LCOV - code coverage report
Current view: top level - src/compiler - simplified-lowering.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 1638 1734 94.5 %
Date: 2019-04-17 Functions: 90 94 95.7 %

          Line data    Source code
       1             : // Copyright 2014 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include "src/compiler/simplified-lowering.h"
       6             : 
       7             : #include <limits>
       8             : 
       9             : #include "src/address-map.h"
      10             : #include "src/base/bits.h"
      11             : #include "src/code-factory.h"
      12             : #include "src/compiler/access-builder.h"
      13             : #include "src/compiler/common-operator.h"
      14             : #include "src/compiler/compiler-source-position-table.h"
      15             : #include "src/compiler/diamond.h"
      16             : #include "src/compiler/linkage.h"
      17             : #include "src/compiler/node-matchers.h"
      18             : #include "src/compiler/node-origin-table.h"
      19             : #include "src/compiler/node-properties.h"
      20             : #include "src/compiler/operation-typer.h"
      21             : #include "src/compiler/operator-properties.h"
      22             : #include "src/compiler/representation-change.h"
      23             : #include "src/compiler/simplified-operator.h"
      24             : #include "src/compiler/type-cache.h"
      25             : #include "src/conversions-inl.h"
      26             : #include "src/objects.h"
      27             : 
      28             : namespace v8 {
      29             : namespace internal {
      30             : namespace compiler {
      31             : 
      32             : // Macro for outputting trace information from representation inference.
      33             : #define TRACE(...)                                      \
      34             :   do {                                                  \
      35             :     if (FLAG_trace_representation) PrintF(__VA_ARGS__); \
      36             :   } while (false)
      37             : 
      38             : // Representation selection and lowering of {Simplified} operators to machine
      39             : // operators are interwined. We use a fixpoint calculation to compute both the
      40             : // output representation and the best possible lowering for {Simplified} nodes.
      41             : // Representation change insertion ensures that all values are in the correct
      42             : // machine representation after this phase, as dictated by the machine
      43             : // operators themselves.
      44             : enum Phase {
      45             :   // 1.) PROPAGATE: Traverse the graph from the end, pushing usage information
      46             :   //     backwards from uses to definitions, around cycles in phis, according
      47             :   //     to local rules for each operator.
      48             :   //     During this phase, the usage information for a node determines the best
      49             :   //     possible lowering for each operator so far, and that in turn determines
      50             :   //     the output representation.
      51             :   //     Therefore, to be correct, this phase must iterate to a fixpoint before
      52             :   //     the next phase can begin.
      53             :   PROPAGATE,
      54             : 
      55             :   // 2.) RETYPE: Propagate types from type feedback forwards.
      56             :   RETYPE,
      57             : 
      58             :   // 3.) LOWER: perform lowering for all {Simplified} nodes by replacing some
      59             :   //     operators for some nodes, expanding some nodes to multiple nodes, or
      60             :   //     removing some (redundant) nodes.
      61             :   //     During this phase, use the {RepresentationChanger} to insert
      62             :   //     representation changes between uses that demand a particular
      63             :   //     representation and nodes that produce a different representation.
      64             :   LOWER
      65             : };
      66             : 
      67             : namespace {
      68             : 
      69       33440 : MachineRepresentation MachineRepresentationFromArrayType(
      70             :     ExternalArrayType array_type) {
      71       33440 :   switch (array_type) {
      72             :     case kExternalUint8Array:
      73             :     case kExternalUint8ClampedArray:
      74             :     case kExternalInt8Array:
      75             :       return MachineRepresentation::kWord8;
      76             :     case kExternalUint16Array:
      77             :     case kExternalInt16Array:
      78        5160 :       return MachineRepresentation::kWord16;
      79             :     case kExternalUint32Array:
      80             :     case kExternalInt32Array:
      81        6503 :       return MachineRepresentation::kWord32;
      82             :     case kExternalFloat32Array:
      83        7852 :       return MachineRepresentation::kFloat32;
      84             :     case kExternalFloat64Array:
      85        3090 :       return MachineRepresentation::kFloat64;
      86             :     case kExternalBigInt64Array:
      87             :     case kExternalBigUint64Array:
      88           0 :       UNIMPLEMENTED();
      89             :   }
      90           0 :   UNREACHABLE();
      91             : }
      92             : 
      93     1079931 : UseInfo CheckedUseInfoAsWord32FromHint(
      94             :     NumberOperationHint hint, const VectorSlotPair& feedback = VectorSlotPair(),
      95             :     IdentifyZeros identify_zeros = kDistinguishZeros) {
      96     1079931 :   switch (hint) {
      97             :     case NumberOperationHint::kSignedSmall:
      98             :     case NumberOperationHint::kSignedSmallInputs:
      99             :       return UseInfo::CheckedSignedSmallAsWord32(identify_zeros, feedback);
     100             :     case NumberOperationHint::kSigned32:
     101             :       return UseInfo::CheckedSigned32AsWord32(identify_zeros, feedback);
     102             :     case NumberOperationHint::kNumber:
     103             :       return UseInfo::CheckedNumberAsWord32(feedback);
     104             :     case NumberOperationHint::kNumberOrOddball:
     105             :       return UseInfo::CheckedNumberOrOddballAsWord32(feedback);
     106             :   }
     107           0 :   UNREACHABLE();
     108             : }
     109             : 
     110      166294 : UseInfo CheckedUseInfoAsFloat64FromHint(
     111             :     NumberOperationHint hint, const VectorSlotPair& feedback,
     112             :     IdentifyZeros identify_zeros = kDistinguishZeros) {
     113      166294 :   switch (hint) {
     114             :     case NumberOperationHint::kSignedSmall:
     115             :     case NumberOperationHint::kSignedSmallInputs:
     116             :     case NumberOperationHint::kSigned32:
     117             :       // Not used currently.
     118           0 :       UNREACHABLE();
     119             :       break;
     120             :     case NumberOperationHint::kNumber:
     121             :       return UseInfo::CheckedNumberAsFloat64(identify_zeros, feedback);
     122             :     case NumberOperationHint::kNumberOrOddball:
     123             :       return UseInfo::CheckedNumberOrOddballAsFloat64(identify_zeros, feedback);
     124             :   }
     125           0 :   UNREACHABLE();
     126             : }
     127             : 
     128     8117132 : UseInfo TruncatingUseInfoFromRepresentation(MachineRepresentation rep) {
     129     8117132 :   switch (rep) {
     130             :     case MachineRepresentation::kTaggedSigned:
     131             :       return UseInfo::TaggedSigned();
     132             :     case MachineRepresentation::kTaggedPointer:
     133             :     case MachineRepresentation::kTagged:
     134             :       return UseInfo::AnyTagged();
     135             :     case MachineRepresentation::kCompressedSigned:
     136             :       return UseInfo::CompressedSigned();
     137             :     case MachineRepresentation::kCompressedPointer:
     138             :     case MachineRepresentation::kCompressed:
     139             :       return UseInfo::AnyCompressed();
     140             :     case MachineRepresentation::kFloat64:
     141             :       return UseInfo::TruncatingFloat64();
     142             :     case MachineRepresentation::kFloat32:
     143             :       return UseInfo::Float32();
     144             :     case MachineRepresentation::kWord8:
     145             :     case MachineRepresentation::kWord16:
     146             :     case MachineRepresentation::kWord32:
     147             :       return UseInfo::TruncatingWord32();
     148             :     case MachineRepresentation::kWord64:
     149             :       return UseInfo::Word64();
     150             :     case MachineRepresentation::kBit:
     151             :       return UseInfo::Bool();
     152             :     case MachineRepresentation::kSimd128:
     153             :     case MachineRepresentation::kNone:
     154             :       break;
     155             :   }
     156           0 :   UNREACHABLE();
     157             : }
     158             : 
     159     9994655 : UseInfo UseInfoForBasePointer(const FieldAccess& access) {
     160    19989312 :   return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::Word();
     161             : }
     162             : 
     163      181706 : UseInfo UseInfoForBasePointer(const ElementAccess& access) {
     164      363412 :   return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::Word();
     165             : }
     166             : 
     167      349254 : void ReplaceEffectControlUses(Node* node, Node* effect, Node* control) {
     168     2006589 :   for (Edge edge : node->use_edges()) {
     169      828688 :     if (NodeProperties::IsControlEdge(edge)) {
     170           0 :       edge.UpdateTo(control);
     171      828661 :     } else if (NodeProperties::IsEffectEdge(edge)) {
     172      420388 :       edge.UpdateTo(effect);
     173             :     } else {
     174             :       DCHECK(NodeProperties::IsValueEdge(edge) ||
     175             :              NodeProperties::IsContextEdge(edge));
     176             :     }
     177             :   }
     178      349213 : }
     179             : 
     180      153806 : bool CanOverflowSigned32(const Operator* op, Type left, Type right,
     181             :                          Zone* type_zone) {
     182             :   // We assume the inputs are checked Signed32 (or known statically
     183             :   // to be Signed32). Technically, the inputs could also be minus zero, but
     184             :   // that cannot cause overflow.
     185      153806 :   left = Type::Intersect(left, Type::Signed32(), type_zone);
     186      153799 :   right = Type::Intersect(right, Type::Signed32(), type_zone);
     187      307572 :   if (left.IsNone() || right.IsNone()) return false;
     188      153766 :   switch (op->opcode()) {
     189             :     case IrOpcode::kSpeculativeSafeIntegerAdd:
     190      149530 :       return (left.Max() + right.Max() > kMaxInt) ||
     191        4313 :              (left.Min() + right.Min() < kMinInt);
     192             : 
     193             :     case IrOpcode::kSpeculativeSafeIntegerSubtract:
     194       16386 :       return (left.Max() - right.Min() > kMaxInt) ||
     195        7837 :              (left.Min() - right.Max() < kMinInt);
     196             : 
     197             :     default:
     198           0 :       UNREACHABLE();
     199             :   }
     200             :   return true;
     201             : }
     202             : 
     203        9089 : bool IsSomePositiveOrderedNumber(Type type) {
     204       15228 :   return type.Is(Type::OrderedNumber()) && !type.IsNone() && type.Min() > 0;
     205             : }
     206             : 
     207             : }  // namespace
     208             : 
     209             : #ifdef DEBUG
     210             : // Helpers for monotonicity checking.
     211             : class InputUseInfos {
     212             :  public:
     213             :   explicit InputUseInfos(Zone* zone) : input_use_infos_(zone) {}
     214             : 
     215             :   void SetAndCheckInput(Node* node, int index, UseInfo use_info) {
     216             :     if (input_use_infos_.empty()) {
     217             :       input_use_infos_.resize(node->InputCount(), UseInfo::None());
     218             :     }
     219             :     // Check that the new use informatin is a super-type of the old
     220             :     // one.
     221             :     DCHECK(IsUseLessGeneral(input_use_infos_[index], use_info));
     222             :     input_use_infos_[index] = use_info;
     223             :   }
     224             : 
     225             :  private:
     226             :   ZoneVector<UseInfo> input_use_infos_;
     227             : 
     228             :   static bool IsUseLessGeneral(UseInfo use1, UseInfo use2) {
     229             :     return use1.truncation().IsLessGeneralThan(use2.truncation());
     230             :   }
     231             : };
     232             : 
     233             : #endif  // DEBUG
     234             : 
     235      464095 : class RepresentationSelector {
     236             :  public:
     237             :   // Information for each node tracked during the fixpoint.
     238      464092 :   class NodeInfo final {
     239             :    public:
     240             :     // Adds new use to the node. Returns true if something has changed
     241             :     // and the node has to be requeued.
     242    99943196 :     bool AddUse(UseInfo info) {
     243    99943196 :       Truncation old_truncation = truncation_;
     244    99940391 :       truncation_ = Truncation::Generalize(truncation_, info.truncation());
     245    99940391 :       return truncation_ != old_truncation;
     246             :     }
     247             : 
     248    36444529 :     void set_queued() { state_ = kQueued; }
     249    66937267 :     void set_visited() { state_ = kVisited; }
     250    30493970 :     void set_pushed() { state_ = kPushed; }
     251    43140607 :     void reset_state() { state_ = kUnvisited; }
     252             :     bool visited() const { return state_ == kVisited; }
     253             :     bool queued() const { return state_ == kQueued; }
     254             :     bool unvisited() const { return state_ == kUnvisited; }
     255             :     Truncation truncation() const { return truncation_; }
     256    34783077 :     void set_output(MachineRepresentation output) { representation_ = output; }
     257             : 
     258             :     MachineRepresentation representation() const { return representation_; }
     259             : 
     260             :     // Helpers for feedback typing.
     261    21369866 :     void set_feedback_type(Type type) { feedback_type_ = type; }
     262             :     Type feedback_type() const { return feedback_type_; }
     263       91304 :     void set_weakened() { weakened_ = true; }
     264             :     bool weakened() const { return weakened_; }
     265    30591084 :     void set_restriction_type(Type type) { restriction_type_ = type; }
     266             :     Type restriction_type() const { return restriction_type_; }
     267             : 
     268             :    private:
     269             :     enum State : uint8_t { kUnvisited, kPushed, kVisited, kQueued };
     270             :     State state_ = kUnvisited;
     271             :     MachineRepresentation representation_ =
     272             :         MachineRepresentation::kNone;             // Output representation.
     273             :     Truncation truncation_ = Truncation::None();  // Information about uses.
     274             : 
     275             :     Type restriction_type_ = Type::Any();
     276             :     Type feedback_type_;
     277             :     bool weakened_ = false;
     278             :   };
     279             : 
     280      464092 :   RepresentationSelector(JSGraph* jsgraph, JSHeapBroker* broker, Zone* zone,
     281             :                          RepresentationChanger* changer,
     282             :                          SourcePositionTable* source_positions,
     283             :                          NodeOriginTable* node_origins)
     284             :       : jsgraph_(jsgraph),
     285             :         zone_(zone),
     286             :         count_(jsgraph->graph()->NodeCount()),
     287             :         info_(count_, zone),
     288             : #ifdef DEBUG
     289             :         node_input_use_infos_(count_, InputUseInfos(zone), zone),
     290             : #endif
     291             :         nodes_(zone),
     292             :         replacements_(zone),
     293             :         phase_(PROPAGATE),
     294             :         changer_(changer),
     295             :         queue_(zone),
     296             :         typing_stack_(zone),
     297             :         source_positions_(source_positions),
     298             :         node_origins_(node_origins),
     299      464096 :         type_cache_(TypeCache::Get()),
     300     1856376 :         op_typer_(broker, graph_zone()) {
     301      464096 :   }
     302             : 
     303             :   // Forward propagation of types from type feedback.
     304      464093 :   void RunTypePropagationPhase() {
     305             :     // Run type propagation.
     306      464093 :     TRACE("--{Type propagation phase}--\n");
     307      464096 :     phase_ = RETYPE;
     308             :     ResetNodeInfoState();
     309             : 
     310             :     DCHECK(typing_stack_.empty());
     311      927490 :     typing_stack_.push({graph()->end(), 0});
     312             :     GetInfo(graph()->end())->set_pushed();
     313    60988826 :     while (!typing_stack_.empty()) {
     314             :       NodeState& current = typing_stack_.top();
     315             : 
     316             :       // If there is an unvisited input, push it and continue.
     317             :       bool pushed_unvisited = false;
     318   254727104 :       while (current.input_index < current.node->InputCount()) {
     319             :         Node* input = current.node->InputAt(current.input_index);
     320             :         NodeInfo* input_info = GetInfo(input);
     321    96869269 :         current.input_index++;
     322    96869269 :         if (input_info->unvisited()) {
     323             :           input_info->set_pushed();
     324    60061259 :           typing_stack_.push({input, 0});
     325             :           pushed_unvisited = true;
     326    30030683 :           break;
     327             :         }
     328             :       }
     329    60524966 :       if (pushed_unvisited) continue;
     330             : 
     331             :       // Process the top of the stack.
     332    30494275 :       Node* node = current.node;
     333             :       typing_stack_.pop();
     334             :       NodeInfo* info = GetInfo(node);
     335             :       info->set_visited();
     336    30494104 :       bool updated = UpdateFeedbackType(node);
     337    30493775 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     338    30493775 :       VisitNode(node, info->truncation(), nullptr);
     339    30494195 :       TRACE("  ==> output ");
     340    30494195 :       PrintOutputInfo(info);
     341    30494104 :       TRACE("\n");
     342    30494729 :       if (updated) {
     343   179970910 :         for (Node* const user : node->uses()) {
     344    80044698 :           if (GetInfo(user)->visited()) {
     345             :             GetInfo(user)->set_queued();
     346             :             queue_.push(user);
     347             :           }
     348             :         }
     349             :       }
     350             :     }
     351             : 
     352             :     // Process the revisit queue.
     353     5466905 :     while (!queue_.empty()) {
     354     5002814 :       Node* node = queue_.front();
     355             :       queue_.pop();
     356             :       NodeInfo* info = GetInfo(node);
     357             :       info->set_visited();
     358     5002809 :       bool updated = UpdateFeedbackType(node);
     359     5002813 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     360     5002813 :       VisitNode(node, info->truncation(), nullptr);
     361     5002824 :       TRACE("  ==> output ");
     362     5002824 :       PrintOutputInfo(info);
     363     5002818 :       TRACE("\n");
     364     5002941 :       if (updated) {
     365    13083241 :         for (Node* const user : node->uses()) {
     366     5797442 :           if (GetInfo(user)->visited()) {
     367             :             GetInfo(user)->set_queued();
     368             :             queue_.push(user);
     369             :           }
     370             :         }
     371             :       }
     372             :     }
     373      464091 :   }
     374             : 
     375             :   void ResetNodeInfoState() {
     376             :     // Clean up for the next phase.
     377    43604703 :     for (NodeInfo& info : info_) {
     378             :       info.reset_state();
     379             :     }
     380             :   }
     381             : 
     382             :   Type TypeOf(Node* node) {
     383             :     Type type = GetInfo(node)->feedback_type();
     384    45358950 :     return type.IsInvalid() ? NodeProperties::GetType(node) : type;
     385             :   }
     386             : 
     387             :   Type FeedbackTypeOf(Node* node) {
     388             :     Type type = GetInfo(node)->feedback_type();
     389    38114765 :     return type.IsInvalid() ? Type::None() : type;
     390             :   }
     391             : 
     392      800422 :   Type TypePhi(Node* node) {
     393             :     int arity = node->op()->ValueInputCount();
     394             :     Type type = FeedbackTypeOf(node->InputAt(0));
     395     3172948 :     for (int i = 1; i < arity; ++i) {
     396     1186259 :       type = op_typer_.Merge(type, FeedbackTypeOf(node->InputAt(i)));
     397             :     }
     398      800426 :     return type;
     399             :   }
     400             : 
     401       12525 :   Type TypeSelect(Node* node) {
     402             :     return op_typer_.Merge(FeedbackTypeOf(node->InputAt(1)),
     403       12525 :                            FeedbackTypeOf(node->InputAt(2)));
     404             :   }
     405             : 
     406    35495667 :   bool UpdateFeedbackType(Node* node) {
     407    35495667 :     if (node->op()->ValueOutputCount() == 0) return false;
     408             : 
     409             :     NodeInfo* info = GetInfo(node);
     410             :     Type type = info->feedback_type();
     411    25116414 :     Type new_type = type;
     412             : 
     413             :     // For any non-phi node just wait until we get all inputs typed. We only
     414             :     // allow untyped inputs for phi nodes because phis are the only places
     415             :     // where cycles need to be broken.
     416    25116414 :     if (node->opcode() != IrOpcode::kPhi) {
     417   141662587 :       for (int i = 0; i < node->op()->ValueInputCount(); i++) {
     418    59516249 :         if (GetInfo(node->InputAt(i))->feedback_type().IsInvalid()) {
     419             :           return false;
     420             :         }
     421             :       }
     422             :     }
     423             : 
     424             :     // We preload these values here to avoid increasing the binary size too
     425             :     // much, which happens if we inline the calls into the macros below.
     426             :     Type input0_type;
     427    43825828 :     if (node->InputCount() > 0) input0_type = FeedbackTypeOf(node->InputAt(0));
     428             :     Type input1_type;
     429    40762329 :     if (node->InputCount() > 1) input1_type = FeedbackTypeOf(node->InputAt(1));
     430             : 
     431    24273564 :     switch (node->opcode()) {
     432             : #define DECLARE_CASE(Name)                               \
     433             :   case IrOpcode::k##Name: {                              \
     434             :     new_type = op_typer_.Name(input0_type, input1_type); \
     435             :     break;                                               \
     436             :   }
     437      480137 :       SIMPLIFIED_NUMBER_BINOP_LIST(DECLARE_CASE)
     438          78 :       DECLARE_CASE(SameValue)
     439             : #undef DECLARE_CASE
     440             : 
     441             : #define DECLARE_CASE(Name)                                               \
     442             :   case IrOpcode::k##Name: {                                              \
     443             :     new_type = Type::Intersect(op_typer_.Name(input0_type, input1_type), \
     444             :                                info->restriction_type(), graph_zone());  \
     445             :     break;                                                               \
     446             :   }
     447        1056 :       SIMPLIFIED_SPECULATIVE_NUMBER_BINOP_LIST(DECLARE_CASE)
     448             : #undef DECLARE_CASE
     449             : 
     450             : #define DECLARE_CASE(Name)                  \
     451             :   case IrOpcode::k##Name: {                 \
     452             :     new_type = op_typer_.Name(input0_type); \
     453             :     break;                                  \
     454             :   }
     455         295 :       SIMPLIFIED_NUMBER_UNOP_LIST(DECLARE_CASE)
     456             : #undef DECLARE_CASE
     457             : 
     458             : #define DECLARE_CASE(Name)                                              \
     459             :   case IrOpcode::k##Name: {                                             \
     460             :     new_type = Type::Intersect(op_typer_.Name(input0_type),             \
     461             :                                info->restriction_type(), graph_zone()); \
     462             :     break;                                                              \
     463             :   }
     464       40739 :       SIMPLIFIED_SPECULATIVE_NUMBER_UNOP_LIST(DECLARE_CASE)
     465         592 :       DECLARE_CASE(CheckFloat64Hole)
     466         523 :       DECLARE_CASE(CheckNumber)
     467        1467 :       DECLARE_CASE(CheckInternalizedString)
     468          18 :       DECLARE_CASE(CheckNonEmptyString)
     469        1762 :       DECLARE_CASE(CheckNonEmptyOneByteString)
     470         246 :       DECLARE_CASE(CheckNonEmptyTwoByteString)
     471        5635 :       DECLARE_CASE(CheckString)
     472             : #undef DECLARE_CASE
     473             : 
     474             :       case IrOpcode::kConvertReceiver:
     475         883 :         new_type = op_typer_.ConvertReceiver(input0_type);
     476         883 :         break;
     477             : 
     478             :       case IrOpcode::kPlainPrimitiveToNumber:
     479        1048 :         new_type = op_typer_.ToNumber(input0_type);
     480        1048 :         break;
     481             : 
     482             :       case IrOpcode::kCheckBounds:
     483             :         new_type =
     484             :             Type::Intersect(op_typer_.CheckBounds(input0_type, input1_type),
     485       63897 :                             info->restriction_type(), graph_zone());
     486       63897 :         break;
     487             : 
     488             :       case IrOpcode::kStringConcat:
     489             :         new_type = op_typer_.StringConcat(input0_type, input1_type,
     490       26369 :                                           FeedbackTypeOf(node->InputAt(2)));
     491       26369 :         break;
     492             : 
     493             :       case IrOpcode::kPhi: {
     494      800418 :         new_type = TypePhi(node);
     495      800423 :         if (!type.IsInvalid()) {
     496      481499 :           new_type = Weaken(node, type, new_type);
     497             :         }
     498             :         break;
     499             :       }
     500             : 
     501             :       case IrOpcode::kConvertTaggedHoleToUndefined:
     502             :         new_type = op_typer_.ConvertTaggedHoleToUndefined(
     503        2114 :             FeedbackTypeOf(node->InputAt(0)));
     504        2114 :         break;
     505             : 
     506             :       case IrOpcode::kTypeGuard: {
     507             :         new_type = op_typer_.TypeTypeGuard(node->op(),
     508       33522 :                                            FeedbackTypeOf(node->InputAt(0)));
     509       33522 :         break;
     510             :       }
     511             : 
     512             :       case IrOpcode::kSelect: {
     513       12525 :         new_type = TypeSelect(node);
     514       12525 :         break;
     515             :       }
     516             : 
     517             :       default:
     518             :         // Shortcut for operations that we do not handle.
     519    22352731 :         if (type.IsInvalid()) {
     520             :           GetInfo(node)->set_feedback_type(NodeProperties::GetType(node));
     521    19664726 :           return true;
     522             :         }
     523             :         return false;
     524             :     }
     525             :     // We need to guarantee that the feedback type is a subtype of the upper
     526             :     // bound. Naively that should hold, but weakening can actually produce
     527             :     // a bigger type if we are unlucky with ordering of phi typing. To be
     528             :     // really sure, just intersect the upper bound with the feedback type.
     529     1920822 :     new_type = Type::Intersect(GetUpperBound(node), new_type, graph_zone());
     530             : 
     531     2881272 :     if (!type.IsInvalid() && new_type.Is(type)) return false;
     532             :     GetInfo(node)->set_feedback_type(new_type);
     533     1705140 :     if (FLAG_trace_representation) {
     534           0 :       PrintNodeFeedbackType(node);
     535             :     }
     536             :     return true;
     537             :   }
     538             : 
     539           0 :   void PrintNodeFeedbackType(Node* n) {
     540           0 :     StdoutStream os;
     541           0 :     os << "#" << n->id() << ":" << *n->op() << "(";
     542             :     int j = 0;
     543           0 :     for (Node* const i : n->inputs()) {
     544           0 :       if (j++ > 0) os << ", ";
     545           0 :       os << "#" << i->id() << ":" << i->op()->mnemonic();
     546             :     }
     547           0 :     os << ")";
     548           0 :     if (NodeProperties::IsTyped(n)) {
     549             :       Type static_type = NodeProperties::GetType(n);
     550           0 :       os << "  [Static type: " << static_type;
     551             :       Type feedback_type = GetInfo(n)->feedback_type();
     552           0 :       if (!feedback_type.IsInvalid() && feedback_type != static_type) {
     553           0 :         os << ", Feedback type: " << feedback_type;
     554             :       }
     555           0 :       os << "]";
     556             :     }
     557             :     os << std::endl;
     558           0 :   }
     559             : 
     560      481499 :   Type Weaken(Node* node, Type previous_type, Type current_type) {
     561             :     // If the types have nothing to do with integers, return the types.
     562      481499 :     Type const integer = type_cache_->kInteger;
     563      481499 :     if (!previous_type.Maybe(integer)) {
     564       29773 :       return current_type;
     565             :     }
     566             :     DCHECK(current_type.Maybe(integer));
     567             : 
     568      451733 :     Type current_integer = Type::Intersect(current_type, integer, graph_zone());
     569             :     DCHECK(!current_integer.IsNone());
     570             :     Type previous_integer =
     571      451732 :         Type::Intersect(previous_type, integer, graph_zone());
     572             :     DCHECK(!previous_integer.IsNone());
     573             : 
     574             :     // Once we start weakening a node, we should always weaken.
