LCOV - code coverage report
Current view: top level - src/compiler - control-equivalence.h (source / functions) Hit Total Coverage
Test: app.info Lines: 17 17 100.0 %
Date: 2019-04-17 Functions: 2 2 100.0 %

          Line data    Source code
       1             : // Copyright 2014 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
       6             : #define V8_COMPILER_CONTROL_EQUIVALENCE_H_
       7             : 
       8             : #include "src/base/compiler-specific.h"
       9             : #include "src/compiler/graph.h"
      10             : #include "src/compiler/node.h"
      11             : #include "src/globals.h"
      12             : #include "src/zone/zone-containers.h"
      13             : 
      14             : namespace v8 {
      15             : namespace internal {
      16             : namespace compiler {
      17             : 
      18             : // Determines control dependence equivalence classes for control nodes. Any two
      19             : // nodes having the same set of control dependences land in one class. These
      20             : // classes can in turn be used to:
      21             : //  - Build a program structure tree (PST) for controls in the graph.
      22             : //  - Determine single-entry single-exit (SESE) regions within the graph.
      23             : //
      24             : // Note that this implementation actually uses cycle equivalence to establish
      25             : // class numbers. Any two nodes are cycle equivalent if they occur in the same
      26             : // set of cycles. It can be shown that control dependence equivalence reduces
      27             : // to undirected cycle equivalence for strongly connected control flow graphs.
      28             : //
      29             : // The algorithm is based on the paper, "The program structure tree: computing
      30             : // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
      31             : // also contains proofs for the aforementioned equivalence. References to line
      32             : // numbers in the algorithm from figure 4 have been added [line:x].
      33           9 : class V8_EXPORT_PRIVATE ControlEquivalence final
      34             :     : public NON_EXPORTED_BASE(ZoneObject) {
      35             :  public:
      36             :   ControlEquivalence(Zone* zone, Graph* graph)
      37             :       : zone_(zone),
      38             :         graph_(graph),
      39             :         dfs_number_(0),
      40             :         class_number_(1),
      41     2865728 :         node_data_(graph->NodeCount(), zone) {}
      42             : 
      43             :   // Run the main algorithm starting from the {exit} control node. This causes
      44             :   // the following iterations over control edges of the graph:
      45             :   //  1) A breadth-first backwards traversal to determine the set of nodes that
      46             :   //     participate in the next step. Takes O(E) time and O(N) space.
      47             :   //  2) An undirected depth-first backwards traversal that determines class
      48             :   //     numbers for all participating nodes. Takes O(E) time and O(N) space.
      49             :   void Run(Node* exit);
      50             : 
      51             :   // Retrieves a previously computed class number.
      52             :   size_t ClassOf(Node* node) {
      53             :     DCHECK_NE(kInvalidClass, GetClass(node));
      54             :     return GetClass(node);
      55             :   }
      56             : 
      57             :  private:
      58             :   static const size_t kInvalidClass = static_cast<size_t>(-1);
      59             :   enum DFSDirection { kInputDirection, kUseDirection };
      60             : 
      61             :   struct Bracket {
      62             :     DFSDirection direction;  // Direction in which this bracket was added.
      63             :     size_t recent_class;     // Cached class when bracket was topmost.
      64             :     size_t recent_size;      // Cached set-size when bracket was topmost.
      65             :     Node* from;              // Node that this bracket originates from.
      66             :     Node* to;                // Node that this bracket points to.
      67             :   };
      68             : 
      69             :   // The set of brackets for each node during the DFS walk.
      70             :   using BracketList = ZoneLinkedList<Bracket>;
      71             : 
      72             :   struct DFSStackEntry {
      73             :     DFSDirection direction;            // Direction currently used in DFS walk.
      74             :     Node::InputEdges::iterator input;  // Iterator used for "input" direction.
      75             :     Node::UseEdges::iterator use;      // Iterator used for "use" direction.
      76             :     Node* parent_node;                 // Parent node of entry during DFS walk.
      77             :     Node* node;                        // Node that this stack entry belongs to.
      78             :   };
      79             : 
      80             :   // The stack is used during the undirected DFS walk.
      81             :   using DFSStack = ZoneStack<DFSStackEntry>;
      82             : 
      83             :   struct NodeData : ZoneObject {
      84             :     explicit NodeData(Zone* zone)
      85             :         : class_number(kInvalidClass),
      86             :           blist(BracketList(zone)),
      87             :           visited(false),
      88      371502 :           on_stack(false) {}
      89             : 
      90             :     size_t class_number;  // Equivalence class number assigned to node.
      91             :     BracketList blist;    // List of brackets per node.
