Line data Source code
1 : // Copyright 2013 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/base/cpu.h"
6 :
7 : #if V8_LIBC_MSVCRT
8 : #include <intrin.h> // __cpuid()
9 : #endif
10 : #if V8_OS_LINUX
11 : #include <linux/auxvec.h> // AT_HWCAP
12 : #endif
13 : #if V8_GLIBC_PREREQ(2, 16)
14 : #include <sys/auxv.h> // getauxval()
15 : #endif
16 : #if V8_OS_QNX
17 : #include <sys/syspage.h> // cpuinfo
18 : #endif
19 : #if V8_OS_LINUX && V8_HOST_ARCH_PPC
20 : #include <elf.h>
21 : #endif
22 : #if V8_OS_AIX
23 : #include <sys/systemcfg.h> // _system_configuration
24 : #ifndef POWER_8
25 : #define POWER_8 0x10000
26 : #endif
27 : #ifndef POWER_9
28 : #define POWER_9 0x20000
29 : #endif
30 : #endif
31 : #if V8_OS_POSIX
32 : #include <unistd.h> // sysconf()
33 : #endif
34 :
35 : #include <ctype.h>
36 : #include <limits.h>
37 : #include <stdio.h>
38 : #include <stdlib.h>
39 : #include <string.h>
40 : #include <algorithm>
41 :
42 : #include "src/base/logging.h"
43 : #if V8_OS_WIN
44 : #include "src/base/win32-headers.h" // NOLINT
45 : #endif
46 :
47 : namespace v8 {
48 : namespace base {
49 :
50 : #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
51 :
52 : // Define __cpuid() for non-MSVC libraries.
53 : #if !V8_LIBC_MSVCRT
54 :
55 : static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
56 : // Clear ecx to align with __cpuid() of MSVC:
57 : // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
58 : #if defined(__i386__) && defined(__pic__)
59 : // Make sure to preserve ebx, which contains the pointer
60 : // to the GOT in case we're generating PIC.
61 : __asm__ volatile(
62 : "mov %%ebx, %%edi\n\t"
63 : "cpuid\n\t"
64 : "xchg %%edi, %%ebx\n\t"
65 : : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
66 : "=d"(cpu_info[3])
67 : : "a"(info_type), "c"(0));
68 : #else
69 : __asm__ volatile("cpuid \n\t"
70 : : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
71 : "=d"(cpu_info[3])
72 365940 : : "a"(info_type), "c"(0));
73 : #endif // defined(__i386__) && defined(__pic__)
74 : }
75 :
76 : #endif // !V8_LIBC_MSVCRT
77 :
78 : #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
79 :
80 : #if V8_OS_LINUX
81 :
82 : #if V8_HOST_ARCH_ARM
83 :
84 : // See <uapi/asm/hwcap.h> kernel header.
85 : /*
86 : * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
87 : */
88 : #define HWCAP_SWP (1 << 0)
89 : #define HWCAP_HALF (1 << 1)
90 : #define HWCAP_THUMB (1 << 2)
91 : #define HWCAP_26BIT (1 << 3) /* Play it safe */
92 : #define HWCAP_FAST_MULT (1 << 4)
93 : #define HWCAP_FPA (1 << 5)
94 : #define HWCAP_VFP (1 << 6)
95 : #define HWCAP_EDSP (1 << 7)
96 : #define HWCAP_JAVA (1 << 8)
97 : #define HWCAP_IWMMXT (1 << 9)
98 : #define HWCAP_CRUNCH (1 << 10)
99 : #define HWCAP_THUMBEE (1 << 11)
100 : #define HWCAP_NEON (1 << 12)
101 : #define HWCAP_VFPv3 (1 << 13)
102 : #define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */
103 : #define HWCAP_TLS (1 << 15)
104 : #define HWCAP_VFPv4 (1 << 16)
105 : #define HWCAP_IDIVA (1 << 17)
106 : #define HWCAP_IDIVT (1 << 18)
107 : #define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */
108 : #define HWCAP_IDIV (HWCAP_IDIVA | HWCAP_IDIVT)
109 : #define HWCAP_LPAE (1 << 20)
110 :
111 : static uint32_t ReadELFHWCaps() {
112 : uint32_t result = 0;
113 : #if V8_GLIBC_PREREQ(2, 16)
114 : result = static_cast<uint32_t>(getauxval(AT_HWCAP));
115 : #else
116 : // Read the ELF HWCAP flags by parsing /proc/self/auxv.
