LCOV - code coverage report
Current view: top level - src/regexp - jsregexp.h (source / functions) Hit Total Coverage
Test: app.info Lines: 142 167 85.0 %
Date: 2019-04-17 Functions: 22 52 42.3 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_REGEXP_JSREGEXP_H_
       6             : #define V8_REGEXP_JSREGEXP_H_
       7             : 
       8             : #include "src/allocation.h"
       9             : #include "src/isolate.h"
      10             : #include "src/objects/js-regexp.h"
      11             : #include "src/regexp/regexp-ast.h"
      12             : #include "src/regexp/regexp-macro-assembler.h"
      13             : #include "src/zone/zone-splay-tree.h"
      14             : 
      15             : namespace v8 {
      16             : namespace internal {
      17             : 
      18             : class NodeVisitor;
      19             : class RegExpCompiler;
      20             : class RegExpMacroAssembler;
      21             : class RegExpNode;
      22             : class RegExpTree;
      23             : class BoyerMooreLookahead;
      24             : 
      25             : inline bool IgnoreCase(JSRegExp::Flags flags) {
      26             :   return (flags & JSRegExp::kIgnoreCase) != 0;
      27             : }
      28             : 
      29             : inline bool IsUnicode(JSRegExp::Flags flags) {
      30        1682 :   return (flags & JSRegExp::kUnicode) != 0;
      31             : }
      32             : 
      33             : inline bool IsSticky(JSRegExp::Flags flags) {
      34       85739 :   return (flags & JSRegExp::kSticky) != 0;
      35             : }
      36             : 
      37             : inline bool IsGlobal(JSRegExp::Flags flags) {
      38       85739 :   return (flags & JSRegExp::kGlobal) != 0;
      39             : }
      40             : 
      41             : inline bool DotAll(JSRegExp::Flags flags) {
      42             :   return (flags & JSRegExp::kDotAll) != 0;
      43             : }
      44             : 
      45             : inline bool Multiline(JSRegExp::Flags flags) {
      46             :   return (flags & JSRegExp::kMultiline) != 0;
      47             : }
      48             : 
      49             : inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) {
      50             :   // Both unicode and ignore_case flags are set. We need to use ICU to find
      51             :   // the closure over case equivalents.
      52      422674 :   return IsUnicode(flags) && IgnoreCase(flags);
      53             : }
      54             : 
      55             : class RegExpImpl {
      56             :  public:
      57             :   // Whether the irregexp engine generates native code or interpreter bytecode.
      58             :   static bool UsesNativeRegExp() { return !FLAG_regexp_interpret_all; }
      59             : 
      60             :   // Returns a string representation of a regular expression.
      61             :   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
      62             :   // This function calls the garbage collector if necessary.
      63             :   static Handle<String> ToString(Handle<Object> value);
      64             : 
      65             :   // Parses the RegExp pattern and prepares the JSRegExp object with
      66             :   // generic data and choice of implementation - as well as what
      67             :   // the implementation wants to store in the data field.
      68             :   // Returns false if compilation fails.
      69             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Compile(
      70             :       Isolate* isolate, Handle<JSRegExp> re, Handle<String> pattern,
      71             :       JSRegExp::Flags flags);
      72             : 
      73             :   // See ECMA-262 section 15.10.6.2.
      74             :   // This function calls the garbage collector if necessary.
      75             :   V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Exec(
      76             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
      77             :       int index, Handle<RegExpMatchInfo> last_match_info);
      78             : 
      79             :   // Prepares a JSRegExp object with Irregexp-specific data.
      80             :   static void IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re,
      81             :                                  Handle<String> pattern, JSRegExp::Flags flags,
      82             :                                  int capture_register_count);
      83             : 
      84             :   static void AtomCompile(Isolate* isolate, Handle<JSRegExp> re,
      85             :                           Handle<String> pattern, JSRegExp::Flags flags,
      86             :                           Handle<String> match_pattern);
      87             : 
      88             :   static int AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
      89             :                          Handle<String> subject, int index, int32_t* output,
      90             :                          int output_size);
      91             : 
      92             :   static Handle<Object> AtomExec(Isolate* isolate, Handle<JSRegExp> regexp,
      93             :                                  Handle<String> subject, int index,
      94             :                                  Handle<RegExpMatchInfo> last_match_info);
      95             : 
      96             :   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
      97             : 
      98             :   // Prepare a RegExp for being executed one or more times (using
      99             :   // IrregexpExecOnce) on the subject.
     100             :   // This ensures that the regexp is compiled for the subject, and that
     101             :   // the subject is flat.
     102             :   // Returns the number of integer spaces required by IrregexpExecOnce
     103             :   // as its "registers" argument.  If the regexp cannot be compiled,
     104             :   // an exception is set as pending, and this function returns negative.
     105             :   static int IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp,
     106             :                              Handle<String> subject);
     107             : 
     108             :   // Execute a regular expression on the subject, starting from index.
     109             :   // If matching succeeds, return the number of matches.  This can be larger
     110             :   // than one in the case of global regular expressions.
     111             :   // The captures and subcaptures are stored into the registers vector.
     112             :   // If matching fails, returns RE_FAILURE.
     113             :   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
     114             :   static int IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
     115             :                              Handle<String> subject, int index, int32_t* output,
     116             :                              int output_size);
     117             : 
     118             :   // Execute an Irregexp bytecode pattern.
     119             :   // On a successful match, the result is a JSArray containing
     120             :   // captured positions.  On a failure, the result is the null value.
     121             :   // Returns an empty handle in case of an exception.
     122             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> IrregexpExec(
     123             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
     124             :       int index, Handle<RegExpMatchInfo> last_match_info);
     125             : 
     126             :   // Set last match info.  If match is nullptr, then setting captures is
     127             :   // omitted.
     128             :   static Handle<RegExpMatchInfo> SetLastMatchInfo(
     129             :       Isolate* isolate, Handle<RegExpMatchInfo> last_match_info,
     130             :       Handle<String> subject, int capture_count, int32_t* match);
     131             : 
     132             :   class GlobalCache {
     133             :    public:
     134             :     GlobalCache(Handle<JSRegExp> regexp,
     135             :                 Handle<String> subject,
     136             :                 Isolate* isolate);
     137             : 
     138             :     V8_INLINE ~GlobalCache();
     139             : 
     140             :     // Fetch the next entry in the cache for global regexp match results.
     141             :     // This does not set the last match info.  Upon failure, nullptr is
     142             :     // returned. The cause can be checked with Result().  The previous result is
     143             :     // still in available in memory when a failure happens.
     144             :     V8_INLINE int32_t* FetchNext();
     145             : 
     146             :     V8_INLINE int32_t* LastSuccessfulMatch();
     147             : 
     148      190901 :     V8_INLINE bool HasException() { return num_matches_ < 0; }
     149             : 
     150             :    private:
     151             :     int AdvanceZeroLength(int last_index);
     152             : 
     153             :     int num_matches_;
     154             :     int max_matches_;
     155             :     int current_match_index_;
     156             :     int registers_per_match_;
     157             :     // Pointer to the last set of captures.
     158             :     int32_t* register_array_;
     159             :     int register_array_size_;
     160             :     Handle<JSRegExp> regexp_;
     161             :     Handle<String> subject_;
     162             :     Isolate* isolate_;
     163             :   };
     164             : 
     165             :   // For acting on the JSRegExp data FixedArray.
     166             :   static int IrregexpMaxRegisterCount(FixedArray re);
     167             :   static void SetIrregexpMaxRegisterCount(FixedArray re, int value);
     168             :   static void SetIrregexpCaptureNameMap(FixedArray re,
     169             :                                         Handle<FixedArray> value);
     170             :   static int IrregexpNumberOfCaptures(FixedArray re);
     171             :   static int IrregexpNumberOfRegisters(FixedArray re);
     172             :   static ByteArray IrregexpByteCode(FixedArray re, bool is_one_byte);
     173             :   static Code IrregexpNativeCode(FixedArray re, bool is_one_byte);
     174             : 
     175             :   // Limit the space regexps take up on the heap.  In order to limit this we
     176             :   // would like to keep track of the amount of regexp code on the heap.  This
     177             :   // is not tracked, however.  As a conservative approximation we track the
     178             :   // total regexp code compiled including code that has subsequently been freed
     179             :   // and the total executable memory at any point.
