     vpd(0x73, xmm6, dst, src);
    1339             :     emit(imm8);
    1340             :   }
    1341             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1342        9188 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1343             :   }
    1344             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1345       11358 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1346             :   }
    1347             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1348      373279 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1349      373279 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
    1350             :   }
    1351             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1352       57517 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
    1353             :   }
    1354             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1355        1122 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1356        1122 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
    1357             :   }
    1358             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1359           8 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
    1360             :   }
    1361             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1362         396 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1363         396 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
    1364             :   }
    1365             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1366           0 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
    1367             :   }
    1368             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1369       20558 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1370       20558 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
    1371             :   }
    1372             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1373        1981 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
    1374             :   }
    1375             :   void vcvttss2si(Register dst, XMMRegister src) {
    1376         460 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1377         460 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1378             :   }
    1379             :   void vcvttss2si(Register dst, Operand src) {
    1380           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1381           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1382             :   }
    1383             :   void vcvttsd2si(Register dst, XMMRegister src) {
    1384      107725 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1385      107725 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1386             :   }
    1387             :   void vcvttsd2si(Register dst, Operand src) {
    1388       20339 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1389       20339 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1390             :   }
    1391             :   void vcvttss2siq(Register dst, XMMRegister src) {
    1392         364 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1393         364 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1394             :   }
    1395             :   void vcvttss2siq(Register dst, Operand src) {
    1396           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1397           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1398             :   }
    1399             :   void vcvttsd2siq(Register dst, XMMRegister src) {
    1400       63582 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1401       63582 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1402             :   }
    1403             :   void vcvttsd2siq(Register dst, Operand src) {
    1404          10 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1405          10 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1406             :   }
    1407             :   void vcvtsd2si(Register dst, XMMRegister src) {
    1408           9 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1409           9 :     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
    1410             :   }
    1411             :   void vucomisd(XMMRegister dst, XMMRegister src) {
    1412      236897 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1413             :   }
    1414             :   void vucomisd(XMMRegister dst, Operand src) {
    1415       20717 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1416             :   }
    1417             :   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1418             :                 RoundingMode mode) {
    1419         583 :     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
    1420         586 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1421             :   }
    1422             :   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1423             :                 RoundingMode mode) {
    1424       46193 :     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
    1425       46193 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1426             :   }
    1427             : 
    1428             :   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1429      235683 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1430             :   }
    1431      243239 :   void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
    1432     3080831 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1433      243239 :   }
    1434             : 
    1435             :   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1436       96428 :     vss(0x10, dst, src1, src2);
    1437             :   }
    1438       25319 :   void vmovss(XMMRegister dst, Operand src) { vss(0x10, dst, xmm0, src); }
    1439      685626 :   void vmovss(Operand dst, XMMRegister src) { vss(0x11, src, xmm0, dst); }
    1440             :   void vucomiss(XMMRegister dst, XMMRegister src);
    1441             :   void vucomiss(XMMRegister dst, Operand src);
    1442             :   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1443             :   void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1444             : 
    1445         362 :   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
    1446        1757 :   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
    1447        6435 :   void vmovups(XMMRegister dst, Operand src) { vps(0x10, dst, xmm0, src); }
    1448       10671 :   void vmovups(Operand dst, XMMRegister src) { vps(0x11, src, xmm0, dst); }
    1449      131517 :   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
    1450           5 :   void vmovupd(XMMRegister dst, Operand src) { vpd(0x10, dst, xmm0, src); }
    1451           5 :   void vmovupd(Operand dst, XMMRegister src) { vpd(0x11, src, xmm0, dst); }
    1452             :   void vmovmskps(Register dst, XMMRegister src) {
    1453         192 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1454         192 :     vps(0x50, idst, xmm0, src);
    1455             :   }
    1456             :   void vmovmskpd(Register dst, XMMRegister src) {
    1457         665 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1458         665 :     vpd(0x50, idst, xmm0, src);
    1459             :   }
    1460             :   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1461          35 :     vps(0xC2, dst, src1, src2);
    1462             :     emit(cmp);
    1463             :   }
    1464             :   void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1465          35 :     vps(0xC2, dst, src1, src2);
    1466             :     emit(cmp);
    1467             :   }
    1468             :   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1469          35 :     vpd(0xC2, dst, src1, src2);
    1470             :     emit(cmp);
    1471             :   }