117 : FILE* fp = fopen("/proc/self/auxv", "r");
118 : if (fp != nullptr) {
119 : struct { uint32_t tag; uint32_t value; } entry;
120 : for (;;) {
121 : size_t n = fread(&entry, sizeof(entry), 1, fp);
122 : if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
123 : break;
124 : }
125 : if (entry.tag == AT_HWCAP) {
126 : result = entry.value;
127 : break;
128 : }
129 : }
130 : fclose(fp);
131 : }
132 : #endif
133 : return result;
134 : }
135 :
136 : #endif // V8_HOST_ARCH_ARM
137 :
138 : #if V8_HOST_ARCH_MIPS
139 : int __detect_fp64_mode(void) {
140 : double result = 0;
141 : // Bit representation of (double)1 is 0x3FF0000000000000.
142 : __asm__ volatile(
143 : ".set push\n\t"
144 : ".set noreorder\n\t"
145 : ".set oddspreg\n\t"
146 : "lui $t0, 0x3FF0\n\t"
147 : "ldc1 $f0, %0\n\t"
148 : "mtc1 $t0, $f1\n\t"
149 : "sdc1 $f0, %0\n\t"
150 : ".set pop\n\t"
151 : : "+m"(result)
152 : :
153 : : "t0", "$f0", "$f1", "memory");
154 :
155 : return !(result == 1);
156 : }
157 :
158 :
159 : int __detect_mips_arch_revision(void) {
160 : // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
161 : // kernel.
162 : uint32_t result = 0;
163 : __asm__ volatile(
164 : "move $v0, $zero\n\t"
165 : // Encoding for "addi $v0, $v0, 1" on non-r6,
166 : // which is encoding for "bovc $v0, %v0, 1" on r6.
167 : // Use machine code directly to avoid compilation errors with different
168 : // toolchains and maintain compatibility.
169 : ".word 0x20420001\n\t"
170 : "sw $v0, %0\n\t"
171 : : "=m"(result)
172 : :
173 : : "v0", "memory");
174 : // Result is 0 on r6 architectures, 1 on other architecture revisions.
175 : // Fall-back to the least common denominator which is mips32 revision 1.
176 : return result ? 1 : 6;
177 : }
178 : #endif // V8_HOST_ARCH_MIPS
179 :
180 : // Extract the information exposed by the kernel via /proc/cpuinfo.
181 : class CPUInfo final {
182 : public:
183 : CPUInfo() : datalen_(0) {
184 : // Get the size of the cpuinfo file by reading it until the end. This is
185 : // required because files under /proc do not always return a valid size
186 : // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
187 : static const char PATHNAME[] = "/proc/cpuinfo";
188 : FILE* fp = fopen(PATHNAME, "r");
189 : if (fp != nullptr) {
190 : for (;;) {
191 : char buffer[256];
192 : size_t n = fread(buffer, 1, sizeof(buffer), fp);
193 : if (n == 0) {
194 : break;
195 : }
196 : datalen_ += n;
197 : }
198 : fclose(fp);
199 : }
200 :
201 : // Read the contents of the cpuinfo file.
202 : data_ = new char[datalen_ + 1];
203 : fp = fopen(PATHNAME, "r");
204 : if (fp != nullptr) {
205 : for (size_t offset = 0; offset < datalen_; ) {
206 : size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
207 : if (n == 0) {
208 : break;
209 : }
210 : offset += n;
211 : }
212 : fclose(fp);
213 : }
214 :
215 : // Zero-terminate the data.
216 : data_[datalen_] = '\0';
217 : }
218 :
219 : ~CPUInfo() {
220 : delete[] data_;
221 : }
222 :
223 : // Extract the content of a the first occurrence of a given field in
224 : // the content of the cpuinfo file and return it as a heap-allocated
225 : // string that must be freed by the caller using delete[].
