Line data Source code
1 : // Copyright 2011 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include <assert.h>
6 : #include <stdarg.h>
7 : #include <stdio.h>
8 :
9 : #if V8_TARGET_ARCH_X64
10 :
11 : #include "src/base/compiler-specific.h"
12 : #include "src/base/lazy-instance.h"
13 : #include "src/base/v8-fallthrough.h"
14 : #include "src/disasm.h"
15 : #include "src/utils.h"
16 : #include "src/x64/register-x64.h"
17 : #include "src/x64/sse-instr.h"
18 :
19 : namespace disasm {
20 :
21 : enum OperandType {
22 : UNSET_OP_ORDER = 0,
23 : // Operand size decides between 16, 32 and 64 bit operands.
24 : REG_OPER_OP_ORDER = 1, // Register destination, operand source.
25 : OPER_REG_OP_ORDER = 2, // Operand destination, register source.
26 : // Fixed 8-bit operands.
27 : BYTE_SIZE_OPERAND_FLAG = 4,
28 : BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
29 : BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
30 : };
31 :
32 :
33 : //------------------------------------------------------------------
34 : // Tables
35 : //------------------------------------------------------------------
36 : struct ByteMnemonic {
37 : int b; // -1 terminates, otherwise must be in range (0..255)
38 : OperandType op_order_;
39 : const char* mnem;
40 : };
41 :
42 :
43 : static const ByteMnemonic two_operands_instr[] = {
44 : { 0x00, BYTE_OPER_REG_OP_ORDER, "add" },
45 : { 0x01, OPER_REG_OP_ORDER, "add" },
46 : { 0x02, BYTE_REG_OPER_OP_ORDER, "add" },
47 : { 0x03, REG_OPER_OP_ORDER, "add" },
48 : { 0x08, BYTE_OPER_REG_OP_ORDER, "or" },
49 : { 0x09, OPER_REG_OP_ORDER, "or" },
50 : { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" },
51 : { 0x0B, REG_OPER_OP_ORDER, "or" },
52 : { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" },
53 : { 0x11, OPER_REG_OP_ORDER, "adc" },
54 : { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" },
55 : { 0x13, REG_OPER_OP_ORDER, "adc" },
56 : { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" },
57 : { 0x19, OPER_REG_OP_ORDER, "sbb" },
58 : { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" },
59 : { 0x1B, REG_OPER_OP_ORDER, "sbb" },
60 : { 0x20, BYTE_OPER_REG_OP_ORDER, "and" },
61 : { 0x21, OPER_REG_OP_ORDER, "and" },
62 : { 0x22, BYTE_REG_OPER_OP_ORDER, "and" },
63 : { 0x23, REG_OPER_OP_ORDER, "and" },
64 : { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" },
65 : { 0x29, OPER_REG_OP_ORDER, "sub" },
66 : { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" },
67 : { 0x2B, REG_OPER_OP_ORDER, "sub" },
68 : { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" },
69 : { 0x31, OPER_REG_OP_ORDER, "xor" },
70 : { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" },
71 : { 0x33, REG_OPER_OP_ORDER, "xor" },
72 : { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" },
73 : { 0x39, OPER_REG_OP_ORDER, "cmp" },
74 : { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" },
75 : { 0x3B, REG_OPER_OP_ORDER, "cmp" },
76 : { 0x63, REG_OPER_OP_ORDER, "movsxl" },
77 : { 0x84, BYTE_REG_OPER_OP_ORDER, "test" },
78 : { 0x85, REG_OPER_OP_ORDER, "test" },
79 : { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" },
80 : { 0x87, REG_OPER_OP_ORDER, "xchg" },
81 : { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" },
82 : { 0x89, OPER_REG_OP_ORDER, "mov" },
83 : { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" },
84 : { 0x8B, REG_OPER_OP_ORDER, "mov" },
85 : { 0x8D, REG_OPER_OP_ORDER, "lea" },
86 : { -1, UNSET_OP_ORDER, "" }
87 : };
88 :
89 :
90 : static const ByteMnemonic zero_operands_instr[] = {
91 : { 0xC3, UNSET_OP_ORDER, "ret" },
92 : { 0xC9, UNSET_OP_ORDER, "leave" },
93 : { 0xF4, UNSET_OP_ORDER, "hlt" },
94 : { 0xFC, UNSET_OP_ORDER, "cld" },
95 : { 0xCC, UNSET_OP_ORDER, "int3" },
96 : { 0x60, UNSET_OP_ORDER, "pushad" },
97 : { 0x61, UNSET_OP_ORDER, "popad" },
98 : { 0x9C, UNSET_OP_ORDER, "pushfd" },
99 : { 0x9D, UNSET_OP_ORDER, "popfd" },
100 : { 0x9E, UNSET_OP_ORDER, "sahf" },
101 : { 0x99, UNSET_OP_ORDER, "cdq" },
102 : { 0x9B, UNSET_OP_ORDER, "fwait" },
103 : { 0xA4, UNSET_OP_ORDER, "movs" },
104 : { 0xA5, UNSET_OP_ORDER, "movs" },
105 : { 0xA6, UNSET_OP_ORDER, "cmps" },
106 : { 0xA7, UNSET_OP_ORDER, "cmps" },
107 : { -1, UNSET_OP_ORDER, "" }
108 : };
109 :
110 :
111 : static const ByteMnemonic call_jump_instr[] = {
112 : { 0xE8, UNSET_OP_ORDER, "call" },
113 : { 0xE9, UNSET_OP_ORDER, "jmp" },
114 : { -1, UNSET_OP_ORDER, "" }
115 : };
116 :
117 :
118 : static const ByteMnemonic short_immediate_instr[] = {
119 : { 0x05, UNSET_OP_ORDER, "add" },
120 : { 0x0D, UNSET_OP_ORDER, "or" },
121 : { 0x15, UNSET_OP_ORDER, "adc" },
122 : { 0x1D, UNSET_OP_ORDER, "sbb" },
123 : { 0x25, UNSET_OP_ORDER, "and" },
124 : { 0x2D, UNSET_OP_ORDER, "sub" },
125 : { 0x35, UNSET_OP_ORDER, "xor" },
126 : { 0x3D, UNSET_OP_ORDER, "cmp" },
127 : { -1, UNSET_OP_ORDER, "" }
128 : };
129 :
130 :
131 : static const char* const conditional_code_suffix[] = {
132 : "o", "no", "c", "nc", "z", "nz", "na", "a",
133 : "s", "ns", "pe", "po", "l", "ge", "le", "g"
134 : };
135 :
136 :
137 : enum InstructionType {
138 : NO_INSTR,
139 : ZERO_OPERANDS_INSTR,
140 : TWO_OPERANDS_INSTR,
141 : JUMP_CONDITIONAL_SHORT_INSTR,
142 : REGISTER_INSTR,
143 : PUSHPOP_INSTR, // Has implicit 64-bit operand size.
144 : MOVE_REG_INSTR,
145 : CALL_JUMP_INSTR,
146 : SHORT_IMMEDIATE_INSTR
147 : };
148 :
149 : enum Prefixes {
150 : ESCAPE_PREFIX = 0x0F,
151 : OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
152 : ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
153 : VEX3_PREFIX = 0xC4,
154 : VEX2_PREFIX = 0xC5,
155 : LOCK_PREFIX = 0xF0,
156 : REPNE_PREFIX = 0xF2,
157 : REP_PREFIX = 0xF3,
158 : REPEQ_PREFIX = REP_PREFIX
159 : };
160 :
161 : struct InstructionDesc {
162 : const char* mnem;
163 : InstructionType type;
164 : OperandType op_order_;
165 : bool byte_size_operation; // Fixed 8-bit operation.
166 : };
167 :
168 :
169 : class InstructionTable {
170 : public:
171 : InstructionTable();
172 : const InstructionDesc& Get(byte x) const {
173 0 : return instructions_[x];
174 : }
175 :
176 : private:
177 : InstructionDesc instructions_[256];
178 : void Clear();
179 : void Init();
180 : void CopyTable(const ByteMnemonic bm[], InstructionType type);
181 : void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
182 : const char* mnem);
183 : void AddJumpConditionalShort();
184 : };
185 :
186 :
187 0 : InstructionTable::InstructionTable() {
188 : Clear();
189 0 : Init();
190 0 : }
191 :
192 :
193 0 : void InstructionTable::Clear() {
194 0 : for (int i = 0; i < 256; i++) {
195 0 : instructions_[i].mnem = "(bad)";
196 0 : instructions_[i].type = NO_INSTR;
197 0 : instructions_[i].op_order_ = UNSET_OP_ORDER;
198 0 : instructions_[i].byte_size_operation = false;
199 : }
200 0 : }
201 :
202 :
203 0 : void InstructionTable::Init() {
204 : CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
205 : CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
206 : CopyTable(call_jump_instr, CALL_JUMP_INSTR);
207 : CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
208 : AddJumpConditionalShort();
209 : SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
210 : SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
211 : SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
212 0 : }
213 :
214 :
215 0 : void InstructionTable::CopyTable(const ByteMnemonic bm[],
216 : InstructionType type) {
217 0 : for (int i = 0; bm[i].b >= 0; i++) {
218 : InstructionDesc* id = &instructions_[bm[i].b];
219 0 : id->mnem = bm[i].mnem;
220 0 : OperandType op_order = bm[i].op_order_;
221 : id->op_order_ =
222 0 : static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
223 : DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
224 0 : id->type = type;
225 0 : id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
226 : }
227 0 : }
228 :
229 :
230 0 : void InstructionTable::SetTableRange(InstructionType type,
231 : byte start,
232 : byte end,
233 : bool byte_size,
234 : const char* mnem) {
235 0 : for (byte b = start; b <= end; b++) {
236 0 : InstructionDesc* id = &instructions_[b];
237 : DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
238 0 : id->mnem = mnem;
239 0 : id->type = type;
240 0 : id->byte_size_operation = byte_size;
241 : }
242 0 : }
243 :
244 :
245 0 : void InstructionTable::AddJumpConditionalShort() {
246 0 : for (byte b = 0x70; b <= 0x7F; b++) {
247 0 : InstructionDesc* id = &instructions_[b];
248 : DCHECK_EQ(NO_INSTR, id->type); // Information not already entered
249 0 : id->mnem = nullptr; // Computed depending on condition code.
250 0 : id->type = JUMP_CONDITIONAL_SHORT_INSTR;
251 : }
252 0 : }
253 :
254 : namespace {
255 0 : DEFINE_LAZY_LEAKY_OBJECT_GETTER(InstructionTable, GetInstructionTable)
256 : }
257 :
258 : static const InstructionDesc cmov_instructions[16] = {
259 : {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
260 : {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
261 : {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
262 : {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
263 : {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
264 : {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
265 : {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
266 : {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
267 : {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
268 : {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
269 : {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
270 : {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
271 : {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
272 : {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
273 : {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
274 : {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}
275 : };
276 :
277 :
278 : //------------------------------------------------------------------------------
279 : // DisassemblerX64 implementation.
280 :
281 :
282 : // A new DisassemblerX64 object is created to disassemble each instruction.
283 : // The object can only disassemble a single instruction.
284 : class DisassemblerX64 {
285 : public:
286 : DisassemblerX64(const NameConverter& converter,
287 : Disassembler::UnimplementedOpcodeAction unimplemented_action)
288 : : converter_(converter),
289 : tmp_buffer_pos_(0),
290 0 : abort_on_unimplemented_(unimplemented_action ==
291 : Disassembler::kAbortOnUnimplementedOpcode),
292 : rex_(0),
293 : operand_size_(0),
294 : group_1_prefix_(0),
295 : vex_byte0_(0),
296 : vex_byte1_(0),
297 : vex_byte2_(0),
298 : byte_size_operand_(false),
299 0 : instruction_table_(GetInstructionTable()) {
300 0 : tmp_buffer_[0] = '\0';
301 : }
302 :
303 : // Writes one disassembled instruction into 'buffer' (0-terminated).
304 : // Returns the length of the disassembled machine instruction in bytes.
305 : int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);
306 :
307 : private:
308 : enum OperandSize {
309 : OPERAND_BYTE_SIZE = 0,
310 : OPERAND_WORD_SIZE = 1,
311 : OPERAND_DOUBLEWORD_SIZE = 2,
312 : OPERAND_QUADWORD_SIZE = 3
313 : };
314 :
315 : const NameConverter& converter_;
316 : v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
317 : unsigned int tmp_buffer_pos_;
318 : bool abort_on_unimplemented_;
319 : // Prefixes parsed
320 : byte rex_;
321 : byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
322 : byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
323 : byte vex_byte0_; // 0xC4 or 0xC5
324 : byte vex_byte1_;
325 : byte vex_byte2_; // only for 3 bytes vex prefix
326 : // Byte size operand override.
327 : bool byte_size_operand_;
328 : const InstructionTable* const instruction_table_;
329 :
330 : void setRex(byte rex) {
331 : DCHECK_EQ(0x40, rex & 0xF0);
332 0 : rex_ = rex;
333 : }
334 :
335 : bool rex() { return rex_ != 0; }
336 :
337 : bool rex_b() { return (rex_ & 0x01) != 0; }
338 :
339 : // Actual number of base register given the low bits and the rex.b state.
340 0 : int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
341 :
342 : bool rex_x() { return (rex_ & 0x02) != 0; }
343 :
344 : bool rex_r() { return (rex_ & 0x04) != 0; }
345 :
346 0 : bool rex_w() { return (rex_ & 0x08) != 0; }
347 :
348 : bool vex_w() {
349 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
350 0 : return vex_byte0_ == VEX3_PREFIX ? (vex_byte2_ & 0x80) != 0 : false;
351 : }
352 :
353 : bool vex_128() {
354 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
355 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
356 : return (checked & 4) == 0;
357 : }
358 :
359 : bool vex_none() {
360 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
361 0 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
362 : return (checked & 3) == 0;
363 : }
364 :
365 : bool vex_66() {
366 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
367 0 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
368 : return (checked & 3) == 1;
369 : }
370 :
371 : bool vex_f3() {
372 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
373 0 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
374 : return (checked & 3) == 2;
375 : }
376 :
377 : bool vex_f2() {
378 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
379 0 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
380 : return (checked & 3) == 3;
381 : }
382 :
383 : bool vex_0f() {
384 0 : if (vex_byte0_ == VEX2_PREFIX) return true;
385 0 : return (vex_byte1_ & 3) == 1;
386 : }
387 :
388 : bool vex_0f38() {
389 0 : if (vex_byte0_ == VEX2_PREFIX) return false;
390 0 : return (vex_byte1_ & 3) == 2;
391 : }
392 :
393 : bool vex_0f3a() {
394 0 : if (vex_byte0_ == VEX2_PREFIX) return false;
395 0 : return (vex_byte1_ & 3) == 3;
396 : }
397 :
398 : int vex_vreg() {
399 : DCHECK(vex_byte0_ == VEX3_PREFIX || vex_byte0_ == VEX2_PREFIX);
400 0 : byte checked = vex_byte0_ == VEX3_PREFIX ? vex_byte2_ : vex_byte1_;
401 0 : return ~(checked >> 3) & 0xF;
402 : }
403 :
404 : OperandSize operand_size() {
405 0 : if (byte_size_operand_) return OPERAND_BYTE_SIZE;
406 0 : if (rex_w()) return OPERAND_QUADWORD_SIZE;
407 0 : if (operand_size_ != 0) return OPERAND_WORD_SIZE;
408 : return OPERAND_DOUBLEWORD_SIZE;
409 : }
410 :
411 : char operand_size_code() {
412 0 : return "bwlq"[operand_size()];
413 : }
414 :
415 0 : char float_size_code() { return "sd"[rex_w()]; }
416 :
417 0 : const char* NameOfCPURegister(int reg) const {
418 0 : return converter_.NameOfCPURegister(reg);
419 : }
420 :
421 0 : const char* NameOfByteCPURegister(int reg) const {
422 0 : return converter_.NameOfByteCPURegister(reg);
423 : }
424 :
425 0 : const char* NameOfXMMRegister(int reg) const {
426 0 : return converter_.NameOfXMMRegister(reg);
427 : }
428 :
429 : const char* NameOfAddress(byte* addr) const {
430 0 : return converter_.NameOfAddress(addr);
431 : }
432 :
433 : // Disassembler helper functions.