     180             :   static const size_t kRegExpExecutableMemoryLimit = 16 * MB;
     181             :   static const size_t kRegExpCompiledLimit = 1 * MB;
     182             :   static const int kRegExpTooLargeToOptimize = 20 * KB;
     183             : 
     184             :  private:
     185             :   static bool CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re,
     186             :                               Handle<String> sample_subject, bool is_one_byte);
     187             :   static inline bool EnsureCompiledIrregexp(Isolate* isolate,
     188             :                                             Handle<JSRegExp> re,
     189             :                                             Handle<String> sample_subject,
     190             :                                             bool is_one_byte);
     191             : };
     192             : 
     193             : 
     194             : // Represents the location of one element relative to the intersection of
     195             : // two sets. Corresponds to the four areas of a Venn diagram.
     196             : enum ElementInSetsRelation {
     197             :   kInsideNone = 0,
     198             :   kInsideFirst = 1,
     199             :   kInsideSecond = 2,
     200             :   kInsideBoth = 3
     201             : };
     202             : 
     203             : 
     204             : // A set of unsigned integers that behaves especially well on small
     205             : // integers (< 32).  May do zone-allocation.
     206             : class OutSet: public ZoneObject {
     207             :  public:
     208     1027423 :   OutSet() : first_(0), remaining_(nullptr), successors_(nullptr) {}
     209             :   OutSet* Extend(unsigned value, Zone* zone);
     210             :   V8_EXPORT_PRIVATE bool Get(unsigned value) const;
     211             :   static const unsigned kFirstLimit = 32;
     212             : 
     213             :  private:
     214             :   // Destructively set a value in this set.  In most cases you want
     215             :   // to use Extend instead to ensure that only one instance exists
     216             :   // that contains the same values.
     217             :   void Set(unsigned value, Zone* zone);
     218             : 
     219             :   // The successors are a list of sets that contain the same values
     220             :   // as this set and the one more value that is not present in this
     221             :   // set.
     222             :   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
     223             : 
     224             :   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
     225       16997 :       : first_(first), remaining_(remaining), successors_(nullptr) {}
     226             :   uint32_t first_;
     227             :   ZoneList<unsigned>* remaining_;
     228             :   ZoneList<OutSet*>* successors_;
     229             :   friend class Trace;
     230             : };
     231             : 
     232             : 
     233             : // A mapping from integers, specified as ranges, to a set of integers.
     234             : // Used for mapping character ranges to choices.
     235        2647 : class DispatchTable : public ZoneObject {
     236             :  public:
     237             :   explicit DispatchTable(Zone* zone) : tree_(zone) { }
     238             : 
     239             :   class Entry {
     240             :    public:
     241             :     Entry() : from_(0), to_(0), out_set_(nullptr) {}
     242             :     Entry(uc32 from, uc32 to, OutSet* out_set)
     243             :         : from_(from), to_(to), out_set_(out_set) {
     244             :       DCHECK(from <= to);
     245             :     }
     246             :     uc32 from() { return from_; }
     247             :     uc32 to() { return to_; }
     248        4830 :     void set_to(uc32 value) { to_ = value; }
     249             :     void AddValue(int value, Zone* zone) {
     250       81858 :       out_set_ = out_set_->Extend(value, zone);
     251             :     }
     252             :     OutSet* out_set() { return out_set_; }
     253             :    private:
     254             :     uc32 from_;
     255             :     uc32 to_;
     256             :     OutSet* out_set_;
     257             :   };
     258             : 
     259             :   class Config {
     260             :    public:
     261             :     using Key = uc32;
     262             :     using Value = Entry;
     263             :     static const uc32 kNoKey;
     264             :     static const Entry NoValue() { return Value(); }
     265             :     static inline int Compare(uc32 a, uc32 b) {
     266     1587140 :       if (a == b)
     267             :         return 0;
     268     1554355 :       else if (a < b)
     269             :         return -1;
     270             :       else
     271             :         return 1;
     272             :     }
     273             :   };
     274             : 
     275             :   V8_EXPORT_PRIVATE void AddRange(CharacterRange range, int value, Zone* zone);
     276             :   V8_EXPORT_PRIVATE OutSet* Get(uc32 value);
     277             :   void Dump();
     278             : 
     279             :   template <typename Callback>
     280             :   void ForEach(Callback* callback) {
     281        2587 :     return tree()->ForEach(callback);
     282             :   }
     283             : 
     284             :  private:
     285             :   // There can't be a static empty set since it allocates its
     286             :   // successors in a zone and caches them.
     287      174036 :   OutSet* empty() { return &empty_; }
     288             :   OutSet empty_;
     289             :   ZoneSplayTree<Config>* tree() { return &tree_; }
     290             :   ZoneSplayTree<Config> tree_;
     291             : };
     292             : 
     293             : 
     294             : // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
     295        2587 : class UnicodeRangeSplitter {
     296             :  public:
     297             :   V8_EXPORT_PRIVATE UnicodeRangeSplitter(Zone* zone,
     298             :                                          ZoneList<CharacterRange>* base);
     299             :   void Call(uc32 from, DispatchTable::Entry entry);
     300             : 
     301             :   ZoneList<CharacterRange>* bmp() { return bmp_; }
     302             :   ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
     303             :   ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
     304             :   ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
     305             : 
     306             :  private:
     307             :   static const int kBase = 0;
     308             :   // Separate ranges into
     309             :   static const int kBmpCodePoints = 1;
     310             :   static const int kLeadSurrogates = 2;
     311             :   static const int kTrailSurrogates = 3;
     312             :   static const int kNonBmpCodePoints = 4;
     313             : 
     314             :   Zone* zone_;
     315             :   DispatchTable table_;
     316             :   ZoneList<CharacterRange>* bmp_;
     317             :   ZoneList<CharacterRange>* lead_surrogates_;
     318             :   ZoneList<CharacterRange>* trail_surrogates_;
     319             :   ZoneList<CharacterRange>* non_bmp_;
     320             : };
     321             : 
     322             : #define FOR_EACH_NODE_TYPE(VISIT)                                    \
     323             :   VISIT(End)                                                         \
     324             :   VISIT(Action)                                                      \
     325             :   VISIT(Choice)                                                      \
     326             :   VISIT(BackReference)                                               \
     327             :   VISIT(Assertion)                                                   \
     328             :   VISIT(Text)
     329             : 
     330             : 
     331             : class Trace;
     332             : struct PreloadState;
     333             : class GreedyLoopState;
     334             : class AlternativeGenerationList;
     335             : 
     336             : struct NodeInfo {
     337             :   NodeInfo()
     338             :       : being_analyzed(false),
     339             :         been_analyzed(false),
     340             :         follows_word_interest(false),
     341             :         follows_newline_interest(false),
     342             :         follows_start_interest(false),
     343             :         at_end(false),
     344             :         visited(false),
     345     4384835 :         replacement_calculated(false) { }
     346             : 
     347             :   // Returns true if the interests and assumptions of this node
     348             :   // matches the given one.
     349             :   bool Matches(NodeInfo* that) {
     350             :     return (at_end == that->at_end) &&
     351             :            (follows_word_interest == that->follows_word_interest) &&
     352             :            (follows_newline_interest == that->follows_newline_interest) &&
     353             :            (follows_start_interest == that->follows_start_interest);
     354             :   }
     355             : 
     356             :   // Updates the interests of this node given the interests of the
     357             :   // node preceding it.
     358             :   void AddFromPreceding(NodeInfo* that) {
     359             :     at_end |= that->at_end;
     360             :     follows_word_interest |= that->follows_word_interest;
     361             :     follows_newline_interest |= that->follows_newline_interest;
     362             :     follows_start_interest |= that->follows_start_interest;
     363             :   }
     364             : 
     365             :   bool HasLookbehind() {
     366             :     return follows_word_interest ||
     367             :            follows_newline_interest ||
     368             :            follows_start_interest;
     369             :   }
     370             : 
     371             :   // Sets the interests of this node to include the interests of the
     372             :   // following node.