     575      451727 :     if (!GetInfo(node)->weakened()) {
     576             :       // Only weaken if there is range involved; we should converge quickly
     577             :       // for all other types (the exception is a union of many constants,
     578             :       // but we currently do not increase the number of constants in unions).
     579       95587 :       Type previous = previous_integer.GetRange();
     580       95586 :       Type current = current_integer.GetRange();
     581      186984 :       if (current.IsInvalid() || previous.IsInvalid()) {
     582        4283 :         return current_type;
     583             :       }
     584             :       // Range is involved => we are weakening.
     585             :       GetInfo(node)->set_weakened();
     586             :     }
     587             : 
     588             :     return Type::Union(current_type,
     589             :                        op_typer_.WeakenRange(previous_integer, current_integer),
     590      447444 :                        graph_zone());
     591             :   }
     592             : 
     593             :   // Backward propagation of truncations.
     594      464096 :   void RunTruncationPropagationPhase() {
     595             :     // Run propagation phase to a fixpoint.
     596      464096 :     TRACE("--{Propagation phase}--\n");
     597      464096 :     phase_ = PROPAGATE;
     598      464096 :     EnqueueInitial(jsgraph_->graph()->end());
     599             :     // Process nodes from the queue until it is empty.
     600    63344884 :     while (!queue_.empty()) {
     601    31440392 :       Node* node = queue_.front();
     602             :       NodeInfo* info = GetInfo(node);
     603             :       queue_.pop();
     604             :       info->set_visited();
     605    31440354 :       TRACE(" visit #%d: %s (trunc: %s)\n", node->id(), node->op()->mnemonic(),
     606             :             info->truncation().description());
     607    31440354 :       VisitNode(node, info->truncation(), nullptr);
     608             :     }
     609      464096 :   }
     610             : 
     611      464095 :   void Run(SimplifiedLowering* lowering) {
     612      464095 :     RunTruncationPropagationPhase();
     613             : 
     614      464096 :     RunTypePropagationPhase();
     615             : 
     616             :     // Run lowering and change insertion phase.
     617      464092 :     TRACE("--{Simplified lowering phase}--\n");
     618      464097 :     phase_ = LOWER;
     619             :     // Process nodes from the collected {nodes_} vector.
     620    30957929 :     for (NodeVector::iterator i = nodes_.begin(); i != nodes_.end(); ++i) {
     621    30493832 :       Node* node = *i;
     622             :       NodeInfo* info = GetInfo(node);
     623    30493832 :       TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
     624             :       // Reuse {VisitNode()} so the representation rules are in one place.
     625             :       SourcePositionTable::Scope scope(
     626    30493832 :           source_positions_, source_positions_->GetSourcePosition(node));
     627             :       NodeOriginTable::Scope origin_scope(node_origins_, "simplified lowering",
     628    30493737 :                                           node);
     629    30493737 :       VisitNode(node, info->truncation(), lowering);
     630             :     }
     631             : 
     632             :     // Perform the final replacements.
     633     1722113 :     for (NodeVector::iterator i = replacements_.begin();
     634             :          i != replacements_.end(); ++i) {
     635     1258017 :       Node* node = *i;
     636     1258017 :       Node* replacement = *(++i);
     637     1258017 :       node->ReplaceUses(replacement);
     638     1258017 :       node->Kill();
     639             :       // We also need to replace the node in the rest of the vector.
     640   186561546 :       for (NodeVector::iterator j = i + 1; j != replacements_.end(); ++j) {
     641             :         ++j;
     642   185303530 :         if (*j == node) *j = replacement;
     643             :       }
     644             :     }
     645      464096 :   }
     646             : 
     647      464096 :   void EnqueueInitial(Node* node) {
     648      464096 :     NodeInfo* info = GetInfo(node);
     649             :     info->set_queued();
     650      464096 :     nodes_.push_back(node);
     651             :     queue_.push(node);
     652      464095 :   }
     653             : 
     654             :   // Enqueue {use_node}'s {index} input if the {use} contains new information
     655             :   // for that input node. Add the input to {nodes_} if this is the first time
     656             :   // it's been visited.
     657   158779395 :   void EnqueueInput(Node* use_node, int index,
     658             :                     UseInfo use_info = UseInfo::None()) {
     659   158779395 :     Node* node = use_node->InputAt(index);
     660   247640563 :     if (phase_ != PROPAGATE) return;
     661             :     NodeInfo* info = GetInfo(node);
     662             : #ifdef DEBUG
     663             :     // Check monotonicity of input requirements.
     664             :     node_input_use_infos_[use_node->id()].SetAndCheckInput(use_node, index,
     665             :                                                            use_info);
     666             : #endif  // DEBUG
     667    99948189 :     if (info->unvisited()) {
     668             :       // First visit of this node.
     669             :       info->set_queued();
     670    30030659 :       nodes_.push_back(node);
     671             :       queue_.push(node);
     672    30030463 :       TRACE("  initial #%i: ", node->id());
     673    30030463 :       info->AddUse(use_info);
     674    30030045 :       PrintTruncation(info->truncation());
     675    30029962 :       return;
     676             :     }
     677    69917530 :     TRACE("   queue #%i?: ", node->id());
     678    69917530 :     PrintTruncation(info->truncation());
     679    69916772 :     if (info->AddUse(use_info)) {
     680             :       // New usage information for the node is available.
     681     2349188 :       if (!info->queued()) {
     682             :         queue_.push(node);
     683             :         info->set_queued();
     684      946797 :         TRACE("   added: ");
     685             :       } else {
     686     1402384 :         TRACE(" inqueue: ");
     687             :       }
     688     2349181 :       PrintTruncation(info->truncation());
     689             :     }
     690             :   }
     691             : 
     692             :   bool lower() const { return phase_ == LOWER; }
     693             :   bool retype() const { return phase_ == RETYPE; }
     694             :   bool propagate() const { return phase_ == PROPAGATE; }
     695             : 
     696             :   void SetOutput(Node* node, MachineRepresentation representation,
     697             :                  Type restriction_type = Type::Any()) {
     698             :     NodeInfo* const info = GetInfo(node);
     699    95240512 :     switch (phase_) {
     700             :       case PROPAGATE:
     701             :         info->set_restriction_type(restriction_type);
     702             :         break;
     703             :       case RETYPE:
     704             :         DCHECK(info->restriction_type().Is(restriction_type));
     705             :         DCHECK(restriction_type.Is(info->restriction_type()));
     706             :         info->set_output(representation);
     707             :         break;
     708             :       case LOWER:
     709             :         DCHECK_EQ(info->representation(), representation);
     710             :         DCHECK(info->restriction_type().Is(restriction_type));
     711             :         DCHECK(restriction_type.Is(info->restriction_type()));
     712             :         break;
     713             :     }
     714             :   }
     715             : 
     716             :   Type GetUpperBound(Node* node) { return NodeProperties::GetType(node); }
     717             : 
     718       88814 :   bool InputCannotBe(Node* node, Type type) {
     719             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     720       88814 :     return !GetUpperBound(node->InputAt(0)).Maybe(type);
     721             :   }
     722             : 
     723       59937 :   bool InputIs(Node* node, Type type) {
     724             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     725      119874 :     return GetUpperBound(node->InputAt(0)).Is(type);
     726             :   }
     727             : 
     728             :   bool BothInputsAreSigned32(Node* node) {
     729       95722 :     return BothInputsAre(node, Type::Signed32());
     730             :   }
     731             : 
     732             :   bool BothInputsAreUnsigned32(Node* node) {
     733      102719 :     return BothInputsAre(node, Type::Unsigned32());
     734             :   }
     735             : 
     736     1036914 :   bool BothInputsAre(Node* node, Type type) {
     737             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     738     2381836 :     return GetUpperBound(node->InputAt(0)).Is(type) &&
     739     1344922 :            GetUpperBound(node->InputAt(1)).Is(type);
     740             :   }
     741             : 
     742             :   bool IsNodeRepresentationTagged(Node* node) {
     743             :     MachineRepresentation representation = GetInfo(node)->representation();
     744             :     return IsAnyTagged(representation);
     745             :   }
     746             : 
     747          72 :   bool OneInputCannotBe(Node* node, Type type) {
     748             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     749         144 :     return !GetUpperBound(node->InputAt(0)).Maybe(type) ||
     750         144 :            !GetUpperBound(node->InputAt(1)).Maybe(type);
     751             :   }
     752             : 
     753      333127 :   void ChangeToPureOp(Node* node, const Operator* new_op) {
     754             :     DCHECK(new_op->HasProperty(Operator::kPure));
     755      333127 :     if (node->op()->EffectInputCount() > 0) {
     756             :       DCHECK_LT(0, node->op()->ControlInputCount());
     757      210119 :       Node* control = NodeProperties::GetControlInput(node);
     758      210104 :       Node* effect = NodeProperties::GetEffectInput(node);
     759      210089 :       if (TypeOf(node).IsNone()) {
     760             :         // If the node is unreachable, insert an Unreachable node and mark the
     761             :         // value dead.
     762             :         // TODO(jarin,tebbi) Find a way to unify/merge this insertion with
     763             :         // InsertUnreachableIfNecessary.
     764         321 :         Node* unreachable = effect = graph()->NewNode(
     765         321 :             jsgraph_->common()->Unreachable(), effect, control);
     766         321 :         new_op = jsgraph_->common()->DeadValue(GetInfo(node)->representation());
     767         321 :         node->ReplaceInput(0, unreachable);
     768             :       }
     769             :       // Rewire the effect and control chains.
     770      210089 :       node->TrimInputCount(new_op->ValueInputCount());
     771      210104 :       ReplaceEffectControlUses(node, effect, control);
     772             :     } else {
     773             :       DCHECK_EQ(0, node->op()->ControlInputCount());
     774             :     }
     775      333102 :     NodeProperties::ChangeOp(node, new_op);
     776      333103 :   }
     777             : 
     778             :   // Converts input {index} of {node} according to given UseInfo {use},
     779             :   // assuming the type of the input is {input_type}. If {input_type} is null,
     780             :   // it takes the input from the input node {TypeOf(node->InputAt(index))}.
     781    53175104 :   void ConvertInput(Node* node, int index, UseInfo use,
     782             :                     Type input_type = Type::Invalid()) {
     783             :     Node* input = node->InputAt(index);
     784             :     // In the change phase, insert a change before the use if necessary.
     785    53175104 :     if (use.representation() == MachineRepresentation::kNone)
     786             :       return;  // No input requirement on the use.
     787             :     DCHECK_NOT_NULL(input);
     788             :     NodeInfo* input_info = GetInfo(input);
     789             :     MachineRepresentation input_rep = input_info->representation();
     790    50720489 :     if (input_rep != use.representation() ||
     791             :         use.type_check() != TypeCheckKind::kNone) {
     792             :       // Output representation doesn't match usage.
     793    16036952 :       TRACE("  change: #%d:%s(@%d #%d:%s) ", node->id(), node->op()->mnemonic(),
     794             :             index, input->id(), input->op()->mnemonic());
     795    16036937 :       TRACE(" from ");
     796    16036937 :       PrintOutputInfo(input_info);
     797    16036883 :       TRACE(" to ");
     798    16036883 :       PrintUseInfo(use);
     799    16036844 :       TRACE("\n");
     800    16036865 :       if (input_type.IsInvalid()) {
     801             :         input_type = TypeOf(input);
     802             :       }
     803    16036865 :       Node* n = changer_->GetRepresentationFor(
     804    16036865 :           input, input_info->representation(), input_type, node, use);
     805    16036694 :       node->ReplaceInput(index, n);
     806             :     }
     807             :   }
     808             : 
     809   171764103 :   void ProcessInput(Node* node, int index, UseInfo use) {
     810   171764103 :     switch (phase_) {
     811             :       case PROPAGATE:
     812    55030202 :         EnqueueInput(node, index, use);
     813    55027876 :         break;
     814             :       case RETYPE:
     815             :         break;
     816             :       case LOWER:
     817    53152704 :         ConvertInput(node, index, use);
     818    53151659 :         break;
     819             :     }
     820   171760732 :   }
     821             : 
     822    18359824 :   void ProcessRemainingInputs(Node* node, int index) {
     823             :     DCHECK_GE(index, NodeProperties::PastValueIndex(node));
     824             :     DCHECK_GE(index, NodeProperties::PastContextIndex(node));
     825    78665616 :     for (int i = std::max(index, NodeProperties::FirstEffectIndex(node));
     826    30152923 :          i < NodeProperties::PastEffectIndex(node); ++i) {
     827    11793154 :       EnqueueInput(node, i);  // Effect inputs: just visit
     828             :     }
     829    78793849 :     for (int i = std::max(index, NodeProperties::FirstControlIndex(node));
     830    30217035 :          i < NodeProperties::PastControlIndex(node); ++i) {
     831    11857269 :       EnqueueInput(node, i);  // Control inputs: just visit
     832             :     }
     833    18359803 :   }
     834             : 
     835             :   // The default, most general visitation case. For {node}, process all value,
     836             :   // context, frame state, effect, and control inputs, assuming that value
     837             :   // inputs should have {kRepTagged} representation and can observe all output
     838             :   // values {kTypeAny}.
     839    29633960 :   void VisitInputs(Node* node) {
     840    29633736 :     int tagged_count = node->op()->ValueInputCount() +
     841             :                        OperatorProperties::GetContextInputCount(node->op()) +
     842    29633321 :                        OperatorProperties::GetFrameStateInputCount(node->op());
     843             :     // Visit value, context and frame state inputs as tagged.
     844   116039387 :     for (int i = 0; i < tagged_count; i++) {
     845    43203057 :       ProcessInput(node, i, UseInfo::AnyTagged());
     846             :     }
     847             :     // Only enqueue other inputs (effects, control).
     848   141391880 :     for (int i = tagged_count; i < node->InputCount(); i++) {
     849    55879645 :       EnqueueInput(node, i);
     850             :     }
     851    29634368 :   }
     852             : 
     853     1667547 :   void VisitReturn(Node* node) {
     854     1667545 :     int tagged_limit = node->op()->ValueInputCount() +
     855             :                        OperatorProperties::GetContextInputCount(node->op()) +
     856     1667547 :                        OperatorProperties::GetFrameStateInputCount(node->op());
     857             :     // Visit integer slot count to pop
     858     1667552 :     ProcessInput(node, 0, UseInfo::TruncatingWord32());
     859             : 
     860             :     // Visit value, context and frame state inputs as tagged.
     861     5002639 :     for (int i = 1; i < tagged_limit; i++) {
     862     1667550 :       ProcessInput(node, i, UseInfo::AnyTagged());
     863             :     }
     864             :     // Only enqueue other inputs (effects, control).
     865     8337707 :     for (int i = tagged_limit; i < node->InputCount(); i++) {
     866     3335085 :       EnqueueInput(node, i);
     867             :     }
     868     1667545 :   }
     869             : 
     870             :   // Helper for an unused node.
     871      329688 :   void VisitUnused(Node* node) {
     872      329692 :     int value_count = node->op()->ValueInputCount() +
     873             :                       OperatorProperties::GetContextInputCount(node->op()) +
     874      329692 :                       OperatorProperties::GetFrameStateInputCount(node->op());
     875     1371998 :     for (int i = 0; i < value_count; i++) {
     876      521154 :       ProcessInput(node, i, UseInfo::None());
     877             :     }
     878      329691 :     ProcessRemainingInputs(node, value_count);
     879      329690 :     if (lower()) Kill(node);
     880      329690 :   }
     881             : 
     882             :   // Helper for no-op node.
     883          36 :   void VisitNoop(Node* node, Truncation truncation) {
     884          36 :     if (truncation.IsUnused()) return VisitUnused(node);
     885             :     MachineRepresentation representation =
     886          22 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
     887          44 :     VisitUnop(node, UseInfo(representation, truncation), representation);
     888          33 :     if (lower()) DeferReplacement(node, node->InputAt(0));
     889             :   }
     890             : 
     891             :   // Helper for binops of the R x L -> O variety.
     892     3502200 :   void VisitBinop(Node* node, UseInfo left_use, UseInfo right_use,
     893             :                   MachineRepresentation output,
     894             :                   Type restriction_type = Type::Any()) {
     895             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     896     3502200 :     ProcessInput(node, 0, left_use);
     897     3501497 :     ProcessInput(node, 1, right_use);
     898    10164466 :     for (int i = 2; i < node->InputCount(); i++) {
     899     3331738 :       EnqueueInput(node, i);
     900             :     }
     901             :     SetOutput(node, output, restriction_type);
     902     3501962 :   }
     903             : 
     904             :   // Helper for binops of the I x I -> O variety.
     905             :   void VisitBinop(Node* node, UseInfo input_use, MachineRepresentation output,
     906             :                   Type restriction_type = Type::Any()) {
     907     2859486 :     VisitBinop(node, input_use, input_use, output, restriction_type);
     908             :   }
     909             : 
     910       81595 :   void VisitSpeculativeInt32Binop(Node* node) {
     911             :     DCHECK_EQ(2, node->op()->ValueInputCount());
     912       81595 :     if (BothInputsAre(node, Type::NumberOrOddball())) {
     913             :       return VisitBinop(node, UseInfo::TruncatingWord32(),
     914             :                         MachineRepresentation::kWord32);
     915             :     }
     916       18466 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
     917       36932 :     return VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
     918       18466 :                       MachineRepresentation::kWord32);
     919             :   }
     920             : 
     921             :   // Helper for unops of the I -> O variety.
     922    10696819 :   void VisitUnop(Node* node, UseInfo input_use, MachineRepresentation output,
     923             :                  Type restriction_type = Type::Any()) {
     924             :     DCHECK_EQ(1, node->op()->ValueInputCount());
     925    10696819 :     ProcessInput(node, 0, input_use);
     926    10696812 :     ProcessRemainingInputs(node, 1);
     927             :     SetOutput(node, output, restriction_type);
     928    10696798 :   }
     929             : 
     930             :   // Helper for leaf nodes.
     931             :   void VisitLeaf(Node* node, MachineRepresentation output) {
     932             :     DCHECK_EQ(0, node->InputCount());
     933             :     SetOutput(node, output);
     934             :   }
     935             : 
     936             :   // Helpers for specific types of binops.
     937      630478 :   void VisitFloat64Binop(Node* node) {
     938             :     VisitBinop(node, UseInfo::TruncatingFloat64(),
     939             :                MachineRepresentation::kFloat64);
     940      630496 :   }
     941        2078 :   void VisitInt64Binop(Node* node) {
     942             :     VisitBinop(node, UseInfo::Word64(), MachineRepresentation::kWord64);
     943        2078 :   }
     944      487552 :   void VisitWord32TruncatingBinop(Node* node) {
     945             :     VisitBinop(node, UseInfo::TruncatingWord32(),
     946             :                MachineRepresentation::kWord32);
     947      487599 :   }
     948             : 
     949             :   // Infer representation for phi-like nodes.
     950             :   // The {node} parameter is only used to decide on the int64 representation.
     951             :   // Once the type system supports an external pointer type, the {node}
     952             :   // parameter can be removed.
     953     1649010 :   MachineRepresentation GetOutputInfoForPhi(Node* node, Type type,
     954             :                                             Truncation use) {
     955             :     // Compute the representation.
     956     1648980 :     if (type.Is(Type::None())) {
     957             :       return MachineRepresentation::kNone;
     958     2943533 :     } else if (type.Is(Type::Signed32()) || type.Is(Type::Unsigned32())) {
     959             :       return MachineRepresentation::kWord32;
     960     2126296 :     } else if (type.Is(Type::NumberOrOddball()) && use.IsUsedAsWord32()) {
     961             :       return MachineRepresentation::kWord32;
     962     1298866 :     } else if (type.Is(Type::Boolean())) {
     963             :       return MachineRepresentation::kBit;
     964     1946471 :     } else if (type.Is(Type::NumberOrOddball()) && use.IsUsedAsFloat64()) {
     965             :       return MachineRepresentation::kFloat64;
     966     2287501 :     } else if (type.Is(Type::Union(Type::SignedSmall(), Type::NaN(), zone()))) {
     967             :       // TODO(turbofan): For Phis that return either NaN or some Smi, it's
     968             :       // beneficial to not go all the way to double, unless the uses are
     969             :       // double uses. For tagging that just means some potentially expensive
     970             :       // allocation code; we might want to do the same for -0 as well?
     971             :       return MachineRepresentation::kTagged;
     972     1143629 :     } else if (type.Is(Type::Number())) {
     973             :       return MachineRepresentation::kFloat64;
     974      492569 :     } else if (type.Is(Type::ExternalPointer())) {
     975             :       return MachineType::PointerRepresentation();
     976             :     }
     977      492569 :     return MachineRepresentation::kTagged;
     978             :   }
     979             : 
     980             :   // Helper for handling selects.
     981       38499 :   void VisitSelect(Node* node, Truncation truncation,
     982             :                    SimplifiedLowering* lowering) {
     983             :     DCHECK(TypeOf(node->InputAt(0)).Is(Type::Boolean()));
     984       38499 :     ProcessInput(node, 0, UseInfo::Bool());
     985             : 
     986             :     MachineRepresentation output =
     987       38499 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
     988             :     SetOutput(node, output);
     989             : 
     990       38499 :     if (lower()) {
     991             :       // Update the select operator.
     992       12525 :       SelectParameters p = SelectParametersOf(node->op());
     993       12525 :       if (output != p.representation()) {
     994        7238 :         NodeProperties::ChangeOp(node,
     995        7238 :                                  lowering->common()->Select(output, p.hint()));
     996             :       }
     997             :     }
     998             :     // Convert inputs to the output representation of this phi, pass the
     999             :     // truncation truncation along.
    1000       76998 :     UseInfo input_use(output, truncation);
    1001       38499 :     ProcessInput(node, 1, input_use);
    1002       38498 :     ProcessInput(node, 2, input_use);
    1003       38499 :   }
    1004             : 
    1005             :   // Helper for handling phis.
    1006     1519278 :   void VisitPhi(Node* node, Truncation truncation,
    1007             :                 SimplifiedLowering* lowering) {
    1008             :     MachineRepresentation output =
    1009     1519278 :         GetOutputInfoForPhi(node, TypeOf(node), truncation);
    1010             :     // Only set the output representation if not running with type
    1011             :     // feedback. (Feedback typing will set the representation.)
    1012             :     SetOutput(node, output);
    1013             : 
    1014             :     int values = node->op()->ValueInputCount();
    1015     1519248 :     if (lower()) {
    1016             :       // Update the phi operator.
    1017      318943 :       if (output != PhiRepresentationOf(node->op())) {
    1018      176266 :         NodeProperties::ChangeOp(node, lowering->common()->Phi(output, values));
    1019             :       }
    1020             :     }
    1021             : 
    1022             :     // Convert inputs to the output representation of this phi, pass the
    1023             :     // truncation along.
    1024     3038974 :     UseInfo input_use(output, truncation);
    1025    12736790 :     for (int i = 0; i < node->InputCount(); i++) {
    1026    11217692 :       ProcessInput(node, i, i < values ? input_use : UseInfo::None());
    1027             :     }
    1028     1519400 :   }
    1029             : 
    1030      161880 :   void VisitObjectIs(Node* node, Type type, SimplifiedLowering* lowering) {
    1031      161880 :     Type const input_type = TypeOf(node->InputAt(0));
    1032      161880 :     if (input_type.Is(type)) {
    1033        4017 :       VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    1034        4017 :       if (lower()) {
    1035        1371 :         DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    1036             :       }
    1037             :     } else {
    1038      157863 :       VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    1039      157863 :       if (lower() && !input_type.Maybe(type)) {
    1040         487 :         DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    1041             :       }
    1042             :     }
    1043      161880 :   }
    1044             : 
    1045       15309 :   void VisitCheck(Node* node, Type type, SimplifiedLowering* lowering) {
    1046       15309 :     if (InputIs(node, type)) {
    1047             :       VisitUnop(node, UseInfo::AnyTagged(),
    1048        1055 :                 MachineRepresentation::kTaggedPointer);
    1049        1381 :       if (lower()) DeferReplacement(node, node->InputAt(0));
    1050             :     } else {
    1051       28508 :       VisitUnop(node,
    1052             :                 UseInfo::CheckedHeapObjectAsTaggedPointer(VectorSlotPair()),
    1053       14254 :                 MachineRepresentation::kTaggedPointer);
    1054             :     }
    1055       15309 :   }
    1056             : 
    1057      337731 :   void VisitCall(Node* node, SimplifiedLowering* lowering) {
    1058      337731 :     auto call_descriptor = CallDescriptorOf(node->op());
    1059      337738 :     int params = static_cast<int>(call_descriptor->ParameterCount());
    1060             :     int value_input_count = node->op()->ValueInputCount();
    1061             :     // Propagate representation information from call descriptor.
    1062     5129596 :     for (int i = 0; i < value_input_count; i++) {
    1063     2395929 :       if (i == 0) {
    1064             :         // The target of the call.
    1065      337734 :         ProcessInput(node, i, UseInfo::Any());
    1066     2058199 :       } else if ((i - 1) < params) {
    1067     1725444 :         ProcessInput(node, i,
    1068             :                      TruncatingUseInfoFromRepresentation(
    1069     3450888 :                          call_descriptor->GetInputType(i).representation()));
    1070             :       } else {
    1071      332756 :         ProcessInput(node, i, UseInfo::AnyTagged());
    1072             :       }
    1073             :     }
    1074      337738 :     ProcessRemainingInputs(node, value_input_count);
    1075             : 
    1076      337735 :     if (call_descriptor->ReturnCount() > 0) {
    1077             :       SetOutput(node, call_descriptor->GetReturnType(0).representation());
    1078             :     } else {
    1079             :       SetOutput(node, MachineRepresentation::kTagged);
    1080             :     }
    1081      337735 :   }
    1082             : 
    1083       10037 :   void MaskShiftOperand(Node* node, Type rhs_type) {
    1084       20074 :     if (!rhs_type.Is(type_cache_->kZeroToThirtyOne)) {
    1085         951 :       Node* const rhs = NodeProperties::GetValueInput(node, 1);
    1086        1902 :       node->ReplaceInput(1,
    1087         951 :                          graph()->NewNode(jsgraph_->machine()->Word32And(), rhs,
    1088        1902 :                                           jsgraph_->Int32Constant(0x1F)));
    1089             :     }
    1090       10037 :   }
    1091             : 
    1092      531068 :   static MachineSemantic DeoptValueSemanticOf(Type type) {
    1093             :     // We only need signedness to do deopt correctly.