434 : void get_modrm(byte data,
435 : int* mod,
436 : int* regop,
437 : int* rm) {
438 0 : *mod = (data >> 6) & 3;
439 0 : *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
440 0 : *rm = (data & 7) | (rex_b() ? 8 : 0);
441 : }
442 :
443 : void get_sib(byte data,
444 : int* scale,
445 : int* index,
446 : int* base) {
447 0 : *scale = (data >> 6) & 3;
448 0 : *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
449 0 : *base = (data & 7) | (rex_b() ? 8 : 0);
450 : }
451 :
452 : typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;
453 :
454 : void TryAppendRootRelativeName(int offset);
455 : int PrintRightOperandHelper(byte* modrmp,
456 : RegisterNameMapping register_name);
457 : int PrintRightOperand(byte* modrmp);
458 : int PrintRightByteOperand(byte* modrmp);
459 : int PrintRightXMMOperand(byte* modrmp);
460 : int PrintOperands(const char* mnem,
461 : OperandType op_order,
462 : byte* data);
463 : int PrintImmediate(byte* data, OperandSize size);
464 : int PrintImmediateOp(byte* data);
465 : const char* TwoByteMnemonic(byte opcode);
466 : int TwoByteOpcodeInstruction(byte* data);
467 : int F6F7Instruction(byte* data);
468 : int ShiftInstruction(byte* data);
469 : int JumpShort(byte* data);
470 : int JumpConditional(byte* data);
471 : int JumpConditionalShort(byte* data);
472 : int SetCC(byte* data);
473 : int FPUInstruction(byte* data);
474 : int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
475 : int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
476 : int AVXInstruction(byte* data);
477 : PRINTF_FORMAT(2, 3) void AppendToBuffer(const char* format, ...);
478 :
479 0 : void UnimplementedInstruction() {
480 0 : if (abort_on_unimplemented_) {
481 0 : FATAL("'Unimplemented Instruction'");
482 : } else {
483 0 : AppendToBuffer("'Unimplemented Instruction'");
484 : }
485 0 : }
486 : };
487 :
488 :
489 0 : void DisassemblerX64::AppendToBuffer(const char* format, ...) {
490 0 : v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
491 : va_list args;
492 0 : va_start(args, format);
493 0 : int result = v8::internal::VSNPrintF(buf, format, args);
494 0 : va_end(args);
495 0 : tmp_buffer_pos_ += result;
496 0 : }
497 :
498 0 : void DisassemblerX64::TryAppendRootRelativeName(int offset) {
499 0 : const char* maybe_name = converter_.RootRelativeName(offset);
500 0 : if (maybe_name != nullptr) AppendToBuffer(" (%s)", maybe_name);
501 0 : }
502 :
503 0 : int DisassemblerX64::PrintRightOperandHelper(
504 : byte* modrmp,
505 : RegisterNameMapping direct_register_name) {
506 : int mod, regop, rm;
507 0 : get_modrm(*modrmp, &mod, ®op, &rm);
508 : RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
509 0 : &DisassemblerX64::NameOfCPURegister;
510 0 : switch (mod) {
511 : case 0:
512 0 : if ((rm & 7) == 5) {
513 0 : int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
514 0 : AppendToBuffer("[rip+0x%x]", disp);
515 0 : return 5;
516 0 : } else if ((rm & 7) == 4) {
517 : // Codes for SIB byte.
518 0 : byte sib = *(modrmp + 1);
519 : int scale, index, base;
520 : get_sib(sib, &scale, &index, &base);
521 0 : if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
522 : // index == rsp means no index. Only use sib byte with no index for
523 : // rsp and r12 base.
524 0 : AppendToBuffer("[%s]", NameOfCPURegister(base));
525 0 : return 2;
526 0 : } else if (base == 5) {
527 : // base == rbp means no base register (when mod == 0).
528 0 : int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
529 0 : AppendToBuffer("[%s*%d%s0x%x]",
530 : NameOfCPURegister(index),
531 : 1 << scale,
532 : disp < 0 ? "-" : "+",
533 0 : disp < 0 ? -disp : disp);
534 0 : return 6;
535 0 : } else if (index != 4 && base != 5) {
536 : // [base+index*scale]
537 0 : AppendToBuffer("[%s+%s*%d]",
538 : NameOfCPURegister(base),
539 : NameOfCPURegister(index),
540 0 : 1 << scale);
541 0 : return 2;
542 : } else {
543 0 : UnimplementedInstruction();
544 0 : return 1;
545 : }
546 : } else {
547 0 : AppendToBuffer("[%s]", NameOfCPURegister(rm));
548 0 : return 1;
549 : }
550 : break;
551 : case 1: // fall through
552 : case 2:
553 0 : if ((rm & 7) == 4) {
554 0 : byte sib = *(modrmp + 1);
555 : int scale, index, base;
556 : get_sib(sib, &scale, &index, &base);
557 : int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
558 0 : : *reinterpret_cast<int8_t*>(modrmp + 2);
559 0 : if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
560 0 : AppendToBuffer("[%s%s0x%x]",
561 : NameOfCPURegister(base),
562 : disp < 0 ? "-" : "+",
563 0 : disp < 0 ? -disp : disp);
564 : } else {
565 0 : AppendToBuffer("[%s+%s*%d%s0x%x]",
566 : NameOfCPURegister(base),
567 : NameOfCPURegister(index),
568 : 1 << scale,
569 : disp < 0 ? "-" : "+",
570 0 : disp < 0 ? -disp : disp);
571 : }
572 0 : return mod == 2 ? 6 : 3;
573 : } else {
574 : // No sib.
575 : int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
576 0 : : *reinterpret_cast<int8_t*>(modrmp + 1);
577 0 : AppendToBuffer("[%s%s0x%x]",
578 : NameOfCPURegister(rm),
579 : disp < 0 ? "-" : "+",
580 0 : disp < 0 ? -disp : disp);
581 0 : if (rm == i::kRootRegister.code()) {
582 : // For root-relative accesses, try to append a description.
583 0 : TryAppendRootRelativeName(disp);
584 : }
585 0 : return (mod == 2) ? 5 : 2;
586 : }
587 : break;
588 : case 3:
589 0 : AppendToBuffer("%s", (this->*register_name)(rm));
590 0 : return 1;
591 : default:
592 0 : UnimplementedInstruction();
593 0 : return 1;
594 : }
595 : UNREACHABLE();
596 : }
597 :
598 :
599 0 : int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
600 : int64_t value;
601 : int count;
602 0 : switch (size) {
603 : case OPERAND_BYTE_SIZE:
604 0 : value = *data;
605 : count = 1;
606 0 : break;
607 : case OPERAND_WORD_SIZE:
608 0 : value = *reinterpret_cast<int16_t*>(data);
609 : count = 2;
610 0 : break;
611 : case OPERAND_DOUBLEWORD_SIZE:
612 0 : value = *reinterpret_cast<uint32_t*>(data);
613 : count = 4;
614 0 : break;
615 : case OPERAND_QUADWORD_SIZE:
616 0 : value = *reinterpret_cast<int32_t*>(data);
617 : count = 4;
618 0 : break;
619 : default:
620 0 : UNREACHABLE();
621 : }
622 0 : AppendToBuffer("%" PRIx64, value);
623 0 : return count;
624 : }
625 :
626 :
627 0 : int DisassemblerX64::PrintRightOperand(byte* modrmp) {
628 0 : return PrintRightOperandHelper(modrmp,
629 0 : &DisassemblerX64::NameOfCPURegister);
630 : }
631 :
632 :
633 0 : int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
634 0 : return PrintRightOperandHelper(modrmp,
635 0 : &DisassemblerX64::NameOfByteCPURegister);
636 : }
637 :
638 :
639 0 : int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
640 0 : return PrintRightOperandHelper(modrmp,
641 0 : &DisassemblerX64::NameOfXMMRegister);
642 : }
643 :
644 :
645 : // Returns number of bytes used including the current *data.
646 : // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
647 0 : int DisassemblerX64::PrintOperands(const char* mnem,
648 : OperandType op_order,
649 : byte* data) {
650 0 : byte modrm = *data;
651 : int mod, regop, rm;
652 : get_modrm(modrm, &mod, ®op, &rm);
653 : int advance = 0;
654 : const char* register_name =
655 0 : byte_size_operand_ ? NameOfByteCPURegister(regop)
656 0 : : NameOfCPURegister(regop);
657 0 : switch (op_order) {
658 : case REG_OPER_OP_ORDER: {
659 0 : AppendToBuffer("%s%c %s,",
660 : mnem,
661 : operand_size_code(),
662 0 : register_name);
663 0 : advance = byte_size_operand_ ? PrintRightByteOperand(data)
664 0 : : PrintRightOperand(data);
665 : break;
666 : }
667 : case OPER_REG_OP_ORDER: {
668 0 : AppendToBuffer("%s%c ", mnem, operand_size_code());
669 0 : advance = byte_size_operand_ ? PrintRightByteOperand(data)
670 0 : : PrintRightOperand(data);
671 0 : AppendToBuffer(",%s", register_name);
672 0 : break;
673 : }
674 : default:
675 0 : UNREACHABLE();
676 : break;
677 : }
678 0 : return advance;
679 : }
680 :
681 :
682 : // Returns number of bytes used by machine instruction, including *data byte.
683 : // Writes immediate instructions to 'tmp_buffer_'.
684 0 : int DisassemblerX64::PrintImmediateOp(byte* data) {
685 0 : bool byte_size_immediate = (*data & 0x02) != 0;
686 0 : byte modrm = *(data + 1);
687 : int mod, regop, rm;
688 : get_modrm(modrm, &mod, ®op, &rm);
689 : const char* mnem = "Imm???";
690 0 : switch (regop) {
691 : case 0:
692 : mnem = "add";
693 : break;
694 : case 1:
695 : mnem = "or";
696 0 : break;
697 : case 2:
698 : mnem = "adc";
699 0 : break;
700 : case 3:
701 : mnem = "sbb";
702 0 : break;
703 : case 4:
704 : mnem = "and";
705 0 : break;
706 : case 5:
707 : mnem = "sub";
708 0 : break;
709 : case 6:
710 : mnem = "xor";
711 0 : break;
712 : case 7:
713 : mnem = "cmp";
714 0 : break;
715 : default:
716 0 : UnimplementedInstruction();
717 : }
718 0 : AppendToBuffer("%s%c ", mnem, operand_size_code());
719 0 : int count = PrintRightOperand(data + 1);
720 0 : AppendToBuffer(",0x");
721 : OperandSize immediate_size =
722 0 : byte_size_immediate ? OPERAND_BYTE_SIZE : operand_size();
723 0 : count += PrintImmediate(data + 1 + count, immediate_size);
724 0 : return 1 + count;
725 : }
726 :
727 :
728 : // Returns number of bytes used, including *data.
729 0 : int DisassemblerX64::F6F7Instruction(byte* data) {
730 : DCHECK(*data == 0xF7 || *data == 0xF6);
731 0 : byte modrm = *(data + 1);
732 : int mod, regop, rm;
733 : get_modrm(modrm, &mod, ®op, &rm);
734 0 : if (mod == 3 && regop != 0) {
735 : const char* mnem = nullptr;
736 0 : switch (regop) {
737 : case 2:
738 : mnem = "not";
739 : break;
740 : case 3:
741 : mnem = "neg";
742 0 : break;
743 : case 4:
744 : mnem = "mul";
745 0 : break;
746 : case 5:
747 : mnem = "imul";
748 0 : break;
749 : case 6:
750 : mnem = "div";
751 0 : break;
752 : case 7:
753 : mnem = "idiv";
754 0 : break;
755 : default:
756 0 : UnimplementedInstruction();
757 : }
758 0 : AppendToBuffer("%s%c %s",
759 : mnem,
760 : operand_size_code(),
761 0 : NameOfCPURegister(rm));
762 0 : return 2;
763 0 : } else if (regop == 0) {
764 0 : AppendToBuffer("test%c ", operand_size_code());
765 0 : int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
766 0 : AppendToBuffer(",0x");
767 0 : count += PrintImmediate(data + 1 + count, operand_size());
768 0 : return 1 + count;
769 : } else {
770 0 : UnimplementedInstruction();
771 0 : return 2;
772 : }
773 : }
774 :
775 :
776 0 : int DisassemblerX64::ShiftInstruction(byte* data) {
777 0 : byte op = *data & (~1);
778 : int count = 1;
779 0 : if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
780 0 : UnimplementedInstruction();
781 0 : return count;
782 : }
783 : // Print mneumonic.
784 : {
785 0 : byte modrm = *(data + count);
786 : int mod, regop, rm;
787 : get_modrm(modrm, &mod, ®op, &rm);
788 0 : regop &= 0x7; // The REX.R bit does not affect the operation.
789 : const char* mnem = nullptr;
790 0 : switch (regop) {
791 : case 0:
792 : mnem = "rol";
793 : break;
794 : case 1:
795 : mnem = "ror";
796 0 : break;
797 : case 2:
798 : mnem = "rcl";
799 0 : break;
800 : case 3:
801 : mnem = "rcr";
802 0 : break;
803 : case 4:
804 : mnem = "shl";
805 0 : break;
806 : case 5:
807 : mnem = "shr";
808 0 : break;
809 : case 7:
810 : mnem = "sar";
811 0 : break;
812 : default:
813 0 : UnimplementedInstruction();
814 : return count + 1;
815 : }
816 : DCHECK_NOT_NULL(mnem);
817 0 : AppendToBuffer("%s%c ", mnem, operand_size_code());
818 : }
819 0 : count += PrintRightOperand(data + count);
820 0 : if (op == 0xD2) {
821 0 : AppendToBuffer(", cl");
822 : } else {
823 : int imm8 = -1;
824 0 : if (op == 0xD0) {
825 : imm8 = 1;
826 : } else {
827 : DCHECK_EQ(0xC0, op);
828 0 : imm8 = *(data + count);
829 0 : count++;
830 : }
831 0 : AppendToBuffer(", %d", imm8);
832 : }
833 : return count;
834 : }
835 :
836 :
837 : // Returns number of bytes used, including *data.
838 0 : int DisassemblerX64::JumpShort(byte* data) {
839 : DCHECK_EQ(0xEB, *data);
840 0 : byte b = *(data + 1);
841 0 : byte* dest = data + static_cast<int8_t>(b) + 2;
842 0 : AppendToBuffer("jmp %s", NameOfAddress(dest));
843 0 : return 2;
844 : }
845 :
846 :
847 : // Returns number of bytes used, including *data.
