LCOV - code coverage report
Current view: top level - test/cctest/wasm - test-run-wasm-simd.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 768 928 82.8 %
Date: 2019-04-17 Functions: 692 798 86.7 %

          Line data    Source code
       1             : // Copyright 2016 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include <type_traits>
       6             : 
       7             : #include "src/assembler-inl.h"
       8             : #include "src/base/bits.h"
       9             : #include "src/base/overflowing-math.h"
      10             : #include "test/cctest/cctest.h"
      11             : #include "test/cctest/compiler/value-helper.h"
      12             : #include "test/cctest/wasm/wasm-run-utils.h"
      13             : #include "test/common/wasm/wasm-macro-gen.h"
      14             : 
      15             : namespace v8 {
      16             : namespace internal {
      17             : namespace wasm {
      18             : namespace test_run_wasm_simd {
      19             : 
      20             : namespace {
      21             : 
      22             : using FloatUnOp = float (*)(float);
      23             : using FloatBinOp = float (*)(float, float);
      24             : using FloatCompareOp = int (*)(float, float);
      25             : using Int32UnOp = int32_t (*)(int32_t);
      26             : using Int32BinOp = int32_t (*)(int32_t, int32_t);
      27             : using Int32CompareOp = int (*)(int32_t, int32_t);
      28             : using Int32ShiftOp = int32_t (*)(int32_t, int);
      29             : using Int16UnOp = int16_t (*)(int16_t);
      30             : using Int16BinOp = int16_t (*)(int16_t, int16_t);
      31             : using Int16CompareOp = int (*)(int16_t, int16_t);
      32             : using Int16ShiftOp = int16_t (*)(int16_t, int);
      33             : using Int8UnOp = int8_t (*)(int8_t);
      34             : using Int8BinOp = int8_t (*)(int8_t, int8_t);
      35             : using Int8CompareOp = int (*)(int8_t, int8_t);
      36             : using Int8ShiftOp = int8_t (*)(int8_t, int);
      37             : 
      38             : #define WASM_SIMD_TEST(name)                                          \
      39             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                    \
      40             :                              ExecutionTier execution_tier);           \
      41             :   TEST(RunWasm_##name##_turbofan) {                                   \
      42             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      43             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kTurbofan);    \
      44             :   }                                                                   \
      45             :   TEST(RunWasm_##name##_interpreter) {                                \
      46             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      47             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kInterpreter); \
      48             :   }                                                                   \
      49             :   TEST(RunWasm_##name##_simd_lowered) {                               \
      50             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
      51             :     RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kTurbofan);      \
      52             :   }                                                                   \
      53             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
      54             : 
      55             : // Generic expected value functions.
      56             : template <typename T, typename = typename std::enable_if<
      57             :                           std::is_floating_point<T>::value>::type>
      58        1512 : T Negate(T a) {
      59        1512 :   return -a;
      60             : }
      61             : 
      62             : // For signed integral types, use base::AddWithWraparound.
      63             : template <typename T, typename = typename std::enable_if<
      64             :                           std::is_floating_point<T>::value>::type>
      65      160152 : T Add(T a, T b) {
      66      160152 :   return a + b;
      67             : }
      68             : 
      69             : // For signed integral types, use base::SubWithWraparound.
      70             : template <typename T, typename = typename std::enable_if<
      71             :                           std::is_floating_point<T>::value>::type>
      72      160152 : T Sub(T a, T b) {
      73      160152 :   return a - b;
      74             : }
      75             : 
      76             : // For signed integral types, use base::MulWithWraparound.
      77             : template <typename T, typename = typename std::enable_if<
      78             :                           std::is_floating_point<T>::value>::type>
      79      160152 : T Mul(T a, T b) {
      80      160152 :   return a * b;
      81             : }
      82             : 
      83             : template <typename T>
      84       42312 : T Minimum(T a, T b) {
      85       42312 :   return a <= b ? a : b;
      86             : }
      87             : 
      88             : template <typename T>
      89       42312 : T Maximum(T a, T b) {
      90       42312 :   return a >= b ? a : b;
      91             : }
      92             : 
      93             : template <typename T>
      94       42312 : T UnsignedMinimum(T a, T b) {
      95             :   using UnsignedT = typename std::make_unsigned<T>::type;
      96       42312 :   return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? a : b;
      97             : }
      98             : 
      99             : template <typename T>
     100       42312 : T UnsignedMaximum(T a, T b) {
     101             :   using UnsignedT = typename std::make_unsigned<T>::type;
     102       42312 :   return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? a : b;
     103             : }
     104             : 
     105      158700 : int Equal(float a, float b) { return a == b ? -1 : 0; }
     106             : 
     107             : template <typename T>
     108       42312 : T Equal(T a, T b) {
     109       42312 :   return a == b ? -1 : 0;
     110             : }
     111             : 
     112      158700 : int NotEqual(float a, float b) { return a != b ? -1 : 0; }
     113             : 
     114             : template <typename T>
     115       42312 : T NotEqual(T a, T b) {
     116       42312 :   return a != b ? -1 : 0;
     117             : }
     118             : 
     119      158700 : int Less(float a, float b) { return a < b ? -1 : 0; }