226 : // Return nullptr if not found.
227 : char* ExtractField(const char* field) const {
228 : DCHECK_NOT_NULL(field);
229 :
230 : // Look for first field occurrence, and ensure it starts the line.
231 : size_t fieldlen = strlen(field);
232 : char* p = data_;
233 : for (;;) {
234 : p = strstr(p, field);
235 : if (p == nullptr) {
236 : return nullptr;
237 : }
238 : if (p == data_ || p[-1] == '\n') {
239 : break;
240 : }
241 : p += fieldlen;
242 : }
243 :
244 : // Skip to the first colon followed by a space.
245 : p = strchr(p + fieldlen, ':');
246 : if (p == nullptr || !isspace(p[1])) {
247 : return nullptr;
248 : }
249 : p += 2;
250 :
251 : // Find the end of the line.
252 : char* q = strchr(p, '\n');
253 : if (q == nullptr) {
254 : q = data_ + datalen_;
255 : }
256 :
257 : // Copy the line into a heap-allocated buffer.
258 : size_t len = q - p;
259 : char* result = new char[len + 1];
260 : if (result != nullptr) {
261 : memcpy(result, p, len);
262 : result[len] = '\0';
263 : }
264 : return result;
265 : }
266 :
267 : private:
268 : char* data_;
269 : size_t datalen_;
270 : };
271 :
272 : // Checks that a space-separated list of items contains one given 'item'.
273 : static bool HasListItem(const char* list, const char* item) {
274 : ssize_t item_len = strlen(item);
275 : const char* p = list;
276 : if (p != nullptr) {
277 : while (*p != '\0') {
278 : // Skip whitespace.
279 : while (isspace(*p)) ++p;
280 :
281 : // Find end of current list item.
282 : const char* q = p;
283 : while (*q != '\0' && !isspace(*q)) ++q;
284 :
285 : if (item_len == q - p && memcmp(p, item, item_len) == 0) {
286 : return true;
287 : }
288 :
289 : // Skip to next item.
290 : p = q;
291 : }
292 : }
293 : return false;
294 : }
295 :
296 : #endif // V8_OS_LINUX
297 :
298 : #endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
299 :
300 60990 : CPU::CPU()
301 : : stepping_(0),
302 : model_(0),
303 : ext_model_(0),
304 : family_(0),
305 : ext_family_(0),
306 : type_(0),
307 : implementer_(0),
308 : architecture_(0),
309 : variant_(-1),
310 : part_(0),
311 : icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
312 : dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
313 : has_fpu_(false),
314 : has_cmov_(false),
315 : has_sahf_(false),
316 : has_mmx_(false),
317 : has_sse_(false),
318 : has_sse2_(false),
319 : has_sse3_(false),
320 : has_ssse3_(false),
321 : has_sse41_(false),
322 : has_sse42_(false),
323 : is_atom_(false),
324 : has_osxsave_(false),
325 : has_avx_(false),
326 : has_fma3_(false),
327 : has_bmi1_(false),
328 : has_bmi2_(false),
329 : has_lzcnt_(false),
330 : has_popcnt_(false),
331 : has_idiva_(false),
332 : has_neon_(false),
333 : has_thumb2_(false),
334 : has_vfp_(false),
335 : has_vfp3_(false),
336 : has_vfp3_d32_(false),
337 : is_fp64_mode_(false),
338 : has_non_stop_time_stamp_counter_(false),
339 60990 : has_msa_(false) {
340 60990 : memcpy(vendor_, "Unknown", 8);
341 : #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
342 : int cpu_info[4];
343 :
344 : // __cpuid with an InfoType argument of 0 returns the number of
345 : // valid Ids in CPUInfo[0] and the CPU identification string in
346 : // the other three array elements. The CPU identification string is
347 : // not in linear order. The code below arranges the information
348 : // in a human readable form. The human readable order is CPUInfo[1] |
349 : // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
350 : // before using memcpy to copy these three array elements to cpu_string.
351 : __cpuid(cpu_info, 0);
352 60990 : unsigned num_ids = cpu_info[0];
353 : std::swap(cpu_info[2], cpu_info[3]);
354 : memcpy(vendor_, cpu_info + 1, 12);
355 60990 : vendor_[12] = '\0';
356 :
357 : // Interpret CPU feature information.