848 0 : int DisassemblerX64::JumpConditional(byte* data) {
849 : DCHECK_EQ(0x0F, *data);
850 0 : byte cond = *(data + 1) & 0x0F;
851 0 : byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
852 0 : const char* mnem = conditional_code_suffix[cond];
853 0 : AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
854 0 : return 6; // includes 0x0F
855 : }
856 :
857 :
858 : // Returns number of bytes used, including *data.
859 0 : int DisassemblerX64::JumpConditionalShort(byte* data) {
860 0 : byte cond = *data & 0x0F;
861 0 : byte b = *(data + 1);
862 0 : byte* dest = data + static_cast<int8_t>(b) + 2;
863 0 : const char* mnem = conditional_code_suffix[cond];
864 0 : AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
865 0 : return 2;
866 : }
867 :
868 :
869 : // Returns number of bytes used, including *data.
870 0 : int DisassemblerX64::SetCC(byte* data) {
871 : DCHECK_EQ(0x0F, *data);
872 0 : byte cond = *(data + 1) & 0x0F;
873 0 : const char* mnem = conditional_code_suffix[cond];
874 0 : AppendToBuffer("set%s%c ", mnem, operand_size_code());
875 0 : PrintRightByteOperand(data + 2);
876 0 : return 3; // includes 0x0F
877 : }
878 :
879 : const char* sf_str[4] = {"", "rl", "ra", "ll"};
880 :
881 0 : int DisassemblerX64::AVXInstruction(byte* data) {
882 0 : byte opcode = *data;
883 0 : byte* current = data + 1;
884 0 : if (vex_66() && vex_0f38()) {
885 : int mod, regop, rm, vvvv = vex_vreg();
886 0 : get_modrm(*current, &mod, ®op, &rm);
887 0 : switch (opcode) {
888 : case 0x99:
889 0 : AppendToBuffer("vfmadd132s%c %s,%s,", float_size_code(),
890 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
891 0 : current += PrintRightXMMOperand(current);
892 0 : break;
893 : case 0xA9:
894 0 : AppendToBuffer("vfmadd213s%c %s,%s,", float_size_code(),
895 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
896 0 : current += PrintRightXMMOperand(current);
897 0 : break;
898 : case 0xB9:
899 0 : AppendToBuffer("vfmadd231s%c %s,%s,", float_size_code(),
900 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
901 0 : current += PrintRightXMMOperand(current);
902 0 : break;
903 : case 0x9B:
904 0 : AppendToBuffer("vfmsub132s%c %s,%s,", float_size_code(),
905 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
906 0 : current += PrintRightXMMOperand(current);
907 0 : break;
908 : case 0xAB:
909 0 : AppendToBuffer("vfmsub213s%c %s,%s,", float_size_code(),
910 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
911 0 : current += PrintRightXMMOperand(current);
912 0 : break;
913 : case 0xBB:
914 0 : AppendToBuffer("vfmsub231s%c %s,%s,", float_size_code(),
915 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
916 0 : current += PrintRightXMMOperand(current);
917 0 : break;
918 : case 0x9D:
919 0 : AppendToBuffer("vfnmadd132s%c %s,%s,", float_size_code(),
920 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
921 0 : current += PrintRightXMMOperand(current);
922 0 : break;
923 : case 0xAD:
924 0 : AppendToBuffer("vfnmadd213s%c %s,%s,", float_size_code(),
925 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
926 0 : current += PrintRightXMMOperand(current);
927 0 : break;
928 : case 0xBD:
929 0 : AppendToBuffer("vfnmadd231s%c %s,%s,", float_size_code(),
930 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
931 0 : current += PrintRightXMMOperand(current);
932 0 : break;
933 : case 0x9F:
934 0 : AppendToBuffer("vfnmsub132s%c %s,%s,", float_size_code(),
935 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
936 0 : current += PrintRightXMMOperand(current);
937 0 : break;
938 : case 0xAF:
939 0 : AppendToBuffer("vfnmsub213s%c %s,%s,", float_size_code(),
940 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
941 0 : current += PrintRightXMMOperand(current);
942 0 : break;
943 : case 0xBF:
944 0 : AppendToBuffer("vfnmsub231s%c %s,%s,", float_size_code(),
945 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
946 0 : current += PrintRightXMMOperand(current);
947 0 : break;
948 : case 0xF7:
949 0 : AppendToBuffer("shlx%c %s,", operand_size_code(),
950 0 : NameOfCPURegister(regop));
951 0 : current += PrintRightOperand(current);
952 0 : AppendToBuffer(",%s", NameOfCPURegister(vvvv));
953 0 : break;
954 : #define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, \
955 : opcode) \
956 : case 0x##opcode: { \
957 : AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop), \
958 : NameOfXMMRegister(vvvv)); \
959 : current += PrintRightXMMOperand(current); \
960 : break; \
961 : }
962 :
963 0 : SSSE3_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
964 0 : SSE4_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
965 : #undef DECLARE_SSE_AVX_DIS_CASE
966 : default:
967 0 : UnimplementedInstruction();
968 : }
969 0 : } else if (vex_66() && vex_0f3a()) {
970 : int mod, regop, rm, vvvv = vex_vreg();
971 0 : get_modrm(*current, &mod, ®op, &rm);
972 0 : switch (opcode) {
973 : case 0x0A:
974 : AppendToBuffer("vroundss %s,%s,", NameOfXMMRegister(regop),
975 0 : NameOfXMMRegister(vvvv));
976 0 : current += PrintRightXMMOperand(current);
977 0 : AppendToBuffer(",0x%x", *current++);
978 0 : break;
979 : case 0x0B:
980 : AppendToBuffer("vroundsd %s,%s,", NameOfXMMRegister(regop),
981 0 : NameOfXMMRegister(vvvv));
982 0 : current += PrintRightXMMOperand(current);
983 0 : AppendToBuffer(",0x%x", *current++);
984 0 : break;
985 : case 0x14:
986 0 : AppendToBuffer("vpextrb ");
987 0 : current += PrintRightByteOperand(current);
988 0 : AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
989 0 : break;
990 : case 0x15:
991 0 : AppendToBuffer("vpextrw ");
992 0 : current += PrintRightOperand(current);
993 0 : AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
994 0 : break;
995 : case 0x16:
996 0 : AppendToBuffer("vpextrd ");
997 0 : current += PrintRightOperand(current);
998 0 : AppendToBuffer(",%s,0x%x,", NameOfXMMRegister(regop), *current++);
999 0 : break;
1000 : case 0x20:
1001 : AppendToBuffer("vpinsrb %s,%s,", NameOfXMMRegister(regop),
1002 0 : NameOfXMMRegister(vvvv));
1003 0 : current += PrintRightByteOperand(current);
1004 0 : AppendToBuffer(",0x%x", *current++);
1005 0 : break;
1006 : case 0x22:
1007 : AppendToBuffer("vpinsrd %s,%s,", NameOfXMMRegister(regop),
1008 0 : NameOfXMMRegister(vvvv));
1009 0 : current += PrintRightOperand(current);
1010 0 : AppendToBuffer(",0x%x", *current++);
1011 0 : break;
1012 : default:
1013 0 : UnimplementedInstruction();
1014 : }
1015 0 : } else if (vex_f3() && vex_0f()) {
1016 : int mod, regop, rm, vvvv = vex_vreg();
1017 0 : get_modrm(*current, &mod, ®op, &rm);
1018 0 : switch (opcode) {
1019 : case 0x10:
1020 0 : AppendToBuffer("vmovss %s,", NameOfXMMRegister(regop));
1021 0 : if (mod == 3) {
1022 0 : AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
1023 : }
1024 0 : current += PrintRightXMMOperand(current);
1025 0 : break;
1026 : case 0x11:
1027 0 : AppendToBuffer("vmovss ");
1028 0 : current += PrintRightXMMOperand(current);
1029 0 : if (mod == 3) {
1030 0 : AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
1031 : }
1032 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1033 0 : break;
1034 : case 0x2A:
1035 0 : AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2ss" : "vcvtlsi2ss",
1036 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
1037 0 : current += PrintRightOperand(current);
1038 0 : break;
1039 : case 0x2C:
1040 0 : AppendToBuffer("vcvttss2si%s %s,", vex_w() ? "q" : "",
1041 0 : NameOfCPURegister(regop));
1042 0 : current += PrintRightXMMOperand(current);
1043 0 : break;
1044 : case 0x51:
1045 : AppendToBuffer("vsqrtss %s,%s,", NameOfXMMRegister(regop),
1046 0 : NameOfXMMRegister(vvvv));
1047 0 : current += PrintRightXMMOperand(current);
1048 0 : break;
1049 : case 0x58:
1050 : AppendToBuffer("vaddss %s,%s,", NameOfXMMRegister(regop),
1051 0 : NameOfXMMRegister(vvvv));
1052 0 : current += PrintRightXMMOperand(current);
1053 0 : break;
1054 : case 0x59:
1055 : AppendToBuffer("vmulss %s,%s,", NameOfXMMRegister(regop),
1056 0 : NameOfXMMRegister(vvvv));
1057 0 : current += PrintRightXMMOperand(current);
1058 0 : break;
1059 : case 0x5A:
1060 : AppendToBuffer("vcvtss2sd %s,%s,", NameOfXMMRegister(regop),
1061 0 : NameOfXMMRegister(vvvv));
1062 0 : current += PrintRightXMMOperand(current);
1063 0 : break;
1064 : case 0x5C:
1065 : AppendToBuffer("vsubss %s,%s,", NameOfXMMRegister(regop),
1066 0 : NameOfXMMRegister(vvvv));
1067 0 : current += PrintRightXMMOperand(current);
1068 0 : break;
1069 : case 0x5D:
1070 : AppendToBuffer("vminss %s,%s,", NameOfXMMRegister(regop),
1071 0 : NameOfXMMRegister(vvvv));
1072 0 : current += PrintRightXMMOperand(current);
1073 0 : break;
1074 : case 0x5E:
1075 : AppendToBuffer("vdivss %s,%s,", NameOfXMMRegister(regop),
1076 0 : NameOfXMMRegister(vvvv));
1077 0 : current += PrintRightXMMOperand(current);
1078 0 : break;
1079 : case 0x5F:
1080 : AppendToBuffer("vmaxss %s,%s,", NameOfXMMRegister(regop),
1081 0 : NameOfXMMRegister(vvvv));
1082 0 : current += PrintRightXMMOperand(current);
1083 0 : break;
1084 : default:
1085 0 : UnimplementedInstruction();
1086 : }
1087 0 : } else if (vex_f2() && vex_0f()) {
1088 : int mod, regop, rm, vvvv = vex_vreg();
1089 0 : get_modrm(*current, &mod, ®op, &rm);
1090 0 : switch (opcode) {
1091 : case 0x10:
1092 0 : AppendToBuffer("vmovsd %s,", NameOfXMMRegister(regop));
1093 0 : if (mod == 3) {
1094 0 : AppendToBuffer("%s,", NameOfXMMRegister(vvvv));
1095 : }
1096 0 : current += PrintRightXMMOperand(current);
1097 0 : break;
1098 : case 0x11:
1099 0 : AppendToBuffer("vmovsd ");
1100 0 : current += PrintRightXMMOperand(current);
1101 0 : if (mod == 3) {
1102 0 : AppendToBuffer(",%s", NameOfXMMRegister(vvvv));
1103 : }
1104 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1105 0 : break;
1106 : case 0x2A:
1107 0 : AppendToBuffer("%s %s,%s,", vex_w() ? "vcvtqsi2sd" : "vcvtlsi2sd",
1108 0 : NameOfXMMRegister(regop), NameOfXMMRegister(vvvv));
1109 0 : current += PrintRightOperand(current);
1110 0 : break;
1111 : case 0x2C:
1112 0 : AppendToBuffer("vcvttsd2si%s %s,", vex_w() ? "q" : "",
1113 0 : NameOfCPURegister(regop));
1114 0 : current += PrintRightXMMOperand(current);
1115 0 : break;
1116 : case 0x2D:
1117 0 : AppendToBuffer("vcvtsd2si%s %s,", vex_w() ? "q" : "",
1118 0 : NameOfCPURegister(regop));
1119 0 : current += PrintRightXMMOperand(current);
1120 0 : break;
1121 : case 0x51:
1122 : AppendToBuffer("vsqrtsd %s,%s,", NameOfXMMRegister(regop),
1123 0 : NameOfXMMRegister(vvvv));
1124 0 : current += PrintRightXMMOperand(current);
1125 0 : break;
1126 : case 0x58:
1127 : AppendToBuffer("vaddsd %s,%s,", NameOfXMMRegister(regop),
1128 0 : NameOfXMMRegister(vvvv));
1129 0 : current += PrintRightXMMOperand(current);
1130 0 : break;
1131 : case 0x59:
1132 : AppendToBuffer("vmulsd %s,%s,", NameOfXMMRegister(regop),
1133 0 : NameOfXMMRegister(vvvv));
1134 0 : current += PrintRightXMMOperand(current);
1135 0 : break;
1136 : case 0x5A:
1137 : AppendToBuffer("vcvtsd2ss %s,%s,", NameOfXMMRegister(regop),
1138 0 : NameOfXMMRegister(vvvv));
1139 0 : current += PrintRightXMMOperand(current);
1140 0 : break;
1141 : case 0x5C:
1142 : AppendToBuffer("vsubsd %s,%s,", NameOfXMMRegister(regop),
1143 0 : NameOfXMMRegister(vvvv));
1144 0 : current += PrintRightXMMOperand(current);
1145 0 : break;
1146 : case 0x5D:
1147 : AppendToBuffer("vminsd %s,%s,", NameOfXMMRegister(regop),
1148 0 : NameOfXMMRegister(vvvv));
1149 0 : current += PrintRightXMMOperand(current);
1150 0 : break;
1151 : case 0x5E:
1152 : AppendToBuffer("vdivsd %s,%s,", NameOfXMMRegister(regop),
1153 0 : NameOfXMMRegister(vvvv));
1154 0 : current += PrintRightXMMOperand(current);
1155 0 : break;
1156 : case 0x5F:
1157 : AppendToBuffer("vmaxsd %s,%s,", NameOfXMMRegister(regop),
1158 0 : NameOfXMMRegister(vvvv));
1159 0 : current += PrintRightXMMOperand(current);
1160 0 : break;
1161 : case 0xF0:
1162 0 : AppendToBuffer("vlddqu %s,", NameOfXMMRegister(regop));
1163 0 : current += PrintRightXMMOperand(current);
1164 0 : break;
1165 : case 0x7C:
1166 : AppendToBuffer("vhaddps %s,%s,", NameOfXMMRegister(regop),