     120             : 
     121             : template <typename T>
     122       42312 : T Less(T a, T b) {
     123       42312 :   return a < b ? -1 : 0;
     124             : }
     125             : 
     126      158700 : int LessEqual(float a, float b) { return a <= b ? -1 : 0; }
     127             : 
     128             : template <typename T>
     129       42312 : T LessEqual(T a, T b) {
     130       42312 :   return a <= b ? -1 : 0;
     131             : }
     132             : 
     133      158700 : int Greater(float a, float b) { return a > b ? -1 : 0; }
     134             : 
     135             : template <typename T>
     136       42312 : T Greater(T a, T b) {
     137       42312 :   return a > b ? -1 : 0;
     138             : }
     139             : 
     140      158700 : int GreaterEqual(float a, float b) { return a >= b ? -1 : 0; }
     141             : 
     142             : template <typename T>
     143       42312 : T GreaterEqual(T a, T b) {
     144       42312 :   return a >= b ? -1 : 0;
     145             : }
     146             : 
     147             : template <typename T>
     148       42312 : T UnsignedLess(T a, T b) {
     149             :   using UnsignedT = typename std::make_unsigned<T>::type;
     150       42312 :   return static_cast<UnsignedT>(a) < static_cast<UnsignedT>(b) ? -1 : 0;
     151             : }
     152             : 
     153             : template <typename T>
     154       42312 : T UnsignedLessEqual(T a, T b) {
     155             :   using UnsignedT = typename std::make_unsigned<T>::type;
     156       42312 :   return static_cast<UnsignedT>(a) <= static_cast<UnsignedT>(b) ? -1 : 0;
     157             : }
     158             : 
     159             : template <typename T>
     160       42312 : T UnsignedGreater(T a, T b) {
     161             :   using UnsignedT = typename std::make_unsigned<T>::type;
     162       42312 :   return static_cast<UnsignedT>(a) > static_cast<UnsignedT>(b) ? -1 : 0;
     163             : }
     164             : 
     165             : template <typename T>
     166       42312 : T UnsignedGreaterEqual(T a, T b) {
     167             :   using UnsignedT = typename std::make_unsigned<T>::type;
     168       42312 :   return static_cast<UnsignedT>(a) >= static_cast<UnsignedT>(b) ? -1 : 0;
     169             : }
     170             : 
     171             : template <typename T>
     172       23952 : T LogicalShiftLeft(T a, int shift) {
     173             :   using UnsignedT = typename std::make_unsigned<T>::type;
     174       23952 :   return static_cast<UnsignedT>(a) << shift;
     175             : }
     176             : 
     177             : template <typename T>
     178       23952 : T LogicalShiftRight(T a, int shift) {
     179             :   using UnsignedT = typename std::make_unsigned<T>::type;
     180       23952 :   return static_cast<UnsignedT>(a) >> shift;
     181             : }
     182             : 
     183             : template <typename T>
     184             : T Clamp(int64_t value) {
     185             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     186        9384 :   int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
     187        9384 :   int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
     188        9384 :   int64_t clamped = std::max(min, std::min(max, value));
     189        4692 :   return static_cast<T>(clamped);
     190             : }
     191             : 
     192             : template <typename T>
     193             : int64_t Widen(T value) {
     194             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     195        3888 :   return static_cast<int64_t>(value);
     196             : }
     197             : 
     198             : template <typename T>
     199             : int64_t UnsignedWiden(T value) {
     200             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     201             :   using UnsignedT = typename std::make_unsigned<T>::type;
     202        4104 :   return static_cast<int64_t>(static_cast<UnsignedT>(value));
     203             : }
     204             : 
     205             : template <typename T>
     206             : T Narrow(int64_t value) {
     207             :   return Clamp<T>(value);
     208             : }
     209             : 
     210             : template <typename T>
     211             : T UnsignedNarrow(int64_t value) {
     212             :   static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
     213             :   using UnsignedT = typename std::make_unsigned<T>::type;
     214        1608 :   return static_cast<T>(Clamp<UnsignedT>(value & 0xFFFFFFFFu));
     215             : }
     216             : 
     217             : template <typename T>
     218        1944 : T AddSaturate(T a, T b) {
     219        3888 :   return Clamp<T>(Widen(a) + Widen(b));
     220             : }
     221             : 
     222             : template <typename T>
     223        1944 : T SubSaturate(T a, T b) {
     224        3888 :   return Clamp<T>(Widen(a) - Widen(b));
     225             : }
     226             : 
     227             : template <typename T>
     228        1944 : T UnsignedAddSaturate(T a, T b) {
     229             :   using UnsignedT = typename std::make_unsigned<T>::type;
     230        3888 :   return Clamp<UnsignedT>(UnsignedWiden(a) + UnsignedWiden(b));
     231             : }
     232             : 
     233             : template <typename T>
     234        1944 : T UnsignedSubSaturate(T a, T b) {
     235             :   using UnsignedT = typename std::make_unsigned<T>::type;
     236        3888 :   return Clamp<UnsignedT>(UnsignedWiden(a) - UnsignedWiden(b));
     237             : }
     238             : 
     239             : template <typename T>
     240       40368 : T And(T a, T b) {
     241       40368 :   return a & b;
     242             : }
     243             : 
     244             : template <typename T>
     245       40368 : T Or(T a, T b) {
     246       40368 :   return a | b;
     247             : }
     248             : 
     249             : template <typename T>
     250       40368 : T Xor(T a, T b) {
     251       40368 :   return a ^ b;
     252             : }
     253             : 
     254             : template <typename T>
     255         696 : T Not(T a) {
     256         696 :   return ~a;
     257             : }
     258             : 
     259             : template <typename T>
     260             : T LogicalNot(T a) {
     261             :   return a == 0 ? -1 : 0;
     262             : }
     263             : 
     264             : template <typename T>