    1472             :   void vcmppd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1473          35 :     vpd(0xC2, dst, src1, src2);
    1474             :     emit(cmp);
    1475             :   }
    1476             : 
    1477             : #define AVX_CMP_P(instr, imm8)                                          \
    1478             :   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1479             :     vcmpps(dst, src1, src2, imm8);                                      \
    1480             :   }                                                                     \
    1481             :   void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1482             :     vcmpps(dst, src1, src2, imm8);                                      \
    1483             :   }                                                                     \
    1484             :   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1485             :     vcmppd(dst, src1, src2, imm8);                                      \
    1486             :   }                                                                     \
    1487             :   void instr##pd(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1488             :     vcmppd(dst, src1, src2, imm8);                                      \
    1489             :   }
    1490             : 
    1491          40 :   AVX_CMP_P(vcmpeq, 0x0)
    1492          40 :   AVX_CMP_P(vcmplt, 0x1)
    1493          40 :   AVX_CMP_P(vcmple, 0x2)
    1494          40 :   AVX_CMP_P(vcmpneq, 0x4)
    1495          40 :   AVX_CMP_P(vcmpnlt, 0x5)
    1496          40 :   AVX_CMP_P(vcmpnle, 0x6)
    1497             : 
    1498             : #undef AVX_CMP_P
    1499             : 
    1500             :   void vlddqu(XMMRegister dst, Operand src) {
    1501           5 :     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
    1502             :   }
    1503             :   void vpsllw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1504           5 :     vinstr(0x71, xmm6, dst, src, k66, k0F, kWIG);
    1505             :     emit(imm8);
    1506             :   }
    1507             :   void vpsrlw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1508           5 :     vinstr(0x71, xmm2, dst, src, k66, k0F, kWIG);
    1509             :     emit(imm8);
    1510             :   }
    1511             :   void vpsraw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1512           5 :     vinstr(0x71, xmm4, dst, src, k66, k0F, kWIG);
    1513             :     emit(imm8);
    1514             :   }
    1515             :   void vpslld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1516       49104 :     vinstr(0x72, xmm6, dst, src, k66, k0F, kWIG);
    1517             :     emit(imm8);
    1518             :   }
    1519             :   void vpsrld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1520       37200 :     vinstr(0x72, xmm2, dst, src, k66, k0F, kWIG);
    1521             :     emit(imm8);
    1522             :   }
    1523             :   void vpsrad(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1524           5 :     vinstr(0x72, xmm4, dst, src, k66, k0F, kWIG);
    1525             :     emit(imm8);
    1526             :   }
    1527           5 :   void vpextrb(Register dst, XMMRegister src, uint8_t imm8) {
    1528           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1529           5 :     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
    1530             :     emit(imm8);
    1531           5 :   }
    1532             :   void vpextrb(Operand dst, XMMRegister src, uint8_t imm8) {
    1533           5 :     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
    1534             :     emit(imm8);
    1535             :   }
    1536           5 :   void vpextrw(Register dst, XMMRegister src, uint8_t imm8) {
    1537           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1538           5 :     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
    1539             :     emit(imm8);
    1540           5 :   }
    1541             :   void vpextrw(Operand dst, XMMRegister src, uint8_t imm8) {
    1542           5 :     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
    1543             :     emit(imm8);
    1544             :   }
    1545           5 :   void vpextrd(Register dst, XMMRegister src, uint8_t imm8) {
    1546           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1547           5 :     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
    1548             :     emit(imm8);
    1549           5 :   }
    1550             :   void vpextrd(Operand dst, XMMRegister src, uint8_t imm8) {
    1551           5 :     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
    1552             :     emit(imm8);
    1553             :   }
    1554             :   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1555           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1556           5 :     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
    1557             :     emit(imm8);
    1558             :   }
    1559             :   void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1560           5 :     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
    1561             :     emit(imm8);
    1562             :   }
    1563             :   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1564           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1565           5 :     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
    1566             :     emit(imm8);
    1567             :   }
    1568             :   void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1569           5 :     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
    1570             :     emit(imm8);
    1571             :   }
    1572             :   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1573           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1574           5 :     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
    1575             :     emit(imm8);
    1576             :   }
    1577             :   void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1578           5 :     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
    1579             :     emit(imm8);
    1580             :   }
    1581             :   void vpshufd(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1582           5 :     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
    1583             :     emit(imm8);
    1584             :   }
    1585             : 
    1586             :   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1587             :   void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1588             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1589             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1590             : 
    1591             :   // BMI instruction
    1592             :   void andnq(Register dst, Register src1, Register src2) {
    1593           0 :     bmi1q(0xf2, dst, src1, src2);
    1594             :   }
    1595             :   void andnq(Register dst, Register src1, Operand src2) {
    1596           0 :     bmi1q(0xf2, dst, src1, src2);
    1597             :   }
    1598             :   void andnl(Register dst, Register src1, Register src2) {
    1599           0 :     bmi1l(0xf2, dst, src1, src2);
    1600             :   }
    1601             :   void andnl(Register dst, Register src1, Operand src2) {
    1602           0 :     bmi1l(0xf2, dst, src1, src2);
    1603             :   }
    1604             :   void bextrq(Register dst, Register src1, Register src2) {
    1605           0 :     bmi1q(0xf7, dst, src2, src1);
    1606             :   }
    1607             :   void bextrq(Register dst, Operand src1, Register src2) {