1167 0 : NameOfXMMRegister(vvvv));
1168 0 : current += PrintRightXMMOperand(current);
1169 0 : break;
1170 : default:
1171 0 : UnimplementedInstruction();
1172 : }
1173 0 : } else if (vex_none() && vex_0f38()) {
1174 : int mod, regop, rm, vvvv = vex_vreg();
1175 0 : get_modrm(*current, &mod, ®op, &rm);
1176 : const char* mnem = "?";
1177 0 : switch (opcode) {
1178 : case 0xF2:
1179 0 : AppendToBuffer("andn%c %s,%s,", operand_size_code(),
1180 0 : NameOfCPURegister(regop), NameOfCPURegister(vvvv));
1181 0 : current += PrintRightOperand(current);
1182 0 : break;
1183 : case 0xF5:
1184 0 : AppendToBuffer("bzhi%c %s,", operand_size_code(),
1185 0 : NameOfCPURegister(regop));
1186 0 : current += PrintRightOperand(current);
1187 0 : AppendToBuffer(",%s", NameOfCPURegister(vvvv));
1188 0 : break;
1189 : case 0xF7:
1190 0 : AppendToBuffer("bextr%c %s,", operand_size_code(),
1191 0 : NameOfCPURegister(regop));
1192 0 : current += PrintRightOperand(current);
1193 0 : AppendToBuffer(",%s", NameOfCPURegister(vvvv));
1194 0 : break;
1195 : case 0xF3:
1196 0 : switch (regop) {
1197 : case 1:
1198 : mnem = "blsr";
1199 : break;
1200 : case 2:
1201 : mnem = "blsmsk";
1202 0 : break;
1203 : case 3:
1204 : mnem = "blsi";
1205 0 : break;
1206 : default:
1207 0 : UnimplementedInstruction();
1208 : }
1209 0 : AppendToBuffer("%s%c %s,", mnem, operand_size_code(),
1210 0 : NameOfCPURegister(vvvv));
1211 0 : current += PrintRightOperand(current);
1212 : mnem = "?";
1213 0 : break;
1214 : default:
1215 0 : UnimplementedInstruction();
1216 : }
1217 0 : } else if (vex_f2() && vex_0f38()) {
1218 : int mod, regop, rm, vvvv = vex_vreg();
1219 0 : get_modrm(*current, &mod, ®op, &rm);
1220 0 : switch (opcode) {
1221 : case 0xF5:
1222 0 : AppendToBuffer("pdep%c %s,%s,", operand_size_code(),
1223 0 : NameOfCPURegister(regop), NameOfCPURegister(vvvv));
1224 0 : current += PrintRightOperand(current);
1225 0 : break;
1226 : case 0xF6:
1227 0 : AppendToBuffer("mulx%c %s,%s,", operand_size_code(),
1228 0 : NameOfCPURegister(regop), NameOfCPURegister(vvvv));
1229 0 : current += PrintRightOperand(current);
1230 0 : break;
1231 : case 0xF7:
1232 0 : AppendToBuffer("shrx%c %s,", operand_size_code(),
1233 0 : NameOfCPURegister(regop));
1234 0 : current += PrintRightOperand(current);
1235 0 : AppendToBuffer(",%s", NameOfCPURegister(vvvv));
1236 0 : break;
1237 : default:
1238 0 : UnimplementedInstruction();
1239 : }
1240 0 : } else if (vex_f3() && vex_0f38()) {
1241 : int mod, regop, rm, vvvv = vex_vreg();
1242 0 : get_modrm(*current, &mod, ®op, &rm);
1243 0 : switch (opcode) {
1244 : case 0xF5:
1245 0 : AppendToBuffer("pext%c %s,%s,", operand_size_code(),
1246 0 : NameOfCPURegister(regop), NameOfCPURegister(vvvv));
1247 0 : current += PrintRightOperand(current);
1248 0 : break;
1249 : case 0xF7:
1250 0 : AppendToBuffer("sarx%c %s,", operand_size_code(),
1251 0 : NameOfCPURegister(regop));
1252 0 : current += PrintRightOperand(current);
1253 0 : AppendToBuffer(",%s", NameOfCPURegister(vvvv));
1254 0 : break;
1255 : default:
1256 0 : UnimplementedInstruction();
1257 : }
1258 0 : } else if (vex_f2() && vex_0f3a()) {
1259 : int mod, regop, rm;
1260 0 : get_modrm(*current, &mod, ®op, &rm);
1261 0 : switch (opcode) {
1262 : case 0xF0:
1263 0 : AppendToBuffer("rorx%c %s,", operand_size_code(),
1264 0 : NameOfCPURegister(regop));
1265 0 : current += PrintRightOperand(current);
1266 0 : switch (operand_size()) {
1267 : case OPERAND_DOUBLEWORD_SIZE:
1268 0 : AppendToBuffer(",%d", *current & 0x1F);
1269 0 : break;
1270 : case OPERAND_QUADWORD_SIZE:
1271 0 : AppendToBuffer(",%d", *current & 0x3F);
1272 0 : break;
1273 : default:
1274 0 : UnimplementedInstruction();
1275 : }
1276 0 : current += 1;
1277 0 : break;
1278 : default:
1279 0 : UnimplementedInstruction();
1280 : }
1281 0 : } else if (vex_none() && vex_0f()) {
1282 : int mod, regop, rm, vvvv = vex_vreg();
1283 0 : get_modrm(*current, &mod, ®op, &rm);
1284 0 : switch (opcode) {
1285 : case 0x10:
1286 0 : AppendToBuffer("vmovups %s,", NameOfXMMRegister(regop));
1287 0 : current += PrintRightXMMOperand(current);
1288 0 : break;
1289 : case 0x11:
1290 0 : AppendToBuffer("vmovups ");
1291 0 : current += PrintRightXMMOperand(current);
1292 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1293 0 : break;
1294 : case 0x28:
1295 0 : AppendToBuffer("vmovaps %s,", NameOfXMMRegister(regop));
1296 0 : current += PrintRightXMMOperand(current);
1297 0 : break;
1298 : case 0x29:
1299 0 : AppendToBuffer("vmovaps ");
1300 0 : current += PrintRightXMMOperand(current);
1301 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1302 0 : break;
1303 : case 0x2E:
1304 0 : AppendToBuffer("vucomiss %s,", NameOfXMMRegister(regop));
1305 0 : current += PrintRightXMMOperand(current);
1306 0 : break;
1307 : case 0x50:
1308 0 : AppendToBuffer("vmovmskps %s,", NameOfCPURegister(regop));
1309 0 : current += PrintRightXMMOperand(current);
1310 0 : break;
1311 : case 0x54:
1312 : AppendToBuffer("vandps %s,%s,", NameOfXMMRegister(regop),
1313 0 : NameOfXMMRegister(vvvv));
1314 0 : current += PrintRightXMMOperand(current);
1315 0 : break;
1316 : case 0x57:
1317 : AppendToBuffer("vxorps %s,%s,", NameOfXMMRegister(regop),
1318 0 : NameOfXMMRegister(vvvv));
1319 0 : current += PrintRightXMMOperand(current);
1320 0 : break;
1321 : case 0xC2: {
1322 : AppendToBuffer("vcmpps %s,%s,", NameOfXMMRegister(regop),
1323 0 : NameOfXMMRegister(vvvv));
1324 0 : current += PrintRightXMMOperand(current);
1325 : const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
1326 0 : "neq", "nlt", "nle", "ord"};
1327 0 : AppendToBuffer(", (%s)", pseudo_op[*current]);
1328 0 : current += 1;
1329 : break;
1330 : }
1331 : default:
1332 0 : UnimplementedInstruction();
1333 : }
1334 0 : } else if (vex_66() && vex_0f()) {
1335 : int mod, regop, rm, vvvv = vex_vreg();
1336 0 : get_modrm(*current, &mod, ®op, &rm);
1337 0 : switch (opcode) {
1338 : case 0x10:
1339 0 : AppendToBuffer("vmovupd %s,", NameOfXMMRegister(regop));
1340 0 : current += PrintRightXMMOperand(current);
1341 0 : break;
1342 : case 0x11:
1343 0 : AppendToBuffer("vmovupd ");
1344 0 : current += PrintRightXMMOperand(current);
1345 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1346 0 : break;
1347 : case 0x28:
1348 0 : AppendToBuffer("vmovapd %s,", NameOfXMMRegister(regop));
1349 0 : current += PrintRightXMMOperand(current);
1350 0 : break;
1351 : case 0x29:
1352 0 : AppendToBuffer("vmovapd ");
1353 0 : current += PrintRightXMMOperand(current);
1354 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1355 0 : break;
1356 : case 0x2E:
1357 0 : AppendToBuffer("vucomisd %s,", NameOfXMMRegister(regop));
1358 0 : current += PrintRightXMMOperand(current);
1359 0 : break;
1360 : case 0x50:
1361 0 : AppendToBuffer("vmovmskpd %s,", NameOfCPURegister(regop));
1362 0 : current += PrintRightXMMOperand(current);
1363 0 : break;
1364 : case 0x54:
1365 : AppendToBuffer("vandpd %s,%s,", NameOfXMMRegister(regop),
1366 0 : NameOfXMMRegister(vvvv));
1367 0 : current += PrintRightXMMOperand(current);
1368 0 : break;
1369 : case 0x56:
1370 : AppendToBuffer("vorpd %s,%s,", NameOfXMMRegister(regop),
1371 0 : NameOfXMMRegister(vvvv));
1372 0 : current += PrintRightXMMOperand(current);
1373 0 : break;
1374 : case 0x57:
1375 : AppendToBuffer("vxorpd %s,%s,", NameOfXMMRegister(regop),
1376 0 : NameOfXMMRegister(vvvv));
1377 0 : current += PrintRightXMMOperand(current);
1378 0 : break;
1379 : case 0x6E:
1380 0 : AppendToBuffer("vmov%c %s,", vex_w() ? 'q' : 'd',
1381 0 : NameOfXMMRegister(regop));
1382 0 : current += PrintRightOperand(current);
1383 0 : break;
1384 : case 0x70:
1385 0 : AppendToBuffer("vpshufd %s,", NameOfXMMRegister(regop));
1386 0 : current += PrintRightXMMOperand(current);
1387 0 : AppendToBuffer(",0x%x", *current++);
1388 0 : break;
1389 : case 0x71:
1390 0 : AppendToBuffer("vps%sw %s,", sf_str[regop / 2],
1391 0 : NameOfXMMRegister(vvvv));
1392 0 : current += PrintRightXMMOperand(current);
1393 0 : AppendToBuffer(",%u", *current++);
1394 0 : break;
1395 : case 0x72:
1396 0 : AppendToBuffer("vps%sd %s,", sf_str[regop / 2],
1397 0 : NameOfXMMRegister(vvvv));
1398 0 : current += PrintRightXMMOperand(current);
1399 0 : AppendToBuffer(",%u", *current++);
1400 0 : break;
1401 : case 0x73:
1402 0 : AppendToBuffer("vps%sq %s,", sf_str[regop / 2],
1403 0 : NameOfXMMRegister(vvvv));
1404 0 : current += PrintRightXMMOperand(current);
1405 0 : AppendToBuffer(",%u", *current++);
1406 0 : break;
1407 : case 0x7E:
1408 0 : AppendToBuffer("vmov%c ", vex_w() ? 'q' : 'd');
1409 0 : current += PrintRightOperand(current);
1410 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1411 0 : break;
1412 : case 0xC2: {
1413 : AppendToBuffer("vcmppd %s,%s,", NameOfXMMRegister(regop),
1414 0 : NameOfXMMRegister(vvvv));
1415 0 : current += PrintRightXMMOperand(current);
1416 : const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
1417 0 : "neq", "nlt", "nle", "ord"};
1418 0 : AppendToBuffer(", (%s)", pseudo_op[*current]);
1419 0 : current += 1;
1420 : break;
1421 : }
1422 : case 0xC4:
1423 : AppendToBuffer("vpinsrw %s,%s,", NameOfXMMRegister(regop),
1424 0 : NameOfXMMRegister(vvvv));
1425 0 : current += PrintRightOperand(current);
1426 0 : AppendToBuffer(",0x%x", *current++);
1427 0 : break;
1428 : case 0xC5:
1429 0 : AppendToBuffer("vpextrw %s,", NameOfCPURegister(regop));
1430 0 : current += PrintRightXMMOperand(current);
1431 0 : AppendToBuffer(",0x%x", *current++);
1432 0 : break;
1433 : #define DECLARE_SSE_AVX_DIS_CASE(instruction, notUsed1, notUsed2, opcode) \
1434 : case 0x##opcode: { \
1435 : AppendToBuffer("v" #instruction " %s,%s,", NameOfXMMRegister(regop), \
1436 : NameOfXMMRegister(vvvv)); \
1437 : current += PrintRightXMMOperand(current); \
1438 : break; \
1439 : }
1440 :
1441 0 : SSE2_INSTRUCTION_LIST(DECLARE_SSE_AVX_DIS_CASE)
1442 : #undef DECLARE_SSE_AVX_DIS_CASE
1443 : default:
1444 0 : UnimplementedInstruction();
1445 : }
1446 :
1447 : } else {
1448 0 : UnimplementedInstruction();
1449 : }
1450 :
1451 0 : return static_cast<int>(current - data);
1452 : }
1453 :
1454 : // Returns number of bytes used, including *data.
1455 0 : int DisassemblerX64::FPUInstruction(byte* data) {
1456 0 : byte escape_opcode = *data;
1457 : DCHECK_EQ(0xD8, escape_opcode & 0xF8);
1458 0 : byte modrm_byte = *(data+1);
1459 :
1460 0 : if (modrm_byte >= 0xC0) {
1461 0 : return RegisterFPUInstruction(escape_opcode, modrm_byte);
1462 : } else {
1463 0 : return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
1464 : }
1465 : }
1466 :
1467 0 : int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
1468 : int modrm_byte,
1469 : byte* modrm_start) {
1470 : const char* mnem = "?";
1471 0 : int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
1472 0 : switch (escape_opcode) {
1473 0 : case 0xD9: switch (regop) {
1474 : case 0: mnem = "fld_s"; break;
1475 0 : case 3: mnem = "fstp_s"; break;
1476 0 : case 7: mnem = "fstcw"; break;
1477 0 : default: UnimplementedInstruction();
1478 : }
1479 : break;
1480 :
1481 0 : case 0xDB: switch (regop) {
1482 : case 0: mnem = "fild_s"; break;
1483 0 : case 1: mnem = "fisttp_s"; break;
1484 0 : case 2: mnem = "fist_s"; break;
1485 0 : case 3: mnem = "fistp_s"; break;
1486 0 : default: UnimplementedInstruction();
1487 : }
1488 : break;
1489 :
1490 0 : case 0xDD: switch (regop) {
1491 : case 0: mnem = "fld_d"; break;
1492 0 : case 3: mnem = "fstp_d"; break;
1493 0 : default: UnimplementedInstruction();
1494 : }
1495 : break;
1496 :
1497 0 : case 0xDF: switch (regop) {
1498 : case 5: mnem = "fild_d"; break;
1499 0 : case 7: mnem = "fistp_d"; break;
1500 0 : default: UnimplementedInstruction();
1501 : }
1502 : break;
1503 :
1504 0 : default: UnimplementedInstruction();
1505 : }
1506 0 : AppendToBuffer("%s ", mnem);
1507 : int count = PrintRightOperand(modrm_start);
1508 0 : return count + 1;
1509 : }
1510 :
1511 0 : int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
1512 : byte modrm_byte) {
1513 : bool has_register = false; // Is the FPU register encoded in modrm_byte?
