LCOV - code coverage report
Current view: top level - src/base - bits.h (source / functions) Hit Total Coverage
Test: app.info Lines: 33 33 100.0 %
Date: 2019-04-17 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2014 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_BASE_BITS_H_
       6             : #define V8_BASE_BITS_H_
       7             : 
       8             : #include <stdint.h>
       9             : #include <type_traits>
      10             : 
      11             : #include "src/base/base-export.h"
      12             : #include "src/base/macros.h"
      13             : #if V8_CC_MSVC
      14             : #include <intrin.h>
      15             : #endif
      16             : #if V8_OS_WIN32
      17             : #include "src/base/win32-headers.h"
      18             : #endif
      19             : 
      20             : namespace v8 {
      21             : namespace base {
      22             : namespace bits {
      23             : 
      24             : // CountPopulation(value) returns the number of bits set in |value|.
      25             : template <typename T>
      26             : constexpr inline
      27             :     typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
      28             :                             unsigned>::type
      29             :     CountPopulation(T value) {
      30             : #if V8_HAS_BUILTIN_POPCOUNT
      31      359689 :   return sizeof(T) == 8 ? __builtin_popcountll(static_cast<uint64_t>(value))
      32     4631699 :                         : __builtin_popcount(static_cast<uint32_t>(value));
      33             : #else
      34             :   constexpr uint64_t mask[] = {0x5555555555555555, 0x3333333333333333,
      35             :                                0x0f0f0f0f0f0f0f0f, 0x00ff00ff00ff00ff,
      36             :                                0x0000ffff0000ffff, 0x00000000ffffffff};
      37             :   value = ((value >> 1) & mask[0]) + (value & mask[0]);
      38             :   value = ((value >> 2) & mask[1]) + (value & mask[1]);
      39             :   value = ((value >> 4) & mask[2]) + (value & mask[2]);
      40             :   if (sizeof(T) > 1)
      41             :     value = ((value >> (sizeof(T) > 1 ? 8 : 0)) & mask[3]) + (value & mask[3]);
      42             :   if (sizeof(T) > 2)
      43             :     value = ((value >> (sizeof(T) > 2 ? 16 : 0)) & mask[4]) + (value & mask[4]);
      44             :   if (sizeof(T) > 4)
      45             :     value = ((value >> (sizeof(T) > 4 ? 32 : 0)) & mask[5]) + (value & mask[5]);
      46             :   return static_cast<unsigned>(value);
      47             : #endif
      48             : }
      49             : 
      50             : // ReverseBits(value) returns |value| in reverse bit order.
      51             : template <typename T>
      52             : T ReverseBits(T value) {
      53             :   DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) ||
      54             :          (sizeof(value) == 8));
      55             :   T result = 0;
      56             :   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
      57             :     result = (result << 1) | (value & 1);
      58             :     value >>= 1;
      59             :   }
      60             :   return result;
      61             : }
      62             : 
      63             : // CountLeadingZeros(value) returns the number of zero bits following the most
      64             : // significant 1 bit in |value| if |value| is non-zero, otherwise it returns
      65             : // {sizeof(T) * 8}.
      66             : template <typename T, unsigned bits = sizeof(T) * 8>
      67             : inline constexpr
      68             :     typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
      69             :                             unsigned>::type
      70             :     CountLeadingZeros(T value) {
      71             :   static_assert(bits > 0, "invalid instantiation");
      72             : #if V8_HAS_BUILTIN_CLZ
      73             :   return value == 0
      74             :              ? bits
      75             :              : bits == 64
      76     1042948 :                    ? __builtin_clzll(static_cast<uint64_t>(value))
      77    12715150 :                    : __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits);
      78             : #else
      79             :   // Binary search algorithm taken from "Hacker's Delight" (by Henry S. Warren,
      80             :   // Jr.), figures 5-11 and 5-12.