    1608           0 :     bmi1q(0xf7, dst, src2, src1);
    1609             :   }
    1610             :   void bextrl(Register dst, Register src1, Register src2) {
    1611           0 :     bmi1l(0xf7, dst, src2, src1);
    1612             :   }
    1613             :   void bextrl(Register dst, Operand src1, Register src2) {
    1614           0 :     bmi1l(0xf7, dst, src2, src1);
    1615             :   }
    1616           0 :   void blsiq(Register dst, Register src) { bmi1q(0xf3, rbx, dst, src); }
    1617           0 :   void blsiq(Register dst, Operand src) { bmi1q(0xf3, rbx, dst, src); }
    1618           0 :   void blsil(Register dst, Register src) { bmi1l(0xf3, rbx, dst, src); }
    1619           0 :   void blsil(Register dst, Operand src) { bmi1l(0xf3, rbx, dst, src); }
    1620           0 :   void blsmskq(Register dst, Register src) { bmi1q(0xf3, rdx, dst, src); }
    1621           0 :   void blsmskq(Register dst, Operand src) { bmi1q(0xf3, rdx, dst, src); }
    1622           0 :   void blsmskl(Register dst, Register src) { bmi1l(0xf3, rdx, dst, src); }
    1623           0 :   void blsmskl(Register dst, Operand src) { bmi1l(0xf3, rdx, dst, src); }
    1624           0 :   void blsrq(Register dst, Register src) { bmi1q(0xf3, rcx, dst, src); }
    1625           0 :   void blsrq(Register dst, Operand src) { bmi1q(0xf3, rcx, dst, src); }
    1626           0 :   void blsrl(Register dst, Register src) { bmi1l(0xf3, rcx, dst, src); }
    1627           0 :   void blsrl(Register dst, Operand src) { bmi1l(0xf3, rcx, dst, src); }
    1628             :   void tzcntq(Register dst, Register src);
    1629             :   void tzcntq(Register dst, Operand src);
    1630             :   void tzcntl(Register dst, Register src);
    1631             :   void tzcntl(Register dst, Operand src);
    1632             : 
    1633             :   void lzcntq(Register dst, Register src);
    1634             :   void lzcntq(Register dst, Operand src);
    1635             :   void lzcntl(Register dst, Register src);
    1636             :   void lzcntl(Register dst, Operand src);
    1637             : 
    1638             :   void popcntq(Register dst, Register src);
    1639             :   void popcntq(Register dst, Operand src);
    1640             :   void popcntl(Register dst, Register src);
    1641             :   void popcntl(Register dst, Operand src);
    1642             : 
    1643             :   void bzhiq(Register dst, Register src1, Register src2) {
    1644           0 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1645             :   }
    1646             :   void bzhiq(Register dst, Operand src1, Register src2) {
    1647           0 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1648             :   }
    1649             :   void bzhil(Register dst, Register src1, Register src2) {
    1650           0 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1651             :   }
    1652             :   void bzhil(Register dst, Operand src1, Register src2) {
    1653           0 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1654             :   }
    1655             :   void mulxq(Register dst1, Register dst2, Register src) {
    1656           0 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1657             :   }
    1658             :   void mulxq(Register dst1, Register dst2, Operand src) {
    1659           0 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1660             :   }
    1661             :   void mulxl(Register dst1, Register dst2, Register src) {
    1662           0 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1663             :   }
    1664             :   void mulxl(Register dst1, Register dst2, Operand src) {
    1665           0 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1666             :   }
    1667             :   void pdepq(Register dst, Register src1, Register src2) {
    1668           0 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1669             :   }
    1670             :   void pdepq(Register dst, Register src1, Operand src2) {
    1671           0 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1672             :   }
    1673             :   void pdepl(Register dst, Register src1, Register src2) {
    1674           0 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1675             :   }
    1676             :   void pdepl(Register dst, Register src1, Operand src2) {
    1677           0 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1678             :   }
    1679             :   void pextq(Register dst, Register src1, Register src2) {
    1680           0 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1681             :   }
    1682             :   void pextq(Register dst, Register src1, Operand src2) {
    1683           0 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1684             :   }
    1685             :   void pextl(Register dst, Register src1, Register src2) {
    1686           0 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1687             :   }
    1688             :   void pextl(Register dst, Register src1, Operand src2) {
    1689           0 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1690             :   }
    1691             :   void sarxq(Register dst, Register src1, Register src2) {
    1692           0 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1693             :   }
    1694             :   void sarxq(Register dst, Operand src1, Register src2) {
    1695           0 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1696             :   }
    1697             :   void sarxl(Register dst, Register src1, Register src2) {
    1698           0 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1699             :   }
    1700             :   void sarxl(Register dst, Operand src1, Register src2) {
    1701           0 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1702             :   }
    1703             :   void shlxq(Register dst, Register src1, Register src2) {
    1704           0 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1705             :   }
    1706             :   void shlxq(Register dst, Operand src1, Register src2) {
    1707           0 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1708             :   }
    1709             :   void shlxl(Register dst, Register src1, Register src2) {
    1710           0 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1711             :   }
    1712             :   void shlxl(Register dst, Operand src1, Register src2) {
    1713           0 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1714             :   }
    1715             :   void shrxq(Register dst, Register src1, Register src2) {
    1716           0 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1717             :   }
    1718             :   void shrxq(Register dst, Operand src1, Register src2) {
    1719           0 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1720             :   }
    1721             :   void shrxl(Register dst, Register src1, Register src2) {
    1722           0 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1723             :   }
    1724             :   void shrxl(Register dst, Operand src1, Register src2) {
    1725           0 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1726             :   }
    1727             :   void rorxq(Register dst, Register src, byte imm8);
    1728             :   void rorxq(Register dst, Operand src, byte imm8);
    1729             :   void rorxl(Register dst, Register src, byte imm8);
    1730             :   void rorxl(Register dst, Operand src, byte imm8);
    1731             : 
    1732             :   void lfence();
    1733             :   void pause();
    1734             : 
    1735             :   // Check the code size generated from label to here.