1514 : const char* mnem = "?";
1515 :
1516 0 : switch (escape_opcode) {
1517 : case 0xD8:
1518 0 : UnimplementedInstruction();
1519 0 : break;
1520 :
1521 : case 0xD9:
1522 0 : switch (modrm_byte & 0xF8) {
1523 : case 0xC0:
1524 : mnem = "fld";
1525 : has_register = true;
1526 : break;
1527 : case 0xC8:
1528 : mnem = "fxch";
1529 : has_register = true;
1530 0 : break;
1531 : default:
1532 0 : switch (modrm_byte) {
1533 : case 0xE0: mnem = "fchs"; break;
1534 0 : case 0xE1: mnem = "fabs"; break;
1535 0 : case 0xE3: mnem = "fninit"; break;
1536 0 : case 0xE4: mnem = "ftst"; break;
1537 0 : case 0xE8: mnem = "fld1"; break;
1538 0 : case 0xEB: mnem = "fldpi"; break;
1539 0 : case 0xED: mnem = "fldln2"; break;
1540 0 : case 0xEE: mnem = "fldz"; break;
1541 0 : case 0xF0: mnem = "f2xm1"; break;
1542 0 : case 0xF1: mnem = "fyl2x"; break;
1543 0 : case 0xF2: mnem = "fptan"; break;
1544 0 : case 0xF5: mnem = "fprem1"; break;
1545 0 : case 0xF7: mnem = "fincstp"; break;
1546 0 : case 0xF8: mnem = "fprem"; break;
1547 0 : case 0xFC: mnem = "frndint"; break;
1548 0 : case 0xFD: mnem = "fscale"; break;
1549 0 : case 0xFE: mnem = "fsin"; break;
1550 0 : case 0xFF: mnem = "fcos"; break;
1551 0 : default: UnimplementedInstruction();
1552 : }
1553 : }
1554 : break;
1555 :
1556 : case 0xDA:
1557 0 : if (modrm_byte == 0xE9) {
1558 : mnem = "fucompp";
1559 : } else {
1560 0 : UnimplementedInstruction();
1561 : }
1562 : break;
1563 :
1564 : case 0xDB:
1565 0 : if ((modrm_byte & 0xF8) == 0xE8) {
1566 : mnem = "fucomi";
1567 : has_register = true;
1568 0 : } else if (modrm_byte == 0xE2) {
1569 : mnem = "fclex";
1570 0 : } else if (modrm_byte == 0xE3) {
1571 : mnem = "fninit";
1572 : } else {
1573 0 : UnimplementedInstruction();
1574 : }
1575 : break;
1576 :
1577 : case 0xDC:
1578 : has_register = true;
1579 0 : switch (modrm_byte & 0xF8) {
1580 : case 0xC0: mnem = "fadd"; break;
1581 0 : case 0xE8: mnem = "fsub"; break;
1582 0 : case 0xC8: mnem = "fmul"; break;
1583 0 : case 0xF8: mnem = "fdiv"; break;
1584 0 : default: UnimplementedInstruction();
1585 : }
1586 : break;
1587 :
1588 : case 0xDD:
1589 : has_register = true;
1590 0 : switch (modrm_byte & 0xF8) {
1591 : case 0xC0: mnem = "ffree"; break;
1592 0 : case 0xD8: mnem = "fstp"; break;
1593 0 : default: UnimplementedInstruction();
1594 : }
1595 : break;
1596 :
1597 : case 0xDE:
1598 0 : if (modrm_byte == 0xD9) {
1599 : mnem = "fcompp";
1600 : } else {
1601 : has_register = true;
1602 0 : switch (modrm_byte & 0xF8) {
1603 : case 0xC0: mnem = "faddp"; break;
1604 0 : case 0xE8: mnem = "fsubp"; break;
1605 0 : case 0xC8: mnem = "fmulp"; break;
1606 0 : case 0xF8: mnem = "fdivp"; break;
1607 0 : default: UnimplementedInstruction();
1608 : }
1609 : }
1610 : break;
1611 :
1612 : case 0xDF:
1613 0 : if (modrm_byte == 0xE0) {
1614 : mnem = "fnstsw_ax";
1615 0 : } else if ((modrm_byte & 0xF8) == 0xE8) {
1616 : mnem = "fucomip";
1617 : has_register = true;
1618 : }
1619 : break;
1620 :
1621 0 : default: UnimplementedInstruction();
1622 : }
1623 :
1624 0 : if (has_register) {
1625 0 : AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
1626 : } else {
1627 0 : AppendToBuffer("%s", mnem);
1628 : }
1629 0 : return 2;
1630 : }
1631 :
1632 :
1633 :
1634 : // Handle all two-byte opcodes, which start with 0x0F.
1635 : // These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
1636 : // We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
1637 0 : int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
1638 0 : byte opcode = *(data + 1);
1639 0 : byte* current = data + 2;
1640 : // At return, "current" points to the start of the next instruction.
1641 0 : const char* mnemonic = TwoByteMnemonic(opcode);
1642 0 : if (operand_size_ == 0x66) {
1643 : // 0x66 0x0F prefix.
1644 : int mod, regop, rm;
1645 0 : if (opcode == 0x38) {
1646 0 : byte third_byte = *current;
1647 0 : current = data + 3;
1648 0 : get_modrm(*current, &mod, ®op, &rm);
1649 0 : switch (third_byte) {
1650 : #define SSE34_DIS_CASE(instruction, notUsed1, notUsed2, notUsed3, opcode) \
1651 : case 0x##opcode: { \
1652 : AppendToBuffer(#instruction " %s,", NameOfXMMRegister(regop)); \
1653 : current += PrintRightXMMOperand(current); \
1654 : break; \
1655 : }
1656 :
1657 0 : SSSE3_INSTRUCTION_LIST(SSE34_DIS_CASE)
1658 0 : SSE4_INSTRUCTION_LIST(SSE34_DIS_CASE)
1659 : #undef SSE34_DIS_CASE
1660 : default:
1661 0 : UnimplementedInstruction();
1662 : }
1663 0 : } else if (opcode == 0x3A) {
1664 0 : byte third_byte = *current;
1665 0 : current = data + 3;
1666 0 : if (third_byte == 0x17) {
1667 0 : get_modrm(*current, &mod, ®op, &rm);
1668 0 : AppendToBuffer("extractps "); // reg/m32, xmm, imm8
1669 0 : current += PrintRightOperand(current);
1670 0 : AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
1671 0 : current += 1;
1672 0 : } else if (third_byte == 0x0A) {
1673 0 : get_modrm(*current, &mod, ®op, &rm);
1674 0 : AppendToBuffer("roundss %s,", NameOfXMMRegister(regop));
1675 0 : current += PrintRightXMMOperand(current);
1676 0 : AppendToBuffer(",0x%x", (*current) & 3);
1677 0 : current += 1;
1678 0 : } else if (third_byte == 0x0B) {
1679 0 : get_modrm(*current, &mod, ®op, &rm);
1680 : // roundsd xmm, xmm/m64, imm8
1681 0 : AppendToBuffer("roundsd %s,", NameOfXMMRegister(regop));
1682 0 : current += PrintRightXMMOperand(current);
1683 0 : AppendToBuffer(",0x%x", (*current) & 3);
1684 0 : current += 1;
1685 0 : } else if (third_byte == 0x0E) {
1686 0 : get_modrm(*current, &mod, ®op, &rm);
1687 0 : AppendToBuffer("pblendw %s,", NameOfXMMRegister(regop));
1688 0 : current += PrintRightXMMOperand(data);
1689 0 : AppendToBuffer(",0x%x", (*current) & 3);
1690 0 : current += 1;
1691 0 : } else if (third_byte == 0x0F) {
1692 0 : get_modrm(*data, &mod, ®op, &rm);
1693 0 : AppendToBuffer("palignr %s,", NameOfXMMRegister(regop));
1694 0 : current += PrintRightXMMOperand(data);
1695 0 : AppendToBuffer(",0x%x", (*current) & 3);
1696 0 : current += 1;
1697 0 : } else if (third_byte == 0x14) {
1698 0 : get_modrm(*current, &mod, ®op, &rm);
1699 0 : AppendToBuffer("pextrb "); // reg/m32, xmm, imm8
1700 0 : current += PrintRightOperand(current);
1701 0 : AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
1702 0 : current += 1;
1703 0 : } else if (third_byte == 0x15) {
1704 0 : get_modrm(*current, &mod, ®op, &rm);
1705 0 : AppendToBuffer("pextrw "); // reg/m32, xmm, imm8
1706 0 : current += PrintRightOperand(current);
1707 0 : AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 7);
1708 0 : current += 1;
1709 0 : } else if (third_byte == 0x16) {
1710 0 : get_modrm(*current, &mod, ®op, &rm);
1711 0 : AppendToBuffer("pextrd "); // reg/m32, xmm, imm8
1712 0 : current += PrintRightOperand(current);
1713 0 : AppendToBuffer(",%s,%d", NameOfXMMRegister(regop), (*current) & 3);
1714 0 : current += 1;
1715 0 : } else if (third_byte == 0x20) {
1716 0 : get_modrm(*current, &mod, ®op, &rm);
1717 0 : AppendToBuffer("pinsrd "); // xmm, reg/m32, imm8
1718 0 : AppendToBuffer(" %s,", NameOfXMMRegister(regop));
1719 0 : current += PrintRightOperand(current);
1720 0 : AppendToBuffer(",%d", (*current) & 3);
1721 0 : current += 1;
1722 0 : } else if (third_byte == 0x21) {
1723 0 : get_modrm(*current, &mod, ®op, &rm);
1724 : // insertps xmm, xmm/m32, imm8
1725 0 : AppendToBuffer("insertps %s,", NameOfXMMRegister(regop));
1726 0 : current += PrintRightXMMOperand(current);
1727 0 : AppendToBuffer(",0x%x", (*current) & 3);
1728 0 : current += 1;
1729 0 : } else if (third_byte == 0x22) {
1730 0 : get_modrm(*current, &mod, ®op, &rm);
1731 0 : AppendToBuffer("pinsrd "); // xmm, reg/m32, imm8
1732 0 : AppendToBuffer(" %s,", NameOfXMMRegister(regop));
1733 0 : current += PrintRightOperand(current);
1734 0 : AppendToBuffer(",%d", (*current) & 3);
1735 0 : current += 1;
1736 : } else {
1737 0 : UnimplementedInstruction();
1738 : }
1739 : } else {
1740 0 : get_modrm(*current, &mod, ®op, &rm);
1741 0 : if (opcode == 0x1F) {
1742 0 : current++;
1743 0 : if (rm == 4) { // SIB byte present.
1744 0 : current++;
1745 : }
1746 0 : if (mod == 1) { // Byte displacement.
1747 0 : current += 1;
1748 0 : } else if (mod == 2) { // 32-bit displacement.
1749 0 : current += 4;
1750 : } // else no immediate displacement.
1751 0 : AppendToBuffer("nop");
1752 0 : } else if (opcode == 0x10) {
1753 0 : AppendToBuffer("movupd %s,", NameOfXMMRegister(regop));
1754 0 : current += PrintRightXMMOperand(current);
1755 0 : } else if (opcode == 0x11) {
1756 0 : AppendToBuffer("movupd ");
1757 0 : current += PrintRightXMMOperand(current);
1758 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1759 0 : } else if (opcode == 0x28) {
1760 0 : AppendToBuffer("movapd %s,", NameOfXMMRegister(regop));
1761 0 : current += PrintRightXMMOperand(current);
1762 0 : } else if (opcode == 0x29) {
1763 0 : AppendToBuffer("movapd ");
1764 0 : current += PrintRightXMMOperand(current);
1765 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1766 0 : } else if (opcode == 0x6E) {
1767 0 : AppendToBuffer("mov%c %s,",
1768 : rex_w() ? 'q' : 'd',
1769 0 : NameOfXMMRegister(regop));
1770 0 : current += PrintRightOperand(current);
1771 0 : } else if (opcode == 0x6F) {
1772 : AppendToBuffer("movdqa %s,",
1773 0 : NameOfXMMRegister(regop));
1774 0 : current += PrintRightXMMOperand(current);
1775 0 : } else if (opcode == 0x7E) {
1776 0 : AppendToBuffer("mov%c ",
1777 0 : rex_w() ? 'q' : 'd');
1778 0 : current += PrintRightOperand(current);
1779 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1780 0 : } else if (opcode == 0x7F) {
1781 0 : AppendToBuffer("movdqa ");
1782 0 : current += PrintRightXMMOperand(current);
1783 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1784 0 : } else if (opcode == 0xD6) {
1785 0 : AppendToBuffer("movq ");
1786 0 : current += PrintRightXMMOperand(current);
1787 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1788 0 : } else if (opcode == 0x50) {
1789 0 : AppendToBuffer("movmskpd %s,", NameOfCPURegister(regop));
1790 0 : current += PrintRightXMMOperand(current);
1791 0 : } else if (opcode == 0x70) {
1792 0 : AppendToBuffer("pshufd %s,", NameOfXMMRegister(regop));
1793 0 : current += PrintRightXMMOperand(current);
1794 0 : AppendToBuffer(",0x%x", *current);
1795 0 : current += 1;
1796 0 : } else if (opcode == 0x71) {
1797 : current += 1;
1798 0 : AppendToBuffer("ps%sw %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1799 0 : *current & 0x7F);
1800 0 : current += 1;
1801 0 : } else if (opcode == 0x72) {
1802 : current += 1;
1803 0 : AppendToBuffer("ps%sd %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1804 0 : *current & 0x7F);
1805 0 : current += 1;
1806 0 : } else if (opcode == 0x73) {
1807 : current += 1;
1808 0 : AppendToBuffer("ps%sq %s,%d", sf_str[regop / 2], NameOfXMMRegister(rm),
1809 0 : *current & 0x7F);
1810 0 : current += 1;
1811 0 : } else if (opcode == 0xB1) {
1812 0 : current += PrintOperands("cmpxchg", OPER_REG_OP_ORDER, current);
1813 0 : } else if (opcode == 0xC4) {
1814 0 : AppendToBuffer("pinsrw %s,", NameOfXMMRegister(regop));
1815 0 : current += PrintRightOperand(current);
1816 0 : AppendToBuffer(",0x%x", (*current) & 7);
1817 0 : current += 1;
1818 : } else {
1819 : const char* mnemonic;
1820 0 : if (opcode == 0x54) {
1821 : mnemonic = "andpd";
1822 0 : } else if (opcode == 0x56) {
1823 : mnemonic = "orpd";
1824 0 : } else if (opcode == 0x57) {
1825 : mnemonic = "xorpd";
1826 0 : } else if (opcode == 0x5B) {
1827 : mnemonic = "cvtps2dq";
1828 0 : } else if (opcode == 0x60) {
1829 : mnemonic = "punpcklbw";
1830 0 : } else if (opcode == 0x61) {
1831 : mnemonic = "punpcklwd";
1832 0 : } else if (opcode == 0x62) {
1833 : mnemonic = "punpckldq";
1834 0 : } else if (opcode == 0x63) {
1835 : mnemonic = "packsswb";
1836 0 : } else if (opcode == 0x64) {
1837 : mnemonic = "pcmpgtb";
1838 0 : } else if (opcode == 0x65) {
1839 : mnemonic = "pcmpgtw";
1840 0 : } else if (opcode == 0x66) {
1841 : mnemonic = "pcmpgtd";
1842 0 : } else if (opcode == 0x67) {
1843 : mnemonic = "packuswb";
1844 0 : } else if (opcode == 0x68) {
1845 : mnemonic = "punpckhbw";
1846 0 : } else if (opcode == 0x69) {
1847 : mnemonic = "punpckhwd";
1848 0 : } else if (opcode == 0x6A) {
1849 : mnemonic = "punpckhdq";
1850 0 : } else if (opcode == 0x6B) {
1851 : mnemonic = "packssdw";
1852 0 : } else if (opcode == 0x6C) {
1853 : mnemonic = "punpcklqdq";
1854 0 : } else if (opcode == 0x6D) {
1855 : mnemonic = "punpckhqdq";
1856 0 : } else if (opcode == 0x2E) {
1857 : mnemonic = "ucomisd";
1858 0 : } else if (opcode == 0x2F) {
1859 : mnemonic = "comisd";
1860 0 : } else if (opcode == 0x74) {
1861 : mnemonic = "pcmpeqb";
1862 0 : } else if (opcode == 0x75) {
1863 : mnemonic = "pcmpeqw";
1864 0 : } else if (opcode == 0x76) {
1865 : mnemonic = "pcmpeqd";
1866 0 : } else if (opcode == 0xD1) {
1867 : mnemonic = "psrlw";
1868 0 : } else if (opcode == 0xD2) {
1869 : mnemonic = "psrld";
1870 0 : } else if (opcode == 0xD5) {
1871 : mnemonic = "pmullw";
1872 0 : } else if (opcode == 0xD7) {
1873 : mnemonic = "pmovmskb";
1874 0 : } else if (opcode == 0xD8) {
1875 : mnemonic = "psubusb";
1876 0 : } else if (opcode == 0xD9) {
1877 : mnemonic = "psubusw";
1878 0 : } else if (opcode == 0xDA) {
1879 : mnemonic = "pand";
1880 0 : } else if (opcode == 0xDB) {
1881 : mnemonic = "pminub";
1882 0 : } else if (opcode == 0xDC) {
1883 : mnemonic = "paddusb";
1884 0 : } else if (opcode == 0xDD) {
1885 : mnemonic = "paddusw";
1886 0 : } else if (opcode == 0xDE) {
1887 : mnemonic = "pmaxub";
1888 0 : } else if (opcode == 0xE1) {
1889 : mnemonic = "psraw";
1890 0 : } else if (opcode == 0xE2) {
1891 : mnemonic = "psrad";
1892 0 : } else if (opcode == 0xE8) {
1893 : mnemonic = "psubsb";
1894 0 : } else if (opcode == 0xE9) {
1895 : mnemonic = "psubsw";
1896 0 : } else if (opcode == 0xEA) {
1897 : mnemonic = "pminsw";
1898 0 : } else if (opcode == 0xEB) {
1899 : mnemonic = "por";
1900 0 : } else if (opcode == 0xEC) {
1901 : mnemonic = "paddsb";
1902 0 : } else if (opcode == 0xED) {
1903 : mnemonic = "paddsw";
1904 0 : } else if (opcode == 0xEE) {
1905 : mnemonic = "pmaxsw";
1906 0 : } else if (opcode == 0xEF) {
1907 : mnemonic = "pxor";
1908 0 : } else if (opcode == 0xF1) {
1909 : mnemonic = "psllw";
1910 0 : } else if (opcode == 0xF2) {
1911 : mnemonic = "pslld";
1912 0 : } else if (opcode == 0xF4) {
1913 : mnemonic = "pmuludq";
1914 0 : } else if (opcode == 0xF8) {
1915 : mnemonic = "psubb";
1916 0 : } else if (opcode == 0xF9) {
1917 : mnemonic = "psubw";
1918 0 : } else if (opcode == 0xFA) {
1919 : mnemonic = "psubd";
1920 0 : } else if (opcode == 0xFC) {
1921 : mnemonic = "paddb";
1922 0 : } else if (opcode == 0xFD) {
1923 : mnemonic = "paddw";
1924 0 : } else if (opcode == 0xFE) {
1925 : mnemonic = "paddd";
1926 0 : } else if (opcode == 0xC2) {
1927 : mnemonic = "cmppd";
1928 : } else {
1929 0 : UnimplementedInstruction();
1930 : }
1931 0 : AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1932 0 : current += PrintRightXMMOperand(current);
1933 0 : if (opcode == 0xC2) {
1934 : const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
1935 0 : "neq", "nlt", "nle", "ord"};
1936 0 : AppendToBuffer(", (%s)", pseudo_op[*current]);
1937 0 : current += 1;
1938 : }
1939 : }
1940 : }
1941 0 : } else if (group_1_prefix_ == 0xF2) {
1942 : // Beginning of instructions with prefix 0xF2.
