LCOV - code coverage report
Current view: top level - src - double.h (source / functions) Hit Total Coverage
Test: app.info Lines: 50 52 96.2 %
Date: 2019-04-17 Functions: 4 4 100.0 %

          Line data    Source code
       1             : // Copyright 2011 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_DOUBLE_H_
       6             : #define V8_DOUBLE_H_
       7             : 
       8             : #include "src/base/macros.h"
       9             : #include "src/diy-fp.h"
      10             : 
      11             : namespace v8 {
      12             : namespace internal {
      13             : 
      14             : // We assume that doubles and uint64_t have the same endianness.
      15             : inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
      16             : inline double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); }
      17             : 
      18             : // Helper functions for doubles.
      19             : class Double {
      20             :  public:
      21             :   static constexpr uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
      22             :   static constexpr uint64_t kExponentMask =
      23             :       V8_2PART_UINT64_C(0x7FF00000, 00000000);
      24             :   static constexpr uint64_t kSignificandMask =
      25             :       V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
      26             :   static constexpr uint64_t kHiddenBit =
      27             :       V8_2PART_UINT64_C(0x00100000, 00000000);
      28             :   static constexpr int kPhysicalSignificandSize =
      29             :       52;  // Excludes the hidden bit.
      30             :   static constexpr int kSignificandSize = 53;
      31             : 
      32             :   Double() : d64_(0) {}
      33     5625792 :   explicit Double(double d) : d64_(double_to_uint64(d)) {}
      34          60 :   explicit Double(uint64_t d64) : d64_(d64) {}
      35             :   explicit Double(DiyFp diy_fp)
      36       45470 :     : d64_(DiyFpToUint64(diy_fp)) {}
      37             : 
      38             :   // The value encoded by this Double must be greater or equal to +0.0.
      39             :   // It must not be special (infinity, or NaN).
      40             :   DiyFp AsDiyFp() const {
      41             :     DCHECK_GT(Sign(), 0);
      42             :     DCHECK(!IsSpecial());
      43             :     return DiyFp(Significand(), Exponent());
      44             :   }
      45             : 
      46             :   // The value encoded by this Double must be strictly greater than 0.
      47     3138736 :   DiyFp AsNormalizedDiyFp() const {
      48             :     DCHECK_GT(value(), 0.0);
      49             :     uint64_t f = Significand();
      50             :     int e = Exponent();
      51             : 
      52             :     // The current double could be a denormal.
      53     3350442 :     while ((f & kHiddenBit) == 0) {
      54      105853 :       f <<= 1;
      55      105853 :       e--;
      56             :     }
      57             :     // Do the final shifts in one go.
      58     3138736 :     f <<= DiyFp::kSignificandSize - kSignificandSize;
      59     3138736 :     e -= DiyFp::kSignificandSize - kSignificandSize;
      60     3138736 :     return DiyFp(f, e);
      61             :   }
      62             : 
      63             :   // Returns the double's bit as uint64.
      64             :   uint64_t AsUint64() const {
      65     5279931 :     return d64_;
      66             :   }
      67             : 
      68             :   // Returns the next greater double. Returns +infinity on input +infinity.
      69      349990 :   double NextDouble() const {
      70      349990 :     if (d64_ == kInfinity) return Double(kInfinity).value();
      71      350015 :     if (Sign() < 0 && Significand() == 0) {
      72             :       // -0.0
      73             :       return 0.0;
      74             :     }
      75      349980 :     if (Sign() < 0) {
      76          15 :       return Double(d64_ - 1).value();
      77             :     } else {
      78      349965 :       return Double(d64_ + 1).value();
      79             :     }
      80             :   }
      81             : 
      82             :   int Exponent() const {
      83    12961847 :     if (IsDenormal()) return kDenormalExponent;
      84             : 
      85             :     uint64_t d64 = AsUint64();
      86             :     int biased_e =
      87    12950729 :         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
      88    12950729 :     return biased_e - kExponentBias;
      89             :   }
      90             : 
      91             :   uint64_t Significand() const {
      92             :     uint64_t d64 = AsUint64();
      93     9536055 :     uint64_t significand = d64 & kSignificandMask;
      94     9536147 :     if (!IsDenormal()) {
      95     9526276 :       return significand + kHiddenBit;
      96             :     } else {
      97             :       return significand;
      98             :     }
      99             :   }
     100             : 
     101             :   // Returns true if the double is a denormal.
     102             :   bool IsDenormal() const {
     103             :     uint64_t d64 = AsUint64();
     104    12501901 :     return (d64 & kExponentMask) == 0;
     105             :   }
     106             : 
     107             :   // We consider denormals not to be special.