    1736             :   int SizeOfCodeGeneratedSince(Label* label) {
    1737             :     return pc_offset() - label->pos();
    1738             :   }
    1739             : 
    1740             :   // Record a deoptimization reason that can be used by a log or cpu profiler.
    1741             :   // Use --trace-deopt to enable.
    1742             :   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
    1743             :                          int id);
    1744             : 
    1745             : 
    1746             :   // Writes a single word of data in the code stream.
    1747             :   // Used for inline tables, e.g., jump-tables.
    1748             :   void db(uint8_t data);
    1749             :   void dd(uint32_t data);
    1750             :   void dq(uint64_t data);
    1751             :   void dp(uintptr_t data) { dq(data); }
    1752             :   void dq(Label* label);
    1753             : 
    1754             :   // Patch entries for partial constant pool.
    1755             :   void PatchConstPool();
    1756             : 
    1757             :   // Check if use partial constant pool for this rmode.
    1758             :   static bool UseConstPoolFor(RelocInfo::Mode rmode);
    1759             : 
    1760             :   // Check if there is less than kGap bytes available in the buffer.
    1761             :   // If this is the case, we need to grow the buffer before emitting
    1762             :   // an instruction or relocation information.
    1763             :   inline bool buffer_overflow() const {
    1764   373973681 :     return pc_ >= reloc_info_writer.pos() - kGap;
    1765             :   }
    1766             : 
    1767             :   // Get the number of bytes available in the buffer.
    1768             :   inline int available_space() const {
    1769             :     return static_cast<int>(reloc_info_writer.pos() - pc_);
    1770             :   }
    1771             : 
    1772             :   static bool IsNop(Address addr);
    1773             : 
    1774             :   // Avoid overflows for displacements etc.
    1775             :   static constexpr int kMaximalBufferSize = 512 * MB;
    1776             : 
    1777             :   byte byte_at(int pos) { return buffer_start_[pos]; }
    1778     1758003 :   void set_byte_at(int pos, byte value) { buffer_start_[pos] = value; }
    1779             : 
    1780             :  protected:
    1781             :   // Call near indirect
    1782             :   void call(Operand operand);
    1783             : 
    1784             :  private:
    1785             :   Address addr_at(int pos) {
    1786    62772883 :     return reinterpret_cast<Address>(buffer_start_ + pos);
    1787             :   }
    1788             :   uint32_t long_at(int pos) {
    1789             :     return ReadUnalignedValue<uint32_t>(addr_at(pos));
    1790             :   }
    1791             :   void long_at_put(int pos, uint32_t x)  {
    1792             :     WriteUnalignedValue(addr_at(pos), x);
    1793             :   }
    1794             : 
    1795             :   // code emission
    1796             :   void GrowBuffer();
    1797             : 
    1798   529957900 :   void emit(byte x) { *pc_++ = x; }
    1799             :   inline void emitl(uint32_t x);
    1800             :   inline void emitq(uint64_t x);
    1801             :   inline void emitw(uint16_t x);
    1802             :   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
    1803             :   inline void emit(Immediate x);
    1804             :   inline void emit(Immediate64 x);
    1805             : 
    1806             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1807             :   // the top bit of both register codes.
    1808             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1809             :   // REX.W is set.
    1810             :   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
    1811             :   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
    1812             :   inline void emit_rex_64(Register reg, Register rm_reg);
    1813             :   inline void emit_rex_64(XMMRegister reg, XMMRegister rm_reg);
    1814             : 
    1815             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1816             :   // the top bit of the destination, index, and base register codes.
    1817             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1818             :   // register is used for REX.B, and the high bit of op's index register
    1819             :   // is used for REX.X.  REX.W is set.
    1820             :   inline void emit_rex_64(Register reg, Operand op);
    1821             :   inline void emit_rex_64(XMMRegister reg, Operand op);
    1822             : 
    1823             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1824             :   // the top bit of the register code.
    1825             :   // The high bit of register is used for REX.B.
    1826             :   // REX.W is set and REX.R and REX.X are clear.
    1827             :   inline void emit_rex_64(Register rm_reg);
    1828             : 
    1829             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1830             :   // the top bit of the index and base register codes.
    1831             :   // The high bit of op's base register is used for REX.B, and the high
    1832             :   // bit of op's index register is used for REX.X.
    1833             :   // REX.W is set and REX.R clear.
    1834             :   inline void emit_rex_64(Operand op);
    1835             : 
    1836             :   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
    1837             :   void emit_rex_64() { emit(0x48); }
    1838             : 
    1839             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1840             :   // REX.W is clear.