1943 :
1944 0 : if (opcode == 0x11 || opcode == 0x10) {
1945 : // MOVSD: Move scalar double-precision fp to/from/between XMM registers.
1946 0 : AppendToBuffer("movsd ");
1947 : int mod, regop, rm;
1948 0 : get_modrm(*current, &mod, ®op, &rm);
1949 0 : if (opcode == 0x11) {
1950 0 : current += PrintRightXMMOperand(current);
1951 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
1952 : } else {
1953 0 : AppendToBuffer("%s,", NameOfXMMRegister(regop));
1954 0 : current += PrintRightXMMOperand(current);
1955 : }
1956 0 : } else if (opcode == 0x2A) {
1957 : // CVTSI2SD: integer to XMM double conversion.
1958 : int mod, regop, rm;
1959 0 : get_modrm(*current, &mod, ®op, &rm);
1960 0 : AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1961 0 : current += PrintRightOperand(current);
1962 0 : } else if (opcode == 0x2C) {
1963 : // CVTTSD2SI:
1964 : // Convert with truncation scalar double-precision FP to integer.
1965 : int mod, regop, rm;
1966 0 : get_modrm(*current, &mod, ®op, &rm);
1967 0 : AppendToBuffer("cvttsd2si%c %s,",
1968 0 : operand_size_code(), NameOfCPURegister(regop));
1969 0 : current += PrintRightXMMOperand(current);
1970 0 : } else if (opcode == 0x2D) {
1971 : // CVTSD2SI: Convert scalar double-precision FP to integer.
1972 : int mod, regop, rm;
1973 0 : get_modrm(*current, &mod, ®op, &rm);
1974 0 : AppendToBuffer("cvtsd2si%c %s,",
1975 0 : operand_size_code(), NameOfCPURegister(regop));
1976 0 : current += PrintRightXMMOperand(current);
1977 0 : } else if (opcode == 0x5B) {
1978 : // CVTTPS2DQ: Convert packed single-precision FP values to packed signed
1979 : // doubleword integer values
1980 : int mod, regop, rm;
1981 0 : get_modrm(*current, &mod, ®op, &rm);
1982 0 : AppendToBuffer("cvttps2dq%c %s,", operand_size_code(),
1983 0 : NameOfCPURegister(regop));
1984 0 : current += PrintRightXMMOperand(current);
1985 0 : } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
1986 : // XMM arithmetic. Mnemonic was retrieved at the start of this function.
1987 : int mod, regop, rm;
1988 0 : get_modrm(*current, &mod, ®op, &rm);
1989 0 : AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1990 0 : current += PrintRightXMMOperand(current);
1991 0 : } else if (opcode == 0x70) {
1992 : int mod, regop, rm;
1993 0 : get_modrm(*current, &mod, ®op, &rm);
1994 0 : AppendToBuffer("pshuflw %s, ", NameOfXMMRegister(regop));
1995 0 : current += PrintRightXMMOperand(current);
1996 0 : AppendToBuffer(", %d", (*current) & 7);
1997 0 : current += 1;
1998 0 : } else if (opcode == 0xC2) {
1999 : // Intel manual 2A, Table 3-18.
2000 : int mod, regop, rm;
2001 0 : get_modrm(*current, &mod, ®op, &rm);
2002 : const char* const pseudo_op[] = {
2003 : "cmpeqsd",
2004 : "cmpltsd",
2005 : "cmplesd",
2006 : "cmpunordsd",
2007 : "cmpneqsd",
2008 : "cmpnltsd",
2009 : "cmpnlesd",
2010 : "cmpordsd"
2011 0 : };
2012 0 : AppendToBuffer("%s %s,%s",
2013 0 : pseudo_op[current[1]],
2014 : NameOfXMMRegister(regop),
2015 0 : NameOfXMMRegister(rm));
2016 0 : current += 2;
2017 0 : } else if (opcode == 0xF0) {
2018 : int mod, regop, rm;
2019 0 : get_modrm(*current, &mod, ®op, &rm);
2020 0 : AppendToBuffer("lddqu %s,", NameOfXMMRegister(regop));
2021 0 : current += PrintRightOperand(current);
2022 0 : } else if (opcode == 0x7C) {
2023 : int mod, regop, rm;
2024 0 : get_modrm(*current, &mod, ®op, &rm);
2025 0 : AppendToBuffer("haddps %s,", NameOfXMMRegister(regop));
2026 0 : current += PrintRightXMMOperand(current);
2027 : } else {
2028 0 : UnimplementedInstruction();
2029 : }
2030 0 : } else if (group_1_prefix_ == 0xF3) {
2031 : // Instructions with prefix 0xF3.
2032 0 : if (opcode == 0x11 || opcode == 0x10) {
2033 : // MOVSS: Move scalar double-precision fp to/from/between XMM registers.
2034 0 : AppendToBuffer("movss ");
2035 : int mod, regop, rm;
2036 0 : get_modrm(*current, &mod, ®op, &rm);
2037 0 : if (opcode == 0x11) {
2038 0 : current += PrintRightOperand(current);
2039 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
2040 : } else {
2041 0 : AppendToBuffer("%s,", NameOfXMMRegister(regop));
2042 0 : current += PrintRightOperand(current);
2043 : }
2044 0 : } else if (opcode == 0x2A) {
2045 : // CVTSI2SS: integer to XMM single conversion.
2046 : int mod, regop, rm;
2047 0 : get_modrm(*current, &mod, ®op, &rm);
2048 0 : AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
2049 0 : current += PrintRightOperand(current);
2050 0 : } else if (opcode == 0x2C) {
2051 : // CVTTSS2SI:
2052 : // Convert with truncation scalar single-precision FP to dword integer.
2053 : int mod, regop, rm;
2054 0 : get_modrm(*current, &mod, ®op, &rm);
2055 0 : AppendToBuffer("cvttss2si%c %s,",
2056 0 : operand_size_code(), NameOfCPURegister(regop));
2057 0 : current += PrintRightXMMOperand(current);
2058 0 : } else if (opcode == 0x70) {
2059 : int mod, regop, rm;
2060 0 : get_modrm(*current, &mod, ®op, &rm);
2061 0 : AppendToBuffer("pshufhw %s, ", NameOfXMMRegister(regop));
2062 0 : current += PrintRightXMMOperand(current);
2063 0 : AppendToBuffer(", %d", (*current) & 7);
2064 0 : current += 1;
2065 0 : } else if (opcode == 0x6F) {
2066 : int mod, regop, rm;
2067 0 : get_modrm(*current, &mod, ®op, &rm);
2068 0 : AppendToBuffer("movdqu %s,", NameOfXMMRegister(regop));
2069 0 : current += PrintRightXMMOperand(current);
2070 0 : } else if (opcode == 0x7E) {
2071 : int mod, regop, rm;
2072 0 : get_modrm(*current, &mod, ®op, &rm);
2073 0 : AppendToBuffer("movq %s,", NameOfXMMRegister(regop));
2074 0 : current += PrintRightXMMOperand(current);
2075 0 : } else if (opcode == 0x7F) {
2076 : int mod, regop, rm;
2077 0 : get_modrm(*current, &mod, ®op, &rm);
2078 0 : AppendToBuffer("movdqu ");
2079 0 : current += PrintRightXMMOperand(current);
2080 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
2081 0 : } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
2082 : // XMM arithmetic. Mnemonic was retrieved at the start of this function.
2083 : int mod, regop, rm;
2084 0 : get_modrm(*current, &mod, ®op, &rm);
2085 0 : AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
2086 0 : current += PrintRightXMMOperand(current);
2087 0 : } else if (opcode == 0xB8) {
2088 : int mod, regop, rm;
2089 0 : get_modrm(*current, &mod, ®op, &rm);
2090 0 : AppendToBuffer("popcnt%c %s,", operand_size_code(),
2091 0 : NameOfCPURegister(regop));
2092 0 : current += PrintRightOperand(current);
2093 0 : } else if (opcode == 0xBC) {
2094 : int mod, regop, rm;
2095 0 : get_modrm(*current, &mod, ®op, &rm);
2096 0 : AppendToBuffer("tzcnt%c %s,", operand_size_code(),
2097 0 : NameOfCPURegister(regop));
2098 0 : current += PrintRightOperand(current);
2099 0 : } else if (opcode == 0xBD) {
2100 : int mod, regop, rm;
2101 0 : get_modrm(*current, &mod, ®op, &rm);
2102 0 : AppendToBuffer("lzcnt%c %s,", operand_size_code(),
2103 0 : NameOfCPURegister(regop));
2104 0 : current += PrintRightOperand(current);
2105 0 : } else if (opcode == 0xC2) {
2106 : // Intel manual 2A, Table 3-18.
2107 : int mod, regop, rm;
2108 0 : get_modrm(*current, &mod, ®op, &rm);
2109 : const char* const pseudo_op[] = {"cmpeqss", "cmpltss", "cmpless",
2110 : "cmpunordss", "cmpneqss", "cmpnltss",
2111 0 : "cmpnless", "cmpordss"};
2112 0 : AppendToBuffer("%s %s,%s", pseudo_op[current[1]],
2113 0 : NameOfXMMRegister(regop), NameOfXMMRegister(rm));
2114 0 : current += 2;
2115 : } else {
2116 0 : UnimplementedInstruction();
2117 : }
2118 0 : } else if (opcode == 0x10 || opcode == 0x11) {
2119 : // movups xmm, xmm/m128
2120 : // movups xmm/m128, xmm
2121 : int mod, regop, rm;
2122 0 : get_modrm(*current, &mod, ®op, &rm);
2123 0 : AppendToBuffer("movups ");
2124 0 : if (opcode == 0x11) {
2125 0 : current += PrintRightXMMOperand(current);
2126 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
2127 : } else {
2128 0 : AppendToBuffer("%s,", NameOfXMMRegister(regop));
2129 0 : current += PrintRightXMMOperand(current);
2130 : }
2131 0 : } else if (opcode == 0x1F) {
2132 : // NOP
2133 : int mod, regop, rm;
2134 0 : get_modrm(*current, &mod, ®op, &rm);
2135 0 : current++;
2136 0 : if (rm == 4) { // SIB byte present.
2137 0 : current++;
2138 : }
2139 0 : if (mod == 1) { // Byte displacement.
2140 0 : current += 1;
2141 0 : } else if (mod == 2) { // 32-bit displacement.
2142 0 : current += 4;
2143 : } // else no immediate displacement.
