LCOV - code coverage report
Current view: top level - test/cctest/wasm - test-run-wasm-simd.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 718 859 83.6 %
Date: 2019-03-21 Functions: 656 752 87.2 %

          Line data    Source code
       1             : // Copyright 2016 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include <type_traits>
       6             : 
       7             : #include "src/assembler-inl.h"
       8             : #include "src/base/bits.h"
       9             : #include "src/base/overflowing-math.h"
      10             : #include "test/cctest/cctest.h"
      11             : #include "test/cctest/compiler/value-helper.h"
      12             : #include "test/cctest/wasm/wasm-run-utils.h"
      13             : #include "test/common/wasm/wasm-macro-gen.h"
      14             : 
      15             : namespace v8 {
      16             : namespace internal {
      17             : namespace wasm {
      18             : namespace test_run_wasm_simd {
      19             : 
      20             : namespace {
      21             : 
      22             : typedef float (*FloatUnOp)(float);
      23             : typedef float (*FloatBinOp)(float, float);
      24             : typedef int (*FloatCompareOp)(float, float);
      25             : typedef int32_t (*Int32UnOp)(int32_t);
      26             : typedef int32_t (*Int32BinOp)(int32_t, int32_t);
      27             : typedef int (*Int32CompareOp)(int32_t, int32_t);
      28             : typedef int32_t (*Int32ShiftOp)(int32_t, int);
      29             : typedef int16_t (*Int16UnOp)(int16_t);
      30             : typedef int16_t (*Int16BinOp)(int16_t, int16_t);
      31             : typedef int (*Int16CompareOp)(int16_t, int16_t);
      32             : typedef int16_t (*Int16ShiftOp)(int16_t, int);
      33             : typedef int8_t (*Int8UnOp)(int8_t);
      34             : typedef int8_t (*Int8BinOp)(int8_t, int8_t);
      35             : typedef int (*Int8CompareOp)(int8_t, int8_t);
      36             : typedef int8_t (*Int8ShiftOp)(int8_t, int);
      37             : 
      38             : #define WASM_SIMD_TEST(name)                                          \
      39             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                    \
      40             :                              ExecutionTier execution_tier);           \
      41             :   TEST(RunWasm_##name##_turbofan) {                                   \
      42             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      43             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kOptimized);   \
      44             :   }                                                                   \
      45             :   TEST(RunWasm_##name##_interpreter) {                                \
      46             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      47             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kInterpreter); \
      48             :   }                                                                   \
      49             :   TEST(RunWasm_##name##_simd_lowered) {                               \
      50             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      51             :     RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kOptimized);     \
      52             :   }                                                                   \
      53             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
      54             : 
      55             : // Generic expected value functions.
      56             : template <typename T, typename = typename std::enable_if<
      57             :                           std::is_floating_point<T>::value>::type>
      58        1380 : T Negate(T a) {
      59        1380 :   return -a;
      60             : }
      61             : 
      62             : // For signed integral types, use base::AddWithWraparound.
      63             : template <typename T, typename = typename std::enable_if<
      64             :                           std::is_floating_point<T>::value>::type>
      65      158700 : T Add(T a, T b) {
      66      158700 :   return a + b;
      67             : }
      68             : 
      69             : // For signed integral types, use base::SubWithWraparound.
      70             : template <typename T, typename = typename std::enable_if<
      71             :                           std::is_floating_point<T>::value>::type>
      72      158700 : T Sub(T a, T b) {
      73      158700 :   return a - b;
      74             : }
      75             : 
      76             : // For signed integral types, use base::MulWithWraparound.
      77             : template <typename T, typename = typename std::enable_if<
      78             :                           std::is_floating_point<T>::value>::type>
      79      158700 : T Mul(T a, T b) {
      80      158700 :   return a * b;
      81             : }
      82             : 
      83             : template <typename T>
      84       42312 : T Minimum(T a, T b) {
      85       42312 :   return a <= b ? a : b;
      86             : }
      87             : 
      88             : template <typename T>
      89       42312 : T Maximum(T a, T b) {
      90       42312 :   return a >= b ? a : b;
      91             : }
      92             : 
      93             : template <typename T>
      94       42312 : T UnsignedMinimum(T a, T b) {
      95             :   using UnsignedT = typename std::make_unsigned<T>::type;
      96       42312 :   return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
      97             : }
      98             : 
      99             : template <typename T>
     100       42312 : T UnsignedMaximum(T a, T b) {
     101             :   using UnsignedT = typename std::make_unsigned<T>::type;
     102       42312 :   return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
     103             : }
     104             : 
     105      158700 : int Equal(float a, float b) { return a == b ? -1 : 0; }
     106             : 
     107             : template <typename T>
     108       42312 : T Equal(T a, T b) {
     109       42312 :   return a == b ? -1 : 0;
     110             : }
     111             : 
     112      158700 : int NotEqual(float a, float b) { return a != b ? -1 : 0; }
     113             : 
     114             : template <typename T>
     115       42312 : T NotEqual(T a, T b) {
     116       42312 :   return a != b ? -1 : 0;
     117             : }
     118             : 
     119      158700 : int Less(float a, float b) { return a < b ? -1 : 0; }
     120             : 
     121             : template <typename T>
     122       42312 : T Less(T a, T b) {
     123       42312 :   return a < b ? -1 : 0;
     124             : }
     125             : 
     126      158700 : int LessEqual(float a, float b) { return a <= b ? -1 : 0; }
     127             : 
     128             : template <typename T>
     129       42312 : T LessEqual(T a, T b) {
     130       42312 :   return a <= b ? -1 : 0;
     131             : }
     132             : 
     133      158700 : int Greater(float a, float b) { return a > b ? -1 : 0; }
     134             : 
     135             : template <typename T>
     136       42312 : T Greater(T a, T b) {
     137       42312 :   return a > b ? -1 : 0;
     138             : }
     139             : 
     140      158700 : int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; }
     141             : 
     142             : template <typename T>
     143       42312 : T GreaterEqual(T a, T b) {
     144       42312 :   return a >= b ? -1 : 0;
     145             : }
     146             : 
     147             : template <typename T>
     148       42312 : T UnsignedLess(T a, T b) {
     149             :   using UnsignedT = typename std::make_unsigned<T>::type;
     150       42312 :   return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0;
     151             : }
     152             : 
     153             : template <typename T>
     154       42312 : T UnsignedLessEqual(T a, T b) {
     155             :   using UnsignedT = typename std::make_unsigned<T>::type;
     156       42312 :   return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0;
     157             : }
     158             : 
     159             : template <typename T>
     160       42312 : T UnsignedGreater(T a, T b) {
     161             :   using UnsignedT = typename std::make_unsigned<T>::type;
     162       42312 :   return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0;
     163             : }
     164             : 
     165             : template <typename T>
     166       42312 : T UnsignedGreaterEqual(T a, T b) {
     167             :   using UnsignedT = typename std::make_unsigned<T>::type;
     168       42312 :   return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0;
     169             : }
     170             : 
     171             : template <typename T>
     172       23952 : T LogicalShiftLeft(T a, int shift) {
     173             :   using UnsignedT = typename std::make_unsigned<T>::type;
     174       23952 :   return static_cast<UnsignedT>(a) << shift;
     175             : }
     176             : 
     177             : template <typename T>
     178       23952 : T LogicalShiftRight(T a, int shift) {
     179             :   using UnsignedT = typename std::make_unsigned<T>::type;
     180       23952 :   return static_cast<UnsignedT>(a) >> shift;
     181             : }
     182             : 
     183             : template <typename T>
     184             : T Clamp(int64_t value) {
     185             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     186        9384 :   int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
     187        9384 :   int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
     188        9384 :   int64_t clamped = std::max(min, std::min(max, value));
     189        4692 :   return static_cast<T>(clamped);
     190             : }
     191             : 
     192             : template <typename T>
     193             : int64_t Widen(T value) {
     194             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     195        3888 :   return static_cast<int64_t>(value);
     196             : }
     197             : 
     198             : template <typename T>
     199             : int64_t UnsignedWiden(T value) {
     200             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     201             :   using UnsignedT = typename std::make_unsigned<T>::type;
     202        4104 :   return static_cast<int64_t>(static_cast<UnsignedT>(value));
     203             : }
     204             : 
     205             : template <typename T>
     206             : T Narrow(int64_t value) {
     207             :   return Clamp<T>(value);
     208             : }
     209             : 
     210             : template <typename T>
     211             : T UnsignedNarrow(int64_t value) {
     212             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     213             :   using UnsignedT = typename std::make_unsigned<T>::type;
     214        1608 :   return static_cast<T>(Clamp<UnsignedT>(value & 0xFFFFFFFFu));
     215             : }
     216             : 
     217             : template <typename T>
     218        1944 : T AddSaturate(T a, T b) {
     219        3888 :   return Clamp<T>(Widen(a) + Widen(b));
     220             : }
     221             : 
     222             : template <typename T>
     223        1944 : T SubSaturate(T a, T b) {
     224        3888 :   return Clamp<T>(Widen(a) - Widen(b));
     225             : }
     226             : 
     227             : template <typename T>
     228        1944 : T UnsignedAddSaturate(T a, T b) {
     229             :   using UnsignedT = typename std::make_unsigned<T>::type;
     230        3888 :   return Clamp<UnsignedT>(UnsignedWiden(a) + UnsignedWiden(b));
     231             : }
     232             : 
     233             : template <typename T>
     234        1944 : T UnsignedSubSaturate(T a, T b) {
     235             :   using UnsignedT = typename std::make_unsigned<T>::type;
     236        3888 :   return Clamp<UnsignedT>(UnsignedWiden(a) - UnsignedWiden(b));
     237             : }
     238             : 
     239             : template <typename T>
     240       40368 : T And(T a, T b) {
     241       40368 :   return a & b;
     242             : }
     243             : 
     244             : template <typename T>
     245       40368 : T Or(T a, T b) {
     246       40368 :   return a | b;
     247             : }
     248             : 
     249             : template <typename T>
     250       40368 : T Xor(T a, T b) {
     251       40368 :   return a ^ b;
     252             : }
     253             : 
     254             : template <typename T>
     255         696 : T Not(T a) {
     256         696 :   return ~a;
     257             : }
     258             : 
     259             : template <typename T>
     260             : T LogicalNot(T a) {
     261             :   return a == 0 ? -1 : 0;
     262             : }
     263             : 
     264             : template <typename T>
     265             : T Sqrt(T a) {
     266             :   return std::sqrt(a);
     267             : }
     268             : 
     269             : }  // namespace
     270             : 
     271             : #define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
     272             :   WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value),                  \
     273             :                                 WASM_SIMD_##TYPE##_EXTRACT_LANE(             \
     274             :                                     lane_index, WASM_GET_LOCAL(value))),     \
     275             :           WASM_RETURN1(WASM_ZERO))
     276             : 
     277             : #define TO_BYTE(val) static_cast<byte>(val)
     278             : #define WASM_SIMD_OP(op) kSimdPrefix, TO_BYTE(op)
     279             : #define WASM_SIMD_SPLAT(Type, x) x, WASM_SIMD_OP(kExpr##Type##Splat)
     280             : #define WASM_SIMD_UNOP(op, x) x, WASM_SIMD_OP(op)
     281             : #define WASM_SIMD_BINOP(op, x, y) x, y, WASM_SIMD_OP(op)
     282             : #define WASM_SIMD_SHIFT_OP(op, shift, x) x, WASM_SIMD_OP(op), TO_BYTE(shift)
     283             : #define WASM_SIMD_CONCAT_OP(op, bytes, x, y) \
     284             :   x, y, WASM_SIMD_OP(op), TO_BYTE(bytes)
     285             : #define WASM_SIMD_SELECT(format, x, y, z) x, y, z, WASM_SIMD_OP(kExprS128Select)
     286             : #define WASM_SIMD_F32x4_SPLAT(x) x, WASM_SIMD_OP(kExprF32x4Splat)
     287             : #define WASM_SIMD_F32x4_EXTRACT_LANE(lane, x) \
     288             :   x, WASM_SIMD_OP(kExprF32x4ExtractLane), TO_BYTE(lane)
     289             : #define WASM_SIMD_F32x4_REPLACE_LANE(lane, x, y) \
     290             :   x, y, WASM_SIMD_OP(kExprF32x4ReplaceLane), TO_BYTE(lane)
     291             : 
     292             : #define WASM_SIMD_I32x4_SPLAT(x) x, WASM_SIMD_OP(kExprI32x4Splat)
     293             : #define WASM_SIMD_I32x4_EXTRACT_LANE(lane, x) \
     294             :   x, WASM_SIMD_OP(kExprI32x4ExtractLane), TO_BYTE(lane)
     295             : #define WASM_SIMD_I32x4_REPLACE_LANE(lane, x, y) \
     296             :   x, y, WASM_SIMD_OP(kExprI32x4ReplaceLane), TO_BYTE(lane)
     297             : 
     298             : #define WASM_SIMD_I16x8_SPLAT(x) x, WASM_SIMD_OP(kExprI16x8Splat)
     299             : #define WASM_SIMD_I16x8_EXTRACT_LANE(lane, x) \
     300             :   x, WASM_SIMD_OP(kExprI16x8ExtractLane), TO_BYTE(lane)
     301             : #define WASM_SIMD_I16x8_REPLACE_LANE(lane, x, y) \
     302             :   x, y, WASM_SIMD_OP(kExprI16x8ReplaceLane), TO_BYTE(lane)
     303             : 
     304             : #define WASM_SIMD_I8x16_SPLAT(x) x, WASM_SIMD_OP(kExprI8x16Splat)
     305             : #define WASM_SIMD_I8x16_EXTRACT_LANE(lane, x) \
     306             :   x, WASM_SIMD_OP(kExprI8x16ExtractLane), TO_BYTE(lane)
     307             : #define WASM_SIMD_I8x16_REPLACE_LANE(lane, x, y) \
     308             :   x, y, WASM_SIMD_OP(kExprI8x16ReplaceLane), TO_BYTE(lane)
     309             : 
     310             : #define WASM_SIMD_S8x16_SHUFFLE_OP(opcode, m, x, y)                        \
     311             :   x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \
     312             :       TO_BYTE(m[3]), TO_BYTE(m[4]), TO_BYTE(m[5]), TO_BYTE(m[6]),          \
     313             :       TO_BYTE(m[7]), TO_BYTE(m[8]), TO_BYTE(m[9]), TO_BYTE(m[10]),         \
     314             :       TO_BYTE(m[11]), TO_BYTE(m[12]), TO_BYTE(m[13]), TO_BYTE(m[14]),      \
     315             :       TO_BYTE(m[15])
     316             : 
     317             : #define WASM_SIMD_LOAD_MEM(index) \
     318             :   index, WASM_SIMD_OP(kExprS128LoadMem), ZERO_ALIGNMENT, ZERO_OFFSET
     319             : #define WASM_SIMD_STORE_MEM(index, val) \
     320             :   index, val, WASM_SIMD_OP(kExprS128StoreMem), ZERO_ALIGNMENT, ZERO_OFFSET
     321             : 
     322             : // Runs tests of compiled code, using the interpreter as a reference.