    1841             :   inline void emit_rex_32(Register reg, Register rm_reg);
    1842             : 
    1843             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1844             :   // register is used for REX.B, and the high bit of op's index register
    1845             :   // is used for REX.X.  REX.W is cleared.
    1846             :   inline void emit_rex_32(Register reg, Operand op);
    1847             : 
    1848             :   // High bit of rm_reg goes to REX.B.
    1849             :   // REX.W, REX.R and REX.X are clear.
    1850             :   inline void emit_rex_32(Register rm_reg);
    1851             : 
    1852             :   // High bit of base goes to REX.B and high bit of index to REX.X.
    1853             :   // REX.W and REX.R are clear.
    1854             :   inline void emit_rex_32(Operand op);
    1855             : 
    1856             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1857             :   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
    1858             :   inline void emit_optional_rex_32(Register reg, Register rm_reg);
    1859             : 
    1860             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1861             :   // register is used for REX.B, and the high bit of op's index register
    1862             :   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
    1863             :   // is emitted.
    1864             :   inline void emit_optional_rex_32(Register reg, Operand op);
    1865             : 
    1866             :   // As for emit_optional_rex_32(Register, Register), except that
    1867             :   // the registers are XMM registers.
    1868             :   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
    1869             : 
    1870             :   // As for emit_optional_rex_32(Register, Register), except that
    1871             :   // one of the registers is an XMM registers.
    1872             :   inline void emit_optional_rex_32(XMMRegister reg, Register base);
    1873             : 
    1874             :   // As for emit_optional_rex_32(Register, Register), except that
    1875             :   // one of the registers is an XMM registers.
    1876             :   inline void emit_optional_rex_32(Register reg, XMMRegister base);
    1877             : 
    1878             :   // As for emit_optional_rex_32(Register, Operand), except that
    1879             :   // the register is an XMM register.
    1880             :   inline void emit_optional_rex_32(XMMRegister reg, Operand op);
    1881             : 
    1882             :   // Optionally do as emit_rex_32(Register) if the register number has
    1883             :   // the high bit set.
    1884             :   inline void emit_optional_rex_32(Register rm_reg);
    1885             :   inline void emit_optional_rex_32(XMMRegister rm_reg);
    1886             : 
    1887             :   // Optionally do as emit_rex_32(Operand) if the operand register
    1888             :   // numbers have a high bit set.
    1889             :   inline void emit_optional_rex_32(Operand op);
    1890             : 
    1891             :   void emit_rex(int size) {
    1892           0 :     if (size == kInt64Size) {
    1893             :       emit_rex_64();
    1894             :     } else {
    1895             :       DCHECK_EQ(size, kInt32Size);
    1896             :     }
    1897             :   }
    1898             : 
    1899             :   template<class P1>
    1900             :   void emit_rex(P1 p1, int size) {
    1901    79618593 :     if (size == kInt64Size) {
    1902             :       emit_rex_64(p1);
    1903             :     } else {
    1904             :       DCHECK_EQ(size, kInt32Size);
    1905             :       emit_optional_rex_32(p1);
    1906             :     }
    1907             :   }
    1908             : 
    1909             :   template<class P1, class P2>
    1910    33787533 :   void emit_rex(P1 p1, P2 p2, int size) {
    1911    79786612 :     if (size == kInt64Size) {
    1912             :       emit_rex_64(p1, p2);
    1913             :     } else {
    1914             :       DCHECK_EQ(size, kInt32Size);
    1915             :       emit_optional_rex_32(p1, p2);
    1916             :     }
    1917    33787533 :   }
    1918             : 
    1919             :   // Emit vex prefix
    1920             :   void emit_vex2_byte0() { emit(0xc5); }
    1921             :   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
    1922             :                               SIMDPrefix pp);
    1923             :   void emit_vex3_byte0() { emit(0xc4); }
    1924             :   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
    1925             :   inline void emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m);
    1926             :   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
    1927             :                               SIMDPrefix pp);
    1928             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
    1929             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1930             :                               VexW w);
    1931             :   inline void emit_vex_prefix(Register reg, Register v, Register rm,
    1932             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1933             :                               VexW w);
    1934             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, Operand rm,
    1935             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1936             :                               VexW w);
    1937             :   inline void emit_vex_prefix(Register reg, Register v, Operand rm,
    1938             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1939             :                               VexW w);
    1940             : 
    1941             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1942             :   // 1- or 4-byte offset for a memory operand.  Also encodes
    1943             :   // the second operand of the operation, a register or operation
    1944             :   // subcode, into the reg field of the ModR/M byte.
    1945             :   void emit_operand(Register reg, Operand adr) {
    1946    56978105 :     emit_operand(reg.low_bits(), adr);
    1947             :   }
    1948             : 
    1949             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1950             :   // 1- or 4-byte offset for a memory operand.  Also used to encode
    1951             :   // a three-bit opcode extension into the ModR/M byte.