2144 0 : AppendToBuffer("nop");
2145 :
2146 0 : } else if (opcode == 0x28) {
2147 : // movaps xmm, xmm/m128
2148 : int mod, regop, rm;
2149 0 : get_modrm(*current, &mod, ®op, &rm);
2150 0 : AppendToBuffer("movaps %s,", NameOfXMMRegister(regop));
2151 0 : current += PrintRightXMMOperand(current);
2152 :
2153 0 : } else if (opcode == 0x29) {
2154 : // movaps xmm/m128, xmm
2155 : int mod, regop, rm;
2156 0 : get_modrm(*current, &mod, ®op, &rm);
2157 0 : AppendToBuffer("movaps ");
2158 0 : current += PrintRightXMMOperand(current);
2159 0 : AppendToBuffer(",%s", NameOfXMMRegister(regop));
2160 :
2161 0 : } else if (opcode == 0x2E) {
2162 : int mod, regop, rm;
2163 0 : get_modrm(*current, &mod, ®op, &rm);
2164 0 : AppendToBuffer("ucomiss %s,", NameOfXMMRegister(regop));
2165 0 : current += PrintRightXMMOperand(current);
2166 0 : } else if (opcode == 0xA2) {
2167 : // CPUID
2168 0 : AppendToBuffer("%s", mnemonic);
2169 0 : } else if ((opcode & 0xF0) == 0x40) {
2170 : // CMOVcc: conditional move.
2171 0 : int condition = opcode & 0x0F;
2172 : const InstructionDesc& idesc = cmov_instructions[condition];
2173 0 : byte_size_operand_ = idesc.byte_size_operation;
2174 0 : current += PrintOperands(idesc.mnem, idesc.op_order_, current);
2175 :
2176 0 : } else if (opcode >= 0x51 && opcode <= 0x5F) {
2177 : const char* const pseudo_op[] = {
2178 : "sqrtps", "rsqrtps", "rcpps", "andps", "andnps",
2179 : "orps", "xorps", "addps", "mulps", "cvtps2pd",
2180 : "cvtdq2ps", "subps", "minps", "divps", "maxps",
2181 0 : };
2182 : int mod, regop, rm;
2183 0 : get_modrm(*current, &mod, ®op, &rm);
2184 0 : AppendToBuffer("%s %s,", pseudo_op[opcode - 0x51],
2185 0 : NameOfXMMRegister(regop));
2186 0 : current += PrintRightXMMOperand(current);
2187 :
2188 0 : } else if (opcode == 0xC2) {
2189 : // cmpps xmm, xmm/m128, imm8
2190 : int mod, regop, rm;
2191 0 : get_modrm(*current, &mod, ®op, &rm);
2192 : const char* const pseudo_op[] = {"eq", "lt", "le", "unord",
2193 0 : "neq", "nlt", "nle", "ord"};
2194 0 : AppendToBuffer("cmpps %s, ", NameOfXMMRegister(regop));
2195 0 : current += PrintRightXMMOperand(current);
2196 0 : AppendToBuffer(", %s", pseudo_op[*current]);
2197 0 : current += 1;
2198 0 : } else if (opcode == 0xC6) {
2199 : // shufps xmm, xmm/m128, imm8
2200 : int mod, regop, rm;
2201 0 : get_modrm(*current, &mod, ®op, &rm);
2202 0 : AppendToBuffer("shufps %s, ", NameOfXMMRegister(regop));
2203 0 : current += PrintRightXMMOperand(current);
2204 0 : AppendToBuffer(", %d", (*current) & 3);
2205 0 : current += 1;
2206 0 : } else if (opcode >= 0xC8 && opcode <= 0xCF) {
2207 : // bswap
2208 0 : int reg = (opcode - 0xC8) | (rex_r() ? 8 : 0);
2209 0 : AppendToBuffer("bswap%c %s", operand_size_code(), NameOfCPURegister(reg));
2210 0 : } else if (opcode == 0x50) {
2211 : // movmskps reg, xmm
2212 : int mod, regop, rm;
2213 0 : get_modrm(*current, &mod, ®op, &rm);
2214 0 : AppendToBuffer("movmskps %s,", NameOfCPURegister(regop));
2215 0 : current += PrintRightXMMOperand(current);
2216 0 : } else if (opcode == 0x70) {
2217 : int mod, regop, rm;
2218 0 : get_modrm(*current, &mod, ®op, &rm);
2219 0 : AppendToBuffer("pshufw %s, ", NameOfXMMRegister(regop));
2220 0 : current += PrintRightXMMOperand(current);
2221 0 : AppendToBuffer(", %d", (*current) & 3);
2222 0 : current += 1;
2223 0 : } else if ((opcode & 0xF0) == 0x80) {
2224 : // Jcc: Conditional jump (branch).
2225 0 : current = data + JumpConditional(data);
2226 :
2227 0 : } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
2228 0 : opcode == 0xB7 || opcode == 0xAF) {
2229 : // Size-extending moves, IMUL.
2230 0 : current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
2231 0 : } else if ((opcode & 0xF0) == 0x90) {
2232 : // SETcc: Set byte on condition. Needs pointer to beginning of instruction.
2233 0 : current = data + SetCC(data);
2234 0 : } else if (opcode == 0xA3 || opcode == 0xA5 || opcode == 0xAB ||
2235 0 : opcode == 0xAD) {
2236 : // BT (bit test), SHLD, BTS (bit test and set),
2237 : // SHRD (double-precision shift)
2238 0 : AppendToBuffer("%s ", mnemonic);
2239 : int mod, regop, rm;
2240 0 : get_modrm(*current, &mod, ®op, &rm);
2241 0 : current += PrintRightOperand(current);
2242 0 : if (opcode == 0xAB) {
2243 0 : AppendToBuffer(",%s", NameOfCPURegister(regop));
2244 : } else {
2245 0 : AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
2246 : }
2247 0 : } else if (opcode == 0xBA) {
2248 : // BTS / BTR (bit test and set/reset) with immediate
2249 : int mod, regop, rm;
2250 0 : get_modrm(*current, &mod, ®op, &rm);
2251 0 : mnemonic = regop == 5 ? "bts" : regop == 6 ? "btr" : "?";
2252 0 : AppendToBuffer("%s ", mnemonic);
2253 0 : current += PrintRightOperand(current);
2254 0 : AppendToBuffer(",%d", *current++);
2255 0 : } else if (opcode == 0xB8 || opcode == 0xBC || opcode == 0xBD) {
2256 : // POPCNT, CTZ, CLZ.
2257 0 : AppendToBuffer("%s%c ", mnemonic, operand_size_code());
2258 : int mod, regop, rm;
2259 0 : get_modrm(*current, &mod, ®op, &rm);
2260 0 : AppendToBuffer("%s,", NameOfCPURegister(regop));
2261 0 : current += PrintRightOperand(current);
2262 0 : } else if (opcode == 0x0B) {
2263 0 : AppendToBuffer("ud2");
2264 0 : } else if (opcode == 0xB0 || opcode == 0xB1) {
2265 : // CMPXCHG.
2266 0 : if (opcode == 0xB0) {
2267 0 : byte_size_operand_ = true;
2268 : }
2269 0 : current += PrintOperands(mnemonic, OPER_REG_OP_ORDER, current);
2270 0 : } else if (opcode == 0xAE && (*(data + 2) & 0xF8) == 0xE8) {
2271 0 : AppendToBuffer("lfence");
2272 0 : current = data + 3;
2273 : } else {
2274 0 : UnimplementedInstruction();
2275 : }
2276 0 : return static_cast<int>(current - data);
2277 : }
2278 :
2279 : // Mnemonics for two-byte opcode instructions starting with 0x0F.
2280 : // The argument is the second byte of the two-byte opcode.
2281 : // Returns nullptr if the instruction is not handled here.
2282 0 : const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
2283 0 : if (opcode >= 0xC8 && opcode <= 0xCF) return "bswap";
2284 0 : switch (opcode) {
2285 : case 0x1F:
2286 : return "nop";
2287 : case 0x2A: // F2/F3 prefix.
2288 0 : return (group_1_prefix_ == 0xF2) ? "cvtsi2sd" : "cvtsi2ss";
2289 : case 0x51: // F2/F3 prefix.
2290 0 : return (group_1_prefix_ == 0xF2) ? "sqrtsd" : "sqrtss";
2291 : case 0x58: // F2/F3 prefix.
2292 0 : return (group_1_prefix_ == 0xF2) ? "addsd" : "addss";
2293 : case 0x59: // F2/F3 prefix.
2294 0 : return (group_1_prefix_ == 0xF2) ? "mulsd" : "mulss";
2295 : case 0x5A: // F2/F3 prefix.
2296 0 : return (group_1_prefix_ == 0xF2) ? "cvtsd2ss" : "cvtss2sd";
2297 : case 0x5D: // F2/F3 prefix.
2298 0 : return (group_1_prefix_ == 0xF2) ? "minsd" : "minss";
2299 : case 0x5C: // F2/F3 prefix.
2300 0 : return (group_1_prefix_ == 0xF2) ? "subsd" : "subss";
2301 : case 0x5E: // F2/F3 prefix.
2302 0 : return (group_1_prefix_ == 0xF2) ? "divsd" : "divss";
2303 : case 0x5F: // F2/F3 prefix.
2304 0 : return (group_1_prefix_ == 0xF2) ? "maxsd" : "maxss";
2305 : case 0xA2:
2306 0 : return "cpuid";
2307 : case 0xA3:
2308 0 : return "bt";
2309 : case 0xA5:
2310 0 : return "shld";
2311 : case 0xAB:
2312 0 : return "bts";
2313 : case 0xAD:
2314 0 : return "shrd";
2315 : case 0xAF:
2316 0 : return "imul";
2317 : case 0xB0:
2318 : case 0xB1:
2319 0 : return "cmpxchg";
2320 : case 0xB6:
2321 0 : return "movzxb";
2322 : case 0xB7:
2323 0 : return "movzxw";
2324 : case 0xBC:
2325 0 : return "bsf";
2326 : case 0xBD:
2327 0 : return "bsr";
2328 : case 0xBE:
2329 0 : return "movsxb";
2330 : case 0xBF:
2331 0 : return "movsxw";
2332 : default:
2333 0 : return nullptr;
2334 : }
2335 : }
2336 :
2337 :
2338 : // Disassembles the instruction at instr, and writes it into out_buffer.
2339 0 : int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
2340 : byte* instr) {
2341 0 : tmp_buffer_pos_ = 0; // starting to write as position 0
2342 : byte* data = instr;
2343 : bool processed = true; // Will be set to false if the current instruction
2344 : // is not in 'instructions' table.
2345 : byte current;
2346 :
2347 : // Scan for prefixes.
2348 0 : while (true) {
2349 0 : current = *data;
2350 0 : if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
2351 0 : operand_size_ = current;
2352 0 : } else if ((current & 0xF0) == 0x40) { // REX prefix.
2353 : setRex(current);
2354 0 : if (rex_w()) AppendToBuffer("REX.W ");
2355 0 : } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
2356 0 : group_1_prefix_ = current;
2357 0 : } else if (current == LOCK_PREFIX) {
2358 0 : AppendToBuffer("lock ");
2359 0 : } else if (current == VEX3_PREFIX) {
2360 0 : vex_byte0_ = current;
2361 0 : vex_byte1_ = *(data + 1);
2362 0 : vex_byte2_ = *(data + 2);
2363 0 : setRex(0x40 | (~(vex_byte1_ >> 5) & 7) | ((vex_byte2_ >> 4) & 8));
2364 0 : data += 3;
2365 0 : break; // Vex is the last prefix.
2366 0 : } else if (current == VEX2_PREFIX) {
2367 0 : vex_byte0_ = current;
2368 0 : vex_byte1_ = *(data + 1);
2369 0 : setRex(0x40 | (~(vex_byte1_ >> 5) & 4));
2370 0 : data += 2;
2371 0 : break; // Vex is the last prefix.
2372 : } else { // Not a prefix - an opcode.
2373 : break;
2374 : }
2375 0 : data++;
2376 : }
2377 :
2378 : // Decode AVX instructions.
2379 0 : if (vex_byte0_ != 0) {
2380 : processed = true;
2381 0 : data += AVXInstruction(data);
2382 : } else {
2383 0 : const InstructionDesc& idesc = instruction_table_->Get(current);
2384 0 : byte_size_operand_ = idesc.byte_size_operation;
2385 0 : switch (idesc.type) {
2386 : case ZERO_OPERANDS_INSTR:
2387 0 : if (current >= 0xA4 && current <= 0xA7) {
2388 : // String move or compare operations.
2389 0 : if (group_1_prefix_ == REP_PREFIX) {
2390 : // REP.
2391 0 : AppendToBuffer("rep ");
2392 : }
2393 0 : if (rex_w()) AppendToBuffer("REX.W ");
2394 0 : AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
2395 : } else {
2396 0 : AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
2397 : }
2398 0 : data++;
2399 0 : break;
2400 :
2401 : case TWO_OPERANDS_INSTR:
2402 0 : data++;
2403 0 : data += PrintOperands(idesc.mnem, idesc.op_order_, data);
2404 0 : break;
2405 :
2406 : case JUMP_CONDITIONAL_SHORT_INSTR:
2407 0 : data += JumpConditionalShort(data);
2408 0 : break;
2409 :
2410 : case REGISTER_INSTR:
2411 0 : AppendToBuffer("%s%c %s", idesc.mnem, operand_size_code(),
2412 0 : NameOfCPURegister(base_reg(current & 0x07)));
2413 0 : data++;
2414 0 : break;
2415 : case PUSHPOP_INSTR:
2416 0 : AppendToBuffer("%s %s", idesc.mnem,
2417 0 : NameOfCPURegister(base_reg(current & 0x07)));
2418 0 : data++;
2419 0 : break;
2420 : case MOVE_REG_INSTR: {
2421 : byte* addr = nullptr;
2422 0 : switch (operand_size()) {
2423 : case OPERAND_WORD_SIZE:
2424 : addr =
2425 0 : reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1));
2426 0 : data += 3;
2427 0 : break;
2428 : case OPERAND_DOUBLEWORD_SIZE:
2429 : addr =
2430 0 : reinterpret_cast<byte*>(*reinterpret_cast<uint32_t*>(data + 1));
2431 0 : data += 5;
2432 0 : break;
2433 : case OPERAND_QUADWORD_SIZE:
2434 : addr =
2435 0 : reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1));
2436 0 : data += 9;
2437 0 : break;
2438 : default:
2439 0 : UNREACHABLE();
2440 : }
2441 0 : AppendToBuffer("mov%c %s,%s", operand_size_code(),
2442 : NameOfCPURegister(base_reg(current & 0x07)),
2443 0 : NameOfAddress(addr));
2444 0 : break;
2445 : }
2446 :
2447 : case CALL_JUMP_INSTR: {
2448 0 : byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5;
2449 0 : AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
2450 0 : data += 5;
2451 0 : break;
2452 : }
2453 :
2454 : case SHORT_IMMEDIATE_INSTR: {
2455 : int32_t imm;
2456 0 : if (operand_size() == OPERAND_WORD_SIZE) {
2457 0 : imm = *reinterpret_cast<int16_t*>(data + 1);
2458 0 : data += 3;
2459 : } else {
2460 0 : imm = *reinterpret_cast<int32_t*>(data + 1);
2461 0 : data += 5;
2462 : }
2463 0 : AppendToBuffer("%s rax,0x%x", idesc.mnem, imm);
2464 0 : break;
2465 : }
2466 :
2467 : case NO_INSTR:
2468 : processed = false;
2469 : break;
2470 :
2471 : default:
2472 0 : UNIMPLEMENTED(); // This type is not implemented.
2473 : }
2474 : }
2475 :
2476 : // The first byte didn't match any of the simple opcodes, so we
2477 : // need to do special processing on it.