     265             : T Sqrt(T a) {
     266             :   return std::sqrt(a);
     267             : }
     268             : 
     269             : }  // namespace
     270             : 
     271             : #define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \
     272             :   WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value),                  \
     273             :                                 WASM_SIMD_##TYPE##_EXTRACT_LANE(             \
     274             :                                     lane_index, WASM_GET_LOCAL(value))),     \
     275             :           WASM_RETURN1(WASM_ZERO))
     276             : 
     277             : #define TO_BYTE(val) static_cast<byte>(val)
     278             : #define WASM_SIMD_OP(op) kSimdPrefix, TO_BYTE(op)
     279             : #define WASM_SIMD_SPLAT(Type, x) x, WASM_SIMD_OP(kExpr##Type##Splat)
     280             : #define WASM_SIMD_UNOP(op, x) x, WASM_SIMD_OP(op)
     281             : #define WASM_SIMD_BINOP(op, x, y) x, y, WASM_SIMD_OP(op)
     282             : #define WASM_SIMD_SHIFT_OP(op, shift, x) x, WASM_SIMD_OP(op), TO_BYTE(shift)
     283             : #define WASM_SIMD_CONCAT_OP(op, bytes, x, y) \
     284             :   x, y, WASM_SIMD_OP(op), TO_BYTE(bytes)
     285             : #define WASM_SIMD_SELECT(format, x, y, z) x, y, z, WASM_SIMD_OP(kExprS128Select)
     286             : #define WASM_SIMD_F32x4_SPLAT(x) x, WASM_SIMD_OP(kExprF32x4Splat)
     287             : #define WASM_SIMD_F32x4_EXTRACT_LANE(lane, x) \
     288             :   x, WASM_SIMD_OP(kExprF32x4ExtractLane), TO_BYTE(lane)
     289             : #define WASM_SIMD_F32x4_REPLACE_LANE(lane, x, y) \
     290             :   x, y, WASM_SIMD_OP(kExprF32x4ReplaceLane), TO_BYTE(lane)
     291             : 
     292             : #define WASM_SIMD_I32x4_SPLAT(x) x, WASM_SIMD_OP(kExprI32x4Splat)
     293             : #define WASM_SIMD_I32x4_EXTRACT_LANE(lane, x) \
     294             :   x, WASM_SIMD_OP(kExprI32x4ExtractLane), TO_BYTE(lane)
     295             : #define WASM_SIMD_I32x4_REPLACE_LANE(lane, x, y) \
     296             :   x, y, WASM_SIMD_OP(kExprI32x4ReplaceLane), TO_BYTE(lane)
     297             : 
     298             : #define WASM_SIMD_I16x8_SPLAT(x) x, WASM_SIMD_OP(kExprI16x8Splat)
     299             : #define WASM_SIMD_I16x8_EXTRACT_LANE(lane, x) \
     300             :   x, WASM_SIMD_OP(kExprI16x8ExtractLane), TO_BYTE(lane)
     301             : #define WASM_SIMD_I16x8_REPLACE_LANE(lane, x, y) \
     302             :   x, y, WASM_SIMD_OP(kExprI16x8ReplaceLane), TO_BYTE(lane)
     303             : 
     304             : #define WASM_SIMD_I8x16_SPLAT(x) x, WASM_SIMD_OP(kExprI8x16Splat)
     305             : #define WASM_SIMD_I8x16_EXTRACT_LANE(lane, x) \
     306             :   x, WASM_SIMD_OP(kExprI8x16ExtractLane), TO_BYTE(lane)
     307             : #define WASM_SIMD_I8x16_REPLACE_LANE(lane, x, y) \
     308             :   x, y, WASM_SIMD_OP(kExprI8x16ReplaceLane), TO_BYTE(lane)
     309             : 
     310             : #define WASM_SIMD_S8x16_SHUFFLE_OP(opcode, m, x, y)                        \
     311             :   x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \
     312             :       TO_BYTE(m[3]), TO_BYTE(m[4]), TO_BYTE(m[5]), TO_BYTE(m[6]),          \
     313             :       TO_BYTE(m[7]), TO_BYTE(m[8]), TO_BYTE(m[9]), TO_BYTE(m[10]),         \
     314             :       TO_BYTE(m[11]), TO_BYTE(m[12]), TO_BYTE(m[13]), TO_BYTE(m[14]),      \
     315             :       TO_BYTE(m[15])
     316             : 
     317             : #define WASM_SIMD_LOAD_MEM(index) \
     318             :   index, WASM_SIMD_OP(kExprS128LoadMem), ZERO_ALIGNMENT, ZERO_OFFSET
     319             : #define WASM_SIMD_STORE_MEM(index, val) \
     320             :   index, val, WASM_SIMD_OP(kExprS128StoreMem), ZERO_ALIGNMENT, ZERO_OFFSET
     321             : 
     322             : // Runs tests of compiled code, using the interpreter as a reference.
     323             : #define WASM_SIMD_COMPILED_TEST(name)                              \
     324             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                 \
     325             :                              ExecutionTier execution_tier);        \
     326             :   TEST(RunWasm_##name##_turbofan) {                                \
     327             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                 \
     328             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kTurbofan); \
     329             :   }                                                                \
     330             :   TEST(RunWasm_##name##_simd_lowered) {                            \
     331             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                 \
     332             :     RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kTurbofan);   \
     333             :   }                                                                \
     334             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
     335             : 
     336             : // The macro below disables tests lowering for certain nodes where the simd
     337             : // lowering doesn't work correctly. Early return here if the CPU does not
     338             : // support SIMD as the graph will be implicitly lowered in that case.
     339             : #define WASM_SIMD_TEST_NO_LOWERING(name)                              \
     340             :   void RunWasm_##name##_Impl(LowerSimd lower_simd,                    \
     341             :                              ExecutionTier execution_tier);           \
     342             :   TEST(RunWasm_##name##_turbofan) {                                   \
     343             :     if (!CpuFeatures::SupportsWasmSimd128()) return;                  \
     344             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
     345             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kTurbofan);    \
     346             :   }                                                                   \
     347             :   TEST(RunWasm_##name##_interpreter) {                                \
     348             :     EXPERIMENTAL_FLAG_SCOPE(simd);                                    \
     349             :     RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kInterpreter); \
     350             :   }                                                                   \
     351             :   void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier)
     352             : 
     353             : // Returns true if the platform can represent the result.