    1952             :   void emit_operand(int rm, Operand adr);
    1953             : 
    1954             :   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
    1955             :   void emit_modrm(Register reg, Register rm_reg) {
    1956    41467615 :     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
    1957             :   }
    1958             : 
    1959             :   // Emit a ModR/M byte with an operation subcode in the reg field and
    1960             :   // a register in the rm_reg field.
    1961             :   void emit_modrm(int code, Register rm_reg) {
    1962             :     DCHECK(is_uint3(code));
    1963    83518311 :     emit(0xC0 | code << 3 | rm_reg.low_bits());
    1964             :   }
    1965             : 
    1966             :   // Emit the code-object-relative offset of the label's position
    1967             :   inline void emit_code_relative_offset(Label* label);
    1968             : 
    1969             :   // The first argument is the reg field, the second argument is the r/m field.
    1970             :   void emit_sse_operand(XMMRegister dst, XMMRegister src);
    1971             :   void emit_sse_operand(XMMRegister reg, Operand adr);
    1972             :   void emit_sse_operand(Register reg, Operand adr);
    1973             :   void emit_sse_operand(XMMRegister dst, Register src);
    1974             :   void emit_sse_operand(Register dst, XMMRegister src);
    1975             :   void emit_sse_operand(XMMRegister dst);
    1976             : 
    1977             :   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
    1978             :   // AND, OR, XOR, or CMP.  The encodings of these operations are all
    1979             :   // similar, differing just in the opcode or in the reg field of the
    1980             :   // ModR/M byte.
    1981             :   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
    1982             :   void arithmetic_op_8(byte opcode, Register reg, Operand rm_reg);
    1983             :   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
    1984             :   void arithmetic_op_16(byte opcode, Register reg, Operand rm_reg);
    1985             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    1986             :   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
    1987             :   void arithmetic_op(byte opcode, Register reg, Operand rm_reg, int size);
    1988             :   // Operate on a byte in memory or register.
    1989             :   void immediate_arithmetic_op_8(byte subcode,
    1990             :                                  Register dst,
    1991             :                                  Immediate src);
    1992             :   void immediate_arithmetic_op_8(byte subcode, Operand dst, Immediate src);
    1993             :   // Operate on a word in memory or register.
    1994             :   void immediate_arithmetic_op_16(byte subcode,
    1995             :                                   Register dst,
    1996             :                                   Immediate src);
    1997             :   void immediate_arithmetic_op_16(byte subcode, Operand dst, Immediate src);
    1998             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    1999             :   void immediate_arithmetic_op(byte subcode,
    2000             :                                Register dst,
    2001             :                                Immediate src,
    2002             :                                int size);
    2003             :   void immediate_arithmetic_op(byte subcode, Operand dst, Immediate src,
    2004             :                                int size);
    2005             : 
    2006             :   // Emit machine code for a shift operation.
    2007             :   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
    2008             :   void shift(Register dst, Immediate shift_amount, int subcode, int size);
    2009             :   // Shift dst by cl % 64 bits.
    2010             :   void shift(Register dst, int subcode, int size);
    2011             :   void shift(Operand dst, int subcode, int size);
    2012             : 
    2013             :   void emit_farith(int b1, int b2, int i);
    2014             : 
    2015             :   // labels
    2016             :   // void print(Label* L);
    2017             :   void bind_to(Label* L, int pos);
    2018             : 
    2019             :   // record reloc info for current pc_
    2020             :   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
    2021             : 
    2022             :   // Arithmetics
    2023         784 :   void emit_add(Register dst, Register src, int size) {
    2024     6172799 :     arithmetic_op(0x03, dst, src, size);
    2025         784 :   }
    2026             : 
    2027         840 :   void emit_add(Register dst, Immediate src, int size) {
    2028     2239332 :     immediate_arithmetic_op(0x0, dst, src, size);
    2029         840 :   }
    2030             : 
    2031         244 :   void emit_add(Register dst, Operand src, int size) {
    2032        6853 :     arithmetic_op(0x03, dst, src, size);
    2033         244 :   }
    2034             : 
    2035             :   void emit_add(Operand dst, Register src, int size) {
    2036      164146 :     arithmetic_op(0x1, src, dst, size);
    2037             :   }
    2038             : 
    2039         336 :   void emit_add(Operand dst, Immediate src, int size) {
    2040        6476 :     immediate_arithmetic_op(0x0, dst, src, size);
    2041         336 :   }
    2042             : 
    2043             :   void emit_and(Register dst, Register src, int size) {
    2044     3762505 :     arithmetic_op(0x23, dst, src, size);
    2045             :   }
    2046             : 
    2047             :   void emit_and(Register dst, Operand src, int size) {
    2048        3880 :     arithmetic_op(0x23, dst, src, size);
    2049             :   }
    2050             : 
    2051             :   void emit_and(Operand dst, Register src, int size) {
    2052             :     arithmetic_op(0x21, src, dst, size);
    2053             :   }
    2054             : 
    2055         112 :   void emit_and(Register dst, Immediate src, int size) {
    2056     4063151 :     immediate_arithmetic_op(0x4, dst, src, size);
    2057         112 :   }
    2058             : 
    2059             :   void emit_and(Operand dst, Immediate src, int size) {
    2060           0 :     immediate_arithmetic_op(0x4, dst, src, size);
    2061             :   }
    2062             : 
    2063        2016 :   void emit_cmp(Register dst, Register src, int size) {
    2064     2023297 :     arithmetic_op(0x3B, dst, src, size);
    2065        2016 :   }
    2066             : 
    2067         168 :   void emit_cmp(Register dst, Operand src, int size) {
    2068      860103 :     arithmetic_op(0x3B, dst, src, size);
    2069         168 :   }
    2070             : 
    2071             :   void emit_cmp(Operand dst, Register src, int size) {
    2072     1402406 :     arithmetic_op(0x39, src, dst, size);
    2073             :   }
    2074             : 
    2075         784 :   void emit_cmp(Register dst, Immediate src, int size) {
    2076     2931298 :     immediate_arithmetic_op(0x7, dst, src, size);
    2077         784 :   }
    2078             : 
    2079       34059 :   void emit_cmp(Operand dst, Immediate src, int size) {
    2080      159213 :     immediate_arithmetic_op(0x7, dst, src, size);
    2081       34059 :   }
    2082             : 
    2083             :   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
    2084             :   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
    2085             :   // operation is only atomic if prefixed by the lock instruction.