     323             : #define WASM_SIMD_COMPILED_TEST(name)                               \
     324             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                  \
     325             :                              ExecutionTier execution_tier);         \
     326             :   TEST(RunWasm_##name##_turbofan) {                                 \
     327             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                  \
     328             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kOptimized); \
     329             :   }                                                                 \
     330             :   TEST(RunWasm_##name##_simd_lowered) {                             \
     331             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                  \
     332             :     RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kOptimized);   \
     333             :   }                                                                 \
     334             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
     335             : 
     336             : // The macro below disables tests lowering for certain nodes where the simd
     337             : // lowering doesn't work correctly. Early return here if the CPU does not
     338             : // support SIMD as the graph will be implicitly lowered in that case.
     339             : #define WASM_SIMD_TEST_TURBOFAN(name)                               \
     340             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                  \
     341             :                              ExecutionTier execution_tier);         \
     342             :   TEST(RunWasm_##name##_turbofan) {                                 \
     343             :     if (!CpuFeatures::SupportsWasmSimd128()) return;                \
     344             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                  \
     345             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kOptimized); \
     346             :   }                                                                 \
     347             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
     348             : 
     349             : // Returns true if the platform can represent the result.
     350           0 : bool PlatformCanRepresent(float x) {
     351             : #if V8_TARGET_ARCH_ARM
     352             :   return std::fpclassify(x) != FP_SUBNORMAL;
     353             : #else
     354           0 :   return true;
     355             : #endif
     356             : }
     357             : 
     358             : // Returns true for very small and very large numbers. We skip these test
     359             : // values for the approximation instructions, which don't work at the extremes.
     360           0 : bool IsExtreme(float x) {
     361             :   float abs_x = std::fabs(x);
     362             :   const float kSmallFloatThreshold = 1.0e-32f;
     363             :   const float kLargeFloatThreshold = 1.0e32f;
     364        2760 :   return abs_x != 0.0f &&  // 0 or -0 are fine.
     365        2616 :          (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
     366             : }
     367             : 
     368       26111 : WASM_SIMD_TEST(F32x4Splat) {
     369          12 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     370             :   // Set up a global to hold output vector.
     371             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     372             :   byte param1 = 0;
     373          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(param1))),
     374             :         WASM_ONE);
     375             : 
     376        2772 :   FOR_FLOAT32_INPUTS(x) {
     377        1380 :     r.Call(x);
     378             :     float expected = x;
     379       12420 :     for (int i = 0; i < 4; i++) {
     380        5520 :       float actual = ReadLittleEndianValue<float>(&g[i]);
     381        5520 :       if (std::isnan(expected)) {
     382          96 :         CHECK(std::isnan(actual));
     383             :       } else {
     384        5424 :         CHECK_EQ(actual, expected);
     385             :       }
     386             :     }
     387             :   }
     388          12 : }
     389             : 
     390       26111 : WASM_SIMD_TEST(F32x4ReplaceLane) {
     391          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     392             :   // Set up a global to hold input/output vector.
     393             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     394             :   // Build function to replace each lane with its (FP) index.
     395             :   byte temp1 = r.AllocateLocal(kWasmS128);
     396          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))),
     397             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     398             :                                   0, WASM_GET_LOCAL(temp1), WASM_F32(0.0f))),
     399             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     400             :                                   1, WASM_GET_LOCAL(temp1), WASM_F32(1.0f))),
     401             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     402             :                                   2, WASM_GET_LOCAL(temp1), WASM_F32(2.0f))),
     403             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(
     404             :                                3, WASM_GET_LOCAL(temp1), WASM_F32(3.0f))),
     405             :         WASM_ONE);
     406             : 
     407          12 :   r.Call();
     408         108 :   for (int i = 0; i < 4; i++) {
     409          48 :     CHECK_EQ(static_cast<float>(i), ReadLittleEndianValue<float>(&g[i]));
     410             :   }
     411          12 : }
     412             : 
     413             : // Tests both signed and unsigned conversion.
     414             : // v8:8425 tracks this test being enabled in the interpreter.
     415       26095 : WASM_SIMD_COMPILED_TEST(F32x4ConvertI32x4) {
     416           8 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     417             :   // Create two output vectors to hold signed and unsigned results.
     418             :   float* g0 = r.builder().AddGlobal<float>(kWasmS128);
     419             :   float* g1 = r.builder().AddGlobal<float>(kWasmS128);
     420             :   // Build fn to splat test value, perform conversions, and write the results.
     421             :   byte value = 0;
     422             :   byte temp1 = r.AllocateLocal(kWasmS128);
     423           8 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
     424             :         WASM_SET_GLOBAL(
     425             :             0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_GET_LOCAL(temp1))),
     426             :         WASM_SET_GLOBAL(
     427             :             1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_GET_LOCAL(temp1))),
     428             :         WASM_ONE);
     429             : 
     430         936 :   FOR_INT32_INPUTS(x) {
     431         464 :     r.Call(x);
     432         464 :     float expected_signed = static_cast<float>(x);
     433         464 :     float expected_unsigned = static_cast<float>(static_cast<uint32_t>(x));
     434        4176 :     for (int i = 0; i < 4; i++) {
     435        1856 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<float>(&g0[i]));
     436        1856 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<float>(&g1[i]));
     437             :     }
     438             :   }
     439           8 : }
     440             : 
     441          48 : void RunF32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     442             :                       WasmOpcode opcode, FloatUnOp expected_op,
     443             :                       bool approximate = false) {
     444          48 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     445             :   // Global to hold output.
     446             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     447             :   // Build fn to splat test value, perform unop, and write the result.
     448             :   byte value = 0;
     449             :   byte temp1 = r.AllocateLocal(kWasmS128);
     450          48 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
     451             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
     452             :         WASM_ONE);
     453             : 
     454       11088 :   FOR_FLOAT32_INPUTS(x) {
     455             :     if (!PlatformCanRepresent(x)) continue;
     456             :     // Extreme values have larger errors so skip them for approximation tests.
     457        8280 :     if (approximate && IsExtreme(x)) continue;
     458        5088 :     float expected = expected_op(x);
     459             :     if (!PlatformCanRepresent(expected)) continue;
     460        5088 :     r.Call(x);
     461       45792 :     for (int i = 0; i < 4; i++) {
     462       20352 :       float actual = ReadLittleEndianValue<float>(&g[i]);
     463       20352 :       if (std::isnan(expected)) {
     464        2928 :         CHECK(std::isnan(actual));
     465             :       } else {
     466             :         // First check for equality, to handle +/-Inf, since min and max would
     467             :         // be NaNs in those cases.
     468       17424 :         if (expected == actual) continue;
     469             :         // 1% error allows all platforms to pass easily.
     470             :         constexpr float kApproximationError = 0.01f;
     471        2128 :         float abs_error = std::abs(expected) * kApproximationError,
     472        2128 :               min = expected - abs_error, max = expected + abs_error;
     473        2128 :         CHECK_LE(min, actual);
     474        2128 :         CHECK_GE(max, actual);
     475             :       }
     476             :     }
     477             :   }
     478          48 : }
     479             : 
     480       26087 : WASM_SIMD_TEST(F32x4Abs) {
     481          12 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs);
     482           0 : }
     483       26087 : WASM_SIMD_TEST(F32x4Neg) {
     484          12 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate);
     485           0 : }
     486             : 
     487       26087 : WASM_SIMD_TEST(F32x4RecipApprox) {
     488           0 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox,
     489          12 :                    base::Recip, true /* approximate */);
     490           0 : }
     491             : 
     492       26087 : WASM_SIMD_TEST(F32x4RecipSqrtApprox) {
     493           0 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox,
     494          12 :                    base::RecipSqrt, true /* approximate */);
     495           0 : }
     496             : 
     497          52 : void RunF32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     498             :                        WasmOpcode opcode, FloatBinOp expected_op) {
     499          52 :   WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
     500             :   // Global to hold output.
     501             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     502             :   // Build fn to splat test values, perform binop, and write the result.
     503             :   byte value1 = 0, value2 = 1;
     504             :   byte temp1 = r.AllocateLocal(kWasmS128);
     505             :   byte temp2 = r.AllocateLocal(kWasmS128);
     506          52 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
     507             :         WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
     508             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     509             :                                            WASM_GET_LOCAL(temp2))),
     510             :         WASM_ONE);
     511             : 
     512       12012 :   FOR_FLOAT32_INPUTS(x) {
     513             :     if (!PlatformCanRepresent(x)) continue;
     514     1381380 :     FOR_FLOAT32_INPUTS(y) {
     515             :       if (!PlatformCanRepresent(y)) continue;
     516      687700 :       float expected = expected_op(x, y);
     517             :       if (!PlatformCanRepresent(expected)) continue;
     518      687700 :       r.Call(x, y);
     519     6189300 :       for (int i = 0; i < 4; i++) {
     520     2750800 :         float actual = ReadLittleEndianValue<float>(&g[i]);
     521     2750800 :         if (std::isnan(expected)) {
     522       95424 :           CHECK(std::isnan(actual));
     523             :         } else {
     524     2655376 :           CHECK_EQ(expected, actual);
     525             :         }
     526             :       }
     527             :     }
     528             :   }
     529          52 : }
     530             : 
     531       26087 : WASM_SIMD_TEST(F32x4Add) {
     532          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add);
     533           0 : }
     534       26087 : WASM_SIMD_TEST(F32x4Sub) {
     535          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub);
     536           0 : }
     537       26087 : WASM_SIMD_TEST(F32x4Mul) {
     538          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul);
     539           0 : }
     540             : // v8:8425 tracks this test being enabled in the interpreter.