358 60990 : if (num_ids > 0) {
359 : __cpuid(cpu_info, 1);
360 60990 : stepping_ = cpu_info[0] & 0xF;
361 60990 : model_ = ((cpu_info[0] >> 4) & 0xF) + ((cpu_info[0] >> 12) & 0xF0);
362 60990 : family_ = (cpu_info[0] >> 8) & 0xF;
363 60990 : type_ = (cpu_info[0] >> 12) & 0x3;
364 60990 : ext_model_ = (cpu_info[0] >> 16) & 0xF;
365 60990 : ext_family_ = (cpu_info[0] >> 20) & 0xFF;
366 60990 : has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
367 60990 : has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
368 60990 : has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
369 60990 : has_sse_ = (cpu_info[3] & 0x02000000) != 0;
370 60990 : has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
371 60990 : has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
372 60990 : has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
373 60990 : has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
374 60990 : has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
375 60990 : has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
376 60990 : has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
377 60990 : has_avx_ = (cpu_info[2] & 0x10000000) != 0;
378 60990 : has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
379 :
380 60990 : if (family_ == 0x6) {
381 60990 : switch (model_) {
382 : case 0x1C: // SLT
383 : case 0x26:
384 : case 0x36:
385 : case 0x27:
386 : case 0x35:
387 : case 0x37: // SLM
388 : case 0x4A:
389 : case 0x4D:
390 : case 0x4C: // AMT
391 : case 0x6E:
392 0 : is_atom_ = true;
393 : }
394 : }
395 : }
396 :
397 : // There are separate feature flags for VEX-encoded GPR instructions.
398 60990 : if (num_ids >= 7) {
399 : __cpuid(cpu_info, 7);
400 60990 : has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
401 60990 : has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
402 : }
403 :
404 : // Query extended IDs.
405 : __cpuid(cpu_info, 0x80000000);
406 60990 : unsigned num_ext_ids = cpu_info[0];
407 :
408 : // Interpret extended CPU feature information.
409 60990 : if (num_ext_ids > 0x80000000) {
410 : __cpuid(cpu_info, 0x80000001);
411 60990 : has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
412 : // SAHF must be probed in long mode.
413 60990 : has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
414 : }
415 :
416 : // Check if CPU has non stoppable time stamp counter.
417 : const unsigned parameter_containing_non_stop_time_stamp_counter = 0x80000007;
418 60990 : if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
419 : __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
420 60990 : has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
421 : }
422 :
423 : #elif V8_HOST_ARCH_ARM
424 :
425 : #if V8_OS_LINUX
426 :
427 : CPUInfo cpu_info;
428 :
429 : // Extract implementor from the "CPU implementer" field.
430 : char* implementer = cpu_info.ExtractField("CPU implementer");
431 : if (implementer != nullptr) {
432 : char* end;
433 : implementer_ = strtol(implementer, &end, 0);
434 : if (end == implementer) {
435 : implementer_ = 0;
436 : }
437 : delete[] implementer;
438 : }
439 :
440 : char* variant = cpu_info.ExtractField("CPU variant");
441 : if (variant != nullptr) {
442 : char* end;
443 : variant_ = strtol(variant, &end, 0);
444 : if (end == variant) {
445 : variant_ = -1;
446 : }
447 : delete[] variant;
448 : }
449 :
450 : // Extract part number from the "CPU part" field.
451 : char* part = cpu_info.ExtractField("CPU part");
452 : if (part != nullptr) {
453 : char* end;
454 : part_ = strtol(part, &end, 0);
455 : if (end == part) {
456 : part_ = 0;
457 : }
458 : delete[] part;
459 : }
460 :
461 : // Extract architecture from the "CPU Architecture" field.
462 : // The list is well-known, unlike the the output of
463 : // the 'Processor' field which can vary greatly.
464 : // See the definition of the 'proc_arch' array in
465 : // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
466 : // same file.