    2086             :   void emit_cmpxchg(Operand dst, Register src, int size);
    2087             : 
    2088             :   void emit_dec(Register dst, int size);
    2089             :   void emit_dec(Operand dst, int size);
    2090             : 
    2091             :   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
    2092             :   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
    2093             :   // when size is 32.
    2094             :   void emit_idiv(Register src, int size);
    2095             :   void emit_div(Register src, int size);
    2096             : 
    2097             :   // Signed multiply instructions.
    2098             :   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
    2099             :   void emit_imul(Register src, int size);
    2100             :   void emit_imul(Operand src, int size);
    2101             :   void emit_imul(Register dst, Register src, int size);
    2102             :   void emit_imul(Register dst, Operand src, int size);
    2103             :   void emit_imul(Register dst, Register src, Immediate imm, int size);
    2104             :   void emit_imul(Register dst, Operand src, Immediate imm, int size);
    2105             : 
    2106             :   void emit_inc(Register dst, int size);
    2107             :   void emit_inc(Operand dst, int size);
    2108             : 
    2109             :   void emit_lea(Register dst, Operand src, int size);
    2110             : 
    2111             :   void emit_mov(Register dst, Operand src, int size);
    2112             :   void emit_mov(Register dst, Register src, int size);
    2113             :   void emit_mov(Operand dst, Register src, int size);
    2114             :   void emit_mov(Register dst, Immediate value, int size);
    2115             :   void emit_mov(Operand dst, Immediate value, int size);
    2116             :   void emit_mov(Register dst, Immediate64 value, int size);
    2117             : 
    2118             :   void emit_movzxb(Register dst, Operand src, int size);
    2119             :   void emit_movzxb(Register dst, Register src, int size);
    2120             :   void emit_movzxw(Register dst, Operand src, int size);
    2121             :   void emit_movzxw(Register dst, Register src, int size);
    2122             : 
    2123             :   void emit_neg(Register dst, int size);
    2124             :   void emit_neg(Operand dst, int size);
    2125             : 
    2126             :   void emit_not(Register dst, int size);
    2127             :   void emit_not(Operand dst, int size);
    2128             : 
    2129             :   void emit_or(Register dst, Register src, int size) {
    2130      130508 :     arithmetic_op(0x0B, dst, src, size);
    2131             :   }
    2132             : 
    2133             :   void emit_or(Register dst, Operand src, int size) {
    2134         924 :     arithmetic_op(0x0B, dst, src, size);
    2135             :   }
    2136             : 
    2137             :   void emit_or(Operand dst, Register src, int size) {
    2138           4 :     arithmetic_op(0x9, src, dst, size);
    2139             :   }
    2140             : 
    2141             :   void emit_or(Register dst, Immediate src, int size) {
    2142       72271 :     immediate_arithmetic_op(0x1, dst, src, size);
    2143             :   }
    2144             : 
    2145             :   void emit_or(Operand dst, Immediate src, int size) {
    2146           0 :     immediate_arithmetic_op(0x1, dst, src, size);
    2147             :   }
    2148             : 
    2149             :   void emit_repmovs(int size);
    2150             : 
    2151             :   void emit_sbb(Register dst, Register src, int size) {
    2152           5 :     arithmetic_op(0x1b, dst, src, size);
    2153             :   }
    2154             : 
    2155        1344 :   void emit_sub(Register dst, Register src, int size) {
    2156      211682 :     arithmetic_op(0x2B, dst, src, size);
    2157        1344 :   }
    2158             : 
    2159         784 :   void emit_sub(Register dst, Immediate src, int size) {
    2160     4029052 :     immediate_arithmetic_op(0x5, dst, src, size);
    2161         784 :   }
    2162             : 
    2163             :   void emit_sub(Register dst, Operand src, int size) {
    2164      170469 :     arithmetic_op(0x2B, dst, src, size);
    2165             :   }
    2166             : 
    2167             :   void emit_sub(Operand dst, Register src, int size) {
    2168      164150 :     arithmetic_op(0x29, src, dst, size);
    2169             :   }
    2170             : 
    2171         112 :   void emit_sub(Operand dst, Immediate src, int size) {
    2172         117 :     immediate_arithmetic_op(0x5, dst, src, size);
    2173         112 :   }
    2174             : 
    2175             :   void emit_test(Register dst, Register src, int size);
    2176             :   void emit_test(Register reg, Immediate mask, int size);
    2177             :   void emit_test(Operand op, Register reg, int size);
    2178             :   void emit_test(Operand op, Immediate mask, int size);
    2179             :   void emit_test(Register reg, Operand op, int size) {
    2180          28 :     return emit_test(op, reg, size);
    2181             :   }
    2182             : 
    2183             :   void emit_xchg(Register dst, Register src, int size);
    2184             :   void emit_xchg(Register dst, Operand src, int size);
    2185             : 
    2186     3101566 :   void emit_xor(Register dst, Register src, int size) {
    2187     3108671 :     if (size == kInt64Size && dst.code() == src.code()) {
    2188             :     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
    2189             :     // there is no need to make this a 64 bit operation.