      81             :   if (bits == 1) return static_cast<unsigned>(value) ^ 1;
      82             :   T upper_half = value >> (bits / 2);
      83             :   T next_value = upper_half != 0 ? upper_half : value;
      84             :   unsigned add = upper_half != 0 ? 0 : bits / 2;
      85             :   constexpr unsigned next_bits = bits == 1 ? 1 : bits / 2;
      86             :   return CountLeadingZeros<T, next_bits>(next_value) + add;
      87             : #endif
      88             : }
      89             : 
      90             : inline constexpr unsigned CountLeadingZeros32(uint32_t value) {
      91             :   return CountLeadingZeros(value);
      92             : }
      93             : inline constexpr unsigned CountLeadingZeros64(uint64_t value) {
      94             :   return CountLeadingZeros(value);
      95             : }
      96             : 
      97             : // CountTrailingZeros(value) returns the number of zero bits preceding the
      98             : // least significant 1 bit in |value| if |value| is non-zero, otherwise it
      99             : // returns {sizeof(T) * 8}.
     100             : template <typename T, unsigned bits = sizeof(T) * 8>
     101             : inline constexpr
     102             :     typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8,
     103             :                             unsigned>::type
     104             :     CountTrailingZeros(T value) {
     105             : #if V8_HAS_BUILTIN_CTZ
     106             :   return value == 0 ? bits
     107      359915 :                     : bits == 64 ? __builtin_ctzll(static_cast<uint64_t>(value))
     108   696457185 :                                  : __builtin_ctz(static_cast<uint32_t>(value));
     109             : #else
     110             :   // Fall back to popcount (see "Hacker's Delight" by Henry S. Warren, Jr.),
     111             :   // chapter 5-4. On x64, since is faster than counting in a loop and faster
     112             :   // than doing binary search.
     113             :   using U = typename std::make_unsigned<T>::type;
     114             :   U u = value;
     115             :   return CountPopulation(static_cast<U>(~u & (u - 1u)));
     116             : #endif
     117             : }
     118             : 
     119             : inline constexpr unsigned CountTrailingZeros32(uint32_t value) {
     120             :   return CountTrailingZeros(value);
     121             : }
     122             : inline constexpr unsigned CountTrailingZeros64(uint64_t value) {
     123             :   return CountTrailingZeros(value);
     124             : }
     125             : 
     126             : // Returns true iff |value| is a power of 2.
     127             : template <typename T,
     128             :           typename = typename std::enable_if<std::is_integral<T>::value ||
     129             :                                              std::is_enum<T>::value>::type>
     130             : constexpr inline bool IsPowerOfTwo(T value) {
     131    63470755 :   return value > 0 && (value & (value - 1)) == 0;
     132             : }
     133             : 
     134             : // RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
     135             : // greater than or equal to |value|. If you pass in a |value| that is already a
     136             : // power of two, it is returned as is. |value| must be less than or equal to
     137             : // 0x80000000u. Uses computation based on leading zeros if we have compiler
     138             : // support for that. Falls back to the implementation from "Hacker's Delight" by
     139             : // Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2.
     140             : V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value);
     141             : // Same for 64 bit integers. |value| must be <= 2^63
     142             : V8_BASE_EXPORT uint64_t RoundUpToPowerOfTwo64(uint64_t value);
     143             : // Same for size_t integers.
     144             : inline size_t RoundUpToPowerOfTwo(size_t value) {
     145             :   if (sizeof(size_t) == sizeof(uint64_t)) {
     146       13146 :     return RoundUpToPowerOfTwo64(value);
     147             :   } else {
     148             :     return RoundUpToPowerOfTwo32(value);
     149             :   }
     150             : }
     151             : 
     152             : // RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
     153             : // less than or equal to |value|. If you pass in a |value| that is already a
     154             : // power of two, it is returned as is.
     155             : inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
     156          32 :   if (value > 0x80000000u) return 0x80000000u;
     157          34 :   uint32_t result = RoundUpToPowerOfTwo32(value);
     158          34 :   if (result > value) result >>= 1;
     159             :   return result;
     160             : }
     161             : 
     162             : 
     163             : // Precondition: 0 <= shift < 32
     164             : inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
     165       47575 :   if (shift == 0) return value;
     166       46128 :   return (value >> shift) | (value << (32 - shift));
     167             : }
     168             : 
     169             : // Precondition: 0 <= shift < 32
     170             : inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
     171         816 :   if (shift == 0) return value;
     172         780 :   return (value << shift) | (value >> (32 - shift));
     173             : }
     174             : 
     175             : // Precondition: 0 <= shift < 64
     176             : inline uint64_t RotateRight64(uint64_t value, uint64_t shift) {
     177       78732 :   if (shift == 0) return value;
     178       59292 :   return (value >> shift) | (value << (64 - shift));
     179             : }
     180             : 
     181             : // Precondition: 0 <= shift < 64
     182             : inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
     183       79752 :   if (shift == 0) return value;
     184       60264 :   return (value << shift) | (value >> (64 - shift));
     185             : }
     186             : 
     187             : 
     188             : // SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
     189             : // |rhs| and stores the result into the variable pointed to by |val| and
     190             : // returns true if the signed summation resulted in an overflow.