      92             :     bool visited : 1;     // Indicates node has already been visited.
      93             :     bool on_stack : 1;    // Indicates node is on DFS stack during walk.
      94             :   };
      95             : 
      96             :   // The per-node data computed during the DFS walk.
      97             :   using Data = ZoneVector<NodeData*>;
      98             : 
      99             :   // Called at pre-visit during DFS walk.
     100             :   void VisitPre(Node* node);
     101             : 
     102             :   // Called at mid-visit during DFS walk.
     103             :   void VisitMid(Node* node, DFSDirection direction);
     104             : 
     105             :   // Called at post-visit during DFS walk.
     106             :   void VisitPost(Node* node, Node* parent_node, DFSDirection direction);
     107             : 
     108             :   // Called when hitting a back edge in the DFS walk.
     109             :   void VisitBackedge(Node* from, Node* to, DFSDirection direction);
     110             : 
     111             :   // Performs and undirected DFS walk of the graph. Conceptually all nodes are
     112             :   // expanded, splitting "input" and "use" out into separate nodes. During the
     113             :   // traversal, edges towards the representative nodes are preferred.
     114             :   //
     115             :   //   \ /        - Pre-visit: When N1 is visited in direction D the preferred
     116             :   //    x   N1      edge towards N is taken next, calling VisitPre(N).
     117             :   //    |         - Mid-visit: After all edges out of N2 in direction D have
     118             :   //    |   N       been visited, we switch the direction and start considering
     119             :   //    |           edges out of N1 now, and we call VisitMid(N).
     120             :   //    x   N2    - Post-visit: After all edges out of N1 in direction opposite
     121             :   //   / \          to D have been visited, we pop N and call VisitPost(N).
     122             :   //
     123             :   // This will yield a true spanning tree (without cross or forward edges) and
     124             :   // also discover proper back edges in both directions.
     125             :   void RunUndirectedDFS(Node* exit);
     126             : 
     127             :   void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node);
     128             :   void DetermineParticipation(Node* exit);
     129             : 
     130             :  private:
     131     3192289 :   NodeData* GetData(Node* node) {
     132     3192289 :     size_t const index = node->id();
     133     3192289 :     if (index >= node_data_.size()) node_data_.resize(index + 1);
     134     3192289 :     return node_data_[index];
     135             :   }
     136      185749 :   void AllocateData(Node* node) {
     137      185749 :     size_t const index = node->id();
     138      185749 :     if (index >= node_data_.size()) node_data_.resize(index + 1);
     139      557251 :     node_data_[index] = new (zone_) NodeData(zone_);
     140      185751 :   }
     141             : 
     142      117898 :   int NewClassNumber() { return class_number_++; }
     143             :   int NewDFSNumber() { return dfs_number_++; }
     144             : 
     145      819133 :   bool Participates(Node* node) { return GetData(node) != nullptr; }
     146             : 
     147             :   // Accessors for the equivalence class stored within the per-node data.
     148      315113 :   size_t GetClass(Node* node) { return GetData(node)->class_number; }
     149             :   void SetClass(Node* node, size_t number) {
     150             :     DCHECK(Participates(node));
     151      185751 :     GetData(node)->class_number = number;
     152             :   }
     153             : 
     154             :   // Accessors for the bracket list stored within the per-node data.
     155             :   BracketList& GetBracketList(Node* node) {
     156             :     DCHECK(Participates(node));
     157      596721 :     return GetData(node)->blist;
     158             :   }
     159             :   void SetBracketList(Node* node, BracketList& list) {
     160             :     DCHECK(Participates(node));
     161             :     GetData(node)->blist = list;
     162             :   }
     163             : 
     164             :   // Mutates the DFS stack by pushing an entry.
     165             :   void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir);
     166             : 
     167             :   // Mutates the DFS stack by popping an entry.
     168             :   void DFSPop(DFSStack& stack, Node* node);
     169             : 
     170             :   void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction);
     171             :   void BracketListTRACE(BracketList& blist);
     172             : 
     173             :   Zone* const zone_;
     174             :   Graph* const graph_;
     175             :   int dfs_number_;    // Generates new DFS pre-order numbers on demand.
     176             :   int class_number_;  // Generates new equivalence class numbers on demand.
     177             :   Data node_data_;    // Per-node data stored as a side-table.
     178             : };
     179             : 
     180             : }  // namespace compiler
     181             : }  // namespace internal
     182             : }  // namespace v8
     183             : 
     184             : #endif  // V8_COMPILER_CONTROL_EQUIVALENCE_H_

Generated by: LCOV version 1.10