     108             :   // Hence only Infinity and NaN are special.
     109             :   bool IsSpecial() const {
     110             :     uint64_t d64 = AsUint64();
     111             :     return (d64 & kExponentMask) == kExponentMask;
     112             :   }
     113             : 
     114             :   bool IsInfinite() const {
     115             :     uint64_t d64 = AsUint64();
     116       12458 :     return ((d64 & kExponentMask) == kExponentMask) &&
     117             :         ((d64 & kSignificandMask) == 0);
     118             :   }
     119             : 
     120             :   int Sign() const {
     121             :     uint64_t d64 = AsUint64();
     122     3580160 :     return (d64 & kSignMask) == 0? 1: -1;
     123             :   }
     124             : 
     125             :   // Precondition: the value encoded by this Double must be greater or equal
     126             :   // than +0.0.
     127             :   DiyFp UpperBoundary() const {
     128             :     DCHECK_GT(Sign(), 0);
     129         478 :     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
     130             :   }
     131             : 
     132             :   // Returns the two boundaries of this.
     133             :   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
     134             :   // exponent as m_plus.
     135             :   // Precondition: the value encoded by this Double must be greater than 0.
     136     2137126 :   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
     137             :     DCHECK_GT(value(), 0.0);
     138             :     DiyFp v = this->AsDiyFp();
     139             :     bool significand_is_zero = (v.f() == kHiddenBit);
     140     2137126 :     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
     141             :     DiyFp m_minus;
     142     2137126 :     if (significand_is_zero && v.e() != kDenormalExponent) {
     143             :       // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
     144             :       // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
     145             :       // at a distance of 1e8.
     146             :       // The only exception is for the smallest normal: the largest denormal is
     147             :       // at the same distance as its successor.
     148             :       // Note: denormals have the same exponent as the smallest normals.
     149      114902 :       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
     150             :     } else {
     151     2022224 :       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
     152             :     }
     153     2137126 :     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
     154             :     m_minus.set_e(m_plus.e());
     155     2137126 :     *out_m_plus = m_plus;
     156     2137126 :     *out_m_minus = m_minus;
     157     2137126 :   }
     158             : 
     159             :   double value() const { return uint64_to_double(d64_); }
     160             : 
     161             :   // Returns the significand size for a given order of magnitude.
     162             :   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
     163             :   // This function returns the number of significant binary digits v will have
     164             :   // once its encoded into a double. In almost all cases this is equal to
     165             :   // kSignificandSize. The only exception are denormals. They start with leading
     166             :   // zeroes and their effective significand-size is hence smaller.
     167             :   static int SignificandSizeForOrderOfMagnitude(int order) {
     168       45470 :     if (order >= (kDenormalExponent + kSignificandSize)) {
     169             :       return kSignificandSize;
     170             :     }
     171         203 :     if (order <= kDenormalExponent) return 0;
     172         146 :     return order - kDenormalExponent;
     173             :   }
     174             : 
     175             :  private:
     176             :   static constexpr int kExponentBias = 0x3FF + kPhysicalSignificandSize;
     177             :   static constexpr int kDenormalExponent = -kExponentBias + 1;
     178             :   static constexpr int kMaxExponent = 0x7FF - kExponentBias;
     179             :   static constexpr uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
     180             : 
     181             :   // The field d64_ is not marked as const to permit the usage of the copy
     182             :   // constructor.
     183             :   uint64_t d64_;
     184             : 
     185       45470 :   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
     186             :     uint64_t significand = diy_fp.f();
     187             :     int exponent = diy_fp.e();
     188       45615 :     while (significand > kHiddenBit + kSignificandMask) {
     189         145 :       significand >>= 1;
     190         145 :       exponent++;
     191             :     }
     192       45470 :     if (exponent >= kMaxExponent) {
     193             :       return kInfinity;
     194             :     }
     195       45445 :     if (exponent < kDenormalExponent) {
     196             :       return 0;
     197             :     }
     198       45416 :     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
     199           0 :       significand <<= 1;
     200           0 :       exponent--;
     201             :     }
     202             :     uint64_t biased_exponent;
     203       45416 :     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
     204             :       biased_exponent = 0;
     205             :     } else {
     206       45242 :       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
     207             :     }
     208       45416 :     return (significand & kSignificandMask) |
     209       45416 :         (biased_exponent << kPhysicalSignificandSize);
     210             :   }
     211             : };
     212             : 
     213             : }  // namespace internal
     214             : }  // namespace v8
     215             : 
     216             : #endif  // V8_DOUBLE_H_

Generated by: LCOV version 1.10