     373             :   void AddFromFollowing(NodeInfo* that) {
     374      569751 :     follows_word_interest |= that->follows_word_interest;
     375      569751 :     follows_newline_interest |= that->follows_newline_interest;
     376      569751 :     follows_start_interest |= that->follows_start_interest;
     377             :   }
     378             : 
     379             :   void ResetCompilationState() {
     380             :     being_analyzed = false;
     381             :     been_analyzed = false;
     382             :   }
     383             : 
     384             :   bool being_analyzed: 1;
     385             :   bool been_analyzed: 1;
     386             : 
     387             :   // These bits are set of this node has to know what the preceding
     388             :   // character was.
     389             :   bool follows_word_interest: 1;
     390             :   bool follows_newline_interest: 1;
     391             :   bool follows_start_interest: 1;
     392             : 
     393             :   bool at_end: 1;
     394             :   bool visited: 1;
     395             :   bool replacement_calculated: 1;
     396             : };
     397             : 
     398             : 
     399             : // Details of a quick mask-compare check that can look ahead in the
     400             : // input stream.
     401             : class QuickCheckDetails {
     402             :  public:
     403             :   QuickCheckDetails()
     404             :       : characters_(0),
     405             :         mask_(0),
     406             :         value_(0),
     407    14103380 :         cannot_match_(false) { }
     408             :   explicit QuickCheckDetails(int characters)
     409             :       : characters_(characters),
     410             :         mask_(0),
     411             :         value_(0),
     412      787450 :         cannot_match_(false) { }
     413             :   bool Rationalize(bool one_byte);
     414             :   // Merge in the information from another branch of an alternation.
     415             :   void Merge(QuickCheckDetails* other, int from_index);
     416             :   // Advance the current position by some amount.
     417             :   void Advance(int by, bool one_byte);
     418             :   void Clear();
     419             :   bool cannot_match() { return cannot_match_; }
     420         431 :   void set_cannot_match() { cannot_match_ = true; }
     421             :   struct Position {
     422    11912664 :     Position() : mask(0), value(0), determines_perfectly(false) { }
     423             :     uc16 mask;
     424             :     uc16 value;
     425             :     bool determines_perfectly;
     426             :   };
     427             :   int characters() { return characters_; }
     428      606191 :   void set_characters(int characters) { characters_ = characters; }
     429             :   Position* positions(int index) {
     430             :     DCHECK_LE(0, index);
     431             :     DCHECK_GT(characters_, index);
     432     1629389 :     return positions_ + index;
     433             :   }
     434             :   uint32_t mask() { return mask_; }
     435             :   uint32_t value() { return value_; }
     436             : 
     437             :  private:
     438             :   // How many characters do we have quick check information from.  This is
     439             :   // the same for all branches of a choice node.
     440             :   int characters_;
     441             :   Position positions_[4];
     442             :   // These values are the condensate of the above array after Rationalize().
     443             :   uint32_t mask_;
     444             :   uint32_t value_;
     445             :   // If set to true, there is no way this quick check can match at all.
     446             :   // E.g., if it requires to be at the start of the input, and isn't.
     447             :   bool cannot_match_;
     448             : };
     449             : 
     450             : 
     451             : extern int kUninitializedRegExpNodePlaceHolder;
     452             : 
     453             : 
     454           0 : class RegExpNode: public ZoneObject {
     455             :  public:
     456             :   explicit RegExpNode(Zone* zone)
     457             :       : replacement_(nullptr),
     458             :         on_work_list_(false),
     459             :         trace_count_(0),
     460    13154505 :         zone_(zone) {
     461     4384835 :     bm_info_[0] = bm_info_[1] = nullptr;
     462             :   }
     463             :   virtual ~RegExpNode();
     464             :   virtual void Accept(NodeVisitor* visitor) = 0;
     465             :   // Generates a goto to this node or actually generates the code at this point.
     466             :   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
     467             :   // How many characters must this node consume at a minimum in order to
     468             :   // succeed.  If we have found at least 'still_to_find' characters that
     469             :   // must be consumed there is no need to ask any following nodes whether
     470             :   // they are sure to eat any more characters.  The not_at_start argument is
     471             :   // used to indicate that we know we are not at the start of the input.  In
     472             :   // this case anchored branches will always fail and can be ignored when
     473             :   // determining how many characters are consumed on success.
     474             :   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
     475             :   // Emits some quick code that checks whether the preloaded characters match.
     476             :   // Falls through on certain failure, jumps to the label on possible success.
     477             :   // If the node cannot make a quick check it does nothing and returns false.
     478             :   bool EmitQuickCheck(RegExpCompiler* compiler,
     479             :                       Trace* bounds_check_trace,
     480             :                       Trace* trace,
     481             :                       bool preload_has_checked_bounds,
     482             :                       Label* on_possible_success,
     483             :                       QuickCheckDetails* details_return,
     484             :                       bool fall_through_on_failure);
     485             :   // For a given number of characters this returns a mask and a value.  The
     486             :   // next n characters are anded with the mask and compared with the value.
     487             :   // A comparison failure indicates the node cannot match the next n characters.
     488             :   // A comparison success indicates the node may match.
     489             :   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
     490             :                                     RegExpCompiler* compiler,
     491             :                                     int characters_filled_in,
     492             :                                     bool not_at_start) = 0;
     493             :   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
     494       87129 :   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
     495             :   // Only returns the successor for a text node of length 1 that matches any
     496             :   // character and that has no guards on it.
     497       78558 :   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
     498             :       RegExpCompiler* compiler) {
     499       78558 :     return nullptr;
     500             :   }
     501             : 
     502             :   // Collects information on the possible code units (mod 128) that can match if
     503             :   // we look forward.  This is used for a Boyer-Moore-like string searching
     504             :   // implementation.  TODO(erikcorry):  This should share more code with
     505             :   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
     506             :   // the number of nodes we are willing to look at in order to create this data.
     507             :   static const int kRecursionBudget = 200;
     508             :   bool KeepRecursing(RegExpCompiler* compiler);
     509           0 :   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
     510             :                             BoyerMooreLookahead* bm, bool not_at_start) {
     511           0 :     UNREACHABLE();
     512             :   }
     513             : 
     514             :   // If we know that the input is one-byte then there are some nodes that can
     515             :   // never match.  This method returns a node that can be substituted for
     516             :   // itself, or nullptr if the node can never match.
     517       14528 :   virtual RegExpNode* FilterOneByte(int depth) { return this; }
     518             :   // Helper for FilterOneByte.
     519             :   RegExpNode* replacement() {
     520             :     DCHECK(info()->replacement_calculated);
     521             :     return replacement_;
     522             :   }
     523             :   RegExpNode* set_replacement(RegExpNode* replacement) {
     524      161464 :     info()->replacement_calculated = true;
     525      161464 :     replacement_ =  replacement;
     526             :     return replacement;  // For convenience.
     527             :   }
     528             : 
     529             :   // We want to avoid recalculating the lookahead info, so we store it on the
     530             :   // node.  Only info that is for this node is stored.  We can tell that the
     531             :   // info is for this node when offset == 0, so the information is calculated
     532             :   // relative to this node.
     533             :   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
     534      104194 :     if (offset == 0) set_bm_info(not_at_start, bm);
     535             :   }
     536             : 
     537      461879 :   Label* label() { return &label_; }
     538             :   // If non-generic code is generated for a node (i.e. the node is not at the
     539             :   // start of the trace) then it cannot be reused.  This variable sets a limit
     540             :   // on how often we allow that to happen before we insist on starting a new
     541             :   // trace and generating generic code for a node that can be reused by flushing
     542             :   // the deferred actions in the current trace and generating a goto.