     354           0 : bool PlatformCanRepresent(float x) {
     355             : #if V8_TARGET_ARCH_ARM
     356             :   return std::fpclassify(x) != FP_SUBNORMAL;
     357             : #else
     358           0 :   return true;
     359             : #endif
     360             : }
     361             : 
     362             : // Returns true for very small and very large numbers. We skip these test
     363             : // values for the approximation instructions, which don't work at the extremes.
     364           0 : bool IsExtreme(float x) {
     365             :   float abs_x = std::fabs(x);
     366             :   const float kSmallFloatThreshold = 1.0e-32f;
     367             :   const float kLargeFloatThreshold = 1.0e32f;
     368        3024 :   return abs_x != 0.0f &&  // 0 or -0 are fine.
     369        2856 :          (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold);
     370             : }
     371             : 
     372       26687 : WASM_SIMD_TEST(F32x4Splat) {
     373          12 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     374             :   // Set up a global to hold output vector.
     375             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     376             :   byte param1 = 0;
     377          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(param1))),
     378             :         WASM_ONE);
     379             : 
     380        2772 :   FOR_FLOAT32_INPUTS(x) {
     381        1380 :     r.Call(x);
     382             :     float expected = x;
     383       12420 :     for (int i = 0; i < 4; i++) {
     384        5520 :       float actual = ReadLittleEndianValue<float>(&g[i]);
     385        5520 :       if (std::isnan(expected)) {
     386          96 :         CHECK(std::isnan(actual));
     387             :       } else {
     388        5424 :         CHECK_EQ(actual, expected);
     389             :       }
     390             :     }
     391             :   }
     392          12 : }
     393             : 
     394       26687 : WASM_SIMD_TEST(F32x4ReplaceLane) {
     395          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     396             :   // Set up a global to hold input/output vector.
     397             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     398             :   // Build function to replace each lane with its (FP) index.
     399             :   byte temp1 = r.AllocateLocal(kWasmS128);
     400          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_F32(3.14159f))),
     401             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     402             :                                   0, WASM_GET_LOCAL(temp1), WASM_F32(0.0f))),
     403             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     404             :                                   1, WASM_GET_LOCAL(temp1), WASM_F32(1.0f))),
     405             :         WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_REPLACE_LANE(
     406             :                                   2, WASM_GET_LOCAL(temp1), WASM_F32(2.0f))),
     407             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(
     408             :                                3, WASM_GET_LOCAL(temp1), WASM_F32(3.0f))),
     409             :         WASM_ONE);
     410             : 
     411          12 :   r.Call();
     412         108 :   for (int i = 0; i < 4; i++) {
     413          48 :     CHECK_EQ(static_cast<float>(i), ReadLittleEndianValue<float>(&g[i]));
     414             :   }
     415          12 : }
     416             : 
     417             : // Tests both signed and unsigned conversion.
     418             : // v8:8425 tracks this test being enabled in the interpreter.
     419       26671 : WASM_SIMD_COMPILED_TEST(F32x4ConvertI32x4) {
     420           8 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     421             :   // Create two output vectors to hold signed and unsigned results.
     422             :   float* g0 = r.builder().AddGlobal<float>(kWasmS128);
     423             :   float* g1 = r.builder().AddGlobal<float>(kWasmS128);
     424             :   // Build fn to splat test value, perform conversions, and write the results.
     425             :   byte value = 0;
     426             :   byte temp1 = r.AllocateLocal(kWasmS128);
     427           8 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
     428             :         WASM_SET_GLOBAL(
     429             :             0, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_GET_LOCAL(temp1))),
     430             :         WASM_SET_GLOBAL(
     431             :             1, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_GET_LOCAL(temp1))),
     432             :         WASM_ONE);
     433             : 
     434         936 :   FOR_INT32_INPUTS(x) {
     435         464 :     r.Call(x);
     436         464 :     float expected_signed = static_cast<float>(x);
     437         464 :     float expected_unsigned = static_cast<float>(static_cast<uint32_t>(x));
     438        4176 :     for (int i = 0; i < 4; i++) {
     439        1856 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<float>(&g0[i]));
     440        1856 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<float>(&g1[i]));
     441             :     }
     442             :   }
     443           8 : }
     444             : 
     445           0 : bool IsSameNan(float expected, float actual) {
     446             :   // Sign is non-deterministic.
     447      120640 :   uint32_t expected_bits = bit_cast<uint32_t>(expected) & ~0x80000000;
     448      120640 :   uint32_t actual_bits = bit_cast<uint32_t>(actual) & ~0x80000000;
     449             :   // Some implementations convert signaling NaNs to quiet NaNs.
     450      132256 :   return (expected_bits == actual_bits) ||
     451       11616 :          ((expected_bits | 0x00400000) == actual_bits);
     452             : }
     453             : 
     454           0 : bool IsCanonical(float actual) {
     455             :   uint32_t actual_bits = bit_cast<uint32_t>(actual);
     456             :   // Canonical NaN has quiet bit and no payload.
     457        2880 :   return (actual_bits & 0xFFC00000) == actual_bits;
     458             : }
     459             : 
     460     2798432 : void CheckFloatResult(float x, float y, float expected, float actual,
     461             :                       bool exact = true) {
     462     2798432 :   if (std::isnan(expected)) {
     463      116800 :     CHECK(std::isnan(actual));
     464      176464 :     if (std::isnan(x) && IsSameNan(x, actual)) return;
     465      113456 :     if (std::isnan(y) && IsSameNan(y, actual)) return;
     466        6768 :     if (IsSameNan(expected, actual)) return;
     467        2880 :     if (IsCanonical(actual)) return;
     468             :     // This is expected to assert; it's useful for debugging.