    1094      531070 :     if (type.Is(Type::Signed32())) {
    1095             :       return MachineSemantic::kInt32;
    1096      362485 :     } else if (type.Is(Type::Unsigned32())) {
    1097             :       return MachineSemantic::kUint32;
    1098             :     } else {
    1099      360901 :       return MachineSemantic::kAny;
    1100             :     }
    1101             :   }
    1102             : 
    1103    11278128 :   static MachineType DeoptMachineTypeOf(MachineRepresentation rep, Type type) {
    1104    11278128 :     if (type.IsNone()) {
    1105             :       return MachineType::None();
    1106             :     }
    1107             :     // Do not distinguish between various Tagged variations.
    1108    11278128 :     if (IsAnyTagged(rep)) {
    1109             :       return MachineType::AnyTagged();
    1110             :     }
    1111             :     // Do not distinguish between various Compressed variations.
    1112      531119 :     if (IsAnyCompressed(rep)) {
    1113             :       return MachineType::AnyCompressed();
    1114             :     }
    1115             :     // Word64 representation is only valid for safe integer values.
    1116      531119 :     if (rep == MachineRepresentation::kWord64) {
    1117             :       DCHECK(type.Is(TypeCache::Get()->kSafeInteger));
    1118          51 :       return MachineType(rep, MachineSemantic::kInt64);
    1119             :     }
    1120      531068 :     MachineType machine_type(rep, DeoptValueSemanticOf(type));
    1121             :     DCHECK(machine_type.representation() != MachineRepresentation::kWord32 ||
    1122             :            machine_type.semantic() == MachineSemantic::kInt32 ||
    1123             :            machine_type.semantic() == MachineSemantic::kUint32);
    1124             :     DCHECK(machine_type.representation() != MachineRepresentation::kBit ||
    1125             :            type.Is(Type::Boolean()));
    1126      531063 :     return machine_type;
    1127             :   }
    1128             : 
    1129    10978397 :   void VisitStateValues(Node* node) {
    1130    10978397 :     if (propagate()) {
    1131    23675982 :       for (int i = 0; i < node->InputCount(); i++) {
    1132    10282017 :         EnqueueInput(node, i, UseInfo::Any());
    1133             :       }
    1134     7866261 :     } else if (lower()) {
    1135     3112197 :       Zone* zone = jsgraph_->zone();
    1136             :       ZoneVector<MachineType>* types =
    1137             :           new (zone->New(sizeof(ZoneVector<MachineType>)))
    1138     6224387 :               ZoneVector<MachineType>(node->InputCount(), zone);
    1139    23676192 :       for (int i = 0; i < node->InputCount(); i++) {
    1140             :         Node* input = node->InputAt(i);
    1141    10281995 :         (*types)[i] =
    1142    10281995 :             DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input));
    1143             :       }
    1144     3112192 :       SparseInputMask mask = SparseInputMaskOf(node->op());
    1145     3112191 :       NodeProperties::ChangeOp(
    1146     6224386 :           node, jsgraph_->common()->TypedStateValues(types, mask));
    1147             :     }
    1148             :     SetOutput(node, MachineRepresentation::kTagged);
    1149    10978392 :   }
    1150             : 
    1151    16597042 :   void VisitFrameState(Node* node) {
    1152             :     DCHECK_EQ(5, node->op()->ValueInputCount());
    1153             :     DCHECK_EQ(1, OperatorProperties::GetFrameStateInputCount(node->op()));
    1154             : 
    1155    16597089 :     ProcessInput(node, 0, UseInfo::AnyTagged());  // Parameters.
    1156    16597085 :     ProcessInput(node, 1, UseInfo::AnyTagged());  // Registers.
    1157             : 
    1158             :     // Accumulator is a special flower - we need to remember its type in
    1159             :     // a singleton typed-state-values node (as if it was a singleton
    1160             :     // state-values node).
    1161    16597105 :     if (propagate()) {
    1162     5252443 :       EnqueueInput(node, 2, UseInfo::Any());
    1163    11344668 :     } else if (lower()) {
    1164     5252444 :       Zone* zone = jsgraph_->zone();
    1165             :       Node* accumulator = node->InputAt(2);
    1166     5252444 :       if (accumulator == jsgraph_->OptimizedOutConstant()) {
    1167     4389653 :         node->ReplaceInput(2, jsgraph_->SingleDeadTypedStateValues());
    1168             :       } else {
    1169             :         ZoneVector<MachineType>* types =
    1170             :             new (zone->New(sizeof(ZoneVector<MachineType>)))
    1171      862785 :                 ZoneVector<MachineType>(1, zone);
    1172             :         (*types)[0] = DeoptMachineTypeOf(GetInfo(accumulator)->representation(),
    1173      862786 :                                          TypeOf(accumulator));
    1174             : 
    1175      862785 :         node->ReplaceInput(
    1176     1725570 :             2, jsgraph_->graph()->NewNode(jsgraph_->common()->TypedStateValues(
    1177             :                                               types, SparseInputMask::Dense()),
    1178      862784 :                                           accumulator));
    1179             :       }
    1180             :     }
    1181             : 
    1182    16597118 :     ProcessInput(node, 3, UseInfo::AnyTagged());  // Context.
    1183    16597070 :     ProcessInput(node, 4, UseInfo::AnyTagged());  // Closure.
    1184    16597085 :     ProcessInput(node, 5, UseInfo::AnyTagged());  // Outer frame state.
    1185    16597084 :     return SetOutput(node, MachineRepresentation::kTagged);
    1186             :   }
    1187             : 
    1188       69359 :   void VisitObjectState(Node* node) {
    1189       69359 :     if (propagate()) {
    1190      289072 :       for (int i = 0; i < node->InputCount(); i++) {
    1191      133315 :         EnqueueInput(node, i, UseInfo::Any());
    1192             :       }
    1193       46917 :     } else if (lower()) {
    1194       22442 :       Zone* zone = jsgraph_->zone();
    1195             :       ZoneVector<MachineType>* types =
    1196             :           new (zone->New(sizeof(ZoneVector<MachineType>)))
    1197       44884 :               ZoneVector<MachineType>(node->InputCount(), zone);
    1198      289072 :       for (int i = 0; i < node->InputCount(); i++) {
    1199             :         Node* input = node->InputAt(i);
    1200      133315 :         (*types)[i] =
    1201      133315 :             DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input));
    1202             :       }
    1203       22442 :       NodeProperties::ChangeOp(node, jsgraph_->common()->TypedObjectState(
    1204       22442 :                                          ObjectIdOf(node->op()), types));
    1205             :     }
    1206             :     SetOutput(node, MachineRepresentation::kTagged);
    1207       69359 :   }
    1208             : 
    1209             :   const Operator* Int32Op(Node* node) {
    1210      212129 :     return changer_->Int32OperatorFor(node->opcode());
    1211             :   }
    1212             : 
    1213             :   const Operator* Int32OverflowOp(Node* node) {
    1214      150114 :     return changer_->Int32OverflowOperatorFor(node->opcode());
    1215             :   }
    1216             : 
    1217             :   const Operator* Int64Op(Node* node) {
    1218         478 :     return changer_->Int64OperatorFor(node->opcode());
    1219             :   }
    1220             : 
    1221             :   const Operator* Uint32Op(Node* node) {
    1222       36139 :     return changer_->Uint32OperatorFor(node->opcode());
    1223             :   }
    1224             : 
    1225             :   const Operator* Uint32OverflowOp(Node* node) {
    1226         113 :     return changer_->Uint32OverflowOperatorFor(node->opcode());
    1227             :   }
    1228             : 
    1229             :   const Operator* Float64Op(Node* node) {
    1230      167962 :     return changer_->Float64OperatorFor(node->opcode());
    1231             :   }
    1232             : 
    1233     6375515 :   WriteBarrierKind WriteBarrierKindFor(
    1234             :       BaseTaggedness base_taggedness,
    1235             :       MachineRepresentation field_representation, Type field_type,
    1236             :       MachineRepresentation value_representation, Node* value) {
    1237    12751030 :     if (base_taggedness == kTaggedBase &&
    1238             :         CanBeTaggedPointer(field_representation)) {
    1239     5592942 :       Type value_type = NodeProperties::GetType(value);
    1240    11185884 :       if (field_representation == MachineRepresentation::kTaggedSigned ||
    1241     5592942 :           value_representation == MachineRepresentation::kTaggedSigned) {
    1242             :         // Write barriers are only for stores of heap objects.
    1243             :         return kNoWriteBarrier;
    1244             :       }
    1245    11185880 :       if (field_type.Is(Type::BooleanOrNullOrUndefined()) ||
    1246             :           value_type.Is(Type::BooleanOrNullOrUndefined())) {
    1247             :         // Write barriers are not necessary when storing true, false, null or
    1248             :         // undefined, because these special oddballs are always in the root set.
    1249             :         return kNoWriteBarrier;
    1250             :       }
    1251     5211652 :       if (value_type.IsHeapConstant()) {
    1252             :         RootIndex root_index;
    1253     1879145 :         const RootsTable& roots_table = jsgraph_->isolate()->roots_table();
    1254     3758290 :         if (roots_table.IsRootHandle(value_type.AsHeapConstant()->Value(),
    1255             :                                      &root_index)) {
    1256     1076184 :           if (RootsTable::IsImmortalImmovable(root_index)) {
    1257             :             // Write barriers are unnecessary for immortal immovable roots.
    1258             :             return kNoWriteBarrier;
    1259             :           }
    1260             :         }
    1261             :       }
    1262     8270940 :       if (field_representation == MachineRepresentation::kTaggedPointer ||
    1263     4135470 :           value_representation == MachineRepresentation::kTaggedPointer) {
    1264             :         // Write barriers for heap objects are cheaper.
    1265             :         return kPointerWriteBarrier;
    1266             :       }
    1267             :       NumberMatcher m(value);
    1268     3194882 :       if (m.HasValue()) {
    1269        1369 :         if (IsSmiDouble(m.Value())) {
    1270             :           // Storing a smi doesn't need a write barrier.
    1271             :           return kNoWriteBarrier;
    1272             :         }
    1273             :         // The NumberConstant will be represented as HeapNumber.
    1274        1369 :         return kPointerWriteBarrier;
    1275             :       }
    1276             :       return kFullWriteBarrier;
    1277             :     }
    1278             :     return kNoWriteBarrier;
    1279             :   }
    1280             : 
    1281             :   WriteBarrierKind WriteBarrierKindFor(
    1282             :       BaseTaggedness base_taggedness,
    1283             :       MachineRepresentation field_representation, int field_offset,
    1284             :       Type field_type, MachineRepresentation value_representation,
    1285             :       Node* value) {
    1286             :     WriteBarrierKind write_barrier_kind =
    1287     6256117 :         WriteBarrierKindFor(base_taggedness, field_representation, field_type,
    1288     6256117 :                             value_representation, value);
    1289     6256114 :     if (write_barrier_kind != kNoWriteBarrier) {
    1290     8181536 :       if (base_taggedness == kTaggedBase &&
    1291     4090768 :           field_offset == HeapObject::kMapOffset) {
    1292             :         write_barrier_kind = kMapWriteBarrier;
    1293             :       }
    1294             :     }
    1295             :     return write_barrier_kind;
    1296             :   }
    1297             : 
    1298             :   Graph* graph() const { return jsgraph_->graph(); }
    1299             :   CommonOperatorBuilder* common() const { return jsgraph_->common(); }
    1300             :   SimplifiedOperatorBuilder* simplified() const {
    1301             :     return jsgraph_->simplified();
    1302             :   }
    1303             : 
    1304        6206 :   void LowerToCheckedInt32Mul(Node* node, Truncation truncation,
    1305             :                               Type input0_type, Type input1_type) {
    1306             :     // If one of the inputs is positive and/or truncation is being applied,
    1307             :     // there is no need to return -0.
    1308             :     CheckForMinusZeroMode mz_mode =
    1309        4565 :         truncation.IdentifiesZeroAndMinusZero() ||
    1310        9089 :                 IsSomePositiveOrderedNumber(input0_type) ||
    1311        4524 :                 IsSomePositiveOrderedNumber(input1_type)
    1312             :             ? CheckForMinusZeroMode::kDontCheckForMinusZero
    1313        6206 :             : CheckForMinusZeroMode::kCheckForMinusZero;
    1314             : 
    1315        6206 :     NodeProperties::ChangeOp(node, simplified()->CheckedInt32Mul(mz_mode));
    1316        6206 :   }
    1317             : 
    1318      150114 :   void ChangeToInt32OverflowOp(Node* node) {
    1319      150110 :     NodeProperties::ChangeOp(node, Int32OverflowOp(node));
    1320      150099 :   }
    1321             : 
    1322         113 :   void ChangeToUint32OverflowOp(Node* node) {
    1323         113 :     NodeProperties::ChangeOp(node, Uint32OverflowOp(node));
    1324         113 :   }
    1325             : 
    1326      790488 :   void VisitSpeculativeIntegerAdditiveOp(Node* node, Truncation truncation,
    1327             :                                          SimplifiedLowering* lowering) {
    1328      790488 :     Type left_upper = GetUpperBound(node->InputAt(0));
    1329      790488 :     Type right_upper = GetUpperBound(node->InputAt(1));
    1330             : 
    1331     1928089 :     if (left_upper.Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1332      347319 :         right_upper.Is(type_cache_->kAdditiveSafeIntegerOrMinusZero)) {
    1333             :       // Only eliminate the node if its typing rule can be satisfied, namely
    1334             :       // that a safe integer is produced.
    1335      341319 :       if (truncation.IsUnused()) return VisitUnused(node);
    1336             : 
    1337             :       // If we know how to interpret the result or if the users only care
    1338             :       // about the low 32-bits, we can truncate to Word32 do a wrapping
    1339             :       // addition.
    1340      715267 :       if (GetUpperBound(node).Is(Type::Signed32()) ||
    1341      391248 :           GetUpperBound(node).Is(Type::Unsigned32()) ||
    1342             :           truncation.IsUsedAsWord32()) {
    1343             :         // => Int32Add/Sub
    1344      260503 :         VisitWord32TruncatingBinop(node);
    1345      323920 :         if (lower()) ChangeToPureOp(node, Int32Op(node));
    1346             :         return;
    1347             :       }
    1348             :     }
    1349             : 
    1350             :     // Try to use type feedback.
    1351      512342 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
    1352             :     DCHECK(hint == NumberOperationHint::kSignedSmall ||
    1353             :            hint == NumberOperationHint::kSigned32);
    1354             : 
    1355      512691 :     Type left_feedback_type = TypeOf(node->InputAt(0));
    1356      512691 :     Type right_feedback_type = TypeOf(node->InputAt(1));
    1357             :     // Handle the case when no int32 checks on inputs are necessary (but
    1358             :     // an overflow check is needed on the output). Note that we do not
    1359             :     // have to do any check if at most one side can be minus zero. For
    1360             :     // subtraction we need to handle the case of -0 - 0 properly, since
    1361             :     // that can produce -0.
    1362             :     Type left_constraint_type =
    1363             :         node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd
    1364             :             ? Type::Signed32OrMinusZero()
    1365      512691 :             : Type::Signed32();
    1366      580008 :     if (left_upper.Is(left_constraint_type) &&
    1367      573899 :         right_upper.Is(Type::Signed32OrMinusZero()) &&
    1368          21 :         (left_upper.Is(Type::Signed32()) || right_upper.Is(Type::Signed32()))) {
    1369             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1370             :                  MachineRepresentation::kWord32, Type::Signed32());
    1371             :     } else {
    1372             :       // If the output's truncation is identify-zeros, we can pass it
    1373             :       // along. Moreover, if the operation is addition and we know the
    1374             :       // right-hand side is not minus zero, we do not have to distinguish
    1375             :       // between 0 and -0.
    1376             :       IdentifyZeros left_identify_zeros = truncation.identify_zeros();
    1377      888023 :       if (node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd &&
    1378      436565 :           !right_feedback_type.Maybe(Type::MinusZero())) {
    1379             :         left_identify_zeros = kIdentifyZeros;
    1380             :       }
    1381             :       UseInfo left_use = CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1382      451458 :                                                         left_identify_zeros);
    1383             :       // For CheckedInt32Add and CheckedInt32Sub, we don't need to do
    1384             :       // a minus zero check for the right hand side, since we already
    1385             :       // know that the left hand side is a proper Signed32 value,
    1386             :       // potentially guarded by a check.
    1387             :       UseInfo right_use = CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1388      451685 :                                                          kIdentifyZeros);
    1389             :       VisitBinop(node, left_use, right_use, MachineRepresentation::kWord32,
    1390      451643 :                  Type::Signed32());
    1391             :     }
    1392      512950 :     if (lower()) {
    1393      308158 :       if (truncation.IsUsedAsWord32() ||
    1394      153806 :           !CanOverflowSigned32(node->op(), left_feedback_type,
    1395             :                                right_feedback_type, graph_zone())) {
    1396        5745 :         ChangeToPureOp(node, Int32Op(node));
    1397             : 
    1398             :       } else {
    1399      148607 :         ChangeToInt32OverflowOp(node);
    1400             :       }
    1401             :     }
    1402             :     return;
    1403             :   }
    1404             : 
    1405        3864 :   void VisitSpeculativeAdditiveOp(Node* node, Truncation truncation,
    1406             :                                   SimplifiedLowering* lowering) {
    1407       11592 :     if (BothInputsAre(node, type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1408        3864 :         (GetUpperBound(node).Is(Type::Signed32()) ||
    1409           0 :          GetUpperBound(node).Is(Type::Unsigned32()) ||
    1410             :          truncation.IsUsedAsWord32())) {
    1411             :       // => Int32Add/Sub
    1412           0 :       VisitWord32TruncatingBinop(node);
    1413           0 :       if (lower()) ChangeToPureOp(node, Int32Op(node));
    1414             :       return;
    1415             :     }
    1416             : 
    1417             :     // default case => Float64Add/Sub
    1418        7728 :     VisitBinop(node,
    1419             :                UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    1420             :                                                         VectorSlotPair()),
    1421             :                MachineRepresentation::kFloat64, Type::Number());
    1422        3864 :     if (lower()) {
    1423        1105 :       ChangeToPureOp(node, Float64Op(node));
    1424             :     }
    1425             :     return;
    1426             :   }
    1427             : 
    1428       13779 :   void VisitSpeculativeNumberModulus(Node* node, Truncation truncation,
    1429             :                                      SimplifiedLowering* lowering) {
    1430       41944 :     if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN()) &&
    1431         165 :         (truncation.IsUsedAsWord32() ||
    1432       14109 :          NodeProperties::GetType(node).Is(Type::Unsigned32()))) {
    1433             :       // => unsigned Uint32Mod
    1434         640 :       VisitWord32TruncatingBinop(node);
    1435         640 :       if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1436             :       return;
    1437             :     }
    1438       46422 :     if (BothInputsAre(node, Type::Signed32OrMinusZeroOrNaN()) &&
    1439        1236 :         (truncation.IsUsedAsWord32() ||
    1440       15611 :          NodeProperties::GetType(node).Is(Type::Signed32()))) {
    1441             :       // => signed Int32Mod
    1442        7005 :       VisitWord32TruncatingBinop(node);
    1443        7005 :       if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1444             :       return;
    1445             :     }
    1446             : 
    1447             :     // Try to use type feedback.
    1448        6134 :     NumberOperationHint hint = NumberOperationHintOf(node->op());
    1449             : 
    1450             :     // Handle the case when no uint32 checks on inputs are necessary
    1451             :     // (but an overflow check is needed on the output).
    1452        6134 :     if (BothInputsAreUnsigned32(node)) {
    1453         264 :       if (hint == NumberOperationHint::kSignedSmall ||
    1454         132 :           hint == NumberOperationHint::kSigned32) {
    1455             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1456             :                    MachineRepresentation::kWord32, Type::Unsigned32());
    1457         132 :         if (lower()) ChangeToUint32OverflowOp(node);
    1458             :         return;
    1459             :       }
    1460             :     }
    1461             : 
    1462             :     // Handle the case when no int32 checks on inputs are necessary
    1463             :     // (but an overflow check is needed on the output).
    1464        6002 :     if (BothInputsAre(node, Type::Signed32())) {
    1465             :       // If both the inputs the feedback are int32, use the overflow op.
    1466        2208 :       if (hint == NumberOperationHint::kSignedSmall ||
    1467        1104 :           hint == NumberOperationHint::kSigned32) {
    1468             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1469             :                    MachineRepresentation::kWord32, Type::Signed32());
    1470        1104 :         if (lower()) ChangeToInt32OverflowOp(node);
    1471             :         return;
    1472             :       }
    1473             :     }
    1474             : 
    1475        9796 :     if (hint == NumberOperationHint::kSignedSmall ||
    1476        4898 :         hint == NumberOperationHint::kSigned32) {
    1477             :       // If the result is truncated, we only need to check the inputs.
    1478             :       // For the left hand side we just propagate the identify zeros
    1479             :       // mode of the {truncation}; and for modulus the sign of the
    1480             :       // right hand side doesn't matter anyways, so in particular there's
    1481             :       // no observable difference between a 0 and a -0 then.
    1482             :       UseInfo const lhs_use = CheckedUseInfoAsWord32FromHint(
    1483        4098 :           hint, VectorSlotPair(), truncation.identify_zeros());
    1484             :       UseInfo const rhs_use = CheckedUseInfoAsWord32FromHint(
    1485        4098 :           hint, VectorSlotPair(), kIdentifyZeros);
    1486        4098 :       if (truncation.IsUsedAsWord32()) {
    1487         194 :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32);
    1488         194 :         if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1489        3904 :       } else if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN())) {
    1490             :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32,
    1491           0 :                    Type::Unsigned32());
    1492           0 :         if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1493             :       } else {
    1494             :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kWord32,
    1495        3904 :                    Type::Signed32());
    1496        3904 :         if (lower()) ChangeToInt32OverflowOp(node);
    1497             :       }
    1498             :       return;
    1499             :     }
    1500             : 
    1501        1652 :     if (TypeOf(node->InputAt(0)).Is(Type::Unsigned32()) &&
    1502        1652 :         TypeOf(node->InputAt(1)).Is(Type::Unsigned32()) &&
    1503           0 :         (truncation.IsUsedAsWord32() ||
    1504         800 :          NodeProperties::GetType(node).Is(Type::Unsigned32()))) {
    1505             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1506             :                  MachineRepresentation::kWord32, Type::Number());
    1507           0 :       if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    1508             :       return;
    1509             :     }
    1510        1719 :     if (TypeOf(node->InputAt(0)).Is(Type::Signed32()) &&
    1511        1719 :         TypeOf(node->InputAt(1)).Is(Type::Signed32()) &&
    1512           0 :         (truncation.IsUsedAsWord32() ||
    1513         800 :          NodeProperties::GetType(node).Is(Type::Signed32()))) {
    1514             :       VisitBinop(node, UseInfo::TruncatingWord32(),
    1515             :                  MachineRepresentation::kWord32, Type::Number());
    1516           0 :       if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    1517             :       return;
    1518             :     }
    1519             : 
    1520             :     // default case => Float64Mod
    1521             :     // For the left hand side we just propagate the identify zeros
    1522             :     // mode of the {truncation}; and for modulus the sign of the
    1523             :     // right hand side doesn't matter anyways, so in particular there's
    1524             :     // no observable difference between a 0 and a -0 then.
    1525             :     UseInfo const lhs_use = UseInfo::CheckedNumberOrOddballAsFloat64(
    1526        1600 :         truncation.identify_zeros(), VectorSlotPair());
    1527             :     UseInfo const rhs_use = UseInfo::CheckedNumberOrOddballAsFloat64(
    1528        1600 :         kIdentifyZeros, VectorSlotPair());
    1529             :     VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kFloat64,
    1530         800 :                Type::Number());
    1531        1009 :     if (lower()) ChangeToPureOp(node, Float64Op(node));
    1532             :     return;
    1533             :   }
    1534             : 
    1535    30493337 :   void InsertUnreachableIfNecessary(Node* node) {
    1536             :     DCHECK(lower());
    1537             :     // If the node is effectful and it produces an impossible value, then we
    1538             :     // insert Unreachable node after it.
    1539    51117189 :     if (node->op()->ValueOutputCount() > 0 &&
    1540     5447976 :         node->op()->EffectOutputCount() > 0 &&
    1541    35940535 :         node->opcode() != IrOpcode::kUnreachable && TypeOf(node).IsNone()) {
    1542             :       Node* control =
    1543             :           (node->op()->ControlOutputCount() == 0)
    1544             :               ? NodeProperties::GetControlInput(node, 0)
    1545        1192 :               : NodeProperties::FindSuccessfulControlProjection(node);
    1546             : 
    1547             :       Node* unreachable =
    1548        1192 :           graph()->NewNode(common()->Unreachable(), node, control);
    1549             : 
    1550             :       // Insert unreachable node and replace all the effect uses of the {node}
    1551             :       // with the new unreachable node.
    1552        7526 :       for (Edge edge : node->use_edges()) {
    1553        3167 :         if (!NodeProperties::IsEffectEdge(edge)) continue;
    1554             :         // Make sure to not overwrite the unreachable node's input. That would
    1555             :         // create a cycle.
    1556        2391 :         if (edge.from() == unreachable) continue;
    1557             :         // Avoid messing up the exceptional path.
    1558        1199 :         if (edge.from()->opcode() == IrOpcode::kIfException) {
    1559             :           DCHECK(!node->op()->HasProperty(Operator::kNoThrow));
    1560             :           DCHECK_EQ(NodeProperties::GetControlInput(edge.from()), node);
    1561             :           continue;
    1562             :         }
    1563             : 
    1564        1192 :         edge.UpdateTo(unreachable);
    1565             :       }
    1566             :     }
    1567    30493337 :   }
    1568             : 
    1569      186726 :   void VisitCheckBounds(Node* node, SimplifiedLowering* lowering) {
    1570      186726 :     CheckParameters const& p = CheckParametersOf(node->op());
    1571      186726 :     Type const index_type = TypeOf(node->InputAt(0));
    1572      186726 :     Type const length_type = TypeOf(node->InputAt(1));
    1573      186726 :     if (length_type.Is(Type::Unsigned31())) {
    1574      186104 :       if (index_type.Is(Type::Integral32OrMinusZero())) {
    1575             :         // Map -0 to 0, and the values in the [-2^31,-1] range to the
    1576             :         // [2^31,2^32-1] range, which will be considered out-of-bounds
    1577             :         // as well, because the {length_type} is limited to Unsigned31.
    1578             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    1579             :                    MachineRepresentation::kWord32);
    1580      172745 :         if (lower()) {
    1581             :           CheckBoundsParameters::Mode mode =
    1582             :               CheckBoundsParameters::kDeoptOnOutOfBounds;
    1583      104006 :           if (lowering->poisoning_level_ ==
    1584      104006 :                   PoisoningMitigationLevel::kDontPoison &&
    1585      104006 :               (index_type.IsNone() || length_type.IsNone() ||
    1586      100157 :                (index_type.Min() >= 0.0 &&
    1587       48154 :                 index_type.Max() < length_type.Min()))) {
    1588             :             // The bounds check is redundant if we already know that
    1589             :             // the index is within the bounds of [0.0, length[.