     543             :   static const int kMaxCopiesCodeGenerated = 10;
     544             : 
     545             :   bool on_work_list() { return on_work_list_; }
     546      421968 :   void set_on_work_list(bool value) { on_work_list_ = value; }
     547             : 
     548      197217 :   NodeInfo* info() { return &info_; }
     549             : 
     550             :   BoyerMooreLookahead* bm_info(bool not_at_start) {
     551       82469 :     return bm_info_[not_at_start ? 1 : 0];
     552             :   }
     553             : 
     554             :   Zone* zone() const { return zone_; }
     555             : 
     556             :  protected:
     557             :   enum LimitResult { DONE, CONTINUE };
     558             :   RegExpNode* replacement_;
     559             : 
     560             :   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
     561             : 
     562             :   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
     563      198139 :     bm_info_[not_at_start ? 1 : 0] = bm;
     564             :   }
     565             : 
     566             :  private:
     567             :   static const int kFirstCharBudget = 10;
     568             :   Label label_;
     569             :   bool on_work_list_;
     570             :   NodeInfo info_;
     571             :   // This variable keeps track of how many times code has been generated for
     572             :   // this node (in different traces).  We don't keep track of where the
     573             :   // generated code is located unless the code is generated at the start of
     574             :   // a trace, in which case it is generic and can be reused by flushing the
     575             :   // deferred operations in the current trace and generating a goto.
     576             :   int trace_count_;
     577             :   BoyerMooreLookahead* bm_info_[2];
     578             : 
     579             :   Zone* zone_;
     580             : };
     581             : 
     582             : 
     583           0 : class SeqRegExpNode: public RegExpNode {
     584             :  public:
     585             :   explicit SeqRegExpNode(RegExpNode* on_success)
     586     3270685 :       : RegExpNode(on_success->zone()), on_success_(on_success) { }
     587             :   RegExpNode* on_success() { return on_success_; }
     588             :   void set_on_success(RegExpNode* node) { on_success_ = node; }
     589             :   RegExpNode* FilterOneByte(int depth) override;
     590           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     591             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     592           0 :     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
     593           0 :     if (offset == 0) set_bm_info(not_at_start, bm);
     594           0 :   }
     595             : 
     596             :  protected:
     597             :   RegExpNode* FilterSuccessor(int depth);
     598             : 
     599             :  private:
     600             :   RegExpNode* on_success_;
     601             : };
     602             : 
     603             : 
     604           0 : class ActionNode: public SeqRegExpNode {
     605             :  public:
     606             :   enum ActionType {
     607             :     SET_REGISTER,
     608             :     INCREMENT_REGISTER,
     609             :     STORE_POSITION,
     610             :     BEGIN_SUBMATCH,
     611             :     POSITIVE_SUBMATCH_SUCCESS,
     612             :     EMPTY_MATCH_CHECK,
     613             :     CLEAR_CAPTURES
     614             :   };
     615             :   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
     616             :   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
     617             :   static ActionNode* StorePosition(int reg,
     618             :                                    bool is_capture,
     619             :                                    RegExpNode* on_success);
     620             :   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
     621             :   static ActionNode* BeginSubmatch(int stack_pointer_reg,
     622             :                                    int position_reg,
     623             :                                    RegExpNode* on_success);
     624             :   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
     625             :                                              int restore_reg,
     626             :                                              int clear_capture_count,
     627             :                                              int clear_capture_from,
     628             :                                              RegExpNode* on_success);
     629             :   static ActionNode* EmptyMatchCheck(int start_register,
     630             :                                      int repetition_register,
     631             :                                      int repetition_limit,
     632             :                                      RegExpNode* on_success);
     633             :   void Accept(NodeVisitor* visitor) override;
     634             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     635             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     636       64962 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     637             :                             RegExpCompiler* compiler, int filled_in,
     638             :                             bool not_at_start) override {
     639       64962 :     return on_success()->GetQuickCheckDetails(
     640      129924 :         details, compiler, filled_in, not_at_start);
     641             :   }
     642             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     643             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     644             :   ActionType action_type() { return action_type_; }
     645             :   // TODO(erikcorry): We should allow some action nodes in greedy loops.
     646      114908 :   int GreedyLoopTextLength() override {
     647      114908 :     return kNodeIsTooComplexForGreedyLoops;
     648             :   }
     649             : 
     650             :  private:
     651             :   union {
     652             :     struct {
     653             :       int reg;
     654             :       int value;
     655             :     } u_store_register;
     656             :     struct {
     657             :       int reg;
     658             :     } u_increment_register;
     659             :     struct {
     660             :       int reg;
     661             :       bool is_capture;
     662             :     } u_position_register;
     663             :     struct {
     664             :       int stack_pointer_register;
     665             :       int current_position_register;
     666             :       int clear_register_count;
     667             :       int clear_register_from;
     668             :     } u_submatch;
     669             :     struct {
     670             :       int start_register;
     671             :       int repetition_register;
     672             :       int repetition_limit;
     673             :     } u_empty_match_check;
     674             :     struct {
     675             :       int range_from;
     676             :       int range_to;
     677             :     } u_clear_captures;
     678             :   } data_;
     679             :   ActionNode(ActionType action_type, RegExpNode* on_success)
     680             :       : SeqRegExpNode(on_success),
     681     2042178 :         action_type_(action_type) { }
     682             :   ActionType action_type_;
     683             :   friend class DotPrinter;
     684             : };
     685             : 
     686             : 
     687           0 : class TextNode: public SeqRegExpNode {
     688             :  public:
     689             :   TextNode(ZoneList<TextElement>* elms, bool read_backward,
     690             :            RegExpNode* on_success)
     691     1046757 :       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
     692      173926 :   TextNode(RegExpCharacterClass* that, bool read_backward,
     693             :            RegExpNode* on_success)
     694             :       : SeqRegExpNode(on_success),
     695             :         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
     696      347852 :         read_backward_(read_backward) {
     697      173926 :     elms_->Add(TextElement::CharClass(that), zone());
     698      173926 :   }
     699             :   // Create TextNode for a single character class for the given ranges.
     700             :   static TextNode* CreateForCharacterRanges(Zone* zone,
     701             :                                             ZoneList<CharacterRange>* ranges,
     702             :                                             bool read_backward,
     703             :                                             RegExpNode* on_success,
     704             :                                             JSRegExp::Flags flags);
     705             :   // Create TextNode for a surrogate pair with a range given for the
     706             :   // lead and the trail surrogate each.
     707             :   static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
     708             :                                           CharacterRange trail,
     709             :                                           bool read_backward,
     710             :                                           RegExpNode* on_success,
     711             :                                           JSRegExp::Flags flags);
     712             :   void Accept(NodeVisitor* visitor) override;
     713             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     714             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     715             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     716             :                             RegExpCompiler* compiler, int characters_filled_in,
     717             :                             bool not_at_start) override;
     718             :   ZoneList<TextElement>* elements() { return elms_; }
     719             :   bool read_backward() { return read_backward_; }
     720             :   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
     721             :   int GreedyLoopTextLength() override;
     722             :   RegExpNode* GetSuccessorOfOmnivorousTextNode(
     723             :       RegExpCompiler* compiler) override;
     724             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     725             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     726             :   void CalculateOffsets();
     727             :   RegExpNode* FilterOneByte(int depth) override;
     728             : 
     729             :  private:
     730             :   enum TextEmitPassType {
     731             :     NON_LATIN1_MATCH,            // Check for characters that can't match.
     732             :     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
     733             :     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
     734             :     CASE_CHARACTER_MATCH,        // Case-independent single character check.
     735             :     CHARACTER_CLASS_MATCH        // Character class.