     469           0 :     CHECK_EQ(bit_cast<uint32_t>(expected), bit_cast<uint32_t>(actual));
     470             :   } else {
     471     2681632 :     if (exact) {
     472     2674000 :       CHECK_EQ(expected, actual);
     473             :       // The sign of 0's must match.
     474     2674000 :       CHECK_EQ(std::signbit(expected), std::signbit(actual));
     475             :       return;
     476             :     }
     477             :     // Otherwise, perform an approximate equality test. First check for
     478             :     // equality to handle +/-Infinity where approximate equality doesn't work.
     479        7632 :     if (expected == actual) return;
     480             : 
     481             :     // 1% error allows all platforms to pass easily.
     482             :     constexpr float kApproximationError = 0.01f;
     483        2448 :     float abs_error = std::abs(expected) * kApproximationError,
     484        2448 :           min = expected - abs_error, max = expected + abs_error;
     485        2448 :     CHECK_LE(min, actual);
     486        2448 :     CHECK_GE(max, actual);
     487             :   }
     488             : }
     489             : 
     490             : // Test some values not included in the float inputs from value_helper. These
     491             : // tests are useful for opcodes that are synthesized during code gen, like Min
     492             : // and Max on ia32 and x64.
     493             : static constexpr uint32_t nan_test_array[] = {
     494             :     // Bit patterns of quiet NaNs and signaling NaNs, with or without
     495             :     // additional payload.
     496             :     0x7FC00000, 0xFFC00000, 0x7FFFFFFF, 0x7F800000, 0xFF800000, 0x7F876543,
     497             :     0xFF876543,
     498             :     // Both Infinities.
     499             :     0x7F800000, 0xFF800000,
     500             :     // Some "normal" numbers, 1 and -1.
     501             :     0x3F800000, 0xBF800000};
     502             : 
     503             : #define FOR_FLOAT32_NAN_INPUTS(i) \
     504             :   for (size_t i = 0; i < arraysize(nan_test_array); ++i)
     505             : 
     506          48 : void RunF32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     507             :                       WasmOpcode opcode, FloatUnOp expected_op,
     508             :                       bool exact = true) {
     509          48 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     510             :   // Global to hold output.
     511             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     512             :   // Build fn to splat test value, perform unop, and write the result.
     513             :   byte value = 0;
     514             :   byte temp1 = r.AllocateLocal(kWasmS128);
     515          48 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
     516             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
     517             :         WASM_ONE);
     518             : 
     519       11088 :   FOR_FLOAT32_INPUTS(x) {
     520             :     if (!PlatformCanRepresent(x)) continue;
     521             :     // Extreme values have larger errors so skip them for approximation tests.
     522        8280 :     if (!exact && IsExtreme(x)) continue;
     523        5088 :     float expected = expected_op(x);
     524             :     if (!PlatformCanRepresent(expected)) continue;
     525        5088 :     r.Call(x);
     526       45792 :     for (int i = 0; i < 4; i++) {
     527       20352 :       float actual = ReadLittleEndianValue<float>(&g[i]);
     528       20352 :       CheckFloatResult(x, x, expected, actual, exact);
     529             :     }
     530             :   }
     531             : 
     532        1104 :   FOR_FLOAT32_NAN_INPUTS(x) {
     533             :     if (!PlatformCanRepresent(x)) continue;
     534             :     // Extreme values have larger errors so skip them for approximation tests.
     535         792 :     if (!exact && IsExtreme(x)) continue;
     536         528 :     float expected = expected_op(x);
     537             :     if (!PlatformCanRepresent(expected)) continue;
     538         528 :     r.Call(x);
     539        4752 :     for (int i = 0; i < 4; i++) {
     540        2112 :       float actual = ReadLittleEndianValue<float>(&g[i]);
     541        2112 :       CheckFloatResult(x, x, expected, actual, exact);
     542             :     }
     543             :   }
     544          48 : }
     545             : 
     546       26663 : WASM_SIMD_TEST(F32x4Abs) {
     547          12 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs);
     548           0 : }
     549       26663 : WASM_SIMD_TEST(F32x4Neg) {
     550          12 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate);
     551           0 : }
     552             : 
     553       26663 : WASM_SIMD_TEST(F32x4RecipApprox) {
     554           0 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox,
     555          12 :                    base::Recip, false /* !exact */);
     556           0 : }
     557             : 
     558       26663 : WASM_SIMD_TEST(F32x4RecipSqrtApprox) {
     559           0 :   RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox,
     560          12 :                    base::RecipSqrt, false /* !exact */);
     561           0 : }
     562             : 
     563          52 : void RunF32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     564             :                        WasmOpcode opcode, FloatBinOp expected_op) {
     565          52 :   WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
     566             :   // Global to hold output.
     567             :   float* g = r.builder().AddGlobal<float>(kWasmS128);
     568             :   // Build fn to splat test values, perform binop, and write the result.