    1590             :             mode = CheckBoundsParameters::kAbortOnOutOfBounds;
    1591             :           }
    1592       52003 :           NodeProperties::ChangeOp(
    1593       52003 :               node, simplified()->CheckedUint32Bounds(p.feedback(), mode));
    1594             :         }
    1595             :       } else {
    1596             :         VisitBinop(
    1597             :             node,
    1598             :             UseInfo::CheckedSigned32AsWord32(kIdentifyZeros, p.feedback()),
    1599       13359 :             UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    1600       13359 :         if (lower()) {
    1601        2598 :           NodeProperties::ChangeOp(
    1602             :               node,
    1603             :               simplified()->CheckedUint32Bounds(
    1604        2598 :                   p.feedback(), CheckBoundsParameters::kDeoptOnOutOfBounds));
    1605             :         }
    1606             :       }
    1607             :     } else {
    1608             :       DCHECK(length_type.Is(type_cache_->kPositiveSafeInteger));
    1609             :       VisitBinop(node,
    1610             :                  UseInfo::CheckedSigned64AsWord64(kIdentifyZeros, p.feedback()),
    1611         622 :                  UseInfo::Word64(), MachineRepresentation::kWord64);
    1612         622 :       if (lower()) {
    1613         202 :         NodeProperties::ChangeOp(
    1614         202 :             node, simplified()->CheckedUint64Bounds(p.feedback()));
    1615             :       }
    1616             :     }
    1617      186726 :   }
    1618             : 
    1619             :   // Dispatching routine for visiting the node {node} with the usage {use}.
    1620             :   // Depending on the operator, propagate new usage info to the inputs.
    1621    97419872 :   void VisitNode(Node* node, Truncation truncation,
    1622             :                  SimplifiedLowering* lowering) {
    1623             :     // Unconditionally eliminate unused pure nodes (only relevant if there's
    1624             :     // a pure operation in between two effectful ones, where the last one
    1625             :     // is unused).
    1626             :     // Note: We must not do this for constants, as they are cached and we
    1627             :     // would thus kill the cached {node} during lowering (i.e. replace all
    1628             :     // uses with Dead), but at that point some node lowering might have
    1629             :     // already taken the constant {node} from the cache (while it was in
    1630             :     // a sane state still) and we would afterwards replace that use with
    1631             :     // Dead as well.
    1632   158025917 :     if (node->op()->ValueInputCount() > 0 &&
    1633   134262092 :         node->op()->HasProperty(Operator::kPure) && truncation.IsUnused()) {
    1634      109321 :       return VisitUnused(node);
    1635             :     }
    1636             : 
    1637    97310551 :     if (lower()) InsertUnreachableIfNecessary(node);
    1638             : 
    1639    97324235 :     switch (node->opcode()) {
    1640             :       //------------------------------------------------------------------
    1641             :       // Common operators.
    1642             :       //------------------------------------------------------------------
    1643             :       case IrOpcode::kStart:
    1644             :         // We use Start as a terminator for the frame state chain, so even
    1645             :         // tho Start doesn't really produce a value, we have to say Tagged
    1646             :         // here, otherwise the input conversion will fail.
    1647             :         return VisitLeaf(node, MachineRepresentation::kTagged);
    1648             :       case IrOpcode::kParameter:
    1649             :         // TODO(titzer): use representation from linkage.
    1650     6003325 :         return VisitUnop(node, UseInfo::None(), MachineRepresentation::kTagged);
    1651             :       case IrOpcode::kInt32Constant:
    1652             :         return VisitLeaf(node, MachineRepresentation::kWord32);
    1653             :       case IrOpcode::kInt64Constant:
    1654             :         return VisitLeaf(node, MachineRepresentation::kWord64);
    1655             :       case IrOpcode::kExternalConstant:
    1656             :         return VisitLeaf(node, MachineType::PointerRepresentation());
    1657             :       case IrOpcode::kNumberConstant: {
    1658     3564527 :         double const value = OpParameter<double>(node->op());
    1659             :         int value_as_int;
    1660     3564527 :         if (DoubleToSmiInteger(value, &value_as_int)) {
    1661             :           VisitLeaf(node, MachineRepresentation::kTaggedSigned);
    1662     3421773 :           if (lower()) {
    1663             :             intptr_t smi = bit_cast<intptr_t>(Smi::FromInt(value_as_int));
    1664     1096376 :             DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(smi));
    1665             :           }
    1666             :           return;
    1667             :         }
    1668             :         VisitLeaf(node, MachineRepresentation::kTagged);
    1669             :         return;
    1670             :       }
    1671             :       case IrOpcode::kHeapConstant:
    1672             :       case IrOpcode::kDelayedStringConstant:
    1673             :         return VisitLeaf(node, MachineRepresentation::kTaggedPointer);
    1674             :       case IrOpcode::kPointerConstant: {
    1675             :         VisitLeaf(node, MachineType::PointerRepresentation());
    1676         663 :         if (lower()) {
    1677         221 :           intptr_t const value = OpParameter<intptr_t>(node->op());
    1678         221 :           DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(value));
    1679             :         }
    1680             :         return;
    1681             :       }
    1682             : 
    1683             :       case IrOpcode::kBranch: {
    1684             :         DCHECK(TypeOf(node->InputAt(0)).Is(Type::Boolean()));
    1685     1842783 :         ProcessInput(node, 0, UseInfo::Bool());
    1686     1842713 :         EnqueueInput(node, NodeProperties::FirstControlIndex(node));
    1687     1842700 :         return;
    1688             :       }
    1689             :       case IrOpcode::kSwitch:
    1690       17547 :         ProcessInput(node, 0, UseInfo::TruncatingWord32());
    1691       17547 :         EnqueueInput(node, NodeProperties::FirstControlIndex(node));
    1692       17547 :         return;
    1693             :       case IrOpcode::kSelect:
    1694       38499 :         return VisitSelect(node, truncation, lowering);
    1695             :       case IrOpcode::kPhi:
    1696     1519297 :         return VisitPhi(node, truncation, lowering);
    1697             :       case IrOpcode::kCall:
    1698      337731 :         return VisitCall(node, lowering);
    1699             : 
    1700             :       //------------------------------------------------------------------
    1701             :       // JavaScript operators.
    1702             :       //------------------------------------------------------------------
    1703             :       case IrOpcode::kToBoolean: {
    1704      153173 :         if (truncation.IsUsedAsBool()) {
    1705      152579 :           ProcessInput(node, 0, UseInfo::Bool());
    1706             :           SetOutput(node, MachineRepresentation::kBit);
    1707      200931 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    1708             :         } else {
    1709         594 :           VisitInputs(node);
    1710             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    1711             :         }
    1712             :         return;
    1713             :       }
    1714             :       case IrOpcode::kJSToNumber:
    1715             :       case IrOpcode::kJSToNumberConvertBigInt:
    1716             :       case IrOpcode::kJSToNumeric: {
    1717       38177 :         VisitInputs(node);
    1718             :         // TODO(bmeurer): Optimize somewhat based on input type?
    1719       38177 :         if (truncation.IsUsedAsWord32()) {
    1720             :           SetOutput(node, MachineRepresentation::kWord32);
    1721         333 :           if (lower())
    1722          75 :             lowering->DoJSToNumberOrNumericTruncatesToWord32(node, this);
    1723       37844 :         } else if (truncation.IsUsedAsFloat64()) {
    1724             :           SetOutput(node, MachineRepresentation::kFloat64);
    1725        4987 :           if (lower())
    1726        1413 :             lowering->DoJSToNumberOrNumericTruncatesToFloat64(node, this);
    1727             :         } else {
    1728             :           SetOutput(node, MachineRepresentation::kTagged);
    1729             :         }
    1730             :         return;
    1731             :       }
    1732             : 
    1733             :       //------------------------------------------------------------------
    1734             :       // Simplified operators.
    1735             :       //------------------------------------------------------------------
    1736             :       case IrOpcode::kBooleanNot: {
    1737        9594 :         if (lower()) {
    1738             :           NodeInfo* input_info = GetInfo(node->InputAt(0));
    1739        3086 :           if (input_info->representation() == MachineRepresentation::kBit) {
    1740             :             // BooleanNot(x: kRepBit) => Word32Equal(x, #0)
    1741        2051 :             node->AppendInput(jsgraph_->zone(), jsgraph_->Int32Constant(0));
    1742        2051 :             NodeProperties::ChangeOp(node, lowering->machine()->Word32Equal());
    1743        1035 :           } else if (CanBeTaggedPointer(input_info->representation())) {
    1744             :             // BooleanNot(x: kRepTagged) => WordEqual(x, #false)
    1745        1035 :             node->AppendInput(jsgraph_->zone(), jsgraph_->FalseConstant());
    1746        1035 :             NodeProperties::ChangeOp(node, lowering->machine()->WordEqual());
    1747             :           } else {
    1748             :             DCHECK(TypeOf(node->InputAt(0)).IsNone());
    1749           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    1750             :           }
    1751             :         } else {
    1752             :           // No input representation requirement; adapt during lowering.
    1753        6508 :           ProcessInput(node, 0, UseInfo::AnyTruncatingToBool());
    1754             :           SetOutput(node, MachineRepresentation::kBit);
    1755             :         }
    1756             :         return;
    1757             :       }
    1758             :       case IrOpcode::kNumberEqual: {
    1759      155528 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1760      155528 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1761             :         // Regular number comparisons in JavaScript generally identify zeros,
    1762             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1763             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1764             :         // For equality we also handle the case that one side is non-zero, in
    1765             :         // which case we allow to truncate NaN to 0 on the other side.
    1766      209466 :         if ((lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1767      257184 :              rhs_type.Is(Type::Unsigned32OrMinusZero())) ||
    1768         102 :             (lhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    1769          36 :              rhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    1770          36 :              OneInputCannotBe(node, type_cache_->kZeroish))) {
    1771             :           // => unsigned Int32Cmp
    1772             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1773             :                      MachineRepresentation::kBit);
    1774       66472 :           if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    1775             :           return;
    1776             :         }
    1777      122790 :         if ((lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1778      182207 :              rhs_type.Is(Type::Signed32OrMinusZero())) ||
    1779          65 :             (lhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    1780          36 :              rhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    1781          36 :              OneInputCannotBe(node, type_cache_->kZeroish))) {
    1782             :           // => signed Int32Cmp
    1783             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1784             :                      MachineRepresentation::kBit);
    1785       27781 :           if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    1786             :           return;
    1787             :         }
    1788             :         // => Float64Cmp
    1789             :         VisitBinop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    1790             :                    MachineRepresentation::kBit);
    1791       89128 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    1792             :         return;
    1793             :       }
    1794             :       case IrOpcode::kNumberLessThan:
    1795             :       case IrOpcode::kNumberLessThanOrEqual: {
    1796      163022 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1797      163022 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1798             :         // Regular number comparisons in JavaScript generally identify zeros,
    1799             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1800             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1801      265627 :         if (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1802             :             rhs_type.Is(Type::Unsigned32OrMinusZero())) {
    1803             :           // => unsigned Int32Cmp
    1804             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1805             :                      MachineRepresentation::kBit);
    1806      115086 :           if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    1807       84199 :         } else if (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1808             :                    rhs_type.Is(Type::Signed32OrMinusZero())) {
    1809             :           // => signed Int32Cmp
    1810             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1811             :                      MachineRepresentation::kBit);
    1812       13644 :           if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    1813             :         } else {
    1814             :           // => Float64Cmp
    1815             :           VisitBinop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    1816             :                      MachineRepresentation::kBit);
    1817       62021 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    1818             :         }
    1819             :         return;
    1820             :       }
    1821             : 
    1822             :       case IrOpcode::kSpeculativeSafeIntegerAdd:
    1823             :       case IrOpcode::kSpeculativeSafeIntegerSubtract:
    1824      790489 :         return VisitSpeculativeIntegerAdditiveOp(node, truncation, lowering);
    1825             : 
    1826             :       case IrOpcode::kSpeculativeNumberAdd:
    1827             :       case IrOpcode::kSpeculativeNumberSubtract:
    1828        3864 :         return VisitSpeculativeAdditiveOp(node, truncation, lowering);
    1829             : 
    1830             :       case IrOpcode::kSpeculativeNumberLessThan:
    1831             :       case IrOpcode::kSpeculativeNumberLessThanOrEqual:
    1832             :       case IrOpcode::kSpeculativeNumberEqual: {
    1833      388990 :         Type const lhs_type = TypeOf(node->InputAt(0));
    1834      388990 :         Type const rhs_type = TypeOf(node->InputAt(1));
    1835             :         // Regular number comparisons in JavaScript generally identify zeros,
    1836             :         // so we always pass kIdentifyZeros for the inputs, and in addition
    1837             :         // we can truncate -0 to 0 for otherwise Unsigned32 or Signed32 inputs.
    1838      659161 :         if (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    1839             :             rhs_type.Is(Type::Unsigned32OrMinusZero())) {
    1840             :           // => unsigned Int32Cmp
    1841             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1842             :                      MachineRepresentation::kBit);
    1843        6178 :           if (lower()) ChangeToPureOp(node, Uint32Op(node));
    1844             :           return;
    1845      664323 :         } else if (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    1846             :                    rhs_type.Is(Type::Signed32OrMinusZero())) {
    1847             :           // => signed Int32Cmp
    1848             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    1849             :                      MachineRepresentation::kBit);
    1850      246339 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1851             :           return;
    1852             :         }
    1853             :         // Try to use type feedback.
    1854      199900 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    1855      199899 :         switch (hint) {
    1856             :           case NumberOperationHint::kSigned32:
    1857             :           case NumberOperationHint::kSignedSmall:
    1858      160550 :             if (propagate()) {
    1859      232766 :               VisitBinop(node,
    1860             :                          CheckedUseInfoAsWord32FromHint(hint, VectorSlotPair(),
    1861             :                                                         kIdentifyZeros),
    1862             :                          MachineRepresentation::kBit);
    1863       44167 :             } else if (retype()) {
    1864             :               SetOutput(node, MachineRepresentation::kBit, Type::Any());
    1865             :             } else {
    1866             :               DCHECK(lower());
    1867             :               Node* lhs = node->InputAt(0);
    1868             :               Node* rhs = node->InputAt(1);
    1869       32060 :               if (IsNodeRepresentationTagged(lhs) &&
    1870             :                   IsNodeRepresentationTagged(rhs)) {
    1871       28914 :                 VisitBinop(node,
    1872             :                            UseInfo::CheckedSignedSmallAsTaggedSigned(
    1873             :                                VectorSlotPair(), kIdentifyZeros),
    1874             :                            MachineRepresentation::kBit);
    1875       14457 :                 ChangeToPureOp(
    1876       28914 :                     node, changer_->TaggedSignedOperatorFor(node->opcode()));
    1877             : 
    1878             :               } else {
    1879        5324 :                 VisitBinop(node,
    1880             :                            CheckedUseInfoAsWord32FromHint(
    1881             :                                hint, VectorSlotPair(), kIdentifyZeros),
    1882             :                            MachineRepresentation::kBit);
    1883        2662 :                 ChangeToPureOp(node, Int32Op(node));
    1884             :               }
    1885             :             }
    1886             :             return;
    1887             :           case NumberOperationHint::kSignedSmallInputs:
    1888             :             // This doesn't make sense for compare operations.
    1889           0 :             UNREACHABLE();
    1890             :           case NumberOperationHint::kNumberOrOddball:
    1891             :             // Abstract and strict equality don't perform ToNumber conversions
    1892             :             // on Oddballs, so make sure we don't accidentially sneak in a
    1893             :             // hint with Oddball feedback here.
    1894             :             DCHECK_NE(IrOpcode::kSpeculativeNumberEqual, node->opcode());
    1895             :             V8_FALLTHROUGH;
    1896             :           case NumberOperationHint::kNumber:
    1897       78699 :             VisitBinop(node,
    1898             :                        CheckedUseInfoAsFloat64FromHint(hint, VectorSlotPair(),
    1899             :                                                        kIdentifyZeros),
    1900             :                        MachineRepresentation::kBit);
    1901       48678 :             if (lower()) ChangeToPureOp(node, Float64Op(node));
    1902             :             return;
    1903             :         }
    1904           0 :         UNREACHABLE();
    1905             :         return;
    1906             :       }
    1907             : 
    1908             :       case IrOpcode::kNumberAdd:
    1909             :       case IrOpcode::kNumberSubtract: {
    1910     1535756 :         if (TypeOf(node->InputAt(0))
    1911     1298228 :                 .Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1912     1298201 :             TypeOf(node->InputAt(1))
    1913     1204693 :                 .Is(type_cache_->kAdditiveSafeIntegerOrMinusZero) &&
    1914     1485696 :             (TypeOf(node).Is(Type::Signed32()) ||
    1915      547473 :              TypeOf(node).Is(Type::Unsigned32()) ||
    1916             :              truncation.IsUsedAsWord32())) {
    1917             :           // => Int32Add/Sub
    1918      171218 :           VisitWord32TruncatingBinop(node);
    1919      209601 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1920     2385029 :         } else if (jsgraph_->machine()->Is64() &&
    1921      598208 :                    BothInputsAre(node, type_cache_->kSafeInteger) &&
    1922      599768 :                    GetUpperBound(node).Is(type_cache_->kSafeInteger)) {
    1923             :           // => Int64Add/Sub
    1924        1533 :           VisitInt64Binop(node);
    1925        2011 :           if (lower()) ChangeToPureOp(node, Int64Op(node));
    1926             :         } else {
    1927             :           // => Float64Add/Sub
    1928      595113 :           VisitFloat64Binop(node);
    1929      668323 :           if (lower()) ChangeToPureOp(node, Float64Op(node));
    1930             :         }
    1931             :         return;
    1932             :       }
    1933             :       case IrOpcode::kSpeculativeNumberMultiply: {
    1934      127213 :         if (BothInputsAre(node, Type::Integral32()) &&
    1935       56489 :             (NodeProperties::GetType(node).Is(Type::Signed32()) ||
    1936       49619 :              NodeProperties::GetType(node).Is(Type::Unsigned32()) ||
    1937         398 :              (truncation.IsUsedAsWord32() &&
    1938       42802 :               NodeProperties::GetType(node).Is(
    1939         398 :                   type_cache_->kSafeIntegerOrMinusZero)))) {
    1940             :           // Multiply reduces to Int32Mul if the inputs are integers, and
    1941             :           // (a) the output is either known to be Signed32, or
    1942             :           // (b) the output is known to be Unsigned32, or
    1943             :           // (c) the uses are truncating and the result is in the safe
    1944             :           //     integer range.
    1945        1999 :           VisitWord32TruncatingBinop(node);
    1946        2530 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    1947             :           return;
    1948             :         }
    1949             :         // Try to use type feedback.
    1950       40405 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    1951       40405 :         Type input0_type = TypeOf(node->InputAt(0));
    1952       40405 :         Type input1_type = TypeOf(node->InputAt(1));
    1953             : 
    1954             :         // Handle the case when no int32 checks on inputs are necessary
    1955             :         // (but an overflow check is needed on the output).
    1956       40405 :         if (BothInputsAre(node, Type::Signed32())) {
    1957             :           // If both inputs and feedback are int32, use the overflow op.
    1958        5744 :           if (hint == NumberOperationHint::kSignedSmall ||
    1959        2872 :               hint == NumberOperationHint::kSigned32) {
    1960             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    1961             :                        MachineRepresentation::kWord32, Type::Signed32());
    1962        2872 :             if (lower()) {
    1963             :               LowerToCheckedInt32Mul(node, truncation, input0_type,
    1964         922 :                                      input1_type);
    1965             :             }
    1966             :             return;
    1967             :           }
    1968             :         }
    1969             : 
    1970       75068 :         if (hint == NumberOperationHint::kSignedSmall ||
    1971       37534 :             hint == NumberOperationHint::kSigned32) {
    1972       35665 :           VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    1973             :                      MachineRepresentation::kWord32, Type::Signed32());
    1974       17833 :           if (lower()) {
    1975        5284 :             LowerToCheckedInt32Mul(node, truncation, input0_type, input1_type);
    1976             :           }
    1977             :           return;
    1978             :         }
    1979             : 
    1980             :         // Checked float64 x float64 => float64
    1981       39404 :         VisitBinop(node,
    1982             :                    UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    1983             :                                                             VectorSlotPair()),
    1984             :                    MachineRepresentation::kFloat64, Type::Number());
    1985       25277 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    1986             :         return;
    1987             :       }
    1988             :       case IrOpcode::kNumberMultiply: {
    1989       55043 :         if (TypeOf(node->InputAt(0)).Is(Type::Integral32()) &&
    1990       59732 :             TypeOf(node->InputAt(1)).Is(Type::Integral32()) &&
    1991       31742 :             (TypeOf(node).Is(Type::Signed32()) ||
    1992       30034 :              TypeOf(node).Is(Type::Unsigned32()) ||
    1993         566 :              (truncation.IsUsedAsWord32() &&
    1994       25183 :               TypeOf(node).Is(type_cache_->kSafeIntegerOrMinusZero)))) {
    1995             :           // Multiply reduces to Int32Mul if the inputs are integers, and
    1996             :           // (a) the output is either known to be Signed32, or
    1997             :           // (b) the output is known to be Unsigned32, or
    1998             :           // (c) the uses are truncating and the result is in the safe
    1999             :           //     integer range.
    2000        2250 :           VisitWord32TruncatingBinop(node);
    2001        2712 :           if (lower()) ChangeToPureOp(node, Int32Op(node));
    2002             :           return;
    2003             :         }
    2004             :         // Number x Number => Float64Mul
    2005       21801 :         VisitFloat64Binop(node);
    2006       27839 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2007             :         return;
    2008             :       }
    2009             :       case IrOpcode::kSpeculativeNumberDivide: {
    2010       58786 :         if (BothInputsAreUnsigned32(node) && truncation.IsUsedAsWord32()) {
    2011             :           // => unsigned Uint32Div
    2012         574 :           VisitWord32TruncatingBinop(node);
    2013         574 :           if (lower()) DeferReplacement(node, lowering->Uint32Div(node));
    2014             :           return;
    2015             :         }
    2016       51466 :         if (BothInputsAreSigned32(node)) {
    2017       30394 :           if (NodeProperties::GetType(node).Is(Type::Signed32())) {
    2018             :             // => signed Int32Div
    2019           0 :             VisitWord32TruncatingBinop(node);
    2020           0 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2021             :             return;
    2022             :           }
    2023       15197 :           if (truncation.IsUsedAsWord32()) {
    2024             :             // => signed Int32Div
    2025        6921 :             VisitWord32TruncatingBinop(node);
    2026        6921 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2027             :             return;
    2028             :           }
    2029             :         }
    2030             : 
    2031             :         // Try to use type feedback.
    2032       44545 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2033             : 
    2034             :         // Handle the case when no uint32 checks on inputs are necessary
    2035             :         // (but an overflow check is needed on the output).
    2036       44545 :         if (BothInputsAreUnsigned32(node)) {
    2037       12344 :           if (hint == NumberOperationHint::kSignedSmall ||
    2038        6172 :               hint == NumberOperationHint::kSigned32) {
    2039             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    2040             :                        MachineRepresentation::kWord32, Type::Unsigned32());
    2041         289 :             if (lower()) ChangeToUint32OverflowOp(node);
    2042             :             return;
    2043             :           }
    2044             :         }
    2045             : 
    2046             :         // Handle the case when no int32 checks on inputs are necessary
    2047             :         // (but an overflow check is needed on the output).
    2048       44256 :         if (BothInputsAreSigned32(node)) {
    2049             :           // If both the inputs the feedback are int32, use the overflow op.
    2050       15998 :           if (hint == NumberOperationHint::kSignedSmall ||
    2051        7999 :               hint == NumberOperationHint::kSigned32) {
    2052             :             VisitBinop(node, UseInfo::TruncatingWord32(),
    2053             :                        MachineRepresentation::kWord32, Type::Signed32());
    2054          12 :             if (lower()) ChangeToInt32OverflowOp(node);
    2055             :             return;
    2056             :           }
    2057             :         }
    2058             : 
    2059       88488 :         if (hint == NumberOperationHint::kSigned32 ||
    2060       87588 :             hint == NumberOperationHint::kSignedSmall ||
    2061             :             hint == NumberOperationHint::kSignedSmallInputs) {
    2062             :           // If the result is truncated, we only need to check the inputs.
    2063       37996 :           if (truncation.IsUsedAsWord32()) {
    2064        4878 :             VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2065             :                        MachineRepresentation::kWord32);
    2066        2439 :             if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2067             :             return;
    2068       35557 :           } else if (hint != NumberOperationHint::kSignedSmallInputs) {
    2069        1606 :             VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2070             :                        MachineRepresentation::kWord32, Type::Signed32());
    2071         803 :             if (lower()) ChangeToInt32OverflowOp(node);
    2072             :             return;
    2073             :           }
    2074             :         }
    2075             : 
    2076             :         // default case => Float64Div
    2077       82004 :         VisitBinop(node,
    2078             :                    UseInfo::CheckedNumberOrOddballAsFloat64(kDistinguishZeros,
    2079             :                                                             VectorSlotPair()),
    2080             :                    MachineRepresentation::kFloat64, Type::Number());
    2081       52955 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2082             :         return;
    2083             :       }
    2084             :       case IrOpcode::kNumberDivide: {
    2085       36667 :         if (TypeOf(node->InputAt(0)).Is(Type::Unsigned32()) &&
    2086       37479 :             TypeOf(node->InputAt(1)).Is(Type::Unsigned32()) &&
    2087         670 :             (truncation.IsUsedAsWord32() ||
    2088       14385 :              TypeOf(node).Is(Type::Unsigned32()))) {
    2089             :           // => unsigned Uint32Div
    2090         142 :           VisitWord32TruncatingBinop(node);
    2091         142 :           if (lower()) DeferReplacement(node, lowering->Uint32Div(node));
    2092             :           return;
    2093             :         }
    2094       36327 :         if (TypeOf(node->InputAt(0)).Is(Type::Signed32()) &&
    2095       37780 :             TypeOf(node->InputAt(1)).Is(Type::Signed32()) &&
    2096        1445 :             (truncation.IsUsedAsWord32() ||
    2097       15018 :              TypeOf(node).Is(Type::Signed32()))) {
    2098             :           // => signed Int32Div
    2099           8 :           VisitWord32TruncatingBinop(node);
    2100           8 :           if (lower()) DeferReplacement(node, lowering->Int32Div(node));
    2101             :           return;
    2102             :         }
    2103             :         // Number x Number => Float64Div
    2104       13565 :         VisitFloat64Binop(node);
    2105       16953 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2106             :         return;
    2107             :       }
    2108             :       case IrOpcode::kSpeculativeNumberModulus:
    2109       13779 :         return VisitSpeculativeNumberModulus(node, truncation, lowering);
    2110             :       case IrOpcode::kNumberModulus: {
    2111        2564 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2112        2564 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2113        5426 :         if ((lhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN()) &&
    2114        2884 :              rhs_type.Is(Type::Unsigned32OrMinusZeroOrNaN())) &&
    2115         153 :             (truncation.IsUsedAsWord32() ||
    2116        2870 :              TypeOf(node).Is(Type::Unsigned32()))) {
    2117             :           // => unsigned Uint32Mod
    2118         320 :           VisitWord32TruncatingBinop(node);
    2119         320 :           if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
    2120             :           return;
    2121             :         }
    2122        4761 :         if ((lhs_type.Is(Type::Signed32OrMinusZeroOrNaN()) &&
    2123        2452 :              rhs_type.Is(Type::Signed32OrMinusZeroOrNaN())) &&
    2124        2754 :             (truncation.IsUsedAsWord32() || TypeOf(node).Is(Type::Signed32()) ||
    2125          42 :              (truncation.IdentifiesZeroAndMinusZero() &&
    2126        2286 :               TypeOf(node).Is(Type::Signed32OrMinusZero())))) {
    2127             :           // => signed Int32Mod
    2128          98 :           VisitWord32TruncatingBinop(node);
    2129          98 :           if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
    2130             :           return;
    2131             :         }
    2132             :         // => Float64Mod
    2133             :         // For the left hand side we just propagate the identify zeros
    2134             :         // mode of the {truncation}; and for modulus the sign of the
    2135             :         // right hand side doesn't matter anyways, so in particular there's
    2136             :         // no observable difference between a 0 and a -0 then.