467 : char* architecture = cpu_info.ExtractField("CPU architecture");
468 : if (architecture != nullptr) {
469 : char* end;
470 : architecture_ = strtol(architecture, &end, 10);
471 : if (end == architecture) {
472 : // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
473 : if (strcmp(architecture, "AArch64") == 0) {
474 : architecture_ = 8;
475 : } else {
476 : architecture_ = 0;
477 : }
478 : }
479 : delete[] architecture;
480 :
481 : // Unfortunately, it seems that certain ARMv6-based CPUs
482 : // report an incorrect architecture number of 7!
483 : //
484 : // See http://code.google.com/p/android/issues/detail?id=10812
485 : //
486 : // We try to correct this by looking at the 'elf_platform'
487 : // field reported by the 'Processor' field, which is of the
488 : // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
489 : // an ARMv6-one. For example, the Raspberry Pi is one popular
490 : // ARMv6 device that reports architecture 7.
491 : if (architecture_ == 7) {
492 : char* processor = cpu_info.ExtractField("Processor");
493 : if (HasListItem(processor, "(v6l)")) {
494 : architecture_ = 6;
495 : }
496 : delete[] processor;
497 : }
498 :
499 : // elf_platform moved to the model name field in Linux v3.8.
500 : if (architecture_ == 7) {
501 : char* processor = cpu_info.ExtractField("model name");
502 : if (HasListItem(processor, "(v6l)")) {
503 : architecture_ = 6;
504 : }
505 : delete[] processor;
506 : }
507 : }
508 :
509 : // Try to extract the list of CPU features from ELF hwcaps.
510 : uint32_t hwcaps = ReadELFHWCaps();
511 : if (hwcaps != 0) {
512 : has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
513 : has_neon_ = (hwcaps & HWCAP_NEON) != 0;
514 : has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
515 : has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
516 : has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
517 : (hwcaps & HWCAP_VFPD32) != 0));
518 : } else {
519 : // Try to fallback to "Features" CPUInfo field.
520 : char* features = cpu_info.ExtractField("Features");
521 : has_idiva_ = HasListItem(features, "idiva");
522 : has_neon_ = HasListItem(features, "neon");
523 : has_thumb2_ = HasListItem(features, "thumb2");
524 : has_vfp_ = HasListItem(features, "vfp");
525 : if (HasListItem(features, "vfpv3d16")) {
526 : has_vfp3_ = true;
527 : } else if (HasListItem(features, "vfpv3")) {
528 : has_vfp3_ = true;
529 : has_vfp3_d32_ = true;
530 : }
531 : delete[] features;
532 : }
533 :
534 : // Some old kernels will report vfp not vfpv3. Here we make an attempt
535 : // to detect vfpv3 by checking for vfp *and* neon, since neon is only
536 : // available on architectures with vfpv3. Checking neon on its own is
537 : // not enough as it is possible to have neon without vfp.
538 : if (has_vfp_ && has_neon_) {
539 : has_vfp3_ = true;
540 : }
541 :
542 : // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
543 : if (architecture_ < 7 && has_vfp3_) {
544 : architecture_ = 7;
545 : }
546 :
547 : // ARMv7 implies Thumb2.
548 : if (architecture_ >= 7) {
549 : has_thumb2_ = true;
550 : }
551 :
552 : // The earliest architecture with Thumb2 is ARMv6T2.
553 : if (has_thumb2_ && architecture_ < 6) {
554 : architecture_ = 6;
555 : }
556 :
557 : // We don't support any FPUs other than VFP.
558 : has_fpu_ = has_vfp_;
559 :
560 : #elif V8_OS_QNX
561 :
562 : uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
563 : if (cpu_flags & ARM_CPU_FLAG_V7) {
564 : architecture_ = 7;
565 : has_thumb2_ = true;
566 : } else if (cpu_flags & ARM_CPU_FLAG_V6) {
567 : architecture_ = 6;
568 : // QNX doesn't say if Thumb2 is available.
569 : // Assume false for the architectures older than ARMv7.