     541       26079 : WASM_SIMD_COMPILED_TEST(F32x4Min) {
     542           8 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin);
     543           0 : }
     544             : // v8:8425 tracks this test being enabled in the interpreter.
     545       26079 : WASM_SIMD_COMPILED_TEST(F32x4Max) {
     546           8 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax);
     547           0 : }
     548             : 
     549          72 : void RunF32x4CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     550             :                            WasmOpcode opcode, FloatCompareOp expected_op) {
     551          72 :   WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
     552             :   // Set up global to hold mask output.
     553             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     554             :   // Build fn to splat test values, perform compare op, and write the result.
     555             :   byte value1 = 0, value2 = 1;
     556             :   byte temp1 = r.AllocateLocal(kWasmS128);
     557             :   byte temp2 = r.AllocateLocal(kWasmS128);
     558          72 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
     559             :         WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
     560             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     561             :                                            WASM_GET_LOCAL(temp2))),
     562             :         WASM_ONE);
     563             : 
     564       16632 :   FOR_FLOAT32_INPUTS(x) {
     565             :     if (!PlatformCanRepresent(x)) continue;
     566     1912680 :     FOR_FLOAT32_INPUTS(y) {
     567             :       if (!PlatformCanRepresent(y)) continue;
     568             :       float diff = x - y;  // Model comparison as subtraction.
     569             :       if (!PlatformCanRepresent(diff)) continue;
     570      952200 :       r.Call(x, y);
     571      952200 :       int32_t expected = expected_op(x, y);
     572     8569800 :       for (int i = 0; i < 4; i++) {
     573     3808800 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     574             :       }
     575             :     }
     576             :   }
     577          72 : }
     578             : 
     579       26087 : WASM_SIMD_TEST(F32x4Eq) {
     580          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal);
     581           0 : }
     582             : 
     583       26087 : WASM_SIMD_TEST(F32x4Ne) {
     584          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual);
     585           0 : }
     586             : 
     587       26087 : WASM_SIMD_TEST(F32x4Gt) {
     588          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater);
     589           0 : }
     590             : 
     591       26087 : WASM_SIMD_TEST(F32x4Ge) {
     592          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual);
     593           0 : }
     594             : 
     595       26087 : WASM_SIMD_TEST(F32x4Lt) {
     596          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less);
     597           0 : }
     598             : 
     599       26087 : WASM_SIMD_TEST(F32x4Le) {
     600          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual);
     601           0 : }
     602             : 
     603       26111 : WASM_SIMD_TEST(I32x4Splat) {
     604          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     605             :   // Set up a global to hold output vector.
     606             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     607             :   byte param1 = 0;
     608          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(param1))),
     609             :         WASM_ONE);
     610             : 
     611        1404 :   FOR_INT32_INPUTS(x) {
     612         696 :     r.Call(x);
     613             :     int32_t expected = x;
     614        6264 :     for (int i = 0; i < 4; i++) {
     615        2784 :       int32_t actual = ReadLittleEndianValue<int32_t>(&g[i]);
     616        2784 :       CHECK_EQ(actual, expected);
     617             :     }
     618             :   }
     619          12 : }
     620             : 
     621       26111 : WASM_SIMD_TEST(I32x4ReplaceLane) {
     622          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     623             :   // Set up a global to hold input/output vector.
     624             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     625             :   // Build function to replace each lane with its index.
     626             :   byte temp1 = r.AllocateLocal(kWasmS128);
     627          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))),
     628             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     629             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     630             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     631             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     632             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     633             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     634             :         WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(
     635             :                                3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     636             :         WASM_ONE);
     637             : 
     638          12 :   r.Call();
     639         108 :   for (int32_t i = 0; i < 4; i++) {
     640          48 :     CHECK_EQ(i, ReadLittleEndianValue<int32_t>(&g[i]));
     641             :   }
     642          12 : }
     643             : 
     644       26111 : WASM_SIMD_TEST(I16x8Splat) {
     645          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     646             :   // Set up a global to hold output vector.
     647             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
     648             :   byte param1 = 0;
     649          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(param1))),
     650             :         WASM_ONE);
     651             : 
     652         228 :   FOR_INT16_INPUTS(x) {
     653         108 :     r.Call(x);
     654             :     int16_t expected = x;
     655        1836 :     for (int i = 0; i < 8; i++) {
     656         864 :       int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
     657         864 :       CHECK_EQ(actual, expected);
     658             :     }
     659             :   }
     660          12 : }
     661             : 
     662       26111 : WASM_SIMD_TEST(I16x8ReplaceLane) {
     663          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     664             :   // Set up a global to hold input/output vector.
     665             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
     666             :   // Build function to replace each lane with its index.
     667             :   byte temp1 = r.AllocateLocal(kWasmS128);
     668          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))),
     669             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     670             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     671             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     672             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     673             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     674             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     675             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     676             :                                   3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     677             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     678             :                                   4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
     679             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     680             :                                   5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
     681             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     682             :                                   6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
     683             :         WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_REPLACE_LANE(
     684             :                                7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
     685             :         WASM_ONE);
     686             : 
     687          12 :   r.Call();
     688         204 :   for (int16_t i = 0; i < 8; i++) {
     689          96 :     CHECK_EQ(i, ReadLittleEndianValue<int16_t>(&g[i]));
     690             :   }
     691          12 : }
     692             : 
     693       26111 : WASM_SIMD_TEST(I8x16Splat) {
     694          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     695             :   // Set up a global to hold output vector.
     696             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
     697             :   byte param1 = 0;
     698          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(param1))),
     699             :         WASM_ONE);
     700             : 
     701         228 :   FOR_INT8_INPUTS(x) {
     702         108 :     r.Call(x);
     703             :     int8_t expected = x;
     704        3564 :     for (int i = 0; i < 16; i++) {
     705        1728 :       int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
     706        1728 :       CHECK_EQ(actual, expected);
     707             :     }
     708             :   }
     709          12 : }
     710             : 
     711       26111 : WASM_SIMD_TEST(I8x16ReplaceLane) {
     712          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     713             :   // Set up a global to hold input/output vector.
     714             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
     715             :   // Build function to replace each lane with its index.
     716             :   byte temp1 = r.AllocateLocal(kWasmS128);
     717          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))),
     718             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     719             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     720             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     721             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     722             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     723             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     724             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     725             :                                   3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     726             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     727             :                                   4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
     728             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     729             :                                   5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
     730             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     731             :                                   6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
     732             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     733             :                                   7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
     734             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     735             :                                   8, WASM_GET_LOCAL(temp1), WASM_I32V(8))),
     736             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     737             :                                   9, WASM_GET_LOCAL(temp1), WASM_I32V(9))),
     738             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     739             :                                   10, WASM_GET_LOCAL(temp1), WASM_I32V(10))),
     740             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     741             :                                   11, WASM_GET_LOCAL(temp1), WASM_I32V(11))),
     742             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     743             :                                   12, WASM_GET_LOCAL(temp1), WASM_I32V(12))),
     744             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     745             :                                   13, WASM_GET_LOCAL(temp1), WASM_I32V(13))),
     746             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     747             :                                   14, WASM_GET_LOCAL(temp1), WASM_I32V(14))),
     748             :         WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_REPLACE_LANE(
     749             :                                15, WASM_GET_LOCAL(temp1), WASM_I32V(15))),
     750             :         WASM_ONE);
     751             : 
     752          12 :   r.Call();
     753         396 :   for (int8_t i = 0; i < 16; i++) {
     754         192 :     CHECK_EQ(i, ReadLittleEndianValue<int8_t>(&g[i]));
     755             :   }
     756          12 : }
     757             : 
     758             : // Use doubles to ensure exact conversion.
     759           0 : int32_t ConvertToInt(double val, bool unsigned_integer) {
     760        2760 :   if (std::isnan(val)) return 0;
     761           0 :   if (unsigned_integer) {
     762        1356 :     if (val < 0) return 0;
     763         612 :     if (val > kMaxUInt32) return kMaxUInt32;
     764         360 :     return static_cast<uint32_t>(val);
     765             :   } else {
     766        1356 :     if (val < kMinInt) return kMinInt;
     767        1116 :     if (val > kMaxInt) return kMaxInt;
     768         852 :     return static_cast<int>(val);
     769             :   }
     770             : }
     771             : 
     772             : // Tests both signed and unsigned conversion.
     773       26111 : WASM_SIMD_TEST(I32x4ConvertF32x4) {
     774          12 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     775             :   // Create two output vectors to hold signed and unsigned results.
     776             :   int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
     777             :   int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
     778             :   // Build fn to splat test value, perform conversions, and write the results.
     779             :   byte value = 0;
     780             :   byte temp1 = r.AllocateLocal(kWasmS128);
     781          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
     782             :         WASM_SET_GLOBAL(
     783             :             0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_GET_LOCAL(temp1))),
     784             :         WASM_SET_GLOBAL(
     785             :             1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_GET_LOCAL(temp1))),
     786             :         WASM_ONE);
     787             : 
     788        2772 :   FOR_FLOAT32_INPUTS(x) {
     789             :     if (!PlatformCanRepresent(x)) continue;
     790        1380 :     r.Call(x);
     791        1380 :     int32_t expected_signed = ConvertToInt(x, false);
     792             :     int32_t expected_unsigned = ConvertToInt(x, true);
     793       12420 :     for (int i = 0; i < 4; i++) {
     794        5520 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
     795        5520 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g1[i]));
     796             :     }
     797             :   }
     798          12 : }
     799             : 
     800             : // Tests both signed and unsigned conversion from I16x8 (unpacking).
     801       26111 : WASM_SIMD_TEST(I32x4ConvertI16x8) {
     802          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     803             :   // Create four output vectors to hold signed and unsigned results.
     804             :   int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
     805             :   int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
     806             :   int32_t* g2 = r.builder().AddGlobal<int32_t>(kWasmS128);
     807             :   int32_t* g3 = r.builder().AddGlobal<int32_t>(kWasmS128);
     808             :   // Build fn to splat test value, perform conversions, and write the results.
     809             :   byte value = 0;
     810             :   byte temp1 = r.AllocateLocal(kWasmS128);
     811          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
     812             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High,
     813             :                                           WASM_GET_LOCAL(temp1))),
     814             :         WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low,
     815             :                                           WASM_GET_LOCAL(temp1))),
     816             :         WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High,
     817             :                                           WASM_GET_LOCAL(temp1))),
     818             :         WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low,
     819             :                                           WASM_GET_LOCAL(temp1))),
     820             :         WASM_ONE);
     821             : 
     822         228 :   FOR_INT16_INPUTS(x) {
     823         108 :     r.Call(x);
     824             :     int32_t expected_signed = static_cast<int32_t>(Widen<int16_t>(x));
     825         108 :     int32_t expected_unsigned = static_cast<int32_t>(UnsignedWiden<int16_t>(x));
     826         972 :     for (int i = 0; i < 4; i++) {
     827         432 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
     828         432 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g1[i]));
     829         432 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g2[i]));
     830         432 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g3[i]));
     831             :     }
     832             :   }
     833          12 : }
     834             : 
     835          24 : void RunI32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     836             :                       WasmOpcode opcode, Int32UnOp expected_op) {
     837          24 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     838             :   // Global to hold output.
     839             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     840             :   // Build fn to splat test value, perform unop, and write the result.
     841             :   byte value = 0;
     842             :   byte temp1 = r.AllocateLocal(kWasmS128);
     843          24 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
     844             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
     845             :         WASM_ONE);
     846             : 
     847        2808 :   FOR_INT32_INPUTS(x) {
     848        1392 :     r.Call(x);
     849        1392 :     int32_t expected = expected_op(x);
     850       12528 :     for (int i = 0; i < 4; i++) {
     851        5568 :       CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     852             :     }
     853             :   }
     854          24 : }
     855             : 
     856       26087 : WASM_SIMD_TEST(I32x4Neg) {
     857           0 :   RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg,
     858          12 :                    base::NegateWithWraparound);
     859           0 : }
     860             : 
     861       26087 : WASM_SIMD_TEST(S128Not) {
     862          12 :   RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not, Not);
     863           0 : }
     864             : 
     865         240 : void RunI32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     866             :                        WasmOpcode opcode, Int32BinOp expected_op) {
     867         240 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
     868             :   // Global to hold output.