     736             :   };
     737             :   static bool SkipPass(TextEmitPassType pass, bool ignore_case);
     738             :   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
     739             :   static const int kLastPass = CHARACTER_CLASS_MATCH;
     740             :   void TextEmitPass(RegExpCompiler* compiler,
     741             :                     TextEmitPassType pass,
     742             :                     bool preloaded,
     743             :                     Trace* trace,
     744             :                     bool first_element_checked,
     745             :                     int* checked_up_to);
     746             :   int Length();
     747             :   ZoneList<TextElement>* elms_;
     748             :   bool read_backward_;
     749             : };
     750             : 
     751             : 
     752           0 : class AssertionNode: public SeqRegExpNode {
     753             :  public:
     754             :   enum AssertionType {
     755             :     AT_END,
     756             :     AT_START,
     757             :     AT_BOUNDARY,
     758             :     AT_NON_BOUNDARY,
     759             :     AFTER_NEWLINE
     760             :   };
     761        2014 :   static AssertionNode* AtEnd(RegExpNode* on_success) {
     762        2014 :     return new(on_success->zone()) AssertionNode(AT_END, on_success);
     763             :   }
     764        3055 :   static AssertionNode* AtStart(RegExpNode* on_success) {
     765        3055 :     return new(on_success->zone()) AssertionNode(AT_START, on_success);
     766             :   }
     767         136 :   static AssertionNode* AtBoundary(RegExpNode* on_success) {
     768         136 :     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
     769             :   }
     770         114 :   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
     771         114 :     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
     772             :   }
     773         129 :   static AssertionNode* AfterNewline(RegExpNode* on_success) {
     774         129 :     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
     775             :   }
     776             :   void Accept(NodeVisitor* visitor) override;
     777             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     778             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     779             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     780             :                             RegExpCompiler* compiler, int filled_in,
     781             :                             bool not_at_start) override;
     782             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     783             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     784             :   AssertionType assertion_type() { return assertion_type_; }
     785             : 
     786             :  private:
     787             :   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
     788             :   enum IfPrevious { kIsNonWord, kIsWord };
     789             :   void BacktrackIfPrevious(RegExpCompiler* compiler,
     790             :                            Trace* trace,
     791             :                            IfPrevious backtrack_if_previous);
     792             :   AssertionNode(AssertionType t, RegExpNode* on_success)
     793        5448 :       : SeqRegExpNode(on_success), assertion_type_(t) { }
     794             :   AssertionType assertion_type_;
     795             : };
     796             : 
     797             : 
     798           0 : class BackReferenceNode: public SeqRegExpNode {
     799             :  public:
     800             :   BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags,
     801             :                     bool read_backward, RegExpNode* on_success)
     802             :       : SeqRegExpNode(on_success),
     803             :         start_reg_(start_reg),
     804             :         end_reg_(end_reg),
     805             :         flags_(flags),
     806        2376 :         read_backward_(read_backward) {}
     807             :   void Accept(NodeVisitor* visitor) override;
     808             :   int start_register() { return start_reg_; }
     809             :   int end_register() { return end_reg_; }
     810             :   bool read_backward() { return read_backward_; }
     811             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     812             :   int EatsAtLeast(int still_to_find, int recursion_depth,
     813             :                   bool not_at_start) override;
     814         522 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     815             :                             RegExpCompiler* compiler, int characters_filled_in,
     816             :                             bool not_at_start) override {
     817         522 :     return;
     818             :   }
     819             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     820             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     821             : 
     822             :  private:
     823             :   int start_reg_;
     824             :   int end_reg_;
     825             :   JSRegExp::Flags flags_;
     826             :   bool read_backward_;
     827             : };
     828             : 
     829             : 
     830           0 : class EndNode: public RegExpNode {
     831             :  public:
     832             :   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
     833       88851 :   EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
     834             :   void Accept(NodeVisitor* visitor) override;
     835             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     836      115220 :   int EatsAtLeast(int still_to_find, int recursion_depth,
     837             :                   bool not_at_start) override {
     838      115220 :     return 0;
     839             :   }
     840           0 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     841             :                             RegExpCompiler* compiler, int characters_filled_in,
     842             :                             bool not_at_start) override {
     843             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     844           0 :     UNREACHABLE();
     845             :   }
     846           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     847             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     848             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     849           0 :     UNREACHABLE();
     850             :   }
     851             : 
     852             :  private:
     853             :   Action action_;
     854             : };
     855             : 
     856             : 
     857           0 : class NegativeSubmatchSuccess: public EndNode {
     858             :  public:
     859             :   NegativeSubmatchSuccess(int stack_pointer_reg,
     860             :                           int position_reg,
     861             :                           int clear_capture_count,
     862             :                           int clear_capture_start,
     863             :                           Zone* zone)
     864             :       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
     865             :         stack_pointer_register_(stack_pointer_reg),
     866             :         current_position_register_(position_reg),
     867             :         clear_capture_count_(clear_capture_count),
     868        2812 :         clear_capture_start_(clear_capture_start) { }
     869             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     870             : 
     871             :  private:
     872             :   int stack_pointer_register_;
     873             :   int current_position_register_;
     874             :   int clear_capture_count_;
     875             :   int clear_capture_start_;
     876             : };
     877             : 
     878             : 
     879             : class Guard: public ZoneObject {
     880             :  public:
     881             :   enum Relation { LT, GEQ };
     882             :   Guard(int reg, Relation op, int value)
     883             :       : reg_(reg),
     884             :         op_(op),
     885      903942 :         value_(value) { }
     886             :   int reg() { return reg_; }
     887             :   Relation op() { return op_; }
     888             :   int value() { return value_; }
     889             : 
     890             :  private:
     891             :   int reg_;
     892             :   Relation op_;
     893             :   int value_;
     894             : };
     895             : 
     896             : 
     897             : class GuardedAlternative {
     898             :  public:
     899             :   explicit GuardedAlternative(RegExpNode* node)
     900     2001726 :       : node_(node), guards_(nullptr) {}
     901             :   void AddGuard(Guard* guard, Zone* zone);
     902             :   RegExpNode* node() { return node_; }
     903       58605 :   void set_node(RegExpNode* node) { node_ = node; }
     904             :   ZoneList<Guard*>* guards() { return guards_; }
     905             : 
     906             :  private:
     907             :   RegExpNode* node_;
     908             :   ZoneList<Guard*>* guards_;
     909             : };
     910             : 
     911             : 
     912             : class AlternativeGeneration;
     913             : 
     914             : 
     915           0 : class ChoiceNode: public RegExpNode {
     916             :  public:
     917     1025299 :   explicit ChoiceNode(int expected_size, Zone* zone)
     918             :       : RegExpNode(zone),
     919             :         alternatives_(new (zone)
     920             :                           ZoneList<GuardedAlternative>(expected_size, zone)),
     921             :         table_(nullptr),
     922             :         not_at_start_(false),
     923     2050598 :         being_calculated_(false) {}
     924             :   void Accept(NodeVisitor* visitor) override;
     925             :   void AddAlternative(GuardedAlternative node) {
     926     2122158 :     alternatives()->Add(node, zone());
     927             :   }
     928             :   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
     929             :   DispatchTable* GetTable(bool ignore_case);
     930             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     931             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     932             :   int EatsAtLeastHelper(int still_to_find,
     933             :                         int budget,
     934             :                         RegExpNode* ignore_this_node,
     935             :                         bool not_at_start);
     936             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     937             :                             RegExpCompiler* compiler, int characters_filled_in,
     938             :                             bool not_at_start) override;
     939             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     940             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     941             : 
     942             :   bool being_calculated() { return being_calculated_; }
     943             :   bool not_at_start() { return not_at_start_; }
     944        4123 :   void set_not_at_start() { not_at_start_ = true; }
     945           0 :   void set_being_calculated(bool b) { being_calculated_ = b; }
     946      473976 :   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
     947      473976 :     return true;
     948             :   }
     949             :   RegExpNode* FilterOneByte(int depth) override;
     950           0 :   virtual bool read_backward() { return false; }
     951             : 
     952             :  protected:
     953             :   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
     954             :   ZoneList<GuardedAlternative>* alternatives_;
     955             : 
     956             :  private:
     957             :   friend class DispatchTableConstructor;
     958             :   friend class Analysis;
     959             :   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
     960             :                      Guard* guard,
     961             :                      Trace* trace);
     962             :   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
     963             :   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
     964             :                                  Trace* trace,
     965             :                                  GuardedAlternative alternative,
     966             :                                  AlternativeGeneration* alt_gen,
     967             :                                  int preload_characters,
     968             :                                  bool next_expects_preload);
     969             :   void SetUpPreLoad(RegExpCompiler* compiler,
     970             :                     Trace* current_trace,
     971             :                     PreloadState* preloads);
     972             :   void AssertGuardsMentionRegisters(Trace* trace);
     973             :   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
     974             :   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
     975             :                         Trace* trace,
     976             :                         AlternativeGenerationList* alt_gens,
     977             :                         PreloadState* preloads,
     978             :                         GreedyLoopState* greedy_loop_state,
     979             :                         int text_length);
     980             :   void EmitChoices(RegExpCompiler* compiler,
     981             :                    AlternativeGenerationList* alt_gens,
     982             :                    int first_choice,
     983             :                    Trace* trace,
     984             :                    PreloadState* preloads);
     985             :   DispatchTable* table_;
     986             :   // If true, this node is never checked at the start of the input.