    2190        3865 :       arithmetic_op(0x33, dst, src, kInt32Size);
    2191             :     } else {
    2192     3097701 :       arithmetic_op(0x33, dst, src, size);
    2193             :     }
    2194     3101533 :   }
    2195             : 
    2196             :   void emit_xor(Register dst, Operand src, int size) {
    2197         655 :     arithmetic_op(0x33, dst, src, size);
    2198             :   }
    2199             : 
    2200             :   void emit_xor(Register dst, Immediate src, int size) {
    2201       22985 :     immediate_arithmetic_op(0x6, dst, src, size);
    2202             :   }
    2203             : 
    2204             :   void emit_xor(Operand dst, Immediate src, int size) {
    2205           0 :     immediate_arithmetic_op(0x6, dst, src, size);
    2206             :   }
    2207             : 
    2208             :   void emit_xor(Operand dst, Register src, int size) {
    2209           4 :     arithmetic_op(0x31, src, dst, size);
    2210             :   }
    2211             : 
    2212             :   // Most BMI instructions are similar.
    2213             :   void bmi1q(byte op, Register reg, Register vreg, Register rm);
    2214             :   void bmi1q(byte op, Register reg, Register vreg, Operand rm);
    2215             :   void bmi1l(byte op, Register reg, Register vreg, Register rm);
    2216             :   void bmi1l(byte op, Register reg, Register vreg, Operand rm);
    2217             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2218             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2219             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2220             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2221             : 
    2222             :   // record the position of jmp/jcc instruction
    2223             :   void record_farjmp_position(Label* L, int pos);
    2224             : 
    2225             :   bool is_optimizable_farjmp(int idx);
    2226             : 
    2227             :   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
    2228             : 
    2229             :   int WriteCodeComments();
    2230             : 
    2231             :   friend class EnsureSpace;
    2232             :   friend class RegExpMacroAssemblerX64;
    2233             : 
    2234             :   // code generation
    2235             :   RelocInfoWriter reloc_info_writer;
    2236             : 
    2237             :   // Internal reference positions, required for (potential) patching in
    2238             :   // GrowBuffer(); contains only those internal references whose labels
    2239             :   // are already bound.
    2240             :   std::deque<int> internal_reference_positions_;
    2241             : 
    2242             :   // Variables for this instance of assembler
    2243             :   int farjmp_num_ = 0;
    2244             :   std::deque<int> farjmp_positions_;
    2245             :   std::map<Label*, std::vector<int>> label_farjmp_maps_;
    2246             : 
    2247             :   ConstPool constpool_;
    2248             : 
    2249             :   friend class ConstPool;
    2250             : };
    2251             : 
    2252             : 
    2253             : // Helper class that ensures that there is enough space for generating
    2254             : // instructions and relocation information.  The constructor makes
    2255             : // sure that there is enough space and (in debug mode) the destructor
    2256             : // checks that we did not generate too much.
    2257             : class EnsureSpace {
    2258             :  public:
    2259             :   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    2260   373973681 :     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
    2261             : #ifdef DEBUG
    2262             :     space_before_ = assembler_->available_space();
    2263             : #endif
    2264             :   }
    2265             : 
    2266             : #ifdef DEBUG
    2267             :   ~EnsureSpace() {
    2268             :     int bytes_generated = space_before_ - assembler_->available_space();
    2269             :     DCHECK(bytes_generated < assembler_->kGap);
    2270             :   }
    2271             : #endif
    2272             : 
    2273             :  private:
    2274             :   Assembler* assembler_;
    2275             : #ifdef DEBUG
    2276             :   int space_before_;
    2277             : #endif
    2278             : };
    2279             : 
    2280             : }  // namespace internal
    2281             : }  // namespace v8
    2282             : 
    2283             : #endif  // V8_X64_ASSEMBLER_X64_H_

Generated by: LCOV version 1.10