     191             : inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
     192             : #if V8_HAS_BUILTIN_SADD_OVERFLOW
     193             :   return __builtin_sadd_overflow(lhs, rhs, val);
     194             : #else
     195    40786669 :   uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
     196        1278 :   *val = bit_cast<int32_t>(res);
     197    40786669 :   return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
     198             : #endif
     199             : }
     200             : 
     201             : 
     202             : // SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
     203             : // |rhs| and stores the result into the variable pointed to by |val| and
     204             : // returns true if the signed subtraction resulted in an overflow.
     205             : inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
     206             : #if V8_HAS_BUILTIN_SSUB_OVERFLOW
     207             :   return __builtin_ssub_overflow(lhs, rhs, val);
     208             : #else
     209       98611 :   uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
     210        1277 :   *val = bit_cast<int32_t>(res);
     211       98611 :   return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
     212             : #endif
     213             : }
     214             : 
     215             : // SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs|
     216             : // and |rhs| and stores the result into the variable pointed to by |val| and
     217             : // returns true if the signed multiplication resulted in an overflow.
     218             : V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val);
     219             : 
     220             : // SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
     221             : // |rhs| and stores the result into the variable pointed to by |val| and
     222             : // returns true if the signed summation resulted in an overflow.
     223             : inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
     224      131220 :   uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
     225             :   *val = bit_cast<int64_t>(res);
     226      131220 :   return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
     227             : }
     228             : 
     229             : 
     230             : // SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
     231             : // |rhs| and stores the result into the variable pointed to by |val| and
     232             : // returns true if the signed subtraction resulted in an overflow.
     233             : inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
     234      131220 :   uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
     235             :   *val = bit_cast<int64_t>(res);
     236      131220 :   return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
     237             : }
     238             : 
     239             : // SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
     240             : // |rhs|, extracts the most significant 32 bits of the result, and returns
     241             : // those.
     242             : V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);
     243             : 
     244             : // SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
     245             : // |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
     246             : // adds the accumulate value |acc|.
     247             : V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs,
     248             :                                              int32_t acc);
     249             : 
     250             : // SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
     251             : // truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
     252             : // is minint and |rhs| is -1, it returns minint.
     253             : V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs);
     254             : 
     255             : // SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
     256             : // truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
     257             : // is -1, it returns zero.
     258             : V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs);
     259             : 
     260             : // UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
     261             : // and |rhs| and stores the result into the variable pointed to by |val| and
     262             : // returns true if the unsigned summation resulted in an overflow.
     263             : inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
     264             : #if V8_HAS_BUILTIN_SADD_OVERFLOW
     265             :   return __builtin_uadd_overflow(lhs, rhs, val);
     266             : #else
     267   150953053 :   *val = lhs + rhs;
     268   150953051 :   return *val < (lhs | rhs);
     269             : #endif
     270             : }
     271             : 
     272             : 
     273             : // UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
     274             : // truncated to uint32. If |rhs| is zero, then zero is returned.
     275             : inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
     276       28091 :   return rhs ? lhs / rhs : 0u;
     277             : }
     278             : 
     279             : 
     280             : // UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
     281             : // truncated to uint32. If |rhs| is zero, then zero is returned.
     282             : inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
     283       28140 :   return rhs ? lhs % rhs : 0u;
     284             : }
     285             : 
     286             : 
     287             : // SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|,
     288             : // checks and returns the result.
     289             : V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs);
     290             : 
     291             : // SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|,
     292             : // checks and returns the result.
     293             : V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs);
     294             : 
     295             : }  // namespace bits
     296             : }  // namespace base
     297             : }  // namespace v8
     298             : 
     299             : #endif  // V8_BASE_BITS_H_

Generated by: LCOV version 1.10