     569             :   byte value1 = 0, value2 = 1;
     570             :   byte temp1 = r.AllocateLocal(kWasmS128);
     571             :   byte temp2 = r.AllocateLocal(kWasmS128);
     572          52 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
     573             :         WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
     574             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     575             :                                            WASM_GET_LOCAL(temp2))),
     576             :         WASM_ONE);
     577             : 
     578       12012 :   FOR_FLOAT32_INPUTS(x) {
     579             :     if (!PlatformCanRepresent(x)) continue;
     580     1381380 :     FOR_FLOAT32_INPUTS(y) {
     581             :       if (!PlatformCanRepresent(y)) continue;
     582      687700 :       float expected = expected_op(x, y);
     583             :       if (!PlatformCanRepresent(expected)) continue;
     584      687700 :       r.Call(x, y);
     585     6189300 :       for (int i = 0; i < 4; i++) {
     586     2750800 :         float actual = ReadLittleEndianValue<float>(&g[i]);
     587     2750800 :         CheckFloatResult(x, y, expected, actual, true /* exact */);
     588             :       }
     589             :     }
     590             :   }
     591             : 
     592        1196 :   FOR_FLOAT32_NAN_INPUTS(i) {
     593             :     float x = bit_cast<float>(nan_test_array[i]);
     594             :     if (!PlatformCanRepresent(x)) continue;
     595       13156 :     FOR_FLOAT32_NAN_INPUTS(j) {
     596             :       float y = bit_cast<float>(nan_test_array[j]);
     597             :       if (!PlatformCanRepresent(y)) continue;
     598        6292 :       float expected = expected_op(x, y);
     599             :       if (!PlatformCanRepresent(expected)) continue;
     600        6292 :       r.Call(x, y);
     601       56628 :       for (int i = 0; i < 4; i++) {
     602       25168 :         float actual = ReadLittleEndianValue<float>(&g[i]);
     603       25168 :         CheckFloatResult(x, y, expected, actual, true /* exact */);
     604             :       }
     605             :     }
     606             :   }
     607          52 : }
     608             : 
     609             : #undef FOR_FLOAT32_NAN_INPUTS
     610             : 
     611       26663 : WASM_SIMD_TEST(F32x4Add) {
     612          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add);
     613           0 : }
     614       26663 : WASM_SIMD_TEST(F32x4Sub) {
     615          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub);
     616           0 : }
     617       26663 : WASM_SIMD_TEST(F32x4Mul) {
     618          12 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul);
     619           0 : }
     620             : // v8:8425 tracks this test being enabled in the interpreter.
     621       26655 : WASM_SIMD_COMPILED_TEST(F32x4Min) {
     622           8 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin);
     623           0 : }
     624             : // v8:8425 tracks this test being enabled in the interpreter.
     625       26655 : WASM_SIMD_COMPILED_TEST(F32x4Max) {
     626           8 :   RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax);
     627           0 : }
     628             : 
     629          72 : void RunF32x4CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     630             :                            WasmOpcode opcode, FloatCompareOp expected_op) {
     631          72 :   WasmRunner<int32_t, float, float> r(execution_tier, lower_simd);
     632             :   // Set up global to hold mask output.
     633             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     634             :   // Build fn to splat test values, perform compare op, and write the result.
     635             :   byte value1 = 0, value2 = 1;
     636             :   byte temp1 = r.AllocateLocal(kWasmS128);
     637             :   byte temp2 = r.AllocateLocal(kWasmS128);
     638          72 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value1))),
     639             :         WASM_SET_LOCAL(temp2, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value2))),
     640             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     641             :                                            WASM_GET_LOCAL(temp2))),
     642             :         WASM_ONE);
     643             : 
     644       16632 :   FOR_FLOAT32_INPUTS(x) {
     645             :     if (!PlatformCanRepresent(x)) continue;
     646     1912680 :     FOR_FLOAT32_INPUTS(y) {
     647             :       if (!PlatformCanRepresent(y)) continue;
     648             :       float diff = x - y;  // Model comparison as subtraction.
     649             :       if (!PlatformCanRepresent(diff)) continue;
     650      952200 :       r.Call(x, y);
     651      952200 :       int32_t expected = expected_op(x, y);
     652     8569800 :       for (int i = 0; i < 4; i++) {
     653     3808800 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     654             :       }
     655             :     }
     656             :   }
     657          72 : }
     658             : 
     659       26663 : WASM_SIMD_TEST(F32x4Eq) {
     660          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal);
     661           0 : }
     662             : 
     663       26663 : WASM_SIMD_TEST(F32x4Ne) {
     664          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual);
     665           0 : }
     666             : 
     667       26663 : WASM_SIMD_TEST(F32x4Gt) {
     668          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater);
     669           0 : }
     670             : 
     671       26663 : WASM_SIMD_TEST(F32x4Ge) {
     672          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual);
     673           0 : }
     674             : 
     675       26663 : WASM_SIMD_TEST(F32x4Lt) {
     676          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less);
     677           0 : }
     678             : 
     679       26663 : WASM_SIMD_TEST(F32x4Le) {
     680          12 :   RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual);
     681           0 : }
     682             : 
     683       26687 : WASM_SIMD_TEST(I32x4Splat) {
     684          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     685             :   // Set up a global to hold output vector.
     686             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     687             :   byte param1 = 0;
     688          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(param1))),
     689             :         WASM_ONE);
     690             : 
     691        1404 :   FOR_INT32_INPUTS(x) {
     692         696 :     r.Call(x);
     693             :     int32_t expected = x;
     694        6264 :     for (int i = 0; i < 4; i++) {
     695        2784 :       int32_t actual = ReadLittleEndianValue<int32_t>(&g[i]);
     696        2784 :       CHECK_EQ(actual, expected);
     697             :     }
     698             :   }
     699          12 : }
     700             : 
     701       26687 : WASM_SIMD_TEST(I32x4ReplaceLane) {
     702          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     703             :   // Set up a global to hold input/output vector.
     704             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     705             :   // Build function to replace each lane with its index.