    2137             :         UseInfo const lhs_use =
    2138             :             UseInfo::TruncatingFloat64(truncation.identify_zeros());
    2139             :         UseInfo const rhs_use = UseInfo::TruncatingFloat64(kIdentifyZeros);
    2140        2146 :         VisitBinop(node, lhs_use, rhs_use, MachineRepresentation::kFloat64);
    2141        2500 :         if (lower()) ChangeToPureOp(node, Float64Op(node));
    2142             :         return;
    2143             :       }
    2144             :       case IrOpcode::kNumberBitwiseOr:
    2145             :       case IrOpcode::kNumberBitwiseXor:
    2146             :       case IrOpcode::kNumberBitwiseAnd: {
    2147       19653 :         VisitWord32TruncatingBinop(node);
    2148       26092 :         if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
    2149             :         return;
    2150             :       }
    2151             :       case IrOpcode::kSpeculativeNumberBitwiseOr:
    2152             :       case IrOpcode::kSpeculativeNumberBitwiseXor:
    2153             :       case IrOpcode::kSpeculativeNumberBitwiseAnd:
    2154       81595 :         VisitSpeculativeInt32Binop(node);
    2155       81595 :         if (lower()) {
    2156       22450 :           ChangeToPureOp(node, Int32Op(node));
    2157             :         }
    2158             :         return;
    2159             :       case IrOpcode::kNumberShiftLeft: {
    2160        1284 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2161             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2162        1284 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2163        1284 :         if (lower()) {
    2164         373 :           MaskShiftOperand(node, rhs_type);
    2165         373 :           ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2166             :         }
    2167             :         return;
    2168             :       }
    2169             :       case IrOpcode::kSpeculativeNumberShiftLeft: {
    2170        8079 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2171        7272 :           Type rhs_type = GetUpperBound(node->InputAt(1));
    2172             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2173             :                      UseInfo::TruncatingWord32(),
    2174        7272 :                      MachineRepresentation::kWord32);
    2175        7272 :           if (lower()) {
    2176        1838 :             MaskShiftOperand(node, rhs_type);
    2177        1838 :             ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2178             :           }
    2179             :           return;
    2180             :         }
    2181         806 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2182         806 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2183        1613 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2184             :                    MachineRepresentation::kWord32, Type::Signed32());
    2185         807 :         if (lower()) {
    2186         260 :           MaskShiftOperand(node, rhs_type);
    2187         260 :           ChangeToPureOp(node, lowering->machine()->Word32Shl());
    2188             :         }
    2189             :         return;
    2190             :       }
    2191             :       case IrOpcode::kNumberShiftRight: {
    2192         555 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2193             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2194         555 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2195         555 :         if (lower()) {
    2196         155 :           MaskShiftOperand(node, rhs_type);
    2197         155 :           ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2198             :         }
    2199             :         return;
    2200             :       }
    2201             :       case IrOpcode::kSpeculativeNumberShiftRight: {
    2202       22831 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2203       21595 :           Type rhs_type = GetUpperBound(node->InputAt(1));
    2204             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2205             :                      UseInfo::TruncatingWord32(),
    2206       21595 :                      MachineRepresentation::kWord32);
    2207       21596 :           if (lower()) {
    2208        5215 :             MaskShiftOperand(node, rhs_type);
    2209        5215 :             ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2210             :           }
    2211             :           return;
    2212             :         }
    2213        1237 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2214        1237 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2215        2474 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2216             :                    MachineRepresentation::kWord32, Type::Signed32());
    2217        1237 :         if (lower()) {
    2218         381 :           MaskShiftOperand(node, rhs_type);
    2219         381 :           ChangeToPureOp(node, lowering->machine()->Word32Sar());
    2220             :         }
    2221             :         return;
    2222             :       }
    2223             :       case IrOpcode::kNumberShiftRightLogical: {
    2224         683 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2225             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2226         683 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2227         683 :         if (lower()) {
    2228         209 :           MaskShiftOperand(node, rhs_type);
    2229         209 :           ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2230             :         }
    2231             :         return;
    2232             :       }
    2233             :       case IrOpcode::kSpeculativeNumberShiftRightLogical: {
    2234        5911 :         NumberOperationHint hint = NumberOperationHintOf(node->op());
    2235        5911 :         Type rhs_type = GetUpperBound(node->InputAt(1));
    2236       15121 :         if (rhs_type.Is(type_cache_->kZeroish) &&
    2237        6598 :             (hint == NumberOperationHint::kSignedSmall ||
    2238        9873 :              hint == NumberOperationHint::kSigned32) &&
    2239             :             !truncation.IsUsedAsWord32()) {
    2240             :           // The SignedSmall or Signed32 feedback means that the results that we
    2241             :           // have seen so far were of type Unsigned31.  We speculate that this
    2242             :           // will continue to hold.  Moreover, since the RHS is 0, the result
    2243             :           // will just be the (converted) LHS.
    2244         650 :           VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2245             :                      MachineRepresentation::kWord32, Type::Unsigned31());
    2246         325 :           if (lower()) {
    2247          92 :             node->RemoveInput(1);
    2248         184 :             NodeProperties::ChangeOp(
    2249          92 :                 node, simplified()->CheckedUint32ToInt32(VectorSlotPair()));
    2250             :           }
    2251             :           return;
    2252             :         }
    2253        5586 :         if (BothInputsAre(node, Type::NumberOrOddball())) {
    2254             :           VisitBinop(node, UseInfo::TruncatingWord32(),
    2255             :                      UseInfo::TruncatingWord32(),
    2256        4215 :                      MachineRepresentation::kWord32);
    2257        4215 :           if (lower()) {
    2258        1189 :             MaskShiftOperand(node, rhs_type);
    2259        1189 :             ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2260             :           }
    2261             :           return;
    2262             :         }
    2263        2742 :         VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint),
    2264             :                    MachineRepresentation::kWord32, Type::Unsigned32());
    2265        1371 :         if (lower()) {
    2266         417 :           MaskShiftOperand(node, rhs_type);
    2267         417 :           ChangeToPureOp(node, lowering->machine()->Word32Shr());
    2268             :         }
    2269             :         return;
    2270             :       }
    2271             :       case IrOpcode::kNumberAbs: {
    2272             :         // NumberAbs maps both 0 and -0 to 0, so we can generally
    2273             :         // pass the kIdentifyZeros truncation to its input, and
    2274             :         // choose to ignore minus zero in all cases.
    2275         903 :         Type const input_type = TypeOf(node->InputAt(0));
    2276         903 :         if (input_type.Is(Type::Unsigned32OrMinusZero())) {
    2277             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2278          37 :                     MachineRepresentation::kWord32);
    2279          52 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2280         866 :         } else if (input_type.Is(Type::Signed32OrMinusZero())) {
    2281             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2282         208 :                     MachineRepresentation::kWord32);
    2283         208 :           if (lower()) DeferReplacement(node, lowering->Int32Abs(node));
    2284        1316 :         } else if (input_type.Is(type_cache_->kPositiveIntegerOrNaN)) {
    2285             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2286          14 :                     MachineRepresentation::kFloat64);
    2287          21 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2288             :         } else {
    2289             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2290         644 :                     MachineRepresentation::kFloat64);
    2291         834 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2292             :         }
    2293             :         return;
    2294             :       }
    2295             :       case IrOpcode::kNumberClz32: {
    2296             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2297          84 :                   MachineRepresentation::kWord32);
    2298         112 :         if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    2299             :         return;
    2300             :       }
    2301             :       case IrOpcode::kNumberImul: {
    2302             :         VisitBinop(node, UseInfo::TruncatingWord32(),
    2303        2616 :                    UseInfo::TruncatingWord32(), MachineRepresentation::kWord32);
    2304        3488 :         if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node));
    2305             :         return;
    2306             :       }
    2307             :       case IrOpcode::kNumberFround: {
    2308             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2309        3904 :                   MachineRepresentation::kFloat32);
    2310        5192 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2311             :         return;
    2312             :       }
    2313             :       case IrOpcode::kNumberMax: {
    2314             :         // It is safe to use the feedback types for left and right hand side
    2315             :         // here, since we can only narrow those types and thus we can only
    2316             :         // promise a more specific truncation.
    2317             :         // For NumberMax we generally propagate whether the truncation
    2318             :         // identifies zeros to the inputs, and we choose to ignore minus
    2319             :         // zero in those cases.
    2320        7530 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2321        7530 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2322       11541 :         if ((lhs_type.Is(Type::Unsigned32()) &&
    2323       11658 :              rhs_type.Is(Type::Unsigned32())) ||
    2324         681 :             (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2325         102 :              rhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2326             :              truncation.IdentifiesZeroAndMinusZero())) {
    2327        3423 :           VisitWord32TruncatingBinop(node);
    2328        3423 :           if (lower()) {
    2329        1092 :             lowering->DoMax(node, lowering->machine()->Uint32LessThan(),
    2330        1092 :                             MachineRepresentation::kWord32);
    2331             :           }
    2332        7899 :         } else if ((lhs_type.Is(Type::Signed32()) &&
    2333        4996 :                     rhs_type.Is(Type::Signed32())) ||
    2334         625 :                    (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    2335          81 :                     rhs_type.Is(Type::Signed32OrMinusZero()) &&
    2336             :                     truncation.IdentifiesZeroAndMinusZero())) {
    2337        3218 :           VisitWord32TruncatingBinop(node);
    2338        3218 :           if (lower()) {
    2339        1051 :             lowering->DoMax(node, lowering->machine()->Int32LessThan(),
    2340        1051 :                             MachineRepresentation::kWord32);
    2341             :           }
    2342        2667 :         } else if (jsgraph_->machine()->Is64() &&
    2343        1520 :                    lhs_type.Is(type_cache_->kSafeInteger) &&
    2344         631 :                    rhs_type.Is(type_cache_->kSafeInteger)) {
    2345         505 :           VisitInt64Binop(node);
    2346         505 :           if (lower()) {
    2347         165 :             lowering->DoMax(node, lowering->machine()->Int64LessThan(),
    2348         165 :                             MachineRepresentation::kWord64);
    2349             :           }
    2350             :         } else {
    2351             :           VisitBinop(node,
    2352             :                      UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2353             :                      MachineRepresentation::kFloat64);
    2354         384 :           if (lower()) {
    2355             :             // If the right hand side is not NaN, and the left hand side
    2356             :             // is not NaN (or -0 if the difference between the zeros is
    2357             :             // observed), we can do a simple floating point comparison here.
    2358         240 :             if (lhs_type.Is(truncation.IdentifiesZeroAndMinusZero()
    2359             :                                 ? Type::OrderedNumber()
    2360         193 :                                 : Type::PlainNumber()) &&
    2361             :                 rhs_type.Is(Type::OrderedNumber())) {
    2362          48 :               lowering->DoMax(node, lowering->machine()->Float64LessThan(),
    2363          48 :                               MachineRepresentation::kFloat64);
    2364             :             } else {
    2365          72 :               NodeProperties::ChangeOp(node, Float64Op(node));
    2366             :             }
    2367             :           }
    2368             :         }
    2369             :         return;
    2370             :       }
    2371             :       case IrOpcode::kNumberMin: {
    2372             :         // It is safe to use the feedback types for left and right hand side
    2373             :         // here, since we can only narrow those types and thus we can only
    2374             :         // promise a more specific truncation.
    2375             :         // For NumberMin we generally propagate whether the truncation
    2376             :         // identifies zeros to the inputs, and we choose to ignore minus
    2377             :         // zero in those cases.
    2378       10220 :         Type const lhs_type = TypeOf(node->InputAt(0));
    2379       10220 :         Type const rhs_type = TypeOf(node->InputAt(1));
    2380       19822 :         if ((lhs_type.Is(Type::Unsigned32()) &&
    2381       11092 :              rhs_type.Is(Type::Unsigned32())) ||
    2382         308 :             (lhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2383          81 :              rhs_type.Is(Type::Unsigned32OrMinusZero()) &&
    2384             :              truncation.IdentifiesZeroAndMinusZero())) {
    2385        9348 :           VisitWord32TruncatingBinop(node);
    2386        9348 :           if (lower()) {
    2387        3003 :             lowering->DoMin(node, lowering->machine()->Uint32LessThan(),
    2388        3003 :                             MachineRepresentation::kWord32);
    2389             :           }
    2390        1272 :         } else if ((lhs_type.Is(Type::Signed32()) &&
    2391        1507 :                     rhs_type.Is(Type::Signed32())) ||
    2392         217 :                    (lhs_type.Is(Type::Signed32OrMinusZero()) &&
    2393          81 :                     rhs_type.Is(Type::Signed32OrMinusZero()) &&
    2394             :                     truncation.IdentifiesZeroAndMinusZero())) {
    2395         237 :           VisitWord32TruncatingBinop(node);
    2396         237 :           if (lower()) {
    2397          72 :             lowering->DoMin(node, lowering->machine()->Int32LessThan(),
    2398          72 :                             MachineRepresentation::kWord32);
    2399             :           }
    2400        1905 :         } else if (jsgraph_->machine()->Is64() &&
    2401         822 :                    lhs_type.Is(type_cache_->kSafeInteger) &&
    2402         187 :                    rhs_type.Is(type_cache_->kSafeInteger)) {
    2403          40 :           VisitInt64Binop(node);
    2404          40 :           if (lower()) {
    2405          16 :             lowering->DoMin(node, lowering->machine()->Int64LessThan(),
    2406          16 :                             MachineRepresentation::kWord64);
    2407             :           }
    2408             :         } else {
    2409             :           VisitBinop(node,
    2410             :                      UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2411             :                      MachineRepresentation::kFloat64);
    2412         595 :           if (lower()) {
    2413             :             // If the left hand side is not NaN, and the right hand side
    2414             :             // is not NaN (or -0 if the difference between the zeros is
    2415             :             // observed), we can do a simple floating point comparison here.
    2416         277 :             if (lhs_type.Is(Type::OrderedNumber()) &&
    2417          84 :                 rhs_type.Is(truncation.IdentifiesZeroAndMinusZero()
    2418             :                                 ? Type::OrderedNumber()
    2419             :                                 : Type::PlainNumber())) {
    2420          45 :               lowering->DoMin(node,
    2421             :                               lowering->machine()->Float64LessThanOrEqual(),
    2422          45 :                               MachineRepresentation::kFloat64);
    2423             :             } else {
    2424         148 :               NodeProperties::ChangeOp(node, Float64Op(node));
    2425             :             }
    2426             :           }
    2427             :         }
    2428             :         return;
    2429             :       }
    2430             :       case IrOpcode::kNumberAtan2:
    2431             :       case IrOpcode::kNumberPow: {
    2432             :         VisitBinop(node, UseInfo::TruncatingFloat64(),
    2433             :                    MachineRepresentation::kFloat64);
    2434        3712 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2435             :         return;
    2436             :       }
    2437             :       case IrOpcode::kNumberCeil:
    2438             :       case IrOpcode::kNumberFloor:
    2439             :       case IrOpcode::kNumberRound:
    2440             :       case IrOpcode::kNumberTrunc: {
    2441             :         // For NumberCeil, NumberFloor, NumberRound and NumberTrunc we propagate
    2442             :         // the zero identification part of the truncation, and we turn them into
    2443             :         // no-ops if we figure out (late) that their input is already an
    2444             :         // integer, NaN or -0.
    2445      134540 :         Type const input_type = TypeOf(node->InputAt(0));
    2446             :         VisitUnop(node, UseInfo::TruncatingFloat64(truncation.identify_zeros()),
    2447      134540 :                   MachineRepresentation::kFloat64);
    2448      134540 :         if (lower()) {
    2449       88524 :           if (input_type.Is(type_cache_->kIntegerOrMinusZeroOrNaN)) {
    2450        1247 :             DeferReplacement(node, node->InputAt(0));
    2451       43015 :           } else if (node->opcode() == IrOpcode::kNumberRound) {
    2452        1554 :             DeferReplacement(node, lowering->Float64Round(node));
    2453             :           } else {
    2454       41461 :             NodeProperties::ChangeOp(node, Float64Op(node));
    2455             :           }
    2456             :         }
    2457             :         return;
    2458             :       }
    2459             :       case IrOpcode::kNumberAcos:
    2460             :       case IrOpcode::kNumberAcosh:
    2461             :       case IrOpcode::kNumberAsin:
    2462             :       case IrOpcode::kNumberAsinh:
    2463             :       case IrOpcode::kNumberAtan:
    2464             :       case IrOpcode::kNumberAtanh:
    2465             :       case IrOpcode::kNumberCos:
    2466             :       case IrOpcode::kNumberCosh:
    2467             :       case IrOpcode::kNumberExp:
    2468             :       case IrOpcode::kNumberExpm1:
    2469             :       case IrOpcode::kNumberLog:
    2470             :       case IrOpcode::kNumberLog1p:
    2471             :       case IrOpcode::kNumberLog2:
    2472             :       case IrOpcode::kNumberLog10:
    2473             :       case IrOpcode::kNumberCbrt:
    2474             :       case IrOpcode::kNumberSin:
    2475             :       case IrOpcode::kNumberSinh:
    2476             :       case IrOpcode::kNumberTan:
    2477             :       case IrOpcode::kNumberTanh: {
    2478             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2479         858 :                   MachineRepresentation::kFloat64);
    2480        1136 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2481             :         return;
    2482             :       }
    2483             :       case IrOpcode::kNumberSign: {
    2484         111 :         if (InputIs(node, Type::Signed32())) {
    2485             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2486          21 :                     MachineRepresentation::kWord32);
    2487          21 :           if (lower()) DeferReplacement(node, lowering->Int32Sign(node));
    2488             :         } else {
    2489             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2490          90 :                     MachineRepresentation::kFloat64);
    2491          90 :           if (lower()) DeferReplacement(node, lowering->Float64Sign(node));
    2492             :         }
    2493             :         return;
    2494             :       }
    2495             :       case IrOpcode::kNumberSilenceNaN: {
    2496        2255 :         Type const input_type = TypeOf(node->InputAt(0));
    2497        2255 :         if (input_type.Is(Type::OrderedNumber())) {
    2498             :           // No need to silence anything if the input cannot be NaN.
    2499             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2500          14 :                     MachineRepresentation::kFloat64);
    2501          21 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2502             :         } else {
    2503             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2504        2241 :                     MachineRepresentation::kFloat64);
    2505        2967 :           if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2506             :         }
    2507             :         return;
    2508             :       }
    2509             :       case IrOpcode::kNumberSqrt: {
    2510             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2511         156 :                   MachineRepresentation::kFloat64);
    2512         207 :         if (lower()) NodeProperties::ChangeOp(node, Float64Op(node));
    2513             :         return;
    2514             :       }
    2515             :       case IrOpcode::kNumberToBoolean: {
    2516             :         // For NumberToBoolean we don't care whether the input is 0 or
    2517             :         // -0, since both of them are mapped to false anyways, so we
    2518             :         // can generally pass kIdentifyZeros truncation.
    2519         555 :         Type const input_type = TypeOf(node->InputAt(0));
    2520         555 :         if (input_type.Is(Type::Integral32OrMinusZeroOrNaN())) {
    2521             :           // 0, -0 and NaN all map to false, so we can safely truncate
    2522             :           // all of them to zero here.
    2523             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2524         303 :                     MachineRepresentation::kBit);
    2525         303 :           if (lower()) lowering->DoIntegral32ToBit(node);
    2526         252 :         } else if (input_type.Is(Type::OrderedNumber())) {
    2527             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2528          77 :                     MachineRepresentation::kBit);
    2529          77 :           if (lower()) lowering->DoOrderedNumberToBit(node);
    2530             :         } else {
    2531             :           VisitUnop(node, UseInfo::TruncatingFloat64(kIdentifyZeros),
    2532         175 :                     MachineRepresentation::kBit);
    2533         175 :           if (lower()) lowering->DoNumberToBit(node);
    2534             :         }
    2535             :         return;
    2536             :       }
    2537             :       case IrOpcode::kNumberToInt32: {
    2538             :         // Just change representation if necessary.
    2539             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2540        1621 :                   MachineRepresentation::kWord32);
    2541        1906 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2542             :         return;
    2543             :       }
    2544             :       case IrOpcode::kNumberToString: {
    2545             :         VisitUnop(node, UseInfo::AnyTagged(),
    2546       11214 :                   MachineRepresentation::kTaggedPointer);
    2547       11214 :         return;
    2548             :       }
    2549             :       case IrOpcode::kNumberToUint32: {
    2550             :         // Just change representation if necessary.
    2551             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2552        6270 :                   MachineRepresentation::kWord32);
    2553        8232 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2554             :         return;
    2555             :       }
    2556             :       case IrOpcode::kNumberToUint8Clamped: {
    2557        1446 :         Type const input_type = TypeOf(node->InputAt(0));
    2558        2892 :         if (input_type.Is(type_cache_->kUint8OrMinusZeroOrNaN)) {
    2559             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2560          45 :                     MachineRepresentation::kWord32);
    2561          60 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2562        1401 :         } else if (input_type.Is(Type::Unsigned32OrMinusZeroOrNaN())) {
    2563             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2564         240 :                     MachineRepresentation::kWord32);
    2565         240 :           if (lower()) lowering->DoUnsigned32ToUint8Clamped(node);
    2566        1161 :         } else if (input_type.Is(Type::Signed32OrMinusZeroOrNaN())) {
    2567             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    2568         216 :                     MachineRepresentation::kWord32);
    2569         216 :           if (lower()) lowering->DoSigned32ToUint8Clamped(node);
    2570        1890 :         } else if (input_type.Is(type_cache_->kIntegerOrMinusZeroOrNaN)) {
    2571             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2572          63 :                     MachineRepresentation::kFloat64);
    2573          63 :           if (lower()) lowering->DoIntegerToUint8Clamped(node);
    2574             :         } else {
    2575             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    2576         882 :                     MachineRepresentation::kFloat64);
    2577         882 :           if (lower()) lowering->DoNumberToUint8Clamped(node);
    2578             :         }
    2579             :         return;
    2580             :       }
    2581             :       case IrOpcode::kReferenceEqual: {
    2582             :         VisitBinop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    2583      599810 :         if (lower()) {
    2584      198077 :           NodeProperties::ChangeOp(node, lowering->machine()->WordEqual());
    2585             :         }
    2586             :         return;
    2587             :       }
    2588             :       case IrOpcode::kSameValue: {
    2589         234 :         if (truncation.IsUnused()) return VisitUnused(node);
    2590         234 :         if (BothInputsAre(node, Type::Number())) {
    2591             :           VisitBinop(node, UseInfo::TruncatingFloat64(),
    2592             :                      MachineRepresentation::kBit);
    2593         231 :           if (lower()) {
    2594          77 :             NodeProperties::ChangeOp(node,
    2595          77 :                                      lowering->simplified()->NumberSameValue());
    2596             :           }
    2597             :         } else {
    2598             :           VisitBinop(node, UseInfo::AnyTagged(),
    2599             :                      MachineRepresentation::kTaggedPointer);
    2600             :         }
    2601             :         return;
    2602             :       }
    2603             :       case IrOpcode::kTypeOf: {
    2604             :         return VisitUnop(node, UseInfo::AnyTagged(),
    2605       66854 :                          MachineRepresentation::kTaggedPointer);
    2606             :       }
    2607             :       case IrOpcode::kStringConcat: {
    2608       82605 :         Type const length_type = TypeOf(node->InputAt(0));
    2609       82605 :         Type const first_type = TypeOf(node->InputAt(1));
    2610       82605 :         Type const second_type = TypeOf(node->InputAt(2));
    2611      185257 :         if (length_type.Is(type_cache_->kConsStringLengthType) &&
    2612       98426 :             first_type.Is(Type::NonEmptyString()) &&
    2613             :             second_type.Is(Type::NonEmptyString())) {
    2614             :           // We know that we'll construct a ConsString here, so we
    2615             :           // can inline a fast-path into TurboFan optimized code.
    2616       12336 :           ProcessInput(node, 0, UseInfo::TruncatingWord32());  // length
    2617       12336 :           ProcessInput(node, 1, UseInfo::AnyTagged());         // first
    2618       12336 :           ProcessInput(node, 2, UseInfo::AnyTagged());         // second
    2619             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    2620       12336 :           if (lower()) {
    2621        8866 :             if (first_type.Is(Type::NonEmptyOneByteString()) &&
    2622             :                 second_type.Is(Type::NonEmptyOneByteString())) {
    2623        3871 :               NodeProperties::ChangeOp(
    2624        3871 :                   node, lowering->simplified()->NewConsOneByteString());
    2625        2198 :             } else if (first_type.Is(Type::NonEmptyTwoByteString()) ||
    2626             :                        second_type.Is(Type::NonEmptyTwoByteString())) {
    2627          35 :               NodeProperties::ChangeOp(
    2628          35 :                   node, lowering->simplified()->NewConsTwoByteString());
    2629             :             } else {
    2630        1081 :               NodeProperties::ChangeOp(node,
    2631        1081 :                                        lowering->simplified()->NewConsString());
    2632             :             }
    2633             :           }
    2634             :         } else {
    2635       70269 :           ProcessInput(node, 0, UseInfo::TaggedSigned());  // length
    2636       70269 :           ProcessInput(node, 1, UseInfo::AnyTagged());     // first
    2637       70269 :           ProcessInput(node, 2, UseInfo::AnyTagged());     // second
    2638             :           SetOutput(node, MachineRepresentation::kTaggedPointer);
    2639             :         }
    2640             :         return;
    2641             :       }
    2642             :       case IrOpcode::kStringEqual:
    2643             :       case IrOpcode::kStringLessThan:
    2644             :       case IrOpcode::kStringLessThanOrEqual: {
    2645             :         return VisitBinop(node, UseInfo::AnyTagged(),
    2646             :                           MachineRepresentation::kTaggedPointer);
    2647             :       }
    2648             :       case IrOpcode::kStringCharCodeAt: {
    2649             :         return VisitBinop(node, UseInfo::AnyTagged(), UseInfo::Word(),
    2650        8105 :                           MachineRepresentation::kWord32);
    2651             :       }
    2652             :       case IrOpcode::kStringCodePointAt: {
    2653             :         return VisitBinop(node, UseInfo::AnyTagged(), UseInfo::Word(),
    2654         721 :                           MachineRepresentation::kTaggedSigned);
    2655             :       }
    2656             :       case IrOpcode::kStringFromSingleCharCode: {
    2657             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2658        3584 :                   MachineRepresentation::kTaggedPointer);
    2659        3584 :         return;
    2660             :       }
    2661             :       case IrOpcode::kStringFromSingleCodePoint: {
    2662             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2663         718 :                   MachineRepresentation::kTaggedPointer);
    2664         718 :         return;
    2665             :       }
    2666             :       case IrOpcode::kStringIndexOf: {
    2667         824 :         ProcessInput(node, 0, UseInfo::AnyTagged());
    2668         824 :         ProcessInput(node, 1, UseInfo::AnyTagged());
    2669         824 :         ProcessInput(node, 2, UseInfo::TaggedSigned());
    2670             :         SetOutput(node, MachineRepresentation::kTaggedSigned);
    2671             :         return;
    2672             :       }
    2673             :       case IrOpcode::kStringLength: {
    2674             :         // TODO(bmeurer): The input representation should be TaggedPointer.