     869             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     870             :   // Build fn to splat test values, perform binop, and write the result.
     871             :   byte value1 = 0, value2 = 1;
     872             :   byte temp1 = r.AllocateLocal(kWasmS128);
     873             :   byte temp2 = r.AllocateLocal(kWasmS128);
     874         240 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value1))),
     875             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))),
     876             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     877             :                                            WASM_GET_LOCAL(temp2))),
     878             :         WASM_ONE);
     879             : 
     880       28080 :   FOR_INT32_INPUTS(x) {
     881     1628640 :     FOR_INT32_INPUTS(y) {
     882      807360 :       r.Call(x, y);
     883      807360 :       int32_t expected = expected_op(x, y);
     884     7266240 :       for (int i = 0; i < 4; i++) {
     885     3229440 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     886             :       }
     887             :     }
     888             :   }
     889         240 : }
     890             : 
     891       26087 : WASM_SIMD_TEST(I32x4Add) {
     892           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add,
     893          12 :                     base::AddWithWraparound);
     894           0 : }
     895             : 
     896       26087 : WASM_SIMD_TEST(I32x4Sub) {
     897           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub,
     898          12 :                     base::SubWithWraparound);
     899           0 : }
     900             : 
     901       26087 : WASM_SIMD_TEST(I32x4Mul) {
     902           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul,
     903          12 :                     base::MulWithWraparound);
     904           0 : }
     905             : 
     906       26087 : WASM_SIMD_TEST(I32x4MinS) {
     907          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum);
     908           0 : }
     909             : 
     910       26087 : WASM_SIMD_TEST(I32x4MaxS) {
     911          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum);
     912           0 : }
     913             : 
     914       26087 : WASM_SIMD_TEST(I32x4MinU) {
     915           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU,
     916          12 :                     UnsignedMinimum);
     917           0 : }
     918       26087 : WASM_SIMD_TEST(I32x4MaxU) {
     919           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU,
     920             : 
     921          12 :                     UnsignedMaximum);
     922           0 : }
     923             : 
     924       26087 : WASM_SIMD_TEST(S128And) {
     925          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And, And);
     926           0 : }
     927             : 
     928       26087 : WASM_SIMD_TEST(S128Or) {
     929          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or, Or);
     930           0 : }
     931             : 
     932       26087 : WASM_SIMD_TEST(S128Xor) {
     933          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor, Xor);
     934           0 : }
     935             : 
     936       26087 : WASM_SIMD_TEST(I32x4Eq) {
     937          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal);
     938           0 : }
     939             : 
     940       26087 : WASM_SIMD_TEST(I32x4Ne) {
     941          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual);
     942           0 : }
     943             : 
     944       26087 : WASM_SIMD_TEST(I32x4LtS) {
     945          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less);
     946           0 : }
     947             : 
     948       26087 : WASM_SIMD_TEST(I32x4LeS) {
     949          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual);
     950           0 : }
     951             : 
     952       26087 : WASM_SIMD_TEST(I32x4GtS) {
     953          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater);
     954           0 : }
     955             : 
     956       26087 : WASM_SIMD_TEST(I32x4GeS) {
     957          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual);
     958           0 : }
     959             : 
     960       26087 : WASM_SIMD_TEST(I32x4LtU) {
     961          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess);
     962           0 : }
     963             : 
     964       26087 : WASM_SIMD_TEST(I32x4LeU) {
     965           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU,
     966          12 :                     UnsignedLessEqual);
     967           0 : }
     968             : 
     969       26087 : WASM_SIMD_TEST(I32x4GtU) {
     970          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater);
     971           0 : }
     972             : 
     973       26087 : WASM_SIMD_TEST(I32x4GeU) {
     974           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU,
     975          12 :                     UnsignedGreaterEqual);
     976           0 : }
     977             : 
     978          36 : void RunI32x4ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     979             :                          WasmOpcode opcode, Int32ShiftOp expected_op) {
     980        2268 :   for (int shift = 1; shift < 32; shift++) {
     981        1116 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     982             :     int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     983             :     byte value = 0;
     984             :     byte simd1 = r.AllocateLocal(kWasmS128);
     985        1116 :     BUILD(r,
     986             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
     987             :           WASM_SET_GLOBAL(
     988             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
     989             :           WASM_ONE);
     990             : 
     991      130572 :     FOR_INT32_INPUTS(x) {
     992       64728 :       r.Call(x);
     993       64728 :       float expected = expected_op(x, shift);
     994      582552 :       for (int i = 0; i < 4; i++) {
     995      517824 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     996             :       }
     997             :     }
     998             :   }
     999          36 : }
    1000             : 
    1001       26087 : WASM_SIMD_TEST(I32x4Shl) {
    1002           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl,
    1003          12 :                       LogicalShiftLeft);
    1004           0 : }
    1005             : 
    1006       26087 : WASM_SIMD_TEST(I32x4ShrS) {
    1007           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS,
    1008          12 :                       ArithmeticShiftRight);
    1009           0 : }
    1010             : 
    1011       26087 : WASM_SIMD_TEST(I32x4ShrU) {
    1012           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU,
    1013          12 :                       LogicalShiftRight);
    1014           0 : }
    1015             : 
    1016             : // Tests both signed and unsigned conversion from I8x16 (unpacking).
    1017       26111 : WASM_SIMD_TEST(I16x8ConvertI8x16) {
    1018          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1019             :   // Create four output vectors to hold signed and unsigned results.
    1020             :   int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1021             :   int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1022             :   int16_t* g2 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1023             :   int16_t* g3 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1024             :   // Build fn to splat test value, perform conversions, and write the results.
    1025             :   byte value = 0;
    1026             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1027          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1028             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High,
    1029             :                                           WASM_GET_LOCAL(temp1))),
    1030             :         WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low,
    1031             :                                           WASM_GET_LOCAL(temp1))),
    1032             :         WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High,
    1033             :                                           WASM_GET_LOCAL(temp1))),
    1034             :         WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low,
    1035             :                                           WASM_GET_LOCAL(temp1))),
    1036             :         WASM_ONE);
    1037             : 
    1038         228 :   FOR_INT8_INPUTS(x) {
    1039         108 :     r.Call(x);
    1040             :     int16_t expected_signed = static_cast<int16_t>(Widen<int8_t>(x));
    1041             :     int16_t expected_unsigned = static_cast<int16_t>(UnsignedWiden<int8_t>(x));
    1042        1836 :     for (int i = 0; i < 8; i++) {
    1043         864 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
    1044         864 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g1[i]));
    1045         864 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g2[i]));
    1046         864 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g3[i]));
    1047             :     }
    1048             :   }
    1049          12 : }
    1050             : 
    1051             : // Tests both signed and unsigned conversion from I32x4 (packing).
    1052       26111 : WASM_SIMD_TEST(I16x8ConvertI32x4) {
    1053          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1054             :   // Create output vectors to hold signed and unsigned results.
    1055             :   int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1056             :   int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1057             :   // Build fn to splat test value, perform conversions, and write the results.
    1058             :   byte value = 0;
    1059             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1060          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
    1061             :         WASM_SET_GLOBAL(
    1062             :             0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_GET_LOCAL(temp1),
    1063             :                                WASM_GET_LOCAL(temp1))),
    1064             :         WASM_SET_GLOBAL(
    1065             :             1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_GET_LOCAL(temp1),
    1066             :                                WASM_GET_LOCAL(temp1))),
    1067             :         WASM_ONE);
    1068             : 
    1069        1404 :   FOR_INT32_INPUTS(x) {
    1070         696 :     r.Call(x);
    1071         696 :     int16_t expected_signed = Narrow<int16_t>(x);
    1072             :     int16_t expected_unsigned = UnsignedNarrow<int16_t>(x);
    1073       11832 :     for (int i = 0; i < 8; i++) {
    1074        5568 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
    1075        5568 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g1[i]));
    1076             :     }
    1077             :   }
    1078          12 : }
    1079             : 
    1080          12 : void RunI16x8UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1081             :                       WasmOpcode opcode, Int16UnOp expected_op) {
    1082          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1083             :   // Global to hold output.
    1084             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1085             :   // Build fn to splat test value, perform unop, and write the result.
    1086             :   byte value = 0;
    1087             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1088          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1089             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
    1090             :         WASM_ONE);
    1091             : 
    1092         228 :   FOR_INT16_INPUTS(x) {
    1093         108 :     r.Call(x);
    1094         108 :     int16_t expected = expected_op(x);
    1095        1836 :     for (int i = 0; i < 8; i++) {
    1096         864 :       CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1097             :     }
    1098             :   }
    1099          12 : }
    1100             : 
    1101       26087 : WASM_SIMD_TEST(I16x8Neg) {
    1102           0 :   RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg,
    1103          12 :                    base::NegateWithWraparound);
    1104           0 : }
    1105             : 
    1106         252 : void RunI16x8BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1107             :                        WasmOpcode opcode, Int16BinOp expected_op) {
    1108         252 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    1109             :   // Global to hold output.
    1110             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1111             :   // Build fn to splat test values, perform binop, and write the result.
    1112             :   byte value1 = 0, value2 = 1;
    1113             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1114             :   byte temp2 = r.AllocateLocal(kWasmS128);
    1115         252 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
    1116             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
    1117             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    1118             :                                            WASM_GET_LOCAL(temp2))),
    1119             :         WASM_ONE);
    1120             : 
    1121        4788 :   FOR_INT16_INPUTS(x) {
    1122       43092 :     FOR_INT16_INPUTS(y) {
    1123       20412 :       r.Call(x, y);
    1124       20412 :       int16_t expected = expected_op(x, y);
    1125      347004 :       for (int i = 0; i < 8; i++) {
    1126      163296 :         CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1127             :       }
    1128             :     }
    1129             :   }
    1130         252 : }
    1131             : 
    1132       26087 : WASM_SIMD_TEST(I16x8Add) {
    1133           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add,
    1134          12 :                     base::AddWithWraparound);
    1135           0 : }
    1136             : 
    1137       26087 : WASM_SIMD_TEST(I16x8AddSaturateS) {
    1138           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateS,
    1139          12 :                     AddSaturate);
    1140           0 : }
    1141             : 
    1142       26087 : WASM_SIMD_TEST(I16x8Sub) {
    1143           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub,
    1144          12 :                     base::SubWithWraparound);
    1145           0 : }
    1146             : 
    1147       26087 : WASM_SIMD_TEST(I16x8SubSaturateS) {
    1148           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateS,
    1149          12 :                     SubSaturate);
    1150           0 : }
    1151             : 
    1152       26087 : WASM_SIMD_TEST(I16x8Mul) {
    1153           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul,
    1154          12 :                     base::MulWithWraparound);
    1155           0 : }
    1156             : 
    1157       26087 : WASM_SIMD_TEST(I16x8MinS) {
    1158          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum);
    1159           0 : }
    1160             : 
    1161       26087 : WASM_SIMD_TEST(I16x8MaxS) {
    1162          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum);
    1163           0 : }
    1164             : 
    1165       26087 : WASM_SIMD_TEST(I16x8AddSaturateU) {
    1166           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateU,
    1167          12 :                     UnsignedAddSaturate);
    1168           0 : }
    1169             : 
    1170       26087 : WASM_SIMD_TEST(I16x8SubSaturateU) {
    1171           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateU,
    1172          12 :                     UnsignedSubSaturate);
    1173           0 : }
    1174             : 
    1175       26087 : WASM_SIMD_TEST(I16x8MinU) {
    1176           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU,
    1177          12 :                     UnsignedMinimum);
    1178           0 : }
    1179             : 
    1180       26087 : WASM_SIMD_TEST(I16x8MaxU) {
    1181           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU,
    1182          12 :                     UnsignedMaximum);
    1183           0 : }
    1184             : 
    1185       26087 : WASM_SIMD_TEST(I16x8Eq) {
    1186          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal);
    1187           0 : }
    1188             : 
    1189       26087 : WASM_SIMD_TEST(I16x8Ne) {
    1190          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual);
    1191           0 : }
    1192             : 
    1193       26087 : WASM_SIMD_TEST(I16x8LtS) {
    1194          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less);
    1195           0 : }
    1196             : 
    1197       26087 : WASM_SIMD_TEST(I16x8LeS) {
    1198          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual);
    1199           0 : }
    1200             : 
    1201       26087 : WASM_SIMD_TEST(I16x8GtS) {
    1202          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater);
    1203           0 : }
    1204             : 
    1205       26087 : WASM_SIMD_TEST(I16x8GeS) {
    1206          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual);
    1207           0 : }
    1208             : 
    1209       26087 : WASM_SIMD_TEST(I16x8GtU) {
    1210          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater);
    1211           0 : }
    1212             : 
    1213       26087 : WASM_SIMD_TEST(I16x8GeU) {
    1214           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU,
    1215          12 :                     UnsignedGreaterEqual);
    1216           0 : }
    1217             : 
    1218       26087 : WASM_SIMD_TEST(I16x8LtU) {
    1219          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess);
    1220           0 : }
    1221             : 
    1222       26087 : WASM_SIMD_TEST(I16x8LeU) {
    1223           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU,
    1224          12 :                     UnsignedLessEqual);
    1225           0 : }
    1226             : 
    1227          36 : void RunI16x8ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1228             :                          WasmOpcode opcode, Int16ShiftOp expected_op) {
    1229        1116 :   for (int shift = 1; shift < 16; shift++) {
    1230         540 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1231             :     int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1232             :     byte value = 0;
    1233             :     byte simd1 = r.AllocateLocal(kWasmS128);
    1234         540 :     BUILD(r,
    1235             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1236             :           WASM_SET_GLOBAL(
    1237             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
    1238             :           WASM_ONE);
    1239             : 
    1240       10260 :     FOR_INT16_INPUTS(x) {
    1241        4860 :       r.Call(x);
    1242        4860 :       float expected = expected_op(x, shift);
    1243       82620 :       for (int i = 0; i < 8; i++) {
    1244       77760 :         CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1245             :       }
    1246             :     }
    1247             :   }
    1248          36 : }
    1249             : 
    1250       26087 : WASM_SIMD_TEST(I16x8Shl) {
    1251           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl,
    1252          12 :                       LogicalShiftLeft);
    1253           0 : }
    1254             : 
    1255       26087 : WASM_SIMD_TEST(I16x8ShrS) {
    1256           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS,
    1257          12 :                       ArithmeticShiftRight);
    1258           0 : }
    1259             : 
    1260       26087 : WASM_SIMD_TEST(I16x8ShrU) {
    1261           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU,
    1262          12 :                       LogicalShiftRight);
    1263           0 : }
    1264             : 
    1265          12 : void RunI8x16UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1266             :                       WasmOpcode opcode, Int8UnOp expected_op) {
    1267          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1268             :   // Global to hold output.