     706             :   byte temp1 = r.AllocateLocal(kWasmS128);
     707          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(-1))),
     708             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     709             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     710             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     711             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     712             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_REPLACE_LANE(
     713             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     714             :         WASM_SET_GLOBAL(0, WASM_SIMD_I32x4_REPLACE_LANE(
     715             :                                3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     716             :         WASM_ONE);
     717             : 
     718          12 :   r.Call();
     719         108 :   for (int32_t i = 0; i < 4; i++) {
     720          48 :     CHECK_EQ(i, ReadLittleEndianValue<int32_t>(&g[i]));
     721             :   }
     722          12 : }
     723             : 
     724       26687 : WASM_SIMD_TEST(I16x8Splat) {
     725          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     726             :   // Set up a global to hold output vector.
     727             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
     728             :   byte param1 = 0;
     729          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(param1))),
     730             :         WASM_ONE);
     731             : 
     732         228 :   FOR_INT16_INPUTS(x) {
     733         108 :     r.Call(x);
     734             :     int16_t expected = x;
     735        1836 :     for (int i = 0; i < 8; i++) {
     736         864 :       int16_t actual = ReadLittleEndianValue<int16_t>(&g[i]);
     737         864 :       CHECK_EQ(actual, expected);
     738             :     }
     739             :   }
     740          12 : }
     741             : 
     742       26687 : WASM_SIMD_TEST(I16x8ReplaceLane) {
     743          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     744             :   // Set up a global to hold input/output vector.
     745             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
     746             :   // Build function to replace each lane with its index.
     747             :   byte temp1 = r.AllocateLocal(kWasmS128);
     748          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_I32V(-1))),
     749             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     750             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     751             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     752             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     753             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     754             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     755             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     756             :                                   3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     757             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     758             :                                   4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
     759             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     760             :                                   5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
     761             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_REPLACE_LANE(
     762             :                                   6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
     763             :         WASM_SET_GLOBAL(0, WASM_SIMD_I16x8_REPLACE_LANE(
     764             :                                7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
     765             :         WASM_ONE);
     766             : 
     767          12 :   r.Call();
     768         204 :   for (int16_t i = 0; i < 8; i++) {
     769          96 :     CHECK_EQ(i, ReadLittleEndianValue<int16_t>(&g[i]));
     770             :   }
     771          12 : }
     772             : 
     773       26687 : WASM_SIMD_TEST(I8x16Splat) {
     774          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     775             :   // Set up a global to hold output vector.
     776             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
     777             :   byte param1 = 0;
     778          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(param1))),
     779             :         WASM_ONE);
     780             : 
     781         228 :   FOR_INT8_INPUTS(x) {
     782         108 :     r.Call(x);
     783             :     int8_t expected = x;
     784        3564 :     for (int i = 0; i < 16; i++) {
     785        1728 :       int8_t actual = ReadLittleEndianValue<int8_t>(&g[i]);
     786        1728 :       CHECK_EQ(actual, expected);
     787             :     }
     788             :   }
     789          12 : }
     790             : 
     791       26687 : WASM_SIMD_TEST(I8x16ReplaceLane) {
     792          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
     793             :   // Set up a global to hold input/output vector.
     794             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
     795             :   // Build function to replace each lane with its index.
     796             :   byte temp1 = r.AllocateLocal(kWasmS128);
     797          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_I32V(-1))),
     798             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     799             :                                   0, WASM_GET_LOCAL(temp1), WASM_I32V(0))),
     800             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     801             :                                   1, WASM_GET_LOCAL(temp1), WASM_I32V(1))),
     802             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     803             :                                   2, WASM_GET_LOCAL(temp1), WASM_I32V(2))),
     804             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     805             :                                   3, WASM_GET_LOCAL(temp1), WASM_I32V(3))),
     806             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     807             :                                   4, WASM_GET_LOCAL(temp1), WASM_I32V(4))),
     808             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     809             :                                   5, WASM_GET_LOCAL(temp1), WASM_I32V(5))),
     810             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     811             :                                   6, WASM_GET_LOCAL(temp1), WASM_I32V(6))),
     812             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     813             :                                   7, WASM_GET_LOCAL(temp1), WASM_I32V(7))),
     814             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     815             :                                   8, WASM_GET_LOCAL(temp1), WASM_I32V(8))),
     816             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     817             :                                   9, WASM_GET_LOCAL(temp1), WASM_I32V(9))),
     818             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     819             :                                   10, WASM_GET_LOCAL(temp1), WASM_I32V(10))),
     820             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     821             :                                   11, WASM_GET_LOCAL(temp1), WASM_I32V(11))),
     822             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     823             :                                   12, WASM_GET_LOCAL(temp1), WASM_I32V(12))),
     824             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     825             :                                   13, WASM_GET_LOCAL(temp1), WASM_I32V(13))),
     826             :         WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_REPLACE_LANE(
     827             :                                   14, WASM_GET_LOCAL(temp1), WASM_I32V(14))),
     828             :         WASM_SET_GLOBAL(0, WASM_SIMD_I8x16_REPLACE_LANE(
     829             :                                15, WASM_GET_LOCAL(temp1), WASM_I32V(15))),
     830             :         WASM_ONE);
     831             : 
     832          12 :   r.Call();
     833         396 :   for (int8_t i = 0; i < 16; i++) {
     834         192 :     CHECK_EQ(i, ReadLittleEndianValue<int8_t>(&g[i]));
     835             :   }
     836          12 : }
     837             : 
     838             : // Use doubles to ensure exact conversion.
     839           0 : int32_t ConvertToInt(double val, bool unsigned_integer) {
     840        2760 :   if (std::isnan(val)) return 0;
     841           0 :   if (unsigned_integer) {
     842        1356 :     if (val < 0) return 0;
     843         612 :     if (val > kMaxUInt32) return kMaxUInt32;
     844         360 :     return static_cast<uint32_t>(val);
     845             :   } else {
     846        1356 :     if (val < kMinInt) return kMinInt;
     847        1116 :     if (val > kMaxInt) return kMaxInt;
     848         852 :     return static_cast<int>(val);
     849             :   }
     850             : }
     851             : 
     852             : // Tests both signed and unsigned conversion.