     987             :   // Allows a new trace to start with at_start() set to false.
     988             :   bool not_at_start_;
     989             :   bool being_calculated_;
     990             : };
     991             : 
     992             : 
     993           0 : class NegativeLookaroundChoiceNode : public ChoiceNode {
     994             :  public:
     995        2812 :   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
     996             :                                         GuardedAlternative then_do_this,
     997             :                                         Zone* zone)
     998        2812 :       : ChoiceNode(2, zone) {
     999             :     AddAlternative(this_must_fail);
    1000             :     AddAlternative(then_do_this);
    1001        2812 :   }
    1002             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1003             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1004             :                             RegExpCompiler* compiler, int characters_filled_in,
    1005             :                             bool not_at_start) override;
    1006        1105 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1007             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
    1008        2210 :     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
    1009        2210 :                                               not_at_start);
    1010        1105 :     if (offset == 0) set_bm_info(not_at_start, bm);
    1011        1105 :   }
    1012             :   // For a negative lookahead we don't emit the quick check for the
    1013             :   // alternative that is expected to fail.  This is because quick check code
    1014             :   // starts by loading enough characters for the alternative that takes fewest
    1015             :   // characters, but on a negative lookahead the negative branch did not take
    1016             :   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
    1017        5604 :   bool try_to_emit_quick_check_for_alternative(bool is_first) override {
    1018        5604 :     return !is_first;
    1019             :   }
    1020             :   RegExpNode* FilterOneByte(int depth) override;
    1021             : };
    1022             : 
    1023             : 
    1024           0 : class LoopChoiceNode: public ChoiceNode {
    1025             :  public:
    1026             :   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
    1027             :       : ChoiceNode(2, zone),
    1028             :         loop_node_(nullptr),
    1029             :         continue_node_(nullptr),
    1030             :         body_can_be_zero_length_(body_can_be_zero_length),
    1031      999457 :         read_backward_(read_backward) {}
    1032             :   void AddLoopAlternative(GuardedAlternative alt);
    1033             :   void AddContinueAlternative(GuardedAlternative alt);
    1034             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
    1035             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1036             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1037             :                             RegExpCompiler* compiler, int characters_filled_in,
    1038             :                             bool not_at_start) override;
    1039             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1040             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
    1041             :   RegExpNode* loop_node() { return loop_node_; }
    1042             :   RegExpNode* continue_node() { return continue_node_; }
    1043             :   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
    1044       23386 :   bool read_backward() override { return read_backward_; }
    1045             :   void Accept(NodeVisitor* visitor) override;
    1046             :   RegExpNode* FilterOneByte(int depth) override;
    1047             : 
    1048             :  private:
    1049             :   // AddAlternative is made private for loop nodes because alternatives
    1050             :   // should not be added freely, we need to keep track of which node
    1051             :   // goes back to the node itself.
    1052             :   void AddAlternative(GuardedAlternative node) {
    1053             :     ChoiceNode::AddAlternative(node);
    1054             :   }
    1055             : 
    1056             :   RegExpNode* loop_node_;
    1057             :   RegExpNode* continue_node_;
    1058             :   bool body_can_be_zero_length_;
    1059             :   bool read_backward_;
    1060             : };
    1061             : 
    1062             : 
    1063             : // Improve the speed that we scan for an initial point where a non-anchored
    1064             : // regexp can match by using a Boyer-Moore-like table. This is done by
    1065             : // identifying non-greedy non-capturing loops in the nodes that eat any
    1066             : // character one at a time.  For example in the middle of the regexp
    1067             : // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
    1068             : // inserted at the start of any non-anchored regexp.
    1069             : //
    1070             : // When we have found such a loop we look ahead in the nodes to find the set of
    1071             : // characters that can come at given distances. For example for the regexp
    1072             : // /.?foo/ we know that there are at least 3 characters ahead of us, and the
    1073             : // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
    1074             : // the lookahead info where the set of characters is reasonably constrained. In
    1075             : // our example this is from index 1 to 2 (0 is not constrained). We can now
    1076             : // look 3 characters ahead and if we don't find one of [f, o] (the union of
    1077             : // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
    1078             : //
    1079             : // For Unicode input strings we do the same, but modulo 128.
    1080             : //
    1081             : // We also look at the first string fed to the regexp and use that to get a hint
    1082             : // of the character frequencies in the inputs. This affects the assessment of
    1083             : // whether the set of characters is 'reasonably constrained'.
    1084             : //
    1085             : // We also have another lookahead mechanism (called quick check in the code),
    1086             : // which uses a wide load of multiple characters followed by a mask and compare
    1087             : // to determine whether a match is possible at this point.
    1088             : enum ContainedInLattice {
    1089             :   kNotYet = 0,
    1090             :   kLatticeIn = 1,
    1091             :   kLatticeOut = 2,
    1092             :   kLatticeUnknown = 3  // Can also mean both in and out.
    1093             : };
    1094             : 
    1095             : 
    1096             : inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
    1097      867386 :   return static_cast<ContainedInLattice>(a | b);
    1098             : }
    1099             : 
    1100             : 
    1101             : ContainedInLattice AddRange(ContainedInLattice a,
    1102             :                             const int* ranges,
    1103             :                             int ranges_size,
    1104             :                             Interval new_range);
    1105             : 
    1106             : 
    1107             : class BoyerMoorePositionInfo : public ZoneObject {
    1108             :  public:
    1109       99690 :   explicit BoyerMoorePositionInfo(Zone* zone)
    1110             :       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
    1111             :         map_count_(0),
    1112             :         w_(kNotYet),
    1113             :         s_(kNotYet),
    1114             :         d_(kNotYet),
    1115       99690 :         surrogate_(kNotYet) {
    1116    25620330 :      for (int i = 0; i < kMapSize; i++) {
    1117    12760320 :        map_->Add(false, zone);
    1118             :      }
    1119       99690 :   }
    1120             : 
    1121             :   bool& at(int i) { return map_->at(i); }
    1122             : 
    1123             :   static const int kMapSize = 128;
    1124             :   static const int kMask = kMapSize - 1;
    1125             : 
    1126             :   int map_count() const { return map_count_; }
    1127             : 
    1128             :   void Set(int character);
    1129             :   void SetInterval(const Interval& interval);
    1130             :   void SetAll();
    1131             :   bool is_non_word() { return w_ == kLatticeOut; }
    1132             :   bool is_word() { return w_ == kLatticeIn; }
    1133             : 
    1134             :  private:
    1135             :   ZoneList<bool>* map_;
    1136             :   int map_count_;  // Number of set bits in the map.
    1137             :   ContainedInLattice w_;  // The \w character class.
    1138             :   ContainedInLattice s_;  // The \s character class.
    1139             :   ContainedInLattice d_;  // The \d character class.
    1140             :   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
    1141             : };
    1142             : 
    1143             : 
    1144             : class BoyerMooreLookahead : public ZoneObject {
    1145             :  public:
    1146             :   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
    1147             : 
    1148             :   int length() { return length_; }
    1149             :   int max_char() { return max_char_; }
    1150             :   RegExpCompiler* compiler() { return compiler_; }
    1151             : 
    1152             :   int Count(int map_number) {
    1153      542556 :     return bitmaps_->at(map_number)->map_count();
    1154             :   }
    1155             : 
    1156         150 :   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
    1157             : 
    1158             :   void Set(int map_number, int character) {
    1159       86966 :     if (character > max_char_) return;
    1160      173932 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1161             :     info->Set(character);
    1162             :   }
    1163             : 
    1164      161207 :   void SetInterval(int map_number, const Interval& interval) {
    1165      161207 :     if (interval.from() > max_char_) return;
    1166      322414 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1167      161207 :     if (interval.to() > max_char_) {
    1168           0 :       info->SetInterval(Interval(interval.from(), max_char_));
    1169             :     } else {
    1170      161207 :       info->SetInterval(interval);
    1171             :     }
    1172             :   }
    1173             : 
    1174        5507 :   void SetAll(int map_number) {
    1175       11014 :     bitmaps_->at(map_number)->SetAll();
    1176        5507 :   }
    1177             : 
    1178             :   void SetRest(int from_map) {
    1179        1766 :     for (int i = from_map; i < length_; i++) SetAll(i);
    1180             :   }
    1181             :   void EmitSkipInstructions(RegExpMacroAssembler* masm);
    1182             : 
    1183             :  private:
    1184             :   // This is the value obtained by EatsAtLeast.  If we do not have at least this
    1185             :   // many characters left in the sample string then the match is bound to fail.