    1269             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1270             :   // Build fn to splat test value, perform unop, and write the result.
    1271             :   byte value = 0;
    1272             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1273          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1274             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
    1275             :         WASM_ONE);
    1276             : 
    1277         228 :   FOR_INT8_INPUTS(x) {
    1278         108 :     r.Call(x);
    1279         108 :     int8_t expected = expected_op(x);
    1280        3564 :     for (int i = 0; i < 16; i++) {
    1281        1728 :       CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1282             :     }
    1283             :   }
    1284          12 : }
    1285             : 
    1286       26087 : WASM_SIMD_TEST(I8x16Neg) {
    1287           0 :   RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg,
    1288          12 :                    base::NegateWithWraparound);
    1289           0 : }
    1290             : 
    1291             : // Tests both signed and unsigned conversion from I16x8 (packing).
    1292       26111 : WASM_SIMD_TEST(I8x16ConvertI16x8) {
    1293          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1294             :   // Create output vectors to hold signed and unsigned results.
    1295             :   int8_t* g0 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1296             :   int8_t* g1 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1297             :   // Build fn to splat test value, perform conversions, and write the results.
    1298             :   byte value = 0;
    1299             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1300          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1301             :         WASM_SET_GLOBAL(
    1302             :             0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_GET_LOCAL(temp1),
    1303             :                                WASM_GET_LOCAL(temp1))),
    1304             :         WASM_SET_GLOBAL(
    1305             :             1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_GET_LOCAL(temp1),
    1306             :                                WASM_GET_LOCAL(temp1))),
    1307             :         WASM_ONE);
    1308             : 
    1309         228 :   FOR_INT16_INPUTS(x) {
    1310         108 :     r.Call(x);
    1311         108 :     int8_t expected_signed = Narrow<int8_t>(x);
    1312             :     int8_t expected_unsigned = UnsignedNarrow<int8_t>(x);
    1313        3564 :     for (int i = 0; i < 16; i++) {
    1314        1728 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int8_t>(&g0[i]));
    1315        1728 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int8_t>(&g1[i]));
    1316             :     }
    1317             :   }
    1318          12 : }
    1319             : 
    1320         252 : void RunI8x16BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1321             :                        WasmOpcode opcode, Int8BinOp expected_op) {
    1322         252 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    1323             :   // Global to hold output.
    1324             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1325             :   // Build fn to splat test values, perform binop, and write the result.
    1326             :   byte value1 = 0, value2 = 1;
    1327             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1328             :   byte temp2 = r.AllocateLocal(kWasmS128);
    1329         252 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))),
    1330             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value2))),
    1331             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    1332             :                                            WASM_GET_LOCAL(temp2))),
    1333             :         WASM_ONE);
    1334             : 
    1335        4788 :   FOR_INT8_INPUTS(x) {
    1336       43092 :     FOR_INT8_INPUTS(y) {
    1337       20412 :       r.Call(x, y);
    1338       20412 :       int8_t expected = expected_op(x, y);
    1339      673596 :       for (int i = 0; i < 16; i++) {
    1340      326592 :         CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1341             :       }
    1342             :     }
    1343             :   }
    1344         252 : }
    1345             : 
    1346       26087 : WASM_SIMD_TEST(I8x16Add) {
    1347           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add,
    1348          12 :                     base::AddWithWraparound);
    1349           0 : }
    1350             : 
    1351       26087 : WASM_SIMD_TEST(I8x16AddSaturateS) {
    1352           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateS,
    1353          12 :                     AddSaturate);
    1354           0 : }
    1355             : 
    1356       26087 : WASM_SIMD_TEST(I8x16Sub) {
    1357           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub,
    1358          12 :                     base::SubWithWraparound);
    1359           0 : }
    1360             : 
    1361       26087 : WASM_SIMD_TEST(I8x16SubSaturateS) {
    1362           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateS,
    1363          12 :                     SubSaturate);
    1364           0 : }
    1365             : 
    1366       26087 : WASM_SIMD_TEST(I8x16MinS) {
    1367          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum);
    1368           0 : }
    1369             : 
    1370       26087 : WASM_SIMD_TEST(I8x16MaxS) {
    1371          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum);
    1372           0 : }
    1373             : 
    1374       26087 : WASM_SIMD_TEST(I8x16AddSaturateU) {
    1375           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateU,
    1376          12 :                     UnsignedAddSaturate);
    1377           0 : }
    1378             : 
    1379       26087 : WASM_SIMD_TEST(I8x16SubSaturateU) {
    1380           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateU,
    1381          12 :                     UnsignedSubSaturate);
    1382           0 : }
    1383             : 
    1384       26087 : WASM_SIMD_TEST(I8x16MinU) {
    1385           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU,
    1386          12 :                     UnsignedMinimum);
    1387           0 : }
    1388             : 
    1389       26087 : WASM_SIMD_TEST(I8x16MaxU) {
    1390           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU,
    1391          12 :                     UnsignedMaximum);
    1392           0 : }
    1393             : 
    1394       26087 : WASM_SIMD_TEST(I8x16Eq) {
    1395          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal);
    1396           0 : }
    1397             : 
    1398       26087 : WASM_SIMD_TEST(I8x16Ne) {
    1399          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual);
    1400           0 : }
    1401             : 
    1402       26087 : WASM_SIMD_TEST(I8x16GtS) {
    1403          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater);
    1404           0 : }
    1405             : 
    1406       26087 : WASM_SIMD_TEST(I8x16GeS) {
    1407          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual);
    1408           0 : }
    1409             : 
    1410       26087 : WASM_SIMD_TEST(I8x16LtS) {
    1411          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less);
    1412           0 : }
    1413             : 
    1414       26087 : WASM_SIMD_TEST(I8x16LeS) {
    1415          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual);
    1416           0 : }
    1417             : 
    1418       26087 : WASM_SIMD_TEST(I8x16GtU) {
    1419          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater);
    1420           0 : }
    1421             : 
    1422       26087 : WASM_SIMD_TEST(I8x16GeU) {
    1423           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU,
    1424          12 :                     UnsignedGreaterEqual);
    1425           0 : }
    1426             : 
    1427       26087 : WASM_SIMD_TEST(I8x16LtU) {
    1428          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess);
    1429           0 : }
    1430             : 
    1431       26087 : WASM_SIMD_TEST(I8x16LeU) {
    1432           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU,
    1433          12 :                     UnsignedLessEqual);
    1434           0 : }
    1435             : 
    1436       26087 : WASM_SIMD_TEST(I8x16Mul) {
    1437           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul,
    1438          12 :                     base::MulWithWraparound);
    1439           0 : }
    1440             : 
    1441          36 : void RunI8x16ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1442             :                          WasmOpcode opcode, Int8ShiftOp expected_op) {
    1443         540 :   for (int shift = 1; shift < 8; shift++) {
    1444         252 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1445             :     int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1446             :     byte value = 0;
    1447             :     byte simd1 = r.AllocateLocal(kWasmS128);
    1448         252 :     BUILD(r,
    1449             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1450             :           WASM_SET_GLOBAL(
    1451             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
    1452             :           WASM_ONE);
    1453             : 
    1454        4788 :     FOR_INT8_INPUTS(x) {
    1455        2268 :       r.Call(x);
    1456        2268 :       float expected = expected_op(x, shift);
    1457       74844 :       for (int i = 0; i < 16; i++) {
    1458       72576 :         CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1459             :       }
    1460             :     }
    1461             :   }
    1462          36 : }
    1463             : 
    1464       26087 : WASM_SIMD_TEST(I8x16Shl) {
    1465           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl,
    1466          12 :                       LogicalShiftLeft);
    1467           0 : }
    1468             : 
    1469       26087 : WASM_SIMD_TEST(I8x16ShrS) {
    1470           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS,
    1471          12 :                       ArithmeticShiftRight);
    1472           0 : }
    1473             : 
    1474       26087 : WASM_SIMD_TEST(I8x16ShrU) {
    1475           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU,
    1476          12 :                       LogicalShiftRight);
    1477           0 : }
    1478             : 
    1479             : // Test Select by making a mask where the 0th and 3rd lanes are true and the
    1480             : // rest false, and comparing for non-equality with zero to convert to a boolean
    1481             : // vector.
    1482             : #define WASM_SIMD_SELECT_TEST(format)                                        \
    1483             :   WASM_SIMD_TEST_TURBOFAN(S##format##Select) {                               \
    1484             :     WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);     \
    1485             :     byte val1 = 0;                                                           \
    1486             :     byte val2 = 1;                                                           \
    1487             :     byte src1 = r.AllocateLocal(kWasmS128);                                  \
    1488             :     byte src2 = r.AllocateLocal(kWasmS128);                                  \
    1489             :     byte zero = r.AllocateLocal(kWasmS128);                                  \
    1490             :     byte mask = r.AllocateLocal(kWasmS128);                                  \
    1491             :     BUILD(r,                                                                 \
    1492             :           WASM_SET_LOCAL(src1,                                               \
    1493             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
    1494             :           WASM_SET_LOCAL(src2,                                               \
    1495             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
    1496             :           WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),      \
    1497             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(           \
    1498             :                                    1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \
    1499             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(           \
    1500             :                                    2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \
    1501             :           WASM_SET_LOCAL(                                                    \
    1502             :               mask,                                                          \
    1503             :               WASM_SIMD_SELECT(                                              \
    1504             :                   format, WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2),        \
    1505             :                   WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(mask),  \
    1506             :                                   WASM_GET_LOCAL(zero)))),                   \
    1507             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0),               \
    1508             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 1),               \
    1509             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 2),               \
    1510             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE);    \
    1511             :                                                                              \
    1512             :     CHECK_EQ(1, r.Call(0x12, 0x34));                                         \
    1513             :   }
    1514             : 
    1515       26083 : WASM_SIMD_SELECT_TEST(32x4)
    1516       26083 : WASM_SIMD_SELECT_TEST(16x8)
    1517       26083 : WASM_SIMD_SELECT_TEST(8x16)
    1518             : 
    1519             : // Test Select by making a mask where the 0th and 3rd lanes are non-zero and the
    1520             : // rest 0. The mask is not the result of a comparison op.