570 : }
571 : DCHECK_GE(architecture_, 6);
572 : has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
573 : has_vfp_ = has_fpu_;
574 : if (cpu_flags & ARM_CPU_FLAG_NEON) {
575 : has_neon_ = true;
576 : has_vfp3_ = has_vfp_;
577 : #ifdef ARM_CPU_FLAG_VFP_D32
578 : has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
579 : #endif
580 : }
581 : has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
582 :
583 : #endif // V8_OS_LINUX
584 :
585 : #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
586 :
587 : // Simple detection of FPU at runtime for Linux.
588 : // It is based on /proc/cpuinfo, which reveals hardware configuration
589 : // to user-space applications. According to MIPS (early 2010), no similar
590 : // facility is universally available on the MIPS architectures,
591 : // so it's up to individual OSes to provide such.
592 : CPUInfo cpu_info;
593 : char* cpu_model = cpu_info.ExtractField("cpu model");
594 : has_fpu_ = HasListItem(cpu_model, "FPU");
595 : char* ASEs = cpu_info.ExtractField("ASEs implemented");
596 : has_msa_ = HasListItem(ASEs, "msa");
597 : delete[] cpu_model;
598 : delete[] ASEs;
599 : #ifdef V8_HOST_ARCH_MIPS
600 : is_fp64_mode_ = __detect_fp64_mode();
601 : architecture_ = __detect_mips_arch_revision();
602 : #endif
603 :
604 : #elif V8_HOST_ARCH_ARM64
605 : // Implementer, variant and part are currently unused under ARM64.
606 :
607 : #elif V8_HOST_ARCH_PPC
608 :
609 : #ifndef USE_SIMULATOR
610 : #if V8_OS_LINUX
611 : // Read processor info from /proc/self/auxv.
612 : char* auxv_cpu_type = nullptr;
613 : FILE* fp = fopen("/proc/self/auxv", "r");
614 : if (fp != nullptr) {
615 : #if V8_TARGET_ARCH_PPC64
616 : Elf64_auxv_t entry;
617 : #else
618 : Elf32_auxv_t entry;
619 : #endif
620 : for (;;) {
621 : size_t n = fread(&entry, sizeof(entry), 1, fp);
622 : if (n == 0 || entry.a_type == AT_NULL) {
623 : break;
624 : }
625 : switch (entry.a_type) {
626 : case AT_PLATFORM:
627 : auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
628 : break;
629 : case AT_ICACHEBSIZE:
630 : icache_line_size_ = entry.a_un.a_val;
631 : break;
632 : case AT_DCACHEBSIZE:
633 : dcache_line_size_ = entry.a_un.a_val;
634 : break;
635 : }
636 : }
637 : fclose(fp);
638 : }
639 :
640 : part_ = -1;
641 : if (auxv_cpu_type) {
642 : if (strcmp(auxv_cpu_type, "power9") == 0) {
643 : part_ = PPC_POWER9;
644 : } else if (strcmp(auxv_cpu_type, "power8") == 0) {
645 : part_ = PPC_POWER8;
646 : } else if (strcmp(auxv_cpu_type, "power7") == 0) {
647 : part_ = PPC_POWER7;
648 : } else if (strcmp(auxv_cpu_type, "power6") == 0) {
649 : part_ = PPC_POWER6;
650 : } else if (strcmp(auxv_cpu_type, "power5") == 0) {
651 : part_ = PPC_POWER5;
652 : } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
653 : part_ = PPC_G5;
654 : } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
655 : part_ = PPC_G4;
656 : } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
657 : part_ = PPC_PA6T;
658 : }
659 : }
660 :
661 : #elif V8_OS_AIX
662 : switch (_system_configuration.implementation) {
663 : case POWER_9:
664 : part_ = PPC_POWER9;
665 : break;
666 : case POWER_8:
667 : part_ = PPC_POWER8;
668 : break;
669 : case POWER_7:
670 : part_ = PPC_POWER7;
671 : break;
672 : case POWER_6:
673 : part_ = PPC_POWER6;
674 : break;
675 : case POWER_5:
676 : part_ = PPC_POWER5;
677 : break;
678 : }
679 : #endif // V8_OS_AIX
680 : #endif // !USE_SIMULATOR
681 : #endif // V8_HOST_ARCH_PPC
682 60990 : }
683 :
684 : } // namespace base
685 : } // namespace v8
|