    1186             :   // Therefore it is OK to read a character this far ahead of the current match
    1187             :   // point.
    1188             :   int length_;
    1189             :   RegExpCompiler* compiler_;
    1190             :   // 0xff for Latin1, 0xffff for UTF-16.
    1191             :   int max_char_;
    1192             :   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
    1193             : 
    1194             :   int GetSkipTable(int min_lookahead,
    1195             :                    int max_lookahead,
    1196             :                    Handle<ByteArray> boolean_skip_table);
    1197             :   bool FindWorthwhileInterval(int* from, int* to);
    1198             :   int FindBestInterval(
    1199             :     int max_number_of_chars, int old_biggest_points, int* from, int* to);
    1200             : };
    1201             : 
    1202             : 
    1203             : // There are many ways to generate code for a node.  This class encapsulates
    1204             : // the current way we should be generating.  In other words it encapsulates
    1205             : // the current state of the code generator.  The effect of this is that we
    1206             : // generate code for paths that the matcher can take through the regular
    1207             : // expression.  A given node in the regexp can be code-generated several times
    1208             : // as it can be part of several traces.  For example for the regexp:
    1209             : // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
    1210             : // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
    1211             : // to match foo is generated only once (the traces have a common prefix).  The
    1212             : // code to store the capture is deferred and generated (twice) after the places
    1213             : // where baz has been matched.
    1214             : class Trace {
    1215             :  public:
    1216             :   // A value for a property that is either known to be true, know to be false,
    1217             :   // or not known.
    1218             :   enum TriBool {
    1219             :     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
    1220             :   };
    1221             : 
    1222             :   class DeferredAction {
    1223             :    public:
    1224             :     DeferredAction(ActionNode::ActionType action_type, int reg)
    1225      251202 :         : action_type_(action_type), reg_(reg), next_(nullptr) {}
    1226             :     DeferredAction* next() { return next_; }
    1227             :     bool Mentions(int reg);
    1228             :     int reg() { return reg_; }
    1229             :     ActionNode::ActionType action_type() { return action_type_; }
    1230             :    private:
    1231             :     ActionNode::ActionType action_type_;
    1232             :     int reg_;
    1233             :     DeferredAction* next_;
    1234             :     friend class Trace;
    1235             :   };
    1236             : 
    1237             :   class DeferredCapture : public DeferredAction {
    1238             :    public:
    1239             :     DeferredCapture(int reg, bool is_capture, Trace* trace)
    1240             :         : DeferredAction(ActionNode::STORE_POSITION, reg),
    1241             :           cp_offset_(trace->cp_offset()),
    1242      241749 :           is_capture_(is_capture) { }
    1243             :     int cp_offset() { return cp_offset_; }
    1244             :     bool is_capture() { return is_capture_; }
    1245             :    private:
    1246             :     int cp_offset_;
    1247             :     bool is_capture_;
    1248             :     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    1249             :   };
    1250             : 
    1251             :   class DeferredSetRegister : public DeferredAction {
    1252             :    public:
    1253             :     DeferredSetRegister(int reg, int value)
    1254             :         : DeferredAction(ActionNode::SET_REGISTER, reg),
    1255        3471 :           value_(value) { }
    1256             :     int value() { return value_; }
    1257             :    private:
    1258             :     int value_;
    1259             :   };
    1260             : 
    1261             :   class DeferredClearCaptures : public DeferredAction {
    1262             :    public:
    1263             :     explicit DeferredClearCaptures(Interval range)
    1264             :         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
    1265        2232 :           range_(range) { }
    1266             :     Interval range() { return range_; }
    1267             :    private:
    1268             :     Interval range_;
    1269             :   };
    1270             : 
    1271             :   class DeferredIncrementRegister : public DeferredAction {
    1272             :    public:
    1273             :     explicit DeferredIncrementRegister(int reg)
    1274             :         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
    1275             :   };
    1276             : 
    1277             :   Trace()
    1278             :       : cp_offset_(0),
    1279             :         actions_(nullptr),
    1280             :         backtrack_(nullptr),
    1281             :         stop_node_(nullptr),
    1282             :         loop_label_(nullptr),
    1283             :         characters_preloaded_(0),
    1284             :         bound_checked_up_to_(0),
    1285             :         flush_budget_(100),
    1286     1278268 :         at_start_(UNKNOWN) {}
    1287             : 
    1288             :   // End the trace.  This involves flushing the deferred actions in the trace
    1289             :   // and pushing a backtrack location onto the backtrack stack.  Once this is
    1290             :   // done we can start a new trace or go to one that has already been
    1291             :   // generated.
    1292             :   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
    1293             :   int cp_offset() { return cp_offset_; }
    1294             :   DeferredAction* actions() { return actions_; }
    1295             :   // A trivial trace is one that has no deferred actions or other state that
    1296             :   // affects the assumptions used when generating code.  There is no recorded
    1297             :   // backtrack location in a trivial trace, so with a trivial trace we will
    1298             :   // generate code that, on a failure to match, gets the backtrack location
    1299             :   // from the backtrack stack rather than using a direct jump instruction.  We
    1300             :   // always start code generation with a trivial trace and non-trivial traces
    1301             :   // are created as we emit code for nodes or add to the list of deferred
    1302             :   // actions in the trace.  The location of the code generated for a node using
    1303             :   // a trivial trace is recorded in a label in the node so that gotos can be
    1304             :   // generated to that code.
    1305             :   bool is_trivial() {
    1306     3502752 :     return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 &&
    1307      950555 :            characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
    1308     3130658 :            quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
    1309             :   }
    1310             :   TriBool at_start() { return at_start_; }
    1311      534005 :   void set_at_start(TriBool at_start) { at_start_ = at_start; }
    1312             :   Label* backtrack() { return backtrack_; }
    1313             :   Label* loop_label() { return loop_label_; }
    1314             :   RegExpNode* stop_node() { return stop_node_; }
    1315             :   int characters_preloaded() { return characters_preloaded_; }
    1316             :   int bound_checked_up_to() { return bound_checked_up_to_; }
    1317             :   int flush_budget() { return flush_budget_; }
    1318     2709889 :   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
    1319             :   bool mentions_reg(int reg);
    1320             :   // Returns true if a deferred position store exists to the specified
    1321             :   // register and stores the offset in the out-parameter.  Otherwise
    1322             :   // returns false.
    1323             :   bool GetStoredPosition(int reg, int* cp_offset);
    1324             :   // These set methods and AdvanceCurrentPositionInTrace should be used only on
    1325             :   // new traces - the intention is that traces are immutable after creation.