    1521             : #define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format)                           \
    1522             :   WASM_SIMD_TEST_TURBOFAN(S##format##NonCanonicalSelect) {                    \
    1523             :     WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier,          \
    1524             :                                                      lower_simd);             \
    1525             :     byte val1 = 0;                                                            \
    1526             :     byte val2 = 1;                                                            \
    1527             :     byte combined = 2;                                                        \
    1528             :     byte src1 = r.AllocateLocal(kWasmS128);                                   \
    1529             :     byte src2 = r.AllocateLocal(kWasmS128);                                   \
    1530             :     byte zero = r.AllocateLocal(kWasmS128);                                   \
    1531             :     byte mask = r.AllocateLocal(kWasmS128);                                   \
    1532             :     BUILD(r,                                                                  \
    1533             :           WASM_SET_LOCAL(src1,                                                \
    1534             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))),  \
    1535             :           WASM_SET_LOCAL(src2,                                                \
    1536             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))),  \
    1537             :           WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),       \
    1538             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(            \
    1539             :                                    1, WASM_GET_LOCAL(zero), WASM_I32V(0xF))), \
    1540             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(            \
    1541             :                                    2, WASM_GET_LOCAL(mask), WASM_I32V(0xF))), \
    1542             :           WASM_SET_LOCAL(mask, WASM_SIMD_SELECT(format, WASM_GET_LOCAL(src1), \
    1543             :                                                 WASM_GET_LOCAL(src2),         \
    1544             :                                                 WASM_GET_LOCAL(mask))),       \
    1545             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0),                \
    1546             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 1),            \
    1547             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 2),            \
    1548             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE);     \
    1549             :                                                                               \
    1550             :     CHECK_EQ(1, r.Call(0x12, 0x34, 0x32));                                    \
    1551             :   }
    1552             : 
    1553       26083 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4)
    1554       26083 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8)
    1555       26083 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16)
    1556             : 
    1557             : // Test binary ops with two lane test patterns, all lanes distinct.
    1558             : template <typename T>
    1559        7764 : void RunBinaryLaneOpTest(
    1560             :     ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op,
    1561             :     const std::array<T, kSimd128Size / sizeof(T)>& expected) {
    1562        7764 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1563             :   // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
    1564             :   T* src0 = r.builder().AddGlobal<T>(kWasmS128);
    1565             :   T* src1 = r.builder().AddGlobal<T>(kWasmS128);
    1566             :   static const int kElems = kSimd128Size / sizeof(T);
    1567      255444 :   for (int i = 0; i < kElems; i++) {
    1568      123840 :     WriteLittleEndianValue<T>(&src0[i], i);
    1569      123840 :     WriteLittleEndianValue<T>(&src1[i], kElems + i);
    1570             :   }
    1571        7764 :   if (simd_op == kExprS8x16Shuffle) {
    1572        7728 :     BUILD(r,
    1573             :           WASM_SET_GLOBAL(0, WASM_SIMD_S8x16_SHUFFLE_OP(simd_op, expected,
    1574             :                                                         WASM_GET_GLOBAL(0),
    1575             :                                                         WASM_GET_GLOBAL(1))),
    1576             :           WASM_ONE);
    1577             :   } else {
    1578          36 :     BUILD(r,
    1579             :           WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0),
    1580             :                                              WASM_GET_GLOBAL(1))),
    1581             :           WASM_ONE);
    1582             :   }
    1583             : 
    1584        7764 :   CHECK_EQ(1, r.Call());
    1585      255444 :   for (size_t i = 0; i < expected.size(); i++) {
    1586      123840 :     CHECK_EQ(ReadLittleEndianValue<T>(&src0[i]), expected[i]);
    1587             :   }
    1588        7764 : }
    1589             : 
    1590       26087 : WASM_SIMD_TEST(I32x4AddHoriz) {
    1591             :   // Inputs are [0 1 2 3] and [4 5 6 7].
    1592          24 :   RunBinaryLaneOpTest<int32_t>(execution_tier, lower_simd, kExprI32x4AddHoriz,
    1593          12 :                                {{1, 5, 9, 13}});
    1594           0 : }
    1595             : 
    1596       26111 : WASM_SIMD_TEST(I16x8AddHoriz) {
    1597             :   // Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15].
    1598          24 :   RunBinaryLaneOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8AddHoriz,
    1599          12 :                                {{1, 5, 9, 13, 17, 21, 25, 29}});
    1600          12 : }
    1601             : 
    1602       26087 : WASM_SIMD_TEST(F32x4AddHoriz) {
    1603             :   // Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f].
    1604          24 :   RunBinaryLaneOpTest<float>(execution_tier, lower_simd, kExprF32x4AddHoriz,
    1605          12 :                              {{1.0f, 5.0f, 9.0f, 13.0f}});
    1606           0 : }
    1607             : 
    1608             : // Test shuffle ops.
    1609        1932 : void RunShuffleOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1610             :                       WasmOpcode simd_op,
    1611             :                       const std::array<int8_t, kSimd128Size>& shuffle) {
    1612             :   // Test the original shuffle.
    1613        1932 :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, shuffle);
    1614             : 
    1615             :   // Test a non-canonical (inputs reversed) version of the shuffle.
    1616        1932 :   std::array<int8_t, kSimd128Size> other_shuffle(shuffle);
    1617       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size;
    1618             :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
    1619        1932 :                               other_shuffle);
    1620             : 
    1621             :   // Test the swizzle (one-operand) version of the shuffle.
    1622        1932 :   std::array<int8_t, kSimd128Size> swizzle(shuffle);
    1623       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1);
    1624        1932 :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, swizzle);
    1625             : 
    1626             :   // Test the non-canonical swizzle (one-operand) version of the shuffle.
    1627        1932 :   std::array<int8_t, kSimd128Size> other_swizzle(shuffle);
    1628       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size;
    1629             :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
    1630        1932 :                               other_swizzle);
    1631        1932 : }
    1632             : 
    1633             : #define SHUFFLE_LIST(V)  \
    1634             :   V(S128Identity)        \
    1635             :   V(S32x4Dup)            \
    1636             :   V(S32x4ZipLeft)        \
    1637             :   V(S32x4ZipRight)       \
    1638             :   V(S32x4UnzipLeft)      \
    1639             :   V(S32x4UnzipRight)     \
    1640             :   V(S32x4TransposeLeft)  \
    1641             :   V(S32x4TransposeRight) \
    1642             :   V(S32x2Reverse)        \
    1643             :   V(S32x4Irregular)      \
    1644             :   V(S16x8Dup)            \
    1645             :   V(S16x8ZipLeft)        \
    1646             :   V(S16x8ZipRight)       \
    1647             :   V(S16x8UnzipLeft)      \
    1648             :   V(S16x8UnzipRight)     \
    1649             :   V(S16x8TransposeLeft)  \
    1650             :   V(S16x8TransposeRight) \
    1651             :   V(S16x4Reverse)        \
    1652             :   V(S16x2Reverse)        \
    1653             :   V(S16x8Irregular)      \
    1654             :   V(S8x16Dup)            \
    1655             :   V(S8x16ZipLeft)        \
    1656             :   V(S8x16ZipRight)       \
    1657             :   V(S8x16UnzipLeft)      \
    1658             :   V(S8x16UnzipRight)     \
    1659             :   V(S8x16TransposeLeft)  \
    1660             :   V(S8x16TransposeRight) \
    1661             :   V(S8x8Reverse)         \
    1662             :   V(S8x4Reverse)         \
    1663             :   V(S8x2Reverse)         \
    1664             :   V(S8x16Irregular)
    1665             : 
    1666             : enum ShuffleKey {
    1667             : #define SHUFFLE_ENUM_VALUE(Name) k##Name,
    1668             :   SHUFFLE_LIST(SHUFFLE_ENUM_VALUE)
    1669             : #undef SHUFFLE_ENUM_VALUE
    1670             :       kNumShuffleKeys
    1671             : };
    1672             : 
    1673             : using Shuffle = std::array<int8_t, kSimd128Size>;
    1674             : using ShuffleMap = std::map<ShuffleKey, const Shuffle>;
    1675             : 
    1676       26063 : ShuffleMap test_shuffles = {
    1677             :     {kS128Identity,
    1678             :      {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}},
    1679             :     {kS32x4Dup,
    1680             :      {{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}},
    1681             :     {kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}},
    1682             :     {kS32x4ZipRight,
    1683             :      {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}},
    1684             :     {kS32x4UnzipLeft,
    1685             :      {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}},
    1686             :     {kS32x4UnzipRight,
    1687             :      {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}},
    1688             :     {kS32x4TransposeLeft,
    1689             :      {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}},
    1690             :     {kS32x4TransposeRight,
    1691             :      {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}},
    1692             :     {kS32x2Reverse,  // swizzle only
    1693             :      {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}},
    1694             :     {kS32x4Irregular,
    1695             :      {{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}},
    1696             :     {kS16x8Dup,
    1697             :      {{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}},
    1698             :     {kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}},
    1699             :     {kS16x8ZipRight,
    1700             :      {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}},
    1701             :     {kS16x8UnzipLeft,
    1702             :      {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}},
    1703             :     {kS16x8UnzipRight,
    1704             :      {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}},
    1705             :     {kS16x8TransposeLeft,
    1706             :      {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}},
    1707             :     {kS16x8TransposeRight,
    1708             :      {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}},
    1709             :     {kS16x4Reverse,  // swizzle only
    1710             :      {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}},
    1711             :     {kS16x2Reverse,  // swizzle only
    1712             :      {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}},
    1713             :     {kS16x8Irregular,
    1714             :      {{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}},
    1715             :     {kS8x16Dup,
    1716             :      {{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}},
    1717             :     {kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
    1718             :     {kS8x16ZipRight,
    1719             :      {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}},
    1720             :     {kS8x16UnzipLeft,
    1721             :      {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}},
    1722             :     {kS8x16UnzipRight,
    1723             :      {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}},
    1724             :     {kS8x16TransposeLeft,
    1725             :      {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}},
    1726             :     {kS8x16TransposeRight,
    1727             :      {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}},
    1728             :     {kS8x8Reverse,  // swizzle only
    1729             :      {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}},
    1730             :     {kS8x4Reverse,  // swizzle only
    1731             :      {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}},
    1732             :     {kS8x2Reverse,  // swizzle only
    1733             :      {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}},
    1734             :     {kS8x16Irregular,
    1735             :      {{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
    1736             : };
    1737             : 
    1738             : #define SHUFFLE_TEST(Name)                                          \
    1739             :   WASM_SIMD_TEST(Name) {                                            \
    1740             :     ShuffleMap::const_iterator it = test_shuffles.find(k##Name);    \
    1741             :     DCHECK_NE(it, test_shuffles.end());                             \
    1742             :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, \
    1743             :                      it->second);                                   \
    1744             :   }
    1745       27923 : SHUFFLE_LIST(SHUFFLE_TEST)
    1746             : #undef SHUFFLE_TEST
    1747             : #undef SHUFFLE_LIST
    1748             : 
    1749             : // Test shuffles that blend the two vectors (elements remain in their lanes.)
    1750       26111 : WASM_SIMD_TEST(S8x16Blend) {
    1751             :   std::array<int8_t, kSimd128Size> expected;
    1752         372 :   for (int bias = 1; bias < kSimd128Size; bias++) {
    1753        1620 :     for (int i = 0; i < bias; i++) expected[i] = i;
    1754        1620 :     for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size;
    1755         180 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected);
    1756             :   }
    1757          12 : }
    1758             : 
    1759             : // Test shuffles that concatenate the two vectors.
    1760       26111 : WASM_SIMD_TEST(S8x16Concat) {
    1761             :   std::array<int8_t, kSimd128Size> expected;
    1762             :   // n is offset or bias of concatenation.
    1763         372 :   for (int n = 1; n < kSimd128Size; ++n) {
    1764             :     int i = 0;
    1765             :     // last kLanes - n bytes of first vector.