2478 0 : if (!processed) {
2479 0 : switch (*data) {
2480 : case 0xC2:
2481 0 : AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1));
2482 0 : data += 3;
2483 0 : break;
2484 :
2485 : case 0x69: // fall through
2486 : case 0x6B: {
2487 : int count = 1;
2488 0 : count += PrintOperands("imul", REG_OPER_OP_ORDER, data + count);
2489 0 : AppendToBuffer(",0x");
2490 0 : if (*data == 0x69) {
2491 0 : count += PrintImmediate(data + count, operand_size());
2492 : } else {
2493 0 : count += PrintImmediate(data + count, OPERAND_BYTE_SIZE);
2494 : }
2495 0 : data += count;
2496 0 : break;
2497 : }
2498 :
2499 : case 0x81: // fall through
2500 : case 0x83: // 0x81 with sign extension bit set
2501 0 : data += PrintImmediateOp(data);
2502 0 : break;
2503 :
2504 : case 0x0F:
2505 0 : data += TwoByteOpcodeInstruction(data);
2506 0 : break;
2507 :
2508 : case 0x8F: {
2509 0 : data++;
2510 : int mod, regop, rm;
2511 0 : get_modrm(*data, &mod, ®op, &rm);
2512 0 : if (regop == 0) {
2513 0 : AppendToBuffer("pop ");
2514 0 : data += PrintRightOperand(data);
2515 : }
2516 : }
2517 : break;
2518 :
2519 : case 0xFF: {
2520 0 : data++;
2521 : int mod, regop, rm;
2522 0 : get_modrm(*data, &mod, ®op, &rm);
2523 : const char* mnem = nullptr;
2524 0 : switch (regop) {
2525 : case 0:
2526 : mnem = "inc";
2527 : break;
2528 : case 1:
2529 : mnem = "dec";
2530 0 : break;
2531 : case 2:
2532 : mnem = "call";
2533 0 : break;
2534 : case 4:
2535 : mnem = "jmp";
2536 0 : break;
2537 : case 6:
2538 : mnem = "push";
2539 0 : break;
2540 : default:
2541 : mnem = "???";
2542 : }
2543 0 : if (regop <= 1) {
2544 0 : AppendToBuffer("%s%c ", mnem, operand_size_code());
2545 : } else {
2546 0 : AppendToBuffer("%s ", mnem);
2547 : }
2548 0 : data += PrintRightOperand(data);
2549 : }
2550 0 : break;
2551 :
2552 : case 0xC7: // imm32, fall through
2553 : case 0xC6: // imm8
2554 : {
2555 : bool is_byte = *data == 0xC6;
2556 0 : data++;
2557 0 : if (is_byte) {
2558 0 : AppendToBuffer("movb ");
2559 0 : data += PrintRightByteOperand(data);
2560 0 : int32_t imm = *data;
2561 0 : AppendToBuffer(",0x%x", imm);
2562 0 : data++;
2563 : } else {
2564 0 : AppendToBuffer("mov%c ", operand_size_code());
2565 0 : data += PrintRightOperand(data);
2566 0 : if (operand_size() == OPERAND_WORD_SIZE) {
2567 0 : int16_t imm = *reinterpret_cast<int16_t*>(data);
2568 0 : AppendToBuffer(",0x%x", imm);
2569 0 : data += 2;
2570 : } else {
2571 0 : int32_t imm = *reinterpret_cast<int32_t*>(data);
2572 0 : AppendToBuffer(",0x%x", imm);
2573 0 : data += 4;
2574 : }
2575 : }
2576 : }
2577 : break;
2578 :
2579 : case 0x80: {
2580 0 : data++;
2581 0 : AppendToBuffer("cmpb ");
2582 0 : data += PrintRightByteOperand(data);
2583 0 : int32_t imm = *data;
2584 0 : AppendToBuffer(",0x%x", imm);
2585 0 : data++;
2586 : }
2587 0 : break;
2588 :
2589 : case 0x88: // 8bit, fall through
2590 : case 0x89: // 32bit
2591 : {
2592 : bool is_byte = *data == 0x88;
2593 : int mod, regop, rm;
2594 0 : data++;
2595 0 : get_modrm(*data, &mod, ®op, &rm);
2596 0 : if (is_byte) {
2597 0 : AppendToBuffer("movb ");
2598 0 : data += PrintRightByteOperand(data);
2599 0 : AppendToBuffer(",%s", NameOfByteCPURegister(regop));
2600 : } else {
2601 0 : AppendToBuffer("mov%c ", operand_size_code());
2602 0 : data += PrintRightOperand(data);
2603 0 : AppendToBuffer(",%s", NameOfCPURegister(regop));
2604 : }
2605 : }
2606 : break;
2607 :
2608 : case 0x90:
2609 : case 0x91:
2610 : case 0x92:
2611 : case 0x93:
2612 : case 0x94:
2613 : case 0x95:
2614 : case 0x96:
2615 : case 0x97: {
2616 0 : int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
2617 0 : if (group_1_prefix_ == 0xF3 && *data == 0x90) {
2618 0 : AppendToBuffer("pause");
2619 0 : } else if (reg == 0) {
2620 0 : AppendToBuffer("nop"); // Common name for xchg rax,rax.
2621 : } else {
2622 0 : AppendToBuffer("xchg%c rax,%s",
2623 : operand_size_code(),
2624 0 : NameOfCPURegister(reg));
2625 : }
2626 0 : data++;
2627 : }
2628 0 : break;
2629 : case 0xB0:
2630 : case 0xB1:
2631 : case 0xB2:
2632 : case 0xB3:
2633 : case 0xB4:
2634 : case 0xB5:
2635 : case 0xB6:
2636 : case 0xB7:
2637 : case 0xB8:
2638 : case 0xB9:
2639 : case 0xBA:
2640 : case 0xBB:
2641 : case 0xBC:
2642 : case 0xBD:
2643 : case 0xBE:
2644 : case 0xBF: {
2645 : // mov reg8,imm8 or mov reg32,imm32
2646 : byte opcode = *data;
2647 : data++;
2648 : bool is_32bit = (opcode >= 0xB8);
2649 0 : int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
2650 0 : if (is_32bit) {
2651 0 : AppendToBuffer("mov%c %s,",
2652 : operand_size_code(),
2653 0 : NameOfCPURegister(reg));
2654 0 : data += PrintImmediate(data, OPERAND_DOUBLEWORD_SIZE);
2655 : } else {
2656 : AppendToBuffer("movb %s,",
2657 0 : NameOfByteCPURegister(reg));
2658 0 : data += PrintImmediate(data, OPERAND_BYTE_SIZE);
2659 : }
2660 : break;
2661 : }
2662 : case 0xFE: {
2663 0 : data++;
2664 : int mod, regop, rm;
2665 0 : get_modrm(*data, &mod, ®op, &rm);
2666 0 : if (regop == 1) {
2667 0 : AppendToBuffer("decb ");
2668 0 : data += PrintRightByteOperand(data);
2669 : } else {
2670 0 : UnimplementedInstruction();
2671 : }
2672 : break;
2673 : }
2674 : case 0x68:
2675 0 : AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1));
2676 0 : data += 5;
2677 0 : break;
2678 :
2679 : case 0x6A:
2680 0 : AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
2681 0 : data += 2;
2682 0 : break;
2683 :
2684 : case 0xA1: // Fall through.
2685 : case 0xA3:
2686 0 : switch (operand_size()) {
2687 : case OPERAND_DOUBLEWORD_SIZE: {
2688 0 : const char* memory_location = NameOfAddress(
2689 : reinterpret_cast<byte*>(
2690 : *reinterpret_cast<int32_t*>(data + 1)));
2691 0 : if (*data == 0xA1) { // Opcode 0xA1
2692 0 : AppendToBuffer("movzxlq rax,(%s)", memory_location);
2693 : } else { // Opcode 0xA3
2694 0 : AppendToBuffer("movzxlq (%s),rax", memory_location);
2695 : }
2696 0 : data += 5;
2697 0 : break;
2698 : }
2699 : case OPERAND_QUADWORD_SIZE: {
2700 : // New x64 instruction mov rax,(imm_64).
2701 0 : const char* memory_location = NameOfAddress(
2702 : *reinterpret_cast<byte**>(data + 1));
2703 0 : if (*data == 0xA1) { // Opcode 0xA1
2704 0 : AppendToBuffer("movq rax,(%s)", memory_location);
2705 : } else { // Opcode 0xA3
2706 0 : AppendToBuffer("movq (%s),rax", memory_location);
2707 : }
2708 0 : data += 9;
2709 0 : break;
2710 : }
2711 : default:
2712 0 : UnimplementedInstruction();
2713 0 : data += 2;
2714 : }
2715 : break;
2716 :
2717 : case 0xA8:
2718 0 : AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1));
2719 0 : data += 2;
2720 0 : break;
2721 :
2722 : case 0xA9: {
2723 : int64_t value = 0;
2724 0 : switch (operand_size()) {
2725 : case OPERAND_WORD_SIZE:
2726 0 : value = *reinterpret_cast<uint16_t*>(data + 1);
2727 0 : data += 3;
2728 0 : break;
2729 : case OPERAND_DOUBLEWORD_SIZE:
2730 0 : value = *reinterpret_cast<uint32_t*>(data + 1);
2731 0 : data += 5;
2732 0 : break;
2733 : case OPERAND_QUADWORD_SIZE:
2734 0 : value = *reinterpret_cast<int32_t*>(data + 1);
2735 0 : data += 5;
2736 0 : break;
2737 : default:
2738 0 : UNREACHABLE();
2739 : }
2740 0 : AppendToBuffer("test%c rax,0x%" PRIx64, operand_size_code(), value);
2741 0 : break;
2742 : }
2743 : case 0xD1: // fall through
2744 : case 0xD3: // fall through
2745 : case 0xC1:
2746 0 : data += ShiftInstruction(data);
2747 0 : break;
2748 : case 0xD0: // fall through
2749 : case 0xD2: // fall through
2750 : case 0xC0:
2751 0 : byte_size_operand_ = true;
2752 0 : data += ShiftInstruction(data);
2753 0 : break;
2754 :
2755 : case 0xD9: // fall through
2756 : case 0xDA: // fall through
2757 : case 0xDB: // fall through
2758 : case 0xDC: // fall through
2759 : case 0xDD: // fall through
2760 : case 0xDE: // fall through
2761 : case 0xDF:
2762 0 : data += FPUInstruction(data);
2763 0 : break;
2764 :
2765 : case 0xEB:
2766 0 : data += JumpShort(data);
2767 0 : break;
2768 :
2769 : case 0xF6:
2770 0 : byte_size_operand_ = true;
2771 : V8_FALLTHROUGH;
2772 : case 0xF7:
2773 0 : data += F6F7Instruction(data);
2774 0 : break;
2775 :
2776 : case 0x3C:
2777 0 : AppendToBuffer("cmp al,0x%x", *reinterpret_cast<int8_t*>(data + 1));
2778 0 : data +=2;
2779 0 : break;
2780 :
2781 : default:
2782 0 : UnimplementedInstruction();
2783 0 : data += 1;
2784 : }
2785 : } // !processed
2786 :
2787 0 : if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
2788 0 : tmp_buffer_[tmp_buffer_pos_] = '\0';
2789 : }
2790 :
2791 0 : int instr_len = static_cast<int>(data - instr);
2792 : DCHECK_GT(instr_len, 0); // Ensure progress.
2793 :
2794 : int outp = 0;
2795 : // Instruction bytes.
2796 0 : for (byte* bp = instr; bp < data; bp++) {
2797 0 : outp += v8::internal::SNPrintF(out_buffer + outp, "%02x", *bp);
2798 : }
2799 0 : for (int i = 6 - instr_len; i >= 0; i--) {
2800 0 : outp += v8::internal::SNPrintF(out_buffer + outp, " ");
2801 : }
2802 :
2803 0 : outp += v8::internal::SNPrintF(out_buffer + outp, " %s",
2804 0 : tmp_buffer_.start());
2805 0 : return instr_len;
2806 : }
2807 :
2808 :
2809 : //------------------------------------------------------------------------------
2810 :
2811 :
2812 : static const char* const cpu_regs[16] = {
2813 : "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
2814 : "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2815 : };
2816 :
2817 :
2818 : static const char* const byte_cpu_regs[16] = {
2819 : "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
2820 : "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2821 : };
2822 :
2823 :
2824 : static const char* const xmm_regs[16] = {
2825 : "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
2826 : "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
2827 : };
2828 :
2829 :
2830 0 : const char* NameConverter::NameOfAddress(byte* addr) const {
2831 0 : v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
2832 0 : return tmp_buffer_.start();
2833 : }
2834 :
2835 :
2836 0 : const char* NameConverter::NameOfConstant(byte* addr) const {
2837 0 : return NameOfAddress(addr);
2838 : }
2839 :
2840 :
2841 360 : const char* NameConverter::NameOfCPURegister(int reg) const {
2842 360 : if (0 <= reg && reg < 16)
2843 360 : return cpu_regs[reg];
2844 : return "noreg";
2845 : }
2846 :
2847 :
2848 0 : const char* NameConverter::NameOfByteCPURegister(int reg) const {
2849 0 : if (0 <= reg && reg < 16)
2850 0 : return byte_cpu_regs[reg];
2851 : return "noreg";
2852 : }
2853 :
2854 :
2855 0 : const char* NameConverter::NameOfXMMRegister(int reg) const {
2856 0 : if (0 <= reg && reg < 16)
2857 0 : return xmm_regs[reg];
2858 : return "noxmmreg";
2859 : }
2860 :
2861 :
2862 0 : const char* NameConverter::NameInCode(byte* addr) const {
2863 : // X64 does not embed debug strings at the moment.
2864 0 : UNREACHABLE();
2865 : }
2866 :
2867 :
2868 : //------------------------------------------------------------------------------
2869 :
2870 0 : int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
2871 : byte* instruction) {
2872 0 : DisassemblerX64 d(converter_, unimplemented_opcode_action());
2873 0 : return d.InstructionDecode(buffer, instruction);
2874 : }
2875 :
2876 : // The X64 assembler does not use constant pools.
2877 0 : int Disassembler::ConstantPoolSizeAt(byte* instruction) {
2878 0 : return -1;
2879 : }
2880 :
2881 0 : void Disassembler::Disassemble(FILE* f, byte* begin, byte* end,
2882 : UnimplementedOpcodeAction unimplemented_action) {
2883 : NameConverter converter;
2884 : Disassembler d(converter, unimplemented_action);
2885 0 : for (byte* pc = begin; pc < end;) {
2886 : v8::internal::EmbeddedVector<char, 128> buffer;
2887 0 : buffer[0] = '\0';
2888 : byte* prev_pc = pc;
2889 0 : pc += d.InstructionDecode(buffer, pc);
2890 : fprintf(f, "%p", static_cast<void*>(prev_pc));
2891 : fprintf(f, " ");
2892 :
2893 0 : for (byte* bp = prev_pc; bp < pc; bp++) {
2894 0 : fprintf(f, "%02x", *bp);
2895 : }
2896 0 : for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
2897 : fprintf(f, " ");
2898 : }
2899 : fprintf(f, " %s\n", buffer.start());
2900 : }
2901 0 : }
2902 :
2903 120216 : } // namespace disasm
2904 :
2905 : #endif // V8_TARGET_ARCH_X64
|