    1326             :   void add_action(DeferredAction* new_action) {
    1327             :     DCHECK(new_action->next_ == nullptr);
    1328      251202 :     new_action->next_ = actions_;
    1329      251202 :     actions_ = new_action;
    1330             :   }
    1331      810865 :   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
    1332       11693 :   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
    1333       11693 :   void set_loop_label(Label* label) { loop_label_ = label; }
    1334      833117 :   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
    1335      435116 :   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
    1336      194702 :   void set_flush_budget(int to) { flush_budget_ = to; }
    1337             :   void set_quick_check_performed(QuickCheckDetails* d) {
    1338      226926 :     quick_check_performed_ = *d;
    1339             :   }
    1340             :   void InvalidateCurrentCharacter();
    1341             :   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
    1342             : 
    1343             :  private:
    1344             :   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
    1345             :   void PerformDeferredActions(RegExpMacroAssembler* macro,
    1346             :                               int max_register,
    1347             :                               const OutSet& affected_registers,
    1348             :                               OutSet* registers_to_pop,
    1349             :                               OutSet* registers_to_clear,
    1350             :                               Zone* zone);
    1351             :   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
    1352             :                                 int max_register,
    1353             :                                 const OutSet& registers_to_pop,
    1354             :                                 const OutSet& registers_to_clear);
    1355             :   int cp_offset_;
    1356             :   DeferredAction* actions_;
    1357             :   Label* backtrack_;
    1358             :   RegExpNode* stop_node_;
    1359             :   Label* loop_label_;
    1360             :   int characters_preloaded_;
    1361             :   int bound_checked_up_to_;
    1362             :   QuickCheckDetails quick_check_performed_;
    1363             :   int flush_budget_;
    1364             :   TriBool at_start_;
    1365             : };
    1366             : 
    1367             : 
    1368             : class GreedyLoopState {
    1369             :  public:
    1370             :   explicit GreedyLoopState(bool not_at_start);
    1371             : 
    1372       11693 :   Label* label() { return &label_; }
    1373       11693 :   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
    1374             : 
    1375             :  private:
    1376             :   Label label_;
    1377             :   Trace counter_backtrack_trace_;
    1378             : };
    1379             : 
    1380             : 
    1381             : struct PreloadState {
    1382             :   static const int kEatsAtLeastNotYetInitialized = -1;
    1383             :   bool preload_is_current_;
    1384             :   bool preload_has_checked_bounds_;
    1385             :   int preload_characters_;
    1386             :   int eats_at_least_;
    1387             :   void init() {
    1388      213730 :     eats_at_least_ = kEatsAtLeastNotYetInitialized;
    1389             :   }
    1390             : };
    1391             : 
    1392             : 
    1393       85794 : class NodeVisitor {
    1394             :  public:
    1395       85794 :   virtual ~NodeVisitor() = default;
    1396             : #define DECLARE_VISIT(Type)                                          \
    1397             :   virtual void Visit##Type(Type##Node* that) = 0;
    1398             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1399             : #undef DECLARE_VISIT
    1400           0 :   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
    1401             : };
    1402             : 
    1403             : 
    1404             : // Node visitor used to add the start set of the alternatives to the
    1405             : // dispatch table of a choice node.
    1406         110 : class V8_EXPORT_PRIVATE DispatchTableConstructor : public NodeVisitor {
    1407             :  public:
    1408             :   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
    1409             :                            Zone* zone)
    1410             :       : table_(table),
    1411             :         choice_index_(-1),
    1412             :         ignore_case_(ignore_case),
    1413          55 :         zone_(zone) { }
    1414             : 
    1415             :   void BuildTable(ChoiceNode* node);
    1416             : 
    1417             :   void AddRange(CharacterRange range) {
    1418         580 :     table()->AddRange(range, choice_index_, zone_);
    1419             :   }
    1420             : 
    1421             :   void AddInverse(ZoneList<CharacterRange>* ranges);
    1422             : 
    1423             : #define DECLARE_VISIT(Type)                                          \
    1424             :   virtual void Visit##Type(Type##Node* that);
    1425             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1426             : #undef DECLARE_VISIT
    1427             : 
    1428             :   DispatchTable* table() { return table_; }
    1429          55 :   void set_choice_index(int value) { choice_index_ = value; }
    1430             : 
    1431             :  protected:
    1432             :   DispatchTable* table_;
    1433             :   int choice_index_;
    1434             :   bool ignore_case_;
    1435             :   Zone* zone_;
    1436             : };
    1437             : 
    1438             : // Assertion propagation moves information about assertions such as
    1439             : // \b to the affected nodes.  For instance, in /.\b./ information must
    1440             : // be propagated to the first '.' that whatever follows needs to know
    1441             : // if it matched a word or a non-word, and to the second '.' that it
    1442             : // has to check if it succeeds a word or non-word.  In this case the
    1443             : // result will be something like:
    1444             : //
    1445             : //   +-------+        +------------+
    1446             : //   |   .   |        |      .     |
    1447             : //   +-------+  --->  +------------+
    1448             : //   | word? |        | check word |
    1449             : //   +-------+        +------------+
    1450      171478 : class Analysis: public NodeVisitor {
    1451             :  public:
    1452             :   Analysis(Isolate* isolate, bool is_one_byte)
    1453       85739 :       : isolate_(isolate), is_one_byte_(is_one_byte), error_message_(nullptr) {}
    1454             :   void EnsureAnalyzed(RegExpNode* node);
    1455             : 
    1456             : #define DECLARE_VISIT(Type) void Visit##Type(Type##Node* that) override;
    1457             :   FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1458             : #undef DECLARE_VISIT
    1459             :   void VisitLoopChoice(LoopChoiceNode* that) override;
    1460             : 
    1461             :   bool has_failed() { return error_message_ != nullptr; }
    1462             :   const char* error_message() {
    1463             :     DCHECK(error_message_ != nullptr);
    1464             :     return error_message_;
    1465             :   }
    1466             :   void fail(const char* error_message) {
    1467         340 :     error_message_ = error_message;
    1468             :   }
    1469             : 
    1470             :   Isolate* isolate() const { return isolate_; }
    1471             : 
    1472             :  private:
    1473             :   Isolate* isolate_;
    1474             :   bool is_one_byte_;
    1475             :   const char* error_message_;
    1476             : 
    1477             :   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
    1478             : };
    1479             : 
    1480             : 
    1481             : struct RegExpCompileData {
    1482             :   RegExpCompileData()
    1483             :       : tree(nullptr),
    1484             :         node(nullptr),
    1485             :         simple(true),
    1486             :         contains_anchor(false),
    1487      760604 :         capture_count(0) {}
    1488             :   RegExpTree* tree;
    1489             :   RegExpNode* node;
    1490             :   bool simple;
    1491             :   bool contains_anchor;
    1492             :   Handle<FixedArray> capture_name_map;
    1493             :   Handle<String> error;
    1494             :   int capture_count;
    1495             : };
    1496             : 
    1497             : 
    1498             : class RegExpEngine: public AllStatic {
    1499             :  public:
    1500             :   struct CompilationResult {
    1501             :     inline CompilationResult(Isolate* isolate, const char* error_message);
    1502             :     CompilationResult(Object code, int registers)
    1503       85399 :         : code(code), num_registers(registers) {}
    1504             :     const char* const error_message = nullptr;
    1505             :     Object const code;
    1506             :     int const num_registers = 0;
    1507             :   };
    1508             : 
    1509             :   V8_EXPORT_PRIVATE static CompilationResult Compile(
    1510             :       Isolate* isolate, Zone* zone, RegExpCompileData* input,
    1511             :       JSRegExp::Flags flags, Handle<String> pattern,
    1512             :       Handle<String> sample_subject, bool is_one_byte);
    1513             : 
    1514             :   static bool TooMuchRegExpCode(Isolate* isolate, Handle<String> pattern);
    1515             : 
    1516             :   V8_EXPORT_PRIVATE static void DotPrint(const char* label, RegExpNode* node,
    1517             :                                          bool ignore_case);
    1518             : };
    1519             : 
    1520             : 
    1521             : class RegExpResultsCache : public AllStatic {
    1522             :  public:
    1523             :   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
    1524             : 
    1525             :   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
    1526             :   // On success, the returned result is guaranteed to be a COW-array.
    1527             :   static Object Lookup(Heap* heap, String key_string, Object key_pattern,
    1528             :                        FixedArray* last_match_out, ResultsCacheType type);
    1529             :   // Attempt to add value_array to the cache specified by type.  On success,
    1530             :   // value_array is turned into a COW-array.
    1531             :   static void Enter(Isolate* isolate, Handle<String> key_string,
    1532             :                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
    1533             :                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
    1534             :   static void Clear(FixedArray cache);
    1535             :   static const int kRegExpResultsCacheSize = 0x100;
    1536             : 
    1537             :  private:
    1538             :   static const int kArrayEntriesPerCacheEntry = 4;
    1539             :   static const int kStringOffset = 0;
    1540             :   static const int kPatternOffset = 1;
    1541             :   static const int kArrayOffset = 2;
    1542             :   static const int kLastMatchOffset = 3;
    1543             : };
    1544             : 
    1545             : }  // namespace internal
    1546             : }  // namespace v8
    1547             : 
    1548             : #endif  // V8_REGEXP_JSREGEXP_H_

Generated by: LCOV version 1.10