    1766        3060 :     for (int j = n; j < kSimd128Size; ++j) {
    1767        1440 :       expected[i++] = j;
    1768             :     }
    1769             :     // first n bytes of second vector
    1770        3060 :     for (int j = 0; j < n; ++j) {
    1771        1440 :       expected[i++] = j + kSimd128Size;
    1772             :     }
    1773         180 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected);
    1774             :   }
    1775          12 : }
    1776             : 
    1777             : // Combine 3 shuffles a, b, and c by applying both a and b and then applying c
    1778             : // to those two results.
    1779           0 : Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) {
    1780             :   Shuffle result;
    1781       39600 :   for (int i = 0; i < kSimd128Size; ++i) {
    1782       19200 :     result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size];
    1783             :   }
    1784        1200 :   return result;
    1785             : }
    1786             : 
    1787       13248 : const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) {
    1788       13248 :   return test_shuffles[static_cast<ShuffleKey>(rng->NextInt(kNumShuffleKeys))];
    1789             : }
    1790             : 
    1791             : // Test shuffles that are random combinations of 3 test shuffles. Completely
    1792             : // random shuffles almost always generate the slow general shuffle code, so
    1793             : // don't exercise as many code paths.
    1794       26111 : WASM_SIMD_TEST(S8x16ShuffleFuzz) {
    1795          12 :   v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
    1796             :   static const int kTests = 100;
    1797        2412 :   for (int i = 0; i < kTests; ++i) {
    1798        1200 :     auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng),
    1799        2400 :                            GetRandomTestShuffle(rng));
    1800        1200 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, shuffle);
    1801             :   }
    1802          12 : }
    1803             : 
    1804        9648 : void AppendShuffle(const Shuffle& shuffle, std::vector<byte>* buffer) {
    1805        9648 :   byte opcode[] = {WASM_SIMD_OP(kExprS8x16Shuffle)};
    1806       28944 :   for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]);
    1807      318384 :   for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i]));
    1808        9648 : }
    1809             : 
    1810         800 : void BuildShuffle(std::vector<Shuffle>& shuffles, std::vector<byte>* buffer) {
    1811             :   // Perform the leaf shuffles on globals 0 and 1.
    1812         800 :   size_t row_index = (shuffles.size() - 1) / 2;
    1813       11248 :   for (size_t i = row_index; i < shuffles.size(); ++i) {
    1814        5224 :     byte operands[] = {WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1)};
    1815       47016 :     for (size_t j = 0; j < arraysize(operands); ++j)
    1816       20896 :       buffer->push_back(operands[j]);
    1817        5224 :     AppendShuffle(shuffles[i], buffer);
    1818             :   }
    1819             :   // Now perform inner shuffles in the correct order on operands on the stack.
    1820             :   do {
    1821        6712 :     for (size_t i = row_index / 2; i < row_index; ++i) {
    1822        4424 :       AppendShuffle(shuffles[i], buffer);
    1823             :     }
    1824             :     row_index /= 2;
    1825        2288 :   } while (row_index != 0);
    1826         800 :   byte epilog[] = {kExprSetGlobal, static_cast<byte>(0), WASM_ONE};
    1827        4000 :   for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]);
    1828         800 : }
    1829             : 
    1830        1600 : void RunWasmCode(ExecutionTier execution_tier, LowerSimd lower_simd,
    1831             :                  const std::vector<byte>& code,
    1832             :                  std::array<int8_t, kSimd128Size>* result) {
    1833        1600 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1834             :   // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
    1835             :   int8_t* src0 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1836             :   int8_t* src1 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1837       52800 :   for (int i = 0; i < kSimd128Size; ++i) {
    1838       25600 :     WriteLittleEndianValue<int8_t>(&src0[i], i);
    1839       25600 :     WriteLittleEndianValue<int8_t>(&src1[i], kSimd128Size + i);
    1840             :   }
    1841        1600 :   r.Build(code.data(), code.data() + code.size());
    1842        1600 :   CHECK_EQ(1, r.Call());
    1843       52800 :   for (size_t i = 0; i < kSimd128Size; i++) {
    1844       25600 :     (*result)[i] = ReadLittleEndianValue<int8_t>(&src0[i]);
    1845             :   }
    1846        1600 : }
    1847             : 
    1848             : // Test multiple shuffles executed in sequence.
    1849       26095 : WASM_SIMD_COMPILED_TEST(S8x16MultiShuffleFuzz) {
    1850           8 :   v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
    1851             :   static const int kShuffles = 100;
    1852        1608 :   for (int i = 0; i < kShuffles; ++i) {
    1853             :     // Create an odd number in [3..23] of random test shuffles so we can build
    1854             :     // a complete binary tree (stored as a heap) of shuffle operations. The leaf
    1855             :     // shuffles operate on the test pattern inputs, while the interior shuffles
    1856             :     // operate on the results of the two child shuffles.
    1857         800 :     int num_shuffles = rng->NextInt(10) * 2 + 3;
    1858             :     std::vector<Shuffle> shuffles;
    1859       20096 :     for (int j = 0; j < num_shuffles; ++j) {
    1860        9648 :       shuffles.push_back(GetRandomTestShuffle(rng));
    1861             :     }
    1862             :     // Generate the code for the shuffle expression.
    1863             :     std::vector<byte> buffer;
    1864         800 :     BuildShuffle(shuffles, &buffer);
    1865             : 
    1866             :     // Run the code using the interpreter to get the expected result.
    1867             :     std::array<int8_t, kSimd128Size> expected;
    1868         800 :     RunWasmCode(ExecutionTier::kInterpreter, kNoLowerSimd, buffer, &expected);
    1869             :     // Run the SIMD or scalar lowered compiled code and compare results.
    1870             :     std::array<int8_t, kSimd128Size> result;
    1871         800 :     RunWasmCode(execution_tier, lower_simd, buffer, &result);
    1872       26400 :     for (size_t i = 0; i < kSimd128Size; ++i) {
    1873       12800 :       CHECK_EQ(result[i], expected[i]);
    1874             :     }
    1875             :   }
    1876           8 : }
    1877             : 
    1878             : // Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer
    1879             : // result. Use relational ops on numeric vectors to create the boolean vector
    1880             : // test inputs. Test inputs with all true, all false, one true, and one false.
    1881             : #define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes)                           \
    1882             :   WASM_SIMD_TEST(ReductionTest##lanes) {                                       \
    1883             :     WasmRunner<int32_t> r(execution_tier, lower_simd);                         \
    1884             :     byte zero = r.AllocateLocal(kWasmS128);                                    \
    1885             :     byte one_one = r.AllocateLocal(kWasmS128);                                 \
    1886             :     byte reduced = r.AllocateLocal(kWasmI32);                                  \
    1887             :     BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),     \
    1888             :           WASM_SET_LOCAL(                                                      \
    1889             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1890             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1891             :                                                       WASM_GET_LOCAL(zero),    \
    1892             :                                                       WASM_GET_LOCAL(zero)))), \
    1893             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1894             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1895             :           WASM_SET_LOCAL(                                                      \
    1896             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1897             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1898             :                                                       WASM_GET_LOCAL(zero),    \
    1899             :                                                       WASM_GET_LOCAL(zero)))), \
    1900             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1901             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1902             :           WASM_SET_LOCAL(                                                      \
    1903             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1904             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1905             :                                                       WASM_GET_LOCAL(zero),    \
    1906             :                                                       WASM_GET_LOCAL(zero)))), \
    1907             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1908             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1909             :           WASM_SET_LOCAL(                                                      \
    1910             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1911             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1912             :                                                       WASM_GET_LOCAL(zero),    \
    1913             :                                                       WASM_GET_LOCAL(zero)))), \
    1914             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1915             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1916             :           WASM_SET_LOCAL(one_one,                                              \
    1917             :                          WASM_SIMD_I##format##_REPLACE_LANE(                   \
    1918             :                              lanes - 1, WASM_GET_LOCAL(zero), WASM_ONE)),      \
    1919             :           WASM_SET_LOCAL(                                                      \
    1920             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1921             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1922             :                                                       WASM_GET_LOCAL(one_one), \
    1923             :                                                       WASM_GET_LOCAL(zero)))), \
    1924             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1925             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1926             :           WASM_SET_LOCAL(                                                      \
    1927             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1928             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1929             :                                                       WASM_GET_LOCAL(one_one), \
    1930             :                                                       WASM_GET_LOCAL(zero)))), \
    1931             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1932             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1933             :           WASM_SET_LOCAL(                                                      \
    1934             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1935             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1936             :                                                       WASM_GET_LOCAL(one_one), \
    1937             :                                                       WASM_GET_LOCAL(zero)))), \
    1938             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1939             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1940             :           WASM_SET_LOCAL(                                                      \
    1941             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1942             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1943             :                                                       WASM_GET_LOCAL(one_one), \
    1944             :                                                       WASM_GET_LOCAL(zero)))), \
    1945             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1946             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1947             :           WASM_ONE);                                                           \
    1948             :     CHECK_EQ(1, r.Call());                                                     \
    1949             :   }
    1950             : 
    1951       26123 : WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4)
    1952       26123 : WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8)
    1953       26123 : WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16)
    1954             : 
    1955       26111 : WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) {
    1956          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1957          12 :   BUILD(r, WASM_IF_ELSE_I(
    1958             :                WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
    1959             :                                0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
    1960             :                            WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
    1961             :                WASM_I32V(1), WASM_I32V(0)));
    1962          12 :   CHECK_EQ(1, r.Call());
    1963          12 : }
    1964             : 
    1965       26111 : WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) {
    1966          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1967          12 :   BUILD(r,
    1968             :         WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
    1969             :                                        0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
    1970             :                                    WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
    1971             :                        WASM_I32V(1), WASM_I32V(0)));
    1972          12 :   CHECK_EQ(1, r.Call());
    1973          12 : }
    1974             : 
    1975       26111 : WASM_SIMD_TEST(SimdF32x4AddWithI32x4) {
    1976             :   // Choose two floating point values whose sum is normal and exactly
    1977             :   // representable as a float.