    2675             :         // Fix this once we have a dedicated StringConcat/JSStringAdd
    2676             :         // operator, which marks it's output as TaggedPointer properly.
    2677       72712 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kWord32);
    2678       72712 :         return;
    2679             :       }
    2680             :       case IrOpcode::kStringSubstring: {
    2681        4040 :         ProcessInput(node, 0, UseInfo::AnyTagged());
    2682        4040 :         ProcessInput(node, 1, UseInfo::TruncatingWord32());
    2683        4040 :         ProcessInput(node, 2, UseInfo::TruncatingWord32());
    2684        4040 :         ProcessRemainingInputs(node, 3);
    2685             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    2686             :         return;
    2687             :       }
    2688             :       case IrOpcode::kStringToLowerCaseIntl:
    2689             :       case IrOpcode::kStringToUpperCaseIntl: {
    2690             :         VisitUnop(node, UseInfo::AnyTagged(),
    2691         459 :                   MachineRepresentation::kTaggedPointer);
    2692         459 :         return;
    2693             :       }
    2694             :       case IrOpcode::kCheckBounds:
    2695      186726 :         return VisitCheckBounds(node, lowering);
    2696             :       case IrOpcode::kPoisonIndex: {
    2697             :         VisitUnop(node, UseInfo::TruncatingWord32(),
    2698        3716 :                   MachineRepresentation::kWord32);
    2699        3716 :         return;
    2700             :       }
    2701             :       case IrOpcode::kCheckHeapObject: {
    2702       88814 :         if (InputCannotBe(node, Type::SignedSmall())) {
    2703             :           VisitUnop(node, UseInfo::AnyTagged(),
    2704           0 :                     MachineRepresentation::kTaggedPointer);
    2705             :         } else {
    2706      177628 :           VisitUnop(node,
    2707             :                     UseInfo::CheckedHeapObjectAsTaggedPointer(VectorSlotPair()),
    2708       88814 :                     MachineRepresentation::kTaggedPointer);
    2709             :         }
    2710      116779 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2711             :         return;
    2712             :       }
    2713             :       case IrOpcode::kCheckIf: {
    2714       50691 :         ProcessInput(node, 0, UseInfo::Bool());
    2715       50691 :         ProcessRemainingInputs(node, 1);
    2716             :         SetOutput(node, MachineRepresentation::kNone);
    2717             :         return;
    2718             :       }
    2719             :       case IrOpcode::kCheckInternalizedString: {
    2720        5537 :         VisitCheck(node, Type::InternalizedString(), lowering);
    2721        5537 :         return;
    2722             :       }
    2723             :       case IrOpcode::kCheckNonEmptyString: {
    2724          54 :         VisitCheck(node, Type::NonEmptyString(), lowering);
    2725          54 :         return;
    2726             :       }
    2727             :       case IrOpcode::kCheckNonEmptyOneByteString: {
    2728        5433 :         VisitCheck(node, Type::NonEmptyOneByteString(), lowering);
    2729        5433 :         return;
    2730             :       }
    2731             :       case IrOpcode::kCheckNonEmptyTwoByteString: {
    2732         722 :         VisitCheck(node, Type::NonEmptyTwoByteString(), lowering);
    2733         722 :         return;
    2734             :       }
    2735             :       case IrOpcode::kCheckNumber: {
    2736        1567 :         Type const input_type = TypeOf(node->InputAt(0));
    2737        1567 :         if (input_type.Is(Type::Number())) {
    2738          36 :           VisitNoop(node, truncation);
    2739             :         } else {
    2740        1531 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    2741             :         }
    2742             :         return;
    2743             :       }
    2744             :       case IrOpcode::kCheckReceiver: {
    2745        3229 :         VisitCheck(node, Type::Receiver(), lowering);
    2746        3229 :         return;
    2747             :       }
    2748             :       case IrOpcode::kCheckReceiverOrNullOrUndefined: {
    2749         230 :         VisitCheck(node, Type::ReceiverOrNullOrUndefined(), lowering);
    2750         230 :         return;
    2751             :       }
    2752             :       case IrOpcode::kCheckSmi: {
    2753       95079 :         const CheckParameters& params = CheckParametersOf(node->op());
    2754       95079 :         if (SmiValuesAre32Bits() && truncation.IsUsedAsWord32()) {
    2755             :           VisitUnop(node,
    2756             :                     UseInfo::CheckedSignedSmallAsWord32(kDistinguishZeros,
    2757             :                                                         params.feedback()),
    2758       22057 :                     MachineRepresentation::kWord32);
    2759             :         } else {
    2760             :           VisitUnop(
    2761             :               node,
    2762             :               UseInfo::CheckedSignedSmallAsTaggedSigned(params.feedback()),
    2763       73022 :               MachineRepresentation::kTaggedSigned);
    2764             :         }
    2765      124008 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    2766             :         return;
    2767             :       }
    2768             :       case IrOpcode::kCheckString: {
    2769       18822 :         const CheckParameters& params = CheckParametersOf(node->op());
    2770       18822 :         if (InputIs(node, Type::String())) {
    2771             :           VisitUnop(node, UseInfo::AnyTagged(),
    2772           0 :                     MachineRepresentation::kTaggedPointer);
    2773           0 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    2774             :         } else {
    2775             :           VisitUnop(
    2776             :               node,
    2777             :               UseInfo::CheckedHeapObjectAsTaggedPointer(params.feedback()),
    2778       18822 :               MachineRepresentation::kTaggedPointer);
    2779             :         }
    2780             :         return;
    2781             :       }
    2782             :       case IrOpcode::kCheckSymbol: {
    2783         104 :         VisitCheck(node, Type::Symbol(), lowering);
    2784         104 :         return;
    2785             :       }
    2786             : 
    2787             :       case IrOpcode::kAllocate: {
    2788      338711 :         ProcessInput(node, 0, UseInfo::Word());
    2789      338711 :         ProcessRemainingInputs(node, 1);
    2790             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    2791             :         return;
    2792             :       }
    2793             :       case IrOpcode::kLoadMessage: {
    2794       89199 :         if (truncation.IsUnused()) return VisitUnused(node);
    2795       21707 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTagged);
    2796       21707 :         return;
    2797             :       }
    2798             :       case IrOpcode::kStoreMessage: {
    2799       89575 :         ProcessInput(node, 0, UseInfo::Word());
    2800       89575 :         ProcessInput(node, 1, UseInfo::AnyTagged());
    2801       89575 :         ProcessRemainingInputs(node, 2);
    2802             :         SetOutput(node, MachineRepresentation::kNone);
    2803             :         return;
    2804             :       }
    2805             :       case IrOpcode::kLoadFieldByIndex: {
    2806        2107 :         if (truncation.IsUnused()) return VisitUnused(node);
    2807             :         VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(),
    2808        2073 :                    MachineRepresentation::kTagged);
    2809        2073 :         return;
    2810             :       }
    2811             :       case IrOpcode::kLoadField: {
    2812     3849616 :         if (truncation.IsUnused()) return VisitUnused(node);
    2813     3738543 :         FieldAccess access = FieldAccessOf(node->op());
    2814             :         MachineRepresentation const representation =
    2815             :             access.machine_type.representation();
    2816     3738543 :         VisitUnop(node, UseInfoForBasePointer(access), representation);
    2817     3738542 :         return;
    2818             :       }
    2819             :       case IrOpcode::kStoreField: {
    2820     6256117 :         FieldAccess access = FieldAccessOf(node->op());
    2821             :         Node* value_node = node->InputAt(1);
    2822             :         NodeInfo* input_info = GetInfo(value_node);
    2823             :         MachineRepresentation field_representation =
    2824             :             access.machine_type.representation();
    2825             : 
    2826             :         // Convert to Smi if possible, such that we can avoid a write barrier.
    2827    18768352 :         if (field_representation == MachineRepresentation::kTagged &&
    2828    16336969 :             TypeOf(value_node).Is(Type::SignedSmall())) {
    2829             :           field_representation = MachineRepresentation::kTaggedSigned;
    2830             :         }
    2831     6256117 :         WriteBarrierKind write_barrier_kind = WriteBarrierKindFor(
    2832     6256117 :             access.base_is_tagged, field_representation, access.offset,
    2833             :             access.type, input_info->representation(), value_node);
    2834             : 
    2835     6256114 :         ProcessInput(node, 0, UseInfoForBasePointer(access));
    2836     6256117 :         ProcessInput(node, 1,
    2837     6256116 :                      TruncatingUseInfoFromRepresentation(field_representation));
    2838     6256115 :         ProcessRemainingInputs(node, 2);
    2839             :         SetOutput(node, MachineRepresentation::kNone);
    2840     6256115 :         if (lower()) {
    2841     2082072 :           if (write_barrier_kind < access.write_barrier_kind) {
    2842      718897 :             access.write_barrier_kind = write_barrier_kind;
    2843      718897 :             NodeProperties::ChangeOp(
    2844     1437794 :                 node, jsgraph_->simplified()->StoreField(access));
    2845             :           }
    2846             :         }
    2847             :         return;
    2848             :       }
    2849             :       case IrOpcode::kLoadElement: {
    2850       64425 :         if (truncation.IsUnused()) return VisitUnused(node);
    2851       62307 :         ElementAccess access = ElementAccessOf(node->op());
    2852       62307 :         VisitBinop(node, UseInfoForBasePointer(access), UseInfo::Word(),
    2853       62307 :                    access.machine_type.representation());
    2854       62307 :         return;
    2855             :       }
    2856             :       case IrOpcode::kLoadStackArgument: {
    2857        2343 :         if (truncation.IsUnused()) return VisitUnused(node);
    2858             :         VisitBinop(node, UseInfo::Word(), MachineRepresentation::kTagged);
    2859             :         return;
    2860             :       }
    2861             :       case IrOpcode::kStoreElement: {
    2862      119399 :         ElementAccess access = ElementAccessOf(node->op());
    2863             :         Node* value_node = node->InputAt(2);
    2864             :         NodeInfo* input_info = GetInfo(value_node);
    2865             :         MachineRepresentation element_representation =
    2866             :             access.machine_type.representation();
    2867             : 
    2868             :         // Convert to Smi if possible, such that we can avoid a write barrier.
    2869      358197 :         if (element_representation == MachineRepresentation::kTagged &&
    2870      276031 :             TypeOf(value_node).Is(Type::SignedSmall())) {
    2871             :           element_representation = MachineRepresentation::kTaggedSigned;
    2872             :         }
    2873      119399 :         WriteBarrierKind write_barrier_kind = WriteBarrierKindFor(
    2874      119399 :             access.base_is_tagged, element_representation, access.type,
    2875      119399 :             input_info->representation(), value_node);
    2876      119399 :         ProcessInput(node, 0, UseInfoForBasePointer(access));  // base
    2877      119399 :         ProcessInput(node, 1, UseInfo::Word());                // index
    2878      119399 :         ProcessInput(node, 2,
    2879             :                      TruncatingUseInfoFromRepresentation(
    2880      119399 :                          element_representation));  // value
    2881      119399 :         ProcessRemainingInputs(node, 3);
    2882             :         SetOutput(node, MachineRepresentation::kNone);
    2883      119399 :         if (lower()) {
    2884       38922 :           if (write_barrier_kind < access.write_barrier_kind) {
    2885       22702 :             access.write_barrier_kind = write_barrier_kind;
    2886       22702 :             NodeProperties::ChangeOp(
    2887       45404 :                 node, jsgraph_->simplified()->StoreElement(access));
    2888             :           }
    2889             :         }
    2890             :         return;
    2891             :       }
    2892             :       case IrOpcode::kNumberIsFloat64Hole: {
    2893             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    2894         230 :                   MachineRepresentation::kBit);
    2895         230 :         return;
    2896             :       }
    2897             :       case IrOpcode::kTransitionAndStoreElement: {
    2898         878 :         Type value_type = TypeOf(node->InputAt(2));
    2899             : 
    2900         878 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // array
    2901         878 :         ProcessInput(node, 1, UseInfo::Word());       // index
    2902             : 
    2903         878 :         if (value_type.Is(Type::SignedSmall())) {
    2904         287 :           ProcessInput(node, 2, UseInfo::TruncatingWord32());  // value
    2905         287 :           if (lower()) {
    2906          70 :             NodeProperties::ChangeOp(node,
    2907          70 :                                      simplified()->StoreSignedSmallElement());
    2908             :           }
    2909         591 :         } else if (value_type.Is(Type::Number())) {
    2910         123 :           ProcessInput(node, 2, UseInfo::TruncatingFloat64());  // value
    2911         123 :           if (lower()) {
    2912          28 :             Handle<Map> double_map = DoubleMapParameterOf(node->op());
    2913          28 :             NodeProperties::ChangeOp(
    2914             :                 node,
    2915          28 :                 simplified()->TransitionAndStoreNumberElement(double_map));
    2916             :           }
    2917         468 :         } else if (value_type.Is(Type::NonNumber())) {
    2918          92 :           ProcessInput(node, 2, UseInfo::AnyTagged());  // value
    2919          92 :           if (lower()) {
    2920          20 :             Handle<Map> fast_map = FastMapParameterOf(node->op());
    2921          20 :             NodeProperties::ChangeOp(
    2922             :                 node, simplified()->TransitionAndStoreNonNumberElement(
    2923          20 :                           fast_map, value_type));
    2924             :           }
    2925             :         } else {
    2926         376 :           ProcessInput(node, 2, UseInfo::AnyTagged());  // value
    2927             :         }
    2928             : 
    2929         878 :         ProcessRemainingInputs(node, 3);
    2930             :         SetOutput(node, MachineRepresentation::kNone);
    2931             :         return;
    2932             :       }
    2933             :       case IrOpcode::kLoadTypedElement: {
    2934             :         MachineRepresentation const rep =
    2935       16456 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2936       16456 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2937       16456 :         ProcessInput(node, 1, UseInfo::AnyTagged());  // base pointer
    2938       16456 :         ProcessInput(node, 2, UseInfo::Word());       // external pointer
    2939       16456 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2940       16456 :         ProcessRemainingInputs(node, 4);
    2941             :         SetOutput(node, rep);
    2942             :         return;
    2943             :       }
    2944             :       case IrOpcode::kLoadDataViewElement: {
    2945             :         MachineRepresentation const rep =
    2946         804 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2947         804 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2948         804 :         ProcessInput(node, 1, UseInfo::Word());       // external pointer
    2949         804 :         ProcessInput(node, 2, UseInfo::Word());       // byte offset
    2950         804 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2951         804 :         ProcessInput(node, 4, UseInfo::Bool());       // little-endian
    2952         804 :         ProcessRemainingInputs(node, 5);
    2953             :         SetOutput(node, rep);
    2954             :         return;
    2955             :       }
    2956             :       case IrOpcode::kStoreTypedElement: {
    2957             :         MachineRepresentation const rep =
    2958       15592 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2959       15592 :         ProcessInput(node, 0, UseInfo::AnyTagged());  // buffer
    2960       15592 :         ProcessInput(node, 1, UseInfo::AnyTagged());  // base pointer
    2961       15592 :         ProcessInput(node, 2, UseInfo::Word());       // external pointer
    2962       15592 :         ProcessInput(node, 3, UseInfo::Word());       // index
    2963       15592 :         ProcessInput(node, 4,
    2964       15592 :                      TruncatingUseInfoFromRepresentation(rep));  // value
    2965       15592 :         ProcessRemainingInputs(node, 5);
    2966             :         SetOutput(node, MachineRepresentation::kNone);
    2967             :         return;
    2968             :       }
    2969             :       case IrOpcode::kStoreDataViewElement: {
    2970             :         MachineRepresentation const rep =
    2971         588 :             MachineRepresentationFromArrayType(ExternalArrayTypeOf(node->op()));
    2972         588 :         ProcessInput(node, 0, UseInfo::AnyTagged());         // buffer
    2973         588 :         ProcessInput(node, 1, UseInfo::Word());              // external pointer
    2974         588 :         ProcessInput(node, 2, UseInfo::Word());              // byte offset
    2975         588 :         ProcessInput(node, 3, UseInfo::Word());              // index
    2976         588 :         ProcessInput(node, 4,
    2977         588 :                      TruncatingUseInfoFromRepresentation(rep));  // value
    2978         588 :         ProcessInput(node, 5, UseInfo::Bool());  // little-endian
    2979         588 :         ProcessRemainingInputs(node, 6);
    2980             :         SetOutput(node, MachineRepresentation::kNone);
    2981             :         return;
    2982             :       }
    2983             :       case IrOpcode::kConvertReceiver: {
    2984        2685 :         Type input_type = TypeOf(node->InputAt(0));
    2985             :         VisitBinop(node, UseInfo::AnyTagged(),
    2986             :                    MachineRepresentation::kTaggedPointer);
    2987        2685 :         if (lower()) {
    2988             :           // Try to optimize the {node} based on the input type.
    2989         876 :           if (input_type.Is(Type::Receiver())) {
    2990           0 :             DeferReplacement(node, node->InputAt(0));
    2991         876 :           } else if (input_type.Is(Type::NullOrUndefined())) {
    2992           0 :             DeferReplacement(node, node->InputAt(1));
    2993         876 :           } else if (!input_type.Maybe(Type::NullOrUndefined())) {
    2994          85 :             NodeProperties::ChangeOp(
    2995             :                 node, lowering->simplified()->ConvertReceiver(
    2996          85 :                           ConvertReceiverMode::kNotNullOrUndefined));
    2997             :           }
    2998             :         }
    2999             :         return;
    3000             :       }
    3001             :       case IrOpcode::kPlainPrimitiveToNumber: {
    3002        2624 :         if (InputIs(node, Type::Boolean())) {
    3003         199 :           VisitUnop(node, UseInfo::Bool(), MachineRepresentation::kWord32);
    3004         258 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3005        2425 :         } else if (InputIs(node, Type::String())) {
    3006        1001 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3007        1001 :           if (lower()) {
    3008         331 :             NodeProperties::ChangeOp(node, simplified()->StringToNumber());
    3009             :           }
    3010        1424 :         } else if (truncation.IsUsedAsWord32()) {
    3011          57 :           if (InputIs(node, Type::NumberOrOddball())) {
    3012             :             VisitUnop(node, UseInfo::TruncatingWord32(),
    3013          30 :                       MachineRepresentation::kWord32);
    3014          40 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3015             :           } else {
    3016             :             VisitUnop(node, UseInfo::AnyTagged(),
    3017          27 :                       MachineRepresentation::kWord32);
    3018          27 :             if (lower()) {
    3019           9 :               NodeProperties::ChangeOp(node,
    3020           9 :                                        simplified()->PlainPrimitiveToWord32());
    3021             :             }
    3022             :           }
    3023        1367 :         } else if (truncation.IsUsedAsFloat64()) {
    3024        1291 :           if (InputIs(node, Type::NumberOrOddball())) {
    3025             :             VisitUnop(node, UseInfo::TruncatingFloat64(),
    3026        1291 :                       MachineRepresentation::kFloat64);
    3027        1623 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3028             :           } else {
    3029             :             VisitUnop(node, UseInfo::AnyTagged(),
    3030           0 :                       MachineRepresentation::kFloat64);
    3031           0 :             if (lower()) {
    3032           0 :               NodeProperties::ChangeOp(node,
    3033           0 :                                        simplified()->PlainPrimitiveToFloat64());
    3034             :             }
    3035             :           }
    3036             :         } else {
    3037          76 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3038             :         }
    3039             :         return;
    3040             :       }
    3041             :       case IrOpcode::kSpeculativeToNumber: {
    3042             :         NumberOperationParameters const& p =
    3043      133199 :             NumberOperationParametersOf(node->op());
    3044      133199 :         switch (p.hint()) {
    3045             :           case NumberOperationHint::kSigned32:
    3046             :           case NumberOperationHint::kSignedSmall:
    3047             :           case NumberOperationHint::kSignedSmallInputs:
    3048        6254 :             VisitUnop(node,
    3049             :                       CheckedUseInfoAsWord32FromHint(p.hint(), p.feedback()),
    3050        6254 :                       MachineRepresentation::kWord32, Type::Signed32());
    3051        6254 :             break;
    3052             :           case NumberOperationHint::kNumber:
    3053             :           case NumberOperationHint::kNumberOrOddball:
    3054      126945 :             VisitUnop(node,
    3055             :                       CheckedUseInfoAsFloat64FromHint(p.hint(), p.feedback()),
    3056      126945 :                       MachineRepresentation::kFloat64);
    3057      126945 :             break;
    3058             :         }
    3059      173542 :         if (lower()) DeferReplacement(node, node->InputAt(0));
    3060             :         return;
    3061             :       }
    3062             :       case IrOpcode::kObjectIsArrayBufferView: {
    3063             :         // TODO(turbofan): Introduce a Type::ArrayBufferView?
    3064          48 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3065          48 :         return;
    3066             :       }
    3067             :       case IrOpcode::kObjectIsBigInt: {
    3068          75 :         VisitObjectIs(node, Type::BigInt(), lowering);
    3069          75 :         return;
    3070             :       }
    3071             :       case IrOpcode::kObjectIsCallable: {
    3072         330 :         VisitObjectIs(node, Type::Callable(), lowering);
    3073         330 :         return;
    3074             :       }
    3075             :       case IrOpcode::kObjectIsConstructor: {
    3076             :         // TODO(turbofan): Introduce a Type::Constructor?
    3077        1134 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3078        1134 :         return;
    3079             :       }
    3080             :       case IrOpcode::kObjectIsDetectableCallable: {
    3081       43680 :         VisitObjectIs(node, Type::DetectableCallable(), lowering);
    3082       43680 :         return;
    3083             :       }
    3084             :       case IrOpcode::kObjectIsFiniteNumber: {
    3085         588 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3086        1176 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3087         210 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3088         210 :           if (lower()) {
    3089          70 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3090             :           }
    3091         378 :         } else if (!input_type.Maybe(Type::Number())) {
    3092          42 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3093          42 :           if (lower()) {
    3094          14 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3095             :           }
    3096         336 :         } else if (input_type.Is(Type::Number())) {
    3097             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3098         315 :                     MachineRepresentation::kBit);
    3099         315 :           if (lower()) {
    3100         105 :             NodeProperties::ChangeOp(node,
    3101         105 :                                      lowering->simplified()->NumberIsFinite());
    3102             :           }
    3103             :         } else {
    3104          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3105             :         }
    3106             :         return;
    3107             :       }
    3108             :       case IrOpcode::kNumberIsFinite: {
    3109             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3110          70 :                   MachineRepresentation::kBit);
    3111          70 :         return;
    3112             :       }
    3113             :       case IrOpcode::kObjectIsSafeInteger: {
    3114          42 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3115          84 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3116           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3117           0 :           if (lower()) {
    3118           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3119             :           }
    3120          42 :         } else if (!input_type.Maybe(Type::Number())) {
    3121           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3122           0 :           if (lower()) {
    3123           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3124             :           }
    3125          42 :         } else if (input_type.Is(Type::Number())) {
    3126             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3127          21 :                     MachineRepresentation::kBit);
    3128          21 :           if (lower()) {
    3129           7 :             NodeProperties::ChangeOp(
    3130           7 :                 node, lowering->simplified()->NumberIsSafeInteger());
    3131             :           }
    3132             :         } else {
    3133          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3134             :         }
    3135             :         return;
    3136             :       }
    3137             :       case IrOpcode::kNumberIsSafeInteger: {
    3138           0 :         UNREACHABLE();
    3139             :       }
    3140             :       case IrOpcode::kObjectIsInteger: {
    3141         588 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3142        1176 :         if (input_type.Is(type_cache_->kSafeInteger)) {
    3143         210 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3144         210 :           if (lower()) {
    3145          70 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3146             :           }
    3147         378 :         } else if (!input_type.Maybe(Type::Number())) {
    3148           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3149           0 :           if (lower()) {
    3150           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3151             :           }
    3152         378 :         } else if (input_type.Is(Type::Number())) {
    3153             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3154         357 :                     MachineRepresentation::kBit);
    3155         357 :           if (lower()) {
    3156         119 :             NodeProperties::ChangeOp(node,
    3157         119 :                                      lowering->simplified()->NumberIsInteger());
    3158             :           }
    3159             :         } else {
    3160          21 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3161             :         }
    3162             :         return;
    3163             :       }
    3164             :       case IrOpcode::kNumberIsInteger: {
    3165             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3166           0 :                   MachineRepresentation::kBit);
    3167           0 :         return;
    3168             :       }
    3169             :       case IrOpcode::kObjectIsMinusZero: {
    3170         363 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3171         363 :         if (input_type.Is(Type::MinusZero())) {
    3172           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3173           0 :           if (lower()) {
    3174           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3175             :           }
    3176         363 :         } else if (!input_type.Maybe(Type::MinusZero())) {
    3177           0 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3178           0 :           if (lower()) {
    3179           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3180             :           }
    3181         363 :         } else if (input_type.Is(Type::Number())) {
    3182             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3183         294 :                     MachineRepresentation::kBit);
    3184         294 :           if (lower()) {
    3185          98 :             NodeProperties::ChangeOp(node, simplified()->NumberIsMinusZero());
    3186             :           }
    3187             :         } else {
    3188          69 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3189             :         }
    3190             :         return;
    3191             :       }
    3192             :       case IrOpcode::kObjectIsNaN: {
    3193        2724 :         Type const input_type = GetUpperBound(node->InputAt(0));
    3194        2724 :         if (input_type.Is(Type::NaN())) {
    3195           0 :           VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit);
    3196           0 :           if (lower()) {
    3197           0 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(1));
    3198             :           }
    3199        2724 :         } else if (!input_type.Maybe(Type::NaN())) {
    3200          36 :           VisitUnop(node, UseInfo::Any(), MachineRepresentation::kBit);
    3201          36 :           if (lower()) {
    3202          12 :             DeferReplacement(node, lowering->jsgraph()->Int32Constant(0));
    3203             :           }
    3204        2688 :         } else if (input_type.Is(Type::Number())) {
    3205             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3206         540 :                     MachineRepresentation::kBit);
    3207         540 :           if (lower()) {
    3208         180 :             NodeProperties::ChangeOp(node, simplified()->NumberIsNaN());
    3209             :           }
    3210             :         } else {
    3211        2148 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3212             :         }
    3213             :         return;
    3214             :       }
    3215             :       case IrOpcode::kNumberIsNaN: {
    3216             :         VisitUnop(node, UseInfo::TruncatingFloat64(),
    3217        8547 :                   MachineRepresentation::kBit);
    3218        8547 :         return;
    3219             :       }
    3220             :       case IrOpcode::kObjectIsNonCallable: {
    3221       18740 :         VisitObjectIs(node, Type::NonCallable(), lowering);
    3222       18740 :         return;
    3223             :       }
    3224             :       case IrOpcode::kObjectIsNumber: {
    3225       23606 :         VisitObjectIs(node, Type::Number(), lowering);
    3226       23606 :         return;
    3227             :       }
    3228             :       case IrOpcode::kObjectIsReceiver: {
    3229       63540 :         VisitObjectIs(node, Type::Receiver(), lowering);
    3230       63540 :         return;
    3231             :       }
    3232             :       case IrOpcode::kObjectIsSmi: {
    3233             :         // TODO(turbofan): Optimize based on input representation.
    3234        3859 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
    3235        3859 :         return;
    3236             :       }
    3237             :       case IrOpcode::kObjectIsString: {
    3238        7044 :         VisitObjectIs(node, Type::String(), lowering);
    3239        7044 :         return;
    3240             :       }
    3241             :       case IrOpcode::kObjectIsSymbol: {
    3242          71 :         VisitObjectIs(node, Type::Symbol(), lowering);
    3243          71 :         return;
    3244             :       }
    3245             :       case IrOpcode::kObjectIsUndetectable: {
    3246        4794 :         VisitObjectIs(node, Type::Undetectable(), lowering);
    3247        4794 :         return;
    3248             :       }
    3249             :       case IrOpcode::kArgumentsFrame: {
    3250             :         SetOutput(node, MachineType::PointerRepresentation());
    3251             :         return;
    3252             :       }
    3253             :       case IrOpcode::kArgumentsLength: {
    3254       50930 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTaggedSigned);
    3255       50930 :         return;
    3256             :       }
    3257             :       case IrOpcode::kNewDoubleElements:
    3258             :       case IrOpcode::kNewSmiOrObjectElements: {
    3259        1672 :         VisitUnop(node, UseInfo::Word(), MachineRepresentation::kTaggedPointer);
    3260        1672 :         return;
    3261             :       }
    3262             :       case IrOpcode::kNewArgumentsElements: {
    3263             :         VisitBinop(node, UseInfo::Word(), UseInfo::TaggedSigned(),
    3264       58960 :                    MachineRepresentation::kTaggedPointer);
    3265       58960 :         return;
    3266             :       }
    3267             :       case IrOpcode::kCheckFloat64Hole: {
    3268        1895 :         Type const input_type = TypeOf(node->InputAt(0));
    3269             :         CheckFloat64HoleMode mode =
    3270        1895 :             CheckFloat64HoleParametersOf(node->op()).mode();
    3271        1895 :         if (mode == CheckFloat64HoleMode::kAllowReturnHole) {
    3272             :           // If {mode} is allow-return-hole _and_ the {truncation}
    3273             :           // identifies NaN and undefined, we can just pass along
    3274             :           // the {truncation} and completely wipe the {node}.
    3275        1350 :           if (truncation.IsUnused()) return VisitUnused(node);
    3276        1253 :           if (truncation.IsUsedAsFloat64()) {
    3277             :             VisitUnop(node, UseInfo::TruncatingFloat64(),
    3278         132 :                       MachineRepresentation::kFloat64);
    3279         176 :             if (lower()) DeferReplacement(node, node->InputAt(0));
    3280             :             return;
    3281             :           }
    3282             :         }
    3283        3332 :         VisitUnop(node,
    3284             :                   UseInfo(MachineRepresentation::kFloat64, Truncation::Any()),
    3285        1666 :                   MachineRepresentation::kFloat64, Type::Number());
    3286        2200 :         if (lower() && input_type.Is(Type::Number())) {
    3287          64 :           DeferReplacement(node, node->InputAt(0));
    3288             :         }
    3289             :         return;
    3290             :       }
    3291             :       case IrOpcode::kCheckNotTaggedHole: {
    3292         323 :         VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3293         323 :         return;
    3294             :       }
    3295             :       case IrOpcode::kConvertTaggedHoleToUndefined: {
    3296       10103 :         if (InputIs(node, Type::NumberOrOddball()) &&
    3297             :             truncation.IsUsedAsWord32()) {
    3298             :           // Propagate the Word32 truncation.
    3299             :           VisitUnop(node, UseInfo::TruncatingWord32(),
    3300        1009 :                     MachineRepresentation::kWord32);
    3301        1259 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3302        8085 :         } else if (InputIs(node, Type::NumberOrOddball()) &&
    3303             :                    truncation.IsUsedAsFloat64()) {
    3304             :           // Propagate the Float64 truncation.
    3305             :           VisitUnop(node, UseInfo::TruncatingFloat64(),
    3306         143 :                     MachineRepresentation::kFloat64);
    3307         187 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3308        6001 :         } else if (InputIs(node, Type::NonInternal())) {
    3309         130 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3310         173 :           if (lower()) DeferReplacement(node, node->InputAt(0));
    3311             :         } else {
    3312             :           // TODO(turbofan): Add a (Tagged) truncation that identifies hole
    3313             :           // and undefined, i.e. for a[i] === obj cases.
    3314        5871 :           VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged);
    3315             :         }
    3316             :         return;
    3317             :       }
    3318             :       case IrOpcode::kCheckEqualsSymbol:
    3319             :       case IrOpcode::kCheckEqualsInternalizedString:
    3320             :         return VisitBinop(node, UseInfo::AnyTagged(),
    3321             :                           MachineRepresentation::kNone);
    3322             :       case IrOpcode::kMapGuard:
    3323             :         // Eliminate MapGuard nodes here.
    3324       22017 :         return VisitUnused(node);
    3325             :       case IrOpcode::kCheckMaps:
    3326             :       case IrOpcode::kTransitionElementsKind: {
    3327      160742 :         VisitInputs(node);
    3328             :         return SetOutput(node, MachineRepresentation::kNone);
    3329             :       }
    3330             :       case IrOpcode::kCompareMaps:
    3331             :         return VisitUnop(node, UseInfo::AnyTagged(),
    3332       23942 :                          MachineRepresentation::kBit);
    3333             :       case IrOpcode::kEnsureWritableFastElements:
    3334             :         return VisitBinop(node, UseInfo::AnyTagged(),
    3335             :                           MachineRepresentation::kTaggedPointer);
    3336             :       case IrOpcode::kMaybeGrowFastElements: {
    3337       11502 :         Type const index_type = TypeOf(node->InputAt(2));
    3338       11502 :         Type const length_type = TypeOf(node->InputAt(3));
    3339       11502 :         ProcessInput(node, 0, UseInfo::AnyTagged());         // object
    3340       11502 :         ProcessInput(node, 1, UseInfo::AnyTagged());         // elements
    3341       11502 :         ProcessInput(node, 2, UseInfo::TruncatingWord32());  // index
    3342       11502 :         ProcessInput(node, 3, UseInfo::TruncatingWord32());  // length
    3343       11502 :         ProcessRemainingInputs(node, 4);
    3344             :         SetOutput(node, MachineRepresentation::kTaggedPointer);
    3345       11502 :         if (lower()) {
    3346             :           // If the index is known to be less than the length (or if
    3347             :           // we're in dead code), we know that we don't need to grow
    3348             :           // the elements, so we can just remove this operation all
    3349             :           // together and replace it with the elements that we have
    3350             :           // on the inputs.
    3351       10605 :           if (index_type.IsNone() || length_type.IsNone() ||
    3352        3535 :               index_type.Max() < length_type.Min()) {
    3353          50 :             DeferReplacement(node, node->InputAt(1));
    3354             :           }
    3355             :         }
    3356             :         return;
    3357             :       }
    3358             : 
    3359             :       case IrOpcode::kDateNow:
    3360          39 :         VisitInputs(node);
    3361             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3362             :       case IrOpcode::kFrameState:
    3363    16597055 :         return VisitFrameState(node);
    3364             :       case IrOpcode::kStateValues:
    3365    10978407 :         return VisitStateValues(node);
    3366             :       case IrOpcode::kObjectState:
    3367       69359 :         return VisitObjectState(node);
    3368             :       case IrOpcode::kObjectId:
    3369             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3370             :       case IrOpcode::kTypeGuard: {
    3371             :         // We just get rid of the sigma here, choosing the best representation
    3372             :         // for the sigma's type.
    3373       91256 :         Type type = TypeOf(node);
    3374             :         MachineRepresentation representation =
    3375       91256 :             GetOutputInfoForPhi(node, type, truncation);
    3376             : 
    3377             :         // Here we pretend that the input has the sigma's type for the
    3378             :         // conversion.
    3379      182513 :         UseInfo use(representation, truncation);
    3380       91256 :         if (propagate()) {
    3381       30665 :           EnqueueInput(node, 0, use);
    3382       60591 :         } else if (lower()) {
    3383       22583 :           ConvertInput(node, 0, use, type);
    3384             :         }
    3385       91256 :         ProcessRemainingInputs(node, 1);
    3386             :         SetOutput(node, representation);
    3387             :         return;
    3388             :       }
    3389             : 
    3390             :       case IrOpcode::kFinishRegion:
    3391      403063 :         VisitInputs(node);
    3392             :         // Assume the output is tagged pointer.
    3393             :         return SetOutput(node, MachineRepresentation::kTaggedPointer);
    3394             : 
    3395             :       case IrOpcode::kReturn:
    3396     1667542 :         VisitReturn(node);
    3397             :         // Assume the output is tagged.
    3398             :         return SetOutput(node, MachineRepresentation::kTagged);
    3399             : 
    3400             :       case IrOpcode::kFindOrderedHashMapEntry: {
    3401         681 :         Type const key_type = TypeOf(node->InputAt(1));
    3402         681 :         if (key_type.Is(Type::Signed32OrMinusZero())) {
    3403             :           VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(),
    3404          64 :                      MachineType::PointerRepresentation());
    3405          64 :           if (lower()) {
    3406          16 :             NodeProperties::ChangeOp(
    3407             :                 node,
    3408          16 :                 lowering->simplified()->FindOrderedHashMapEntryForInt32Key());
    3409             :           }
    3410             :         } else {
    3411             :           VisitBinop(node, UseInfo::AnyTagged(),
    3412             :                      MachineRepresentation::kTaggedSigned);
    3413             :         }
    3414             :         return;
    3415             :       }
    3416             : 
    3417             :       // Operators with all inputs tagged and no or tagged output have uniform
    3418             :       // handling.
    3419             :       case IrOpcode::kEnd:
    3420             :       case IrOpcode::kIfSuccess:
    3421             :       case IrOpcode::kIfException:
    3422             :       case IrOpcode::kIfTrue:
    3423             :       case IrOpcode::kIfFalse:
    3424             :       case IrOpcode::kIfValue:
    3425             :       case IrOpcode::kIfDefault:
    3426             :       case IrOpcode::kDeoptimize:
    3427             :       case IrOpcode::kEffectPhi:
    3428             :       case IrOpcode::kTerminate:
    3429             :       case IrOpcode::kCheckpoint:
    3430             :       case IrOpcode::kLoop:
    3431             :       case IrOpcode::kMerge:
    3432             :       case IrOpcode::kThrow:
    3433             :       case IrOpcode::kBeginRegion:
    3434             :       case IrOpcode::kProjection:
    3435             :       case IrOpcode::kOsrValue:
    3436             :       case IrOpcode::kArgumentsElementsState:
    3437             :       case IrOpcode::kArgumentsLengthState:
    3438             :       case IrOpcode::kUnreachable:
    3439             :       case IrOpcode::kRuntimeAbort:
    3440             : // All JavaScript operators except JSToNumber have uniform handling.
    3441             : #define OPCODE_CASE(name) case IrOpcode::k##name:
    3442             :         JS_SIMPLE_BINOP_LIST(OPCODE_CASE)
    3443             :         JS_OBJECT_OP_LIST(OPCODE_CASE)
    3444             :         JS_CONTEXT_OP_LIST(OPCODE_CASE)
    3445             :         JS_OTHER_OP_LIST(OPCODE_CASE)
    3446             : #undef OPCODE_CASE
    3447             :       case IrOpcode::kJSBitwiseNot:
    3448             :       case IrOpcode::kJSDecrement:
    3449             :       case IrOpcode::kJSIncrement:
    3450             :       case IrOpcode::kJSNegate:
    3451             :       case IrOpcode::kJSToLength:
    3452             :       case IrOpcode::kJSToName:
    3453             :       case IrOpcode::kJSToObject:
    3454             :       case IrOpcode::kJSToString:
    3455             :       case IrOpcode::kJSParseInt:
    3456    29031355 :         VisitInputs(node);
    3457             :         // Assume the output is tagged.
    3458             :         return SetOutput(node, MachineRepresentation::kTagged);
    3459             :       case IrOpcode::kDeadValue:
    3460        1621 :         ProcessInput(node, 0, UseInfo::Any());
    3461             :         return SetOutput(node, MachineRepresentation::kNone);
    3462             :       default:
    3463           0 :         FATAL(
    3464             :             "Representation inference: unsupported opcode %i (%s), node #%i\n.",
    3465           0 :             node->opcode(), node->op()->mnemonic(), node->id());
    3466             :         break;
    3467             :     }
    3468             :     UNREACHABLE();
    3469             :   }
    3470             : 
    3471     1258011 :   void DeferReplacement(Node* node, Node* replacement) {
    3472     1258011 :     TRACE("defer replacement #%d:%s with #%d:%s\n", node->id(),
    3473             :           node->op()->mnemonic(), replacement->id(),
    3474             :           replacement->op()->mnemonic());
    3475             : 
    3476             :     // Disconnect the node from effect and control chains, if necessary.
    3477     2516024 :     if (node->op()->EffectInputCount() > 0) {
    3478             :       DCHECK_LT(0, node->op()->ControlInputCount());
    3479             :       // Disconnect the node from effect and control chains.
    3480      104943 :       Node* control = NodeProperties::GetControlInput(node);
    3481      104943 :       Node* effect = NodeProperties::GetEffectInput(node);
    3482      104943 :       ReplaceEffectControlUses(node, effect, control);
    3483             :     }
    3484             : 
    3485     1258012 :     replacements_.push_back(node);
    3486     1258008 :     replacements_.push_back(replacement);
    3487             : 
    3488     1258006 :     node->NullAllInputs();  // Node is now dead.
    3489     1258003 :   }
    3490             : 
    3491       34190 :   void Kill(Node* node) {
    3492       34190 :     TRACE("killing #%d:%s\n", node->id(), node->op()->mnemonic());
    3493             : 
    3494       34190 :     if (node->op()->EffectInputCount() == 1) {
    3495             :       DCHECK_LT(0, node->op()->ControlInputCount());
    3496             :       // Disconnect the node from effect and control chains.
    3497       34176 :       Node* control = NodeProperties::GetControlInput(node);
    3498       34176 :       Node* effect = NodeProperties::GetEffectInput(node);
    3499       34176 :       ReplaceEffectControlUses(node, effect, control);
    3500             :     } else {
    3501             :       DCHECK_EQ(0, node->op()->EffectInputCount());
    3502             :       DCHECK_EQ(0, node->op()->ControlOutputCount());
    3503             :       DCHECK_EQ(0, node->op()->EffectOutputCount());
    3504             :     }
    3505             : 
    3506       34190 :     node->ReplaceUses(jsgraph_->Dead());
    3507             : 
    3508       34190 :     node->NullAllInputs();  // The {node} is now dead.
    3509       34190 :   }
    3510             : 
    3511    51531218 :   void PrintOutputInfo(NodeInfo* info) {
    3512    51531218 :     if (FLAG_trace_representation) {
    3513           0 :       StdoutStream{} << info->representation();
    3514             :     }
    3515    51531218 :   }
    3516             : 
    3517             :   void PrintRepresentation(MachineRepresentation rep) {
    3518             :     if (FLAG_trace_representation) {
    3519             :       StdoutStream{} << rep;
    3520             :     }
    3521             :   }
    3522             : 
    3523   102289889 :   void PrintTruncation(Truncation truncation) {
    3524   102289889 :     if (FLAG_trace_representation) {
    3525           0 :       StdoutStream{} << truncation.description() << std::endl;
    3526             :     }
    3527   102289889 :   }
    3528             : 
    3529    16036861 :   void PrintUseInfo(UseInfo info) {
    3530    16036861 :     if (FLAG_trace_representation) {
    3531           0 :       StdoutStream{} << info.representation() << ":"
    3532           0 :                      << info.truncation().description();
    3533             :     }
    3534    16036861 :   }
    3535             : 
    3536             :  private:
    3537             :   JSGraph* jsgraph_;
    3538             :   Zone* zone_;                      // Temporary zone.
    3539             :   size_t const count_;              // number of nodes in the graph
    3540             :   ZoneVector<NodeInfo> info_;       // node id -> usage information
    3541             : #ifdef DEBUG
    3542             :   ZoneVector<InputUseInfos> node_input_use_infos_;  // Debug information about
    3543             :                                                     // requirements on inputs.
    3544             : #endif                                              // DEBUG
    3545             :   NodeVector nodes_;                // collected nodes
    3546             :   NodeVector replacements_;         // replacements to be done after lowering
    3547             :   Phase phase_;                     // current phase of algorithm
    3548             :   RepresentationChanger* changer_;  // for inserting representation changes
    3549             :   ZoneQueue<Node*> queue_;          // queue for traversing the graph
    3550             : 
    3551             :   struct NodeState {
    3552             :     Node* node;
    3553             :     int input_index;
    3554             :   };
    3555             :   ZoneStack<NodeState> typing_stack_;  // stack for graph typing.
    3556             :   // TODO(danno): RepresentationSelector shouldn't know anything about the
    3557             :   // source positions table, but must for now since there currently is no other
    3558             :   // way to pass down source position information to nodes created during
    3559             :   // lowering. Once this phase becomes a vanilla reducer, it should get source
    3560             :   // position information via the SourcePositionWrapper like all other reducers.
    3561             :   SourcePositionTable* source_positions_;
    3562             :   NodeOriginTable* node_origins_;
    3563             :   TypeCache const* type_cache_;
    3564             :   OperationTyper op_typer_;  // helper for the feedback typer
    3565             : 
    3566             :   NodeInfo* GetInfo(Node* node) {
    3567             :     DCHECK(node->id() < count_);
    3568   703744759 :     return &info_[node->id()];
    3569             :   }
    3570             :   Zone* zone() { return zone_; }
    3571             :   Zone* graph_zone() { return jsgraph_->zone(); }
    3572             : };
    3573             : 
    3574      464092 : SimplifiedLowering::SimplifiedLowering(JSGraph* jsgraph, JSHeapBroker* broker,
    3575             :                                        Zone* zone,
    3576             :                                        SourcePositionTable* source_positions,
    3577             :                                        NodeOriginTable* node_origins,
    3578             :                                        PoisoningMitigationLevel poisoning_level)
    3579             :     : jsgraph_(jsgraph),
    3580             :       broker_(broker),
    3581             :       zone_(zone),
    3582      464092 :       type_cache_(TypeCache::Get()),
    3583             :       source_positions_(source_positions),
    3584             :       node_origins_(node_origins),
    3585     1392280 :       poisoning_level_(poisoning_level) {}
    3586             : 
    3587      464092 : void SimplifiedLowering::LowerAllNodes() {
    3588      464092 :   RepresentationChanger changer(jsgraph(), jsgraph()->isolate());
    3589      464093 :   RepresentationSelector selector(jsgraph(), broker_, zone_, &changer,
    3590      928186 :                                   source_positions_, node_origins_);
    3591      464096 :   selector.Run(this);
    3592      464095 : }
    3593             : 
    3594        1413 : void SimplifiedLowering::DoJSToNumberOrNumericTruncatesToFloat64(
    3595             :     Node* node, RepresentationSelector* selector) {
    3596             :   DCHECK(node->opcode() == IrOpcode::kJSToNumber ||
    3597             :          node->opcode() == IrOpcode::kJSToNumberConvertBigInt ||
    3598             :          node->opcode() == IrOpcode::kJSToNumeric);
    3599             :   Node* value = node->InputAt(0);
    3600             :   Node* context = node->InputAt(1);
    3601             :   Node* frame_state = node->InputAt(2);
    3602             :   Node* effect = node->InputAt(3);
    3603             :   Node* control = node->InputAt(4);
    3604             : 
    3605        1413 :   Node* check0 = graph()->NewNode(simplified()->ObjectIsSmi(), value);
    3606             :   Node* branch0 =
    3607        1413 :       graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
    3608             : 
    3609        1413 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3610             :   Node* etrue0 = effect;
    3611             :   Node* vtrue0;
    3612             :   {
    3613        1413 :     vtrue0 = graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), value);
    3614        1413 :     vtrue0 = graph()->NewNode(machine()->ChangeInt32ToFloat64(), vtrue0);
    3615             :   }
    3616             : 
    3617        1413 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3618             :   Node* efalse0 = effect;
    3619             :   Node* vfalse0;
    3620             :   {
    3621             :     Operator const* op =
    3622             :         node->opcode() == IrOpcode::kJSToNumber
    3623             :             ? (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3624             :                    ? ToNumberConvertBigIntOperator()
    3625             :                    : ToNumberOperator())
    3626        1413 :             : ToNumericOperator();
    3627             :     Node* code = node->opcode() == IrOpcode::kJSToNumber
    3628             :                      ? ToNumberCode()
    3629             :                      : (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3630             :                             ? ToNumberConvertBigIntCode()
    3631        1413 :                             : ToNumericCode());
    3632             :     vfalse0 = efalse0 = if_false0 = graph()->NewNode(
    3633             :         op, code, value, context, frame_state, efalse0, if_false0);
    3634             : 
    3635             :     // Update potential {IfException} uses of {node} to point to the above
    3636             :     // stub call node instead.
    3637        1413 :     Node* on_exception = nullptr;
    3638        1413 :     if (NodeProperties::IsExceptionalCall(node, &on_exception)) {
    3639           0 :       NodeProperties::ReplaceControlInput(on_exception, vfalse0);
    3640           0 :       NodeProperties::ReplaceEffectInput(on_exception, efalse0);
    3641           0 :       if_false0 = graph()->NewNode(common()->IfSuccess(), vfalse0);
    3642             :     }
    3643             : 
    3644        1413 :     Node* check1 = graph()->NewNode(simplified()->ObjectIsSmi(), vfalse0);
    3645        1413 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3646             : 
    3647        1413 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3648             :     Node* etrue1 = efalse0;
    3649             :     Node* vtrue1;
    3650             :     {
    3651             :       vtrue1 =
    3652        1413 :           graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), vfalse0);
    3653        1413 :       vtrue1 = graph()->NewNode(machine()->ChangeInt32ToFloat64(), vtrue1);
    3654             :     }
    3655             : 
    3656        1413 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3657             :     Node* efalse1 = efalse0;
    3658             :     Node* vfalse1;
    3659             :     {
    3660        1413 :       vfalse1 = efalse1 = graph()->NewNode(
    3661        2826 :           simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), efalse0,
    3662             :           efalse1, if_false1);
    3663             :     }
    3664             : 
    3665        1413 :     if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
    3666             :     efalse0 =
    3667        1413 :         graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
    3668             :     vfalse0 =
    3669        1413 :         graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
    3670             :                          vtrue1, vfalse1, if_false0);
    3671             :   }
    3672             : 
    3673        1413 :   control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
    3674        1413 :   effect = graph()->NewNode(common()->EffectPhi(2), etrue0, efalse0, control);
    3675        1413 :   value = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
    3676             :                            vtrue0, vfalse0, control);
    3677             : 
    3678             :   // Replace effect and control uses appropriately.
    3679        9893 :   for (Edge edge : node->use_edges()) {
    3680        4240 :     if (NodeProperties::IsControlEdge(edge)) {
    3681        1413 :       if (edge.from()->opcode() == IrOpcode::kIfSuccess) {
    3682           0 :         edge.from()->ReplaceUses(control);
    3683           0 :         edge.from()->Kill();
    3684             :       } else {
    3685             :         DCHECK_NE(IrOpcode::kIfException, edge.from()->opcode());
    3686        1413 :         edge.UpdateTo(control);
    3687             :       }
    3688        2827 :     } else if (NodeProperties::IsEffectEdge(edge)) {
    3689        1414 :       edge.UpdateTo(effect);
    3690             :     }
    3691             :   }
    3692             : 
    3693        1413 :   selector->DeferReplacement(node, value);
    3694        1413 : }
    3695             : 
    3696          75 : void SimplifiedLowering::DoJSToNumberOrNumericTruncatesToWord32(
    3697             :     Node* node, RepresentationSelector* selector) {
    3698             :   DCHECK(node->opcode() == IrOpcode::kJSToNumber ||
    3699             :          node->opcode() == IrOpcode::kJSToNumberConvertBigInt ||
    3700             :          node->opcode() == IrOpcode::kJSToNumeric);
    3701             :   Node* value = node->InputAt(0);
    3702             :   Node* context = node->InputAt(1);
    3703             :   Node* frame_state = node->InputAt(2);
    3704             :   Node* effect = node->InputAt(3);
    3705             :   Node* control = node->InputAt(4);
    3706             : 
    3707          75 :   Node* check0 = graph()->NewNode(simplified()->ObjectIsSmi(), value);
    3708             :   Node* branch0 =
    3709          75 :       graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
    3710             : 
    3711          75 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3712             :   Node* etrue0 = effect;
    3713             :   Node* vtrue0 =
    3714          75 :       graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), value);
    3715             : 
    3716          75 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3717             :   Node* efalse0 = effect;
    3718             :   Node* vfalse0;
    3719             :   {
    3720             :     Operator const* op =
    3721             :         node->opcode() == IrOpcode::kJSToNumber
    3722             :             ? (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3723             :                    ? ToNumberConvertBigIntOperator()
    3724             :                    : ToNumberOperator())
    3725          75 :             : ToNumericOperator();
    3726             :     Node* code = node->opcode() == IrOpcode::kJSToNumber
    3727             :                      ? ToNumberCode()
    3728             :                      : (node->opcode() == IrOpcode::kJSToNumberConvertBigInt
    3729             :                             ? ToNumberConvertBigIntCode()
    3730          75 :                             : ToNumericCode());
    3731             :     vfalse0 = efalse0 = if_false0 = graph()->NewNode(
    3732             :         op, code, value, context, frame_state, efalse0, if_false0);
    3733             : 
    3734             :     // Update potential {IfException} uses of {node} to point to the above
    3735             :     // stub call node instead.