    1978             :   const int kOne = 0x3F800000;
    1979             :   const int kTwo = 0x40000000;
    1980          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1981          12 :   BUILD(r,
    1982             :         WASM_IF_ELSE_I(
    1983             :             WASM_F32_EQ(
    1984             :                 WASM_SIMD_F32x4_EXTRACT_LANE(
    1985             :                     0, WASM_SIMD_BINOP(kExprF32x4Add,
    1986             :                                        WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)),
    1987             :                                        WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))),
    1988             :                 WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)),
    1989             :                              WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))),
    1990             :             WASM_I32V(1), WASM_I32V(0)));
    1991          12 :   CHECK_EQ(1, r.Call());
    1992          12 : }
    1993             : 
    1994       26111 : WASM_SIMD_TEST(SimdI32x4AddWithF32x4) {
    1995          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1996          12 :   BUILD(r,
    1997             :         WASM_IF_ELSE_I(
    1998             :             WASM_I32_EQ(
    1999             :                 WASM_SIMD_I32x4_EXTRACT_LANE(
    2000             :                     0, WASM_SIMD_BINOP(kExprI32x4Add,
    2001             :                                        WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
    2002             :                                        WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
    2003             :                 WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
    2004             :                              WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
    2005             :             WASM_I32V(1), WASM_I32V(0)));
    2006          12 :   CHECK_EQ(1, r.Call());
    2007          12 : }
    2008             : 
    2009       26111 : WASM_SIMD_TEST(SimdI32x4Local) {
    2010          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2011             :   r.AllocateLocal(kWasmS128);
    2012          12 :   BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
    2013             : 
    2014             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0)));
    2015          12 :   CHECK_EQ(31, r.Call());
    2016          12 : }
    2017             : 
    2018       26111 : WASM_SIMD_TEST(SimdI32x4SplatFromExtract) {
    2019          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2020             :   r.AllocateLocal(kWasmI32);
    2021             :   r.AllocateLocal(kWasmS128);
    2022          12 :   BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE(
    2023             :                                  0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
    2024             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
    2025             :         WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
    2026          12 :   CHECK_EQ(76, r.Call());
    2027          12 : }
    2028             : 
    2029       26111 : WASM_SIMD_TEST(SimdI32x4For) {
    2030          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2031             :   r.AllocateLocal(kWasmI32);
    2032             :   r.AllocateLocal(kWasmS128);
    2033          12 :   BUILD(r,
    2034             : 
    2035             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
    2036             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1),
    2037             :                                                        WASM_I32V(53))),
    2038             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1),
    2039             :                                                        WASM_I32V(23))),
    2040             :         WASM_SET_LOCAL(0, WASM_I32V(0)),
    2041             :         WASM_LOOP(
    2042             :             WASM_SET_LOCAL(
    2043             :                 1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1),
    2044             :                                    WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
    2045             :             WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
    2046             :         WASM_SET_LOCAL(0, WASM_I32V(1)),
    2047             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
    2048             :                             WASM_I32V(36)),
    2049             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2050             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)),
    2051             :                             WASM_I32V(58)),
    2052             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2053             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)),
    2054             :                             WASM_I32V(28)),
    2055             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2056             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
    2057             :                             WASM_I32V(36)),
    2058             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2059             :         WASM_GET_LOCAL(0));
    2060          12 :   CHECK_EQ(1, r.Call());
    2061          12 : }
    2062             : 
    2063       26111 : WASM_SIMD_TEST(SimdF32x4For) {
    2064          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2065             :   r.AllocateLocal(kWasmI32);
    2066             :   r.AllocateLocal(kWasmS128);
    2067          12 :   BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
    2068             :         WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1),
    2069             :                                                        WASM_F32(19.5))),
    2070             :         WASM_SET_LOCAL(0, WASM_I32V(0)),
    2071             :         WASM_LOOP(
    2072             :             WASM_SET_LOCAL(
    2073             :                 1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1),
    2074             :                                    WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
    2075             :             WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
    2076             :         WASM_SET_LOCAL(0, WASM_I32V(1)),
    2077             :         WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
    2078             :                             WASM_F32(27.25)),
    2079             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2080             :         WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
    2081             :                             WASM_F32(25.5)),
    2082             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2083             :         WASM_GET_LOCAL(0));
    2084          12 :   CHECK_EQ(1, r.Call());
    2085          12 : }
    2086             : 
    2087             : template <typename T, int numLanes = 4>
    2088          24 : void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) {
    2089         216 :   for (int lane = 0; lane < numLanes; lane++) {
    2090          96 :     WriteLittleEndianValue<T>(&v[lane], arr[lane]);
    2091             :   }
    2092          24 : }
    2093             : 
    2094             : template <typename T>
    2095             : const T GetScalar(T* v, int lane) {
    2096             :   constexpr int kElems = kSimd128Size / sizeof(T);
    2097             :   const int index = lane;
    2098             :   USE(kElems);
    2099             :   DCHECK(index >= 0 && index < kElems);
    2100             :   return ReadLittleEndianValue<T>(&v[index]);
    2101             : }
    2102             : 
    2103       26111 : WASM_SIMD_TEST(SimdI32x4GetGlobal) {
    2104          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2105             :   // Pad the globals with a few unused slots to get a non-zero offset.
    2106             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2107             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2108             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2109             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2110             :   int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
    2111          12 :   SetVectorByLanes(global, {{0, 1, 2, 3}});
    2112             :   r.AllocateLocal(kWasmI32);
    2113          12 :   BUILD(
    2114             :       r, WASM_SET_LOCAL(1, WASM_I32V(1)),
    2115             :       WASM_IF(WASM_I32_NE(WASM_I32V(0),
    2116             :                           WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(4))),
    2117             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2118             :       WASM_IF(WASM_I32_NE(WASM_I32V(1),
    2119             :                           WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(4))),
    2120             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2121             :       WASM_IF(WASM_I32_NE(WASM_I32V(2),
    2122             :                           WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(4))),
    2123             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2124             :       WASM_IF(WASM_I32_NE(WASM_I32V(3),
    2125             :                           WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(4))),
    2126             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2127             :       WASM_GET_LOCAL(1));
    2128          12 :   CHECK_EQ(1, r.Call(0));
    2129          12 : }
    2130             : 
    2131       26111 : WASM_SIMD_TEST(SimdI32x4SetGlobal) {
    2132          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2133             :   // Pad the globals with a few unused slots to get a non-zero offset.
    2134             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2135             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2136             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2137             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2138             :   int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
    2139          12 :   BUILD(r, WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
    2140             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(4),
    2141             :                                                         WASM_I32V(34))),
    2142             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(4),
    2143             :                                                         WASM_I32V(45))),
    2144             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(4),
    2145             :                                                         WASM_I32V(56))),
    2146             :         WASM_I32V(1));
    2147          12 :   CHECK_EQ(1, r.Call(0));
    2148          12 :   CHECK_EQ(GetScalar(global, 0), 23);
    2149          12 :   CHECK_EQ(GetScalar(global, 1), 34);
    2150          12 :   CHECK_EQ(GetScalar(global, 2), 45);
    2151          12 :   CHECK_EQ(GetScalar(global, 3), 56);
    2152          12 : }
    2153             : 
    2154       26111 : WASM_SIMD_TEST(SimdF32x4GetGlobal) {
    2155          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2156             :   float* global = r.builder().AddGlobal<float>(kWasmS128);
    2157          12 :   SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}});
    2158             :   r.AllocateLocal(kWasmI32);
    2159          12 :   BUILD(
    2160             :       r, WASM_SET_LOCAL(1, WASM_I32V(1)),
    2161             :       WASM_IF(WASM_F32_NE(WASM_F32(0.0),
    2162             :                           WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
    2163             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2164             :       WASM_IF(WASM_F32_NE(WASM_F32(1.5),
    2165             :                           WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
    2166             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2167             :       WASM_IF(WASM_F32_NE(WASM_F32(2.25),
    2168             :                           WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
    2169             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2170             :       WASM_IF(WASM_F32_NE(WASM_F32(3.5),
    2171             :                           WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
    2172             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2173             :       WASM_GET_LOCAL(1));
    2174          12 :   CHECK_EQ(1, r.Call(0));
    2175          12 : }
    2176             : 
    2177       26111 : WASM_SIMD_TEST(SimdF32x4SetGlobal) {
    2178          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2179             :   float* global = r.builder().AddGlobal<float>(kWasmS128);
    2180          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
    2181             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
    2182             :                                                         WASM_F32(45.5))),
    2183             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
    2184             :                                                         WASM_F32(32.25))),
    2185             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
    2186             :                                                         WASM_F32(65.0))),
    2187             :         WASM_I32V(1));
    2188          12 :   CHECK_EQ(1, r.Call(0));
    2189          12 :   CHECK_EQ(GetScalar(global, 0), 13.5f);
    2190          12 :   CHECK_EQ(GetScalar(global, 1), 45.5f);
    2191          12 :   CHECK_EQ(GetScalar(global, 2), 32.25f);
    2192          12 :   CHECK_EQ(GetScalar(global, 3), 65.0f);
    2193          12 : }
    2194             : 
    2195       26095 : WASM_SIMD_COMPILED_TEST(SimdLoadStoreLoad) {
    2196           8 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2197             :   int32_t* memory =
    2198             :       r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
    2199             :   // Load memory, store it, then reload it and extract the first lane. Use a
    2200             :   // non-zero offset into the memory of 1 lane (4 bytes) to test indexing.
    2201           8 :   BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(4), WASM_SIMD_LOAD_MEM(WASM_I32V(4))),
    2202             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(4))));
    2203             : 
    2204         936 :   FOR_INT32_INPUTS(i) {
    2205             :     int32_t expected = i;
    2206         464 :     r.builder().WriteMemory(&memory[1], expected);
    2207         464 :     CHECK_EQ(expected, r.Call());
    2208             :   }
    2209           8 : }
    2210             : 
    2211             : #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
    2212             : // V8:8665 - Tracking bug to enable reduction tests in the interpreter,
    2213             : // and for SIMD lowering.
    2214             : // TODO(gdeepti): Enable these tests for ARM/ARM64
    2215             : #define WASM_SIMD_ANYTRUE_TEST(format, lanes, max)                            \
    2216             :   WASM_SIMD_TEST_TURBOFAN(S##format##AnyTrue) {                               \
    2217             :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);               \
    2218             :     byte simd = r.AllocateLocal(kWasmS128);                                   \
    2219             :     BUILD(                                                                    \
    2220             :         r,                                                                    \
    2221             :         WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
    2222             :         WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, WASM_GET_LOCAL(simd)));      \
    2223             :     DCHECK_EQ(1, r.Call(max));                                                \
    2224             :     DCHECK_EQ(1, r.Call(5));                                                  \
    2225             :     DCHECK_EQ(0, r.Call(0));                                                  \
    2226             :   }
    2227       26083 : WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff)
    2228       26083 : WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff)
    2229       26083 : WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff)
    2230             : 
    2231             : #define WASM_SIMD_ALLTRUE_TEST(format, lanes, max)                            \
    2232             :   WASM_SIMD_TEST_TURBOFAN(S##format##AllTrue) {                               \
    2233             :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);               \
    2234             :     byte simd = r.AllocateLocal(kWasmS128);                                   \
    2235             :     BUILD(                                                                    \
    2236             :         r,                                                                    \
    2237             :         WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
    2238             :         WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, WASM_GET_LOCAL(simd)));      \
    2239             :     DCHECK_EQ(1, r.Call(max));                                                \
    2240             :     DCHECK_EQ(0, r.Call(21));                                                 \
    2241             :     DCHECK_EQ(0, r.Call(0));                                                  \
    2242             :   }
    2243       26083 : WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff)
    2244       26083 : WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff)
    2245       26083 : WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff)
    2246             : #endif  // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
    2247             : 
    2248       26079 : WASM_SIMD_TEST_TURBOFAN(BitSelect) {
    2249           4 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2250             :   byte simd = r.AllocateLocal(kWasmS128);
    2251           4 :   BUILD(r,
    2252             :         WASM_SET_LOCAL(
    2253             :             simd,
    2254             :             WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)),
    2255             :                              WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)),
    2256             :                              WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0)))),
    2257             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(simd)));
    2258             :   DCHECK_EQ(0x01020304, r.Call(0xFFFFFFFF));
    2259           4 : }
    2260             : 
    2261             : #undef WASM_SIMD_TEST
    2262             : #undef WASM_SIMD_CHECK_LANE
    2263             : #undef TO_BYTE
    2264             : #undef WASM_SIMD_OP
    2265             : #undef WASM_SIMD_SPLAT
    2266             : #undef WASM_SIMD_UNOP
    2267             : #undef WASM_SIMD_BINOP
    2268             : #undef WASM_SIMD_SHIFT_OP
    2269             : #undef WASM_SIMD_CONCAT_OP
    2270             : #undef WASM_SIMD_SELECT
    2271             : #undef WASM_SIMD_F32x4_SPLAT
    2272             : #undef WASM_SIMD_F32x4_EXTRACT_LANE
    2273             : #undef WASM_SIMD_F32x4_REPLACE_LANE
    2274             : #undef WASM_SIMD_I32x4_SPLAT
    2275             : #undef WASM_SIMD_I32x4_EXTRACT_LANE
    2276             : #undef WASM_SIMD_I32x4_REPLACE_LANE
    2277             : #undef WASM_SIMD_I16x8_SPLAT
    2278             : #undef WASM_SIMD_I16x8_EXTRACT_LANE
    2279             : #undef WASM_SIMD_I16x8_REPLACE_LANE
    2280             : #undef WASM_SIMD_I8x16_SPLAT
    2281             : #undef WASM_SIMD_I8x16_EXTRACT_LANE
    2282             : #undef WASM_SIMD_I8x16_REPLACE_LANE
    2283             : #undef WASM_SIMD_S8x16_SHUFFLE_OP
    2284             : #undef WASM_SIMD_LOAD_MEM
    2285             : #undef WASM_SIMD_STORE_MEM
    2286             : #undef WASM_SIMD_SELECT_TEST
    2287             : #undef WASM_SIMD_NON_CANONICAL_SELECT_TEST
    2288             : #undef WASM_SIMD_COMPILED_TEST
    2289             : #undef WASM_SIMD_BOOL_REDUCTION_TEST
    2290             : #undef WASM_SIMD_TEST_TURBOFAN
    2291             : #undef WASM_SIMD_ANYTRUE_TEST
    2292             : #undef WASM_SIMD_ALLTRUE_TEST
    2293             : 
    2294             : }  // namespace test_run_wasm_simd
    2295             : }  // namespace wasm
    2296             : }  // namespace internal
    2297       78189 : }  // namespace v8

Generated by: LCOV version 1.10