    3736          75 :     Node* on_exception = nullptr;
    3737          75 :     if (NodeProperties::IsExceptionalCall(node, &on_exception)) {
    3738           8 :       NodeProperties::ReplaceControlInput(on_exception, vfalse0);
    3739           8 :       NodeProperties::ReplaceEffectInput(on_exception, efalse0);
    3740           8 :       if_false0 = graph()->NewNode(common()->IfSuccess(), vfalse0);
    3741             :     }
    3742             : 
    3743          75 :     Node* check1 = graph()->NewNode(simplified()->ObjectIsSmi(), vfalse0);
    3744          75 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3745             : 
    3746          75 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3747             :     Node* etrue1 = efalse0;
    3748             :     Node* vtrue1 =
    3749          75 :         graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), vfalse0);
    3750             : 
    3751          75 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3752             :     Node* efalse1 = efalse0;
    3753             :     Node* vfalse1;
    3754             :     {
    3755          75 :       vfalse1 = efalse1 = graph()->NewNode(
    3756         150 :           simplified()->LoadField(AccessBuilder::ForHeapNumberValue()), efalse0,
    3757             :           efalse1, if_false1);
    3758          75 :       vfalse1 = graph()->NewNode(machine()->TruncateFloat64ToWord32(), vfalse1);
    3759             :     }
    3760             : 
    3761          75 :     if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
    3762             :     efalse0 =
    3763          75 :         graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
    3764          75 :     vfalse0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
    3765             :                                vtrue1, vfalse1, if_false0);
    3766             :   }
    3767             : 
    3768          75 :   control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
    3769          75 :   effect = graph()->NewNode(common()->EffectPhi(2), etrue0, efalse0, control);
    3770          75 :   value = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
    3771             :                            vtrue0, vfalse0, control);
    3772             : 
    3773             :   // Replace effect and control uses appropriately.
    3774         459 :   for (Edge edge : node->use_edges()) {
    3775         192 :     if (NodeProperties::IsControlEdge(edge)) {
    3776         114 :       if (edge.from()->opcode() == IrOpcode::kIfSuccess) {
    3777           8 :         edge.from()->ReplaceUses(control);
    3778           8 :         edge.from()->Kill();
    3779             :       } else {
    3780             :         DCHECK_NE(IrOpcode::kIfException, edge.from()->opcode());
    3781         106 :         edge.UpdateTo(control);
    3782             :       }
    3783          78 :     } else if (NodeProperties::IsEffectEdge(edge)) {
    3784          75 :       edge.UpdateTo(effect);
    3785             :     }
    3786             :   }
    3787             : 
    3788          75 :   selector->DeferReplacement(node, value);
    3789          75 : }
    3790             : 
    3791        1554 : Node* SimplifiedLowering::Float64Round(Node* const node) {
    3792        1554 :   Node* const one = jsgraph()->Float64Constant(1.0);
    3793        1554 :   Node* const one_half = jsgraph()->Float64Constant(0.5);
    3794             :   Node* const input = node->InputAt(0);
    3795             : 
    3796             :   // Round up towards Infinity, and adjust if the difference exceeds 0.5.
    3797        3108 :   Node* result = graph()->NewNode(machine()->Float64RoundUp().placeholder(),
    3798             :                                   node->InputAt(0));
    3799        6216 :   return graph()->NewNode(
    3800             :       common()->Select(MachineRepresentation::kFloat64),
    3801             :       graph()->NewNode(
    3802             :           machine()->Float64LessThanOrEqual(),
    3803             :           graph()->NewNode(machine()->Float64Sub(), result, one_half), input),
    3804        1554 :       result, graph()->NewNode(machine()->Float64Sub(), result, one));
    3805             : }
    3806             : 
    3807          30 : Node* SimplifiedLowering::Float64Sign(Node* const node) {
    3808          30 :   Node* const minus_one = jsgraph()->Float64Constant(-1.0);
    3809          30 :   Node* const zero = jsgraph()->Float64Constant(0.0);
    3810          30 :   Node* const one = jsgraph()->Float64Constant(1.0);
    3811             : 
    3812             :   Node* const input = node->InputAt(0);
    3813             : 
    3814         120 :   return graph()->NewNode(
    3815             :       common()->Select(MachineRepresentation::kFloat64),
    3816             :       graph()->NewNode(machine()->Float64LessThan(), input, zero), minus_one,
    3817             :       graph()->NewNode(
    3818             :           common()->Select(MachineRepresentation::kFloat64),
    3819             :           graph()->NewNode(machine()->Float64LessThan(), zero, input), one,
    3820          30 :           input));
    3821             : }
    3822             : 
    3823          83 : Node* SimplifiedLowering::Int32Abs(Node* const node) {
    3824             :   Node* const input = node->InputAt(0);
    3825             : 
    3826             :   // Generate case for absolute integer value.
    3827             :   //
    3828             :   //    let sign = input >> 31 in
    3829             :   //    (input ^ sign) - sign
    3830             : 
    3831          83 :   Node* sign = graph()->NewNode(machine()->Word32Sar(), input,
    3832             :                                 jsgraph()->Int32Constant(31));
    3833         166 :   return graph()->NewNode(machine()->Int32Sub(),
    3834             :                           graph()->NewNode(machine()->Word32Xor(), input, sign),
    3835          83 :                           sign);
    3836             : }
    3837             : 
    3838        3006 : Node* SimplifiedLowering::Int32Div(Node* const node) {
    3839        3006 :   Int32BinopMatcher m(node);
    3840        3006 :   Node* const zero = jsgraph()->Int32Constant(0);
    3841        3006 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    3842             :   Node* const lhs = m.left().node();
    3843             :   Node* const rhs = m.right().node();
    3844             : 
    3845        3006 :   if (m.right().Is(-1)) {
    3846          30 :     return graph()->NewNode(machine()->Int32Sub(), zero, lhs);
    3847        2991 :   } else if (m.right().Is(0)) {
    3848             :     return rhs;
    3849        2991 :   } else if (machine()->Int32DivIsSafe() || m.right().HasValue()) {
    3850        4698 :     return graph()->NewNode(machine()->Int32Div(), lhs, rhs, graph()->start());
    3851             :   }
    3852             : 
    3853             :   // General case for signed integer division.
    3854             :   //
    3855             :   //    if 0 < rhs then
    3856             :   //      lhs / rhs
    3857             :   //    else
    3858             :   //      if rhs < -1 then
    3859             :   //        lhs / rhs
    3860             :   //      else if rhs == 0 then
    3861             :   //        0
    3862             :   //      else
    3863             :   //        0 - lhs
    3864             :   //
    3865             :   // Note: We do not use the Diamond helper class here, because it really hurts
    3866             :   // readability with nested diamonds.
    3867         642 :   const Operator* const merge_op = common()->Merge(2);
    3868             :   const Operator* const phi_op =
    3869         642 :       common()->Phi(MachineRepresentation::kWord32, 2);
    3870             : 
    3871         642 :   Node* check0 = graph()->NewNode(machine()->Int32LessThan(), zero, rhs);
    3872         642 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0,
    3873             :                                    graph()->start());
    3874             : 
    3875         642 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3876         642 :   Node* true0 = graph()->NewNode(machine()->Int32Div(), lhs, rhs, if_true0);
    3877             : 
    3878         642 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3879             :   Node* false0;
    3880             :   {
    3881         642 :     Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minus_one);
    3882         642 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    3883             : 
    3884         642 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3885         642 :     Node* true1 = graph()->NewNode(machine()->Int32Div(), lhs, rhs, if_true1);
    3886             : 
    3887         642 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3888             :     Node* false1;
    3889             :     {
    3890         642 :       Node* check2 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    3891         642 :       Node* branch2 = graph()->NewNode(common()->Branch(), check2, if_false1);
    3892             : 
    3893         642 :       Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
    3894             :       Node* true2 = zero;
    3895             : 
    3896         642 :       Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
    3897         642 :       Node* false2 = graph()->NewNode(machine()->Int32Sub(), zero, lhs);
    3898             : 
    3899             :       if_false1 = graph()->NewNode(merge_op, if_true2, if_false2);
    3900             :       false1 = graph()->NewNode(phi_op, true2, false2, if_false1);
    3901             :     }
    3902             : 
    3903             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    3904             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    3905             :   }
    3906             : 
    3907             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    3908         642 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    3909             : }
    3910             : 
    3911        2413 : Node* SimplifiedLowering::Int32Mod(Node* const node) {
    3912        2413 :   Int32BinopMatcher m(node);
    3913        2413 :   Node* const zero = jsgraph()->Int32Constant(0);
    3914        2413 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    3915             :   Node* const lhs = m.left().node();
    3916             :   Node* const rhs = m.right().node();
    3917             : 
    3918        4818 :   if (m.right().Is(-1) || m.right().Is(0)) {
    3919             :     return zero;
    3920        2405 :   } else if (m.right().HasValue()) {
    3921        4788 :     return graph()->NewNode(machine()->Int32Mod(), lhs, rhs, graph()->start());
    3922             :   }
    3923             : 
    3924             :   // General case for signed integer modulus, with optimization for (unknown)
    3925             :   // power of 2 right hand side.
    3926             :   //
    3927             :   //   if 0 < rhs then
    3928             :   //     msk = rhs - 1
    3929             :   //     if rhs & msk != 0 then
    3930             :   //       lhs % rhs
    3931             :   //     else
    3932             :   //       if lhs < 0 then
    3933             :   //         -(-lhs & msk)
    3934             :   //       else
    3935             :   //         lhs & msk
    3936             :   //   else
    3937             :   //     if rhs < -1 then
    3938             :   //       lhs % rhs
    3939             :   //     else
    3940             :   //       zero
    3941             :   //
    3942             :   // Note: We do not use the Diamond helper class here, because it really hurts
    3943             :   // readability with nested diamonds.
    3944          11 :   const Operator* const merge_op = common()->Merge(2);
    3945             :   const Operator* const phi_op =
    3946          11 :       common()->Phi(MachineRepresentation::kWord32, 2);
    3947             : 
    3948          11 :   Node* check0 = graph()->NewNode(machine()->Int32LessThan(), zero, rhs);
    3949          11 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kTrue), check0,
    3950             :                                    graph()->start());
    3951             : 
    3952          11 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    3953             :   Node* true0;
    3954             :   {
    3955          11 :     Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minus_one);
    3956             : 
    3957          11 :     Node* check1 = graph()->NewNode(machine()->Word32And(), rhs, msk);
    3958          11 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
    3959             : 
    3960          11 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3961          11 :     Node* true1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
    3962             : 
    3963          11 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3964             :     Node* false1;
    3965             :     {
    3966          11 :       Node* check2 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
    3967          11 :       Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
    3968             :                                        check2, if_false1);
    3969             : 
    3970          11 :       Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
    3971          33 :       Node* true2 = graph()->NewNode(
    3972             :           machine()->Int32Sub(), zero,
    3973             :           graph()->NewNode(machine()->Word32And(),
    3974             :                            graph()->NewNode(machine()->Int32Sub(), zero, lhs),
    3975             :                            msk));
    3976             : 
    3977          11 :       Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
    3978          11 :       Node* false2 = graph()->NewNode(machine()->Word32And(), lhs, msk);
    3979             : 
    3980             :       if_false1 = graph()->NewNode(merge_op, if_true2, if_false2);
    3981             :       false1 = graph()->NewNode(phi_op, true2, false2, if_false1);
    3982             :     }
    3983             : 
    3984             :     if_true0 = graph()->NewNode(merge_op, if_true1, if_false1);
    3985             :     true0 = graph()->NewNode(phi_op, true1, false1, if_true0);
    3986             :   }
    3987             : 
    3988          11 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    3989             :   Node* false0;
    3990             :   {
    3991          11 :     Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minus_one);
    3992          11 :     Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kTrue),
    3993             :                                      check1, if_false0);
    3994             : 
    3995          11 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    3996          11 :     Node* true1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
    3997             : 
    3998          11 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    3999             :     Node* false1 = zero;
    4000             : 
    4001             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    4002             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    4003             :   }
    4004             : 
    4005             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    4006          11 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    4007             : }
    4008             : 
    4009           7 : Node* SimplifiedLowering::Int32Sign(Node* const node) {
    4010           7 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    4011           7 :   Node* const zero = jsgraph()->Int32Constant(0);
    4012           7 :   Node* const one = jsgraph()->Int32Constant(1);
    4013             : 
    4014             :   Node* const input = node->InputAt(0);
    4015             : 
    4016          28 :   return graph()->NewNode(
    4017             :       common()->Select(MachineRepresentation::kWord32),
    4018             :       graph()->NewNode(machine()->Int32LessThan(), input, zero), minus_one,
    4019             :       graph()->NewNode(
    4020             :           common()->Select(MachineRepresentation::kWord32),
    4021             :           graph()->NewNode(machine()->Int32LessThan(), zero, input), one,
    4022           7 :           zero));
    4023             : }
    4024             : 
    4025         235 : Node* SimplifiedLowering::Uint32Div(Node* const node) {
    4026         235 :   Uint32BinopMatcher m(node);
    4027         235 :   Node* const zero = jsgraph()->Uint32Constant(0);
    4028             :   Node* const lhs = m.left().node();
    4029             :   Node* const rhs = m.right().node();
    4030             : 
    4031         235 :   if (m.right().Is(0)) {
    4032             :     return zero;
    4033         228 :   } else if (machine()->Uint32DivIsSafe() || m.right().HasValue()) {
    4034         388 :     return graph()->NewNode(machine()->Uint32Div(), lhs, rhs, graph()->start());
    4035             :   }
    4036             : 
    4037          34 :   Node* check = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    4038          34 :   Diamond d(graph(), common(), check, BranchHint::kFalse);
    4039          34 :   Node* div = graph()->NewNode(machine()->Uint32Div(), lhs, rhs, d.if_false);
    4040          34 :   return d.Phi(MachineRepresentation::kWord32, zero, div);
    4041             : }
    4042             : 
    4043         216 : Node* SimplifiedLowering::Uint32Mod(Node* const node) {
    4044         216 :   Uint32BinopMatcher m(node);
    4045         216 :   Node* const minus_one = jsgraph()->Int32Constant(-1);
    4046         216 :   Node* const zero = jsgraph()->Uint32Constant(0);
    4047             :   Node* const lhs = m.left().node();
    4048             :   Node* const rhs = m.right().node();
    4049             : 
    4050         216 :   if (m.right().Is(0)) {
    4051             :     return zero;
    4052         216 :   } else if (m.right().HasValue()) {
    4053         386 :     return graph()->NewNode(machine()->Uint32Mod(), lhs, rhs, graph()->start());
    4054             :   }
    4055             : 
    4056             :   // General case for unsigned integer modulus, with optimization for (unknown)
    4057             :   // power of 2 right hand side.
    4058             :   //
    4059             :   //   if rhs == 0 then
    4060             :   //     zero
    4061             :   //   else
    4062             :   //     msk = rhs - 1
    4063             :   //     if rhs & msk != 0 then
    4064             :   //       lhs % rhs
    4065             :   //     else
    4066             :   //       lhs & msk
    4067             :   //
    4068             :   // Note: We do not use the Diamond helper class here, because it really hurts
    4069             :   // readability with nested diamonds.
    4070          23 :   const Operator* const merge_op = common()->Merge(2);
    4071             :   const Operator* const phi_op =
    4072          23 :       common()->Phi(MachineRepresentation::kWord32, 2);
    4073             : 
    4074          23 :   Node* check0 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
    4075          23 :   Node* branch0 = graph()->NewNode(common()->Branch(BranchHint::kFalse), check0,
    4076             :                                    graph()->start());
    4077             : 
    4078          23 :   Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
    4079             :   Node* true0 = zero;
    4080             : 
    4081          23 :   Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
    4082             :   Node* false0;
    4083             :   {
    4084          23 :     Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minus_one);
    4085             : 
    4086          23 :     Node* check1 = graph()->NewNode(machine()->Word32And(), rhs, msk);
    4087          23 :     Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
    4088             : 
    4089          23 :     Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
    4090          23 :     Node* true1 = graph()->NewNode(machine()->Uint32Mod(), lhs, rhs, if_true1);
    4091             : 
    4092          23 :     Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
    4093          23 :     Node* false1 = graph()->NewNode(machine()->Word32And(), lhs, msk);
    4094             : 
    4095             :     if_false0 = graph()->NewNode(merge_op, if_true1, if_false1);
    4096             :     false0 = graph()->NewNode(phi_op, true1, false1, if_false0);
    4097             :   }
    4098             : 
    4099             :   Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0);
    4100          23 :   return graph()->NewNode(phi_op, true0, false0, merge0);
    4101             : }
    4102             : 
    4103        2356 : void SimplifiedLowering::DoMax(Node* node, Operator const* op,
    4104             :                                MachineRepresentation rep) {
    4105             :   Node* const lhs = node->InputAt(0);
    4106             :   Node* const rhs = node->InputAt(1);
    4107             : 
    4108        2356 :   node->ReplaceInput(0, graph()->NewNode(op, lhs, rhs));
    4109             :   DCHECK_EQ(rhs, node->InputAt(1));
    4110        2356 :   node->AppendInput(graph()->zone(), lhs);
    4111        2356 :   NodeProperties::ChangeOp(node, common()->Select(rep));
    4112        2356 : }
    4113             : 
    4114        3136 : void SimplifiedLowering::DoMin(Node* node, Operator const* op,
    4115             :                                MachineRepresentation rep) {
    4116             :   Node* const lhs = node->InputAt(0);
    4117             :   Node* const rhs = node->InputAt(1);
    4118             : 
    4119        3136 :   node->InsertInput(graph()->zone(), 0, graph()->NewNode(op, lhs, rhs));
    4120             :   DCHECK_EQ(lhs, node->InputAt(1));
    4121             :   DCHECK_EQ(rhs, node->InputAt(2));
    4122        3136 :   NodeProperties::ChangeOp(node, common()->Select(rep));
    4123        3136 : }
    4124             : 
    4125         150 : void SimplifiedLowering::DoIntegral32ToBit(Node* node) {
    4126             :   Node* const input = node->InputAt(0);
    4127         150 :   Node* const zero = jsgraph()->Int32Constant(0);
    4128         150 :   Operator const* const op = machine()->Word32Equal();
    4129             : 
    4130         150 :   node->ReplaceInput(0, graph()->NewNode(op, input, zero));
    4131         150 :   node->AppendInput(graph()->zone(), zero);
    4132         150 :   NodeProperties::ChangeOp(node, op);
    4133         150 : }
    4134             : 
    4135           0 : void SimplifiedLowering::DoOrderedNumberToBit(Node* node) {
    4136             :   Node* const input = node->InputAt(0);
    4137             : 
    4138           0 :   node->ReplaceInput(0, graph()->NewNode(machine()->Float64Equal(), input,
    4139           0 :                                          jsgraph()->Float64Constant(0.0)));
    4140           0 :   node->AppendInput(graph()->zone(), jsgraph()->Int32Constant(0));
    4141           0 :   NodeProperties::ChangeOp(node, machine()->Word32Equal());
    4142           0 : }
    4143             : 
    4144          32 : void SimplifiedLowering::DoNumberToBit(Node* node) {
    4145             :   Node* const input = node->InputAt(0);
    4146             : 
    4147          32 :   node->ReplaceInput(0, jsgraph()->Float64Constant(0.0));
    4148          32 :   node->AppendInput(graph()->zone(),
    4149          32 :                     graph()->NewNode(machine()->Float64Abs(), input));
    4150          32 :   NodeProperties::ChangeOp(node, machine()->Float64LessThan());
    4151          32 : }
    4152             : 
    4153          21 : void SimplifiedLowering::DoIntegerToUint8Clamped(Node* node) {
    4154             :   Node* const input = node->InputAt(0);
    4155          21 :   Node* const min = jsgraph()->Float64Constant(0.0);
    4156          21 :   Node* const max = jsgraph()->Float64Constant(255.0);
    4157             : 
    4158          21 :   node->ReplaceInput(
    4159          21 :       0, graph()->NewNode(machine()->Float64LessThan(), min, input));
    4160          42 :   node->AppendInput(
    4161             :       graph()->zone(),
    4162             :       graph()->NewNode(
    4163             :           common()->Select(MachineRepresentation::kFloat64),
    4164             :           graph()->NewNode(machine()->Float64LessThan(), input, max), input,
    4165          21 :           max));
    4166          21 :   node->AppendInput(graph()->zone(), min);
    4167          21 :   NodeProperties::ChangeOp(node,
    4168          21 :                            common()->Select(MachineRepresentation::kFloat64));
    4169          21 : }
    4170             : 
    4171         294 : void SimplifiedLowering::DoNumberToUint8Clamped(Node* node) {
    4172             :   Node* const input = node->InputAt(0);
    4173         294 :   Node* const min = jsgraph()->Float64Constant(0.0);
    4174         294 :   Node* const max = jsgraph()->Float64Constant(255.0);
    4175             : 
    4176        1176 :   node->ReplaceInput(
    4177             :       0, graph()->NewNode(
    4178             :              common()->Select(MachineRepresentation::kFloat64),
    4179             :              graph()->NewNode(machine()->Float64LessThan(), min, input),
    4180             :              graph()->NewNode(
    4181             :                  common()->Select(MachineRepresentation::kFloat64),
    4182             :                  graph()->NewNode(machine()->Float64LessThan(), input, max),
    4183             :                  input, max),
    4184         294 :              min));
    4185             :   NodeProperties::ChangeOp(node,
    4186         294 :                            machine()->Float64RoundTiesEven().placeholder());
    4187         294 : }
    4188             : 
    4189          64 : void SimplifiedLowering::DoSigned32ToUint8Clamped(Node* node) {
    4190             :   Node* const input = node->InputAt(0);
    4191          64 :   Node* const min = jsgraph()->Int32Constant(0);
    4192          64 :   Node* const max = jsgraph()->Int32Constant(255);
    4193             : 
    4194          64 :   node->ReplaceInput(
    4195          64 :       0, graph()->NewNode(machine()->Int32LessThanOrEqual(), input, max));
    4196         128 :   node->AppendInput(
    4197             :       graph()->zone(),
    4198             :       graph()->NewNode(common()->Select(MachineRepresentation::kWord32),
    4199             :                        graph()->NewNode(machine()->Int32LessThan(), input, min),
    4200          64 :                        min, input));
    4201          64 :   node->AppendInput(graph()->zone(), max);
    4202          64 :   NodeProperties::ChangeOp(node,
    4203          64 :                            common()->Select(MachineRepresentation::kWord32));
    4204          64 : }
    4205             : 
    4206          72 : void SimplifiedLowering::DoUnsigned32ToUint8Clamped(Node* node) {
    4207             :   Node* const input = node->InputAt(0);
    4208          72 :   Node* const max = jsgraph()->Uint32Constant(255u);
    4209             : 
    4210          72 :   node->ReplaceInput(
    4211          72 :       0, graph()->NewNode(machine()->Uint32LessThanOrEqual(), input, max));
    4212          72 :   node->AppendInput(graph()->zone(), input);
    4213          72 :   node->AppendInput(graph()->zone(), max);
    4214          72 :   NodeProperties::ChangeOp(node,
    4215          72 :                            common()->Select(MachineRepresentation::kWord32));
    4216          72 : }
    4217             : 
    4218        1424 : Node* SimplifiedLowering::ToNumberCode() {
    4219        1424 :   if (!to_number_code_.is_set()) {
    4220        1424 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumber);
    4221        2848 :     to_number_code_.set(jsgraph()->HeapConstant(callable.code()));
    4222             :   }
    4223        1424 :   return to_number_code_.get();
    4224             : }
    4225             : 
    4226          64 : Node* SimplifiedLowering::ToNumberConvertBigIntCode() {
    4227          64 :   if (!to_number_convert_big_int_code_.is_set()) {
    4228             :     Callable callable =
    4229          64 :         Builtins::CallableFor(isolate(), Builtins::kToNumberConvertBigInt);
    4230         128 :     to_number_convert_big_int_code_.set(
    4231             :         jsgraph()->HeapConstant(callable.code()));
    4232             :   }
    4233          64 :   return to_number_convert_big_int_code_.get();
    4234             : }
    4235             : 
    4236           0 : Node* SimplifiedLowering::ToNumericCode() {
    4237           0 :   if (!to_numeric_code_.is_set()) {
    4238           0 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumeric);
    4239           0 :     to_numeric_code_.set(jsgraph()->HeapConstant(callable.code()));
    4240             :   }
    4241           0 :   return to_numeric_code_.get();
    4242             : }
    4243             : 
    4244        1424 : Operator const* SimplifiedLowering::ToNumberOperator() {
    4245        1424 :   if (!to_number_operator_.is_set()) {
    4246        1424 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumber);
    4247             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4248        1424 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4249        1424 :         graph()->zone(), callable.descriptor(),
    4250             :         callable.descriptor().GetStackParameterCount(), flags,
    4251        1424 :         Operator::kNoProperties);
    4252        1424 :     to_number_operator_.set(common()->Call(call_descriptor));
    4253             :   }
    4254        1424 :   return to_number_operator_.get();
    4255             : }
    4256             : 
    4257           0 : Operator const* SimplifiedLowering::ToNumberConvertBigIntOperator() {
    4258           0 :   if (!to_number_convert_big_int_operator_.is_set()) {
    4259             :     Callable callable =
    4260           0 :         Builtins::CallableFor(isolate(), Builtins::kToNumberConvertBigInt);
    4261             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4262           0 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4263           0 :         graph()->zone(), callable.descriptor(),
    4264             :         callable.descriptor().GetStackParameterCount(), flags,
    4265           0 :         Operator::kNoProperties);
    4266           0 :     to_number_convert_big_int_operator_.set(common()->Call(call_descriptor));
    4267             :   }
    4268           0 :   return to_number_convert_big_int_operator_.get();
    4269             : }
    4270             : 
    4271          64 : Operator const* SimplifiedLowering::ToNumericOperator() {
    4272          64 :   if (!to_numeric_operator_.is_set()) {
    4273          64 :     Callable callable = Builtins::CallableFor(isolate(), Builtins::kToNumeric);
    4274             :     CallDescriptor::Flags flags = CallDescriptor::kNeedsFrameState;
    4275          64 :     auto call_descriptor = Linkage::GetStubCallDescriptor(
    4276          64 :         graph()->zone(), callable.descriptor(),
    4277             :         callable.descriptor().GetStackParameterCount(), flags,
    4278          64 :         Operator::kNoProperties);
    4279          64 :     to_numeric_operator_.set(common()->Call(call_descriptor));
    4280             :   }
    4281          64 :   return to_numeric_operator_.get();
    4282             : }
    4283             : 
    4284             : #undef TRACE
    4285             : 
    4286             : }  // namespace compiler
    4287             : }  // namespace internal
    4288      121996 : }  // namespace v8

Generated by: LCOV version 1.10