     853       26687 : WASM_SIMD_TEST(I32x4ConvertF32x4) {
     854          12 :   WasmRunner<int32_t, float> r(execution_tier, lower_simd);
     855             :   // Create two output vectors to hold signed and unsigned results.
     856             :   int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
     857             :   int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
     858             :   // Build fn to splat test value, perform conversions, and write the results.
     859             :   byte value = 0;
     860             :   byte temp1 = r.AllocateLocal(kWasmS128);
     861          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(value))),
     862             :         WASM_SET_GLOBAL(
     863             :             0, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_GET_LOCAL(temp1))),
     864             :         WASM_SET_GLOBAL(
     865             :             1, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_GET_LOCAL(temp1))),
     866             :         WASM_ONE);
     867             : 
     868        2772 :   FOR_FLOAT32_INPUTS(x) {
     869             :     if (!PlatformCanRepresent(x)) continue;
     870        1380 :     r.Call(x);
     871        1380 :     int32_t expected_signed = ConvertToInt(x, false);
     872             :     int32_t expected_unsigned = ConvertToInt(x, true);
     873       12420 :     for (int i = 0; i < 4; i++) {
     874        5520 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
     875        5520 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g1[i]));
     876             :     }
     877             :   }
     878          12 : }
     879             : 
     880             : // Tests both signed and unsigned conversion from I16x8 (unpacking).
     881       26687 : WASM_SIMD_TEST(I32x4ConvertI16x8) {
     882          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     883             :   // Create four output vectors to hold signed and unsigned results.
     884             :   int32_t* g0 = r.builder().AddGlobal<int32_t>(kWasmS128);
     885             :   int32_t* g1 = r.builder().AddGlobal<int32_t>(kWasmS128);
     886             :   int32_t* g2 = r.builder().AddGlobal<int32_t>(kWasmS128);
     887             :   int32_t* g3 = r.builder().AddGlobal<int32_t>(kWasmS128);
     888             :   // Build fn to splat test value, perform conversions, and write the results.
     889             :   byte value = 0;
     890             :   byte temp1 = r.AllocateLocal(kWasmS128);
     891          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
     892             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High,
     893             :                                           WASM_GET_LOCAL(temp1))),
     894             :         WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low,
     895             :                                           WASM_GET_LOCAL(temp1))),
     896             :         WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High,
     897             :                                           WASM_GET_LOCAL(temp1))),
     898             :         WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low,
     899             :                                           WASM_GET_LOCAL(temp1))),
     900             :         WASM_ONE);
     901             : 
     902         228 :   FOR_INT16_INPUTS(x) {
     903         108 :     r.Call(x);
     904             :     int32_t expected_signed = static_cast<int32_t>(Widen<int16_t>(x));
     905         108 :     int32_t expected_unsigned = static_cast<int32_t>(UnsignedWiden<int16_t>(x));
     906         972 :     for (int i = 0; i < 4; i++) {
     907         432 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g0[i]));
     908         432 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int32_t>(&g1[i]));
     909         432 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g2[i]));
     910         432 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int32_t>(&g3[i]));
     911             :     }
     912             :   }
     913          12 : }
     914             : 
     915          24 : void RunI32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     916             :                       WasmOpcode opcode, Int32UnOp expected_op) {
     917          24 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
     918             :   // Global to hold output.
     919             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     920             :   // Build fn to splat test value, perform unop, and write the result.
     921             :   byte value = 0;
     922             :   byte temp1 = r.AllocateLocal(kWasmS128);
     923          24 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
     924             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
     925             :         WASM_ONE);
     926             : 
     927        2808 :   FOR_INT32_INPUTS(x) {
     928        1392 :     r.Call(x);
     929        1392 :     int32_t expected = expected_op(x);
     930       12528 :     for (int i = 0; i < 4; i++) {
     931        5568 :       CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     932             :     }
     933             :   }
     934          24 : }
     935             : 
     936       26663 : WASM_SIMD_TEST(I32x4Neg) {
     937           0 :   RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg,
     938          12 :                    base::NegateWithWraparound);
     939           0 : }
     940             : 
     941       26663 : WASM_SIMD_TEST(S128Not) {
     942          12 :   RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not, Not);
     943           0 : }
     944             : 
     945         240 : void RunI32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
     946             :                        WasmOpcode opcode, Int32BinOp expected_op) {
     947         240 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
     948             :   // Global to hold output.
     949             :   int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
     950             :   // Build fn to splat test values, perform binop, and write the result.
     951             :   byte value1 = 0, value2 = 1;
     952             :   byte temp1 = r.AllocateLocal(kWasmS128);
     953             :   byte temp2 = r.AllocateLocal(kWasmS128);
     954         240 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value1))),
     955             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))),
     956             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
     957             :                                            WASM_GET_LOCAL(temp2))),
     958             :         WASM_ONE);
     959             : 
     960       28080 :   FOR_INT32_INPUTS(x) {
     961     1628640 :     FOR_INT32_INPUTS(y) {
     962      807360 :       r.Call(x, y);
     963      807360 :       int32_t expected = expected_op(x, y);
     964     7266240 :       for (int i = 0; i < 4; i++) {
     965     3229440 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
     966             :       }
     967             :     }
     968             :   }
     969         240 : }
     970             : 
     971       26663 : WASM_SIMD_TEST(I32x4Add) {
     972           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add,
     973          12 :                     base::AddWithWraparound);
     974           0 : }
     975             : 
     976       26663 : WASM_SIMD_TEST(I32x4Sub) {
     977           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub,
     978          12 :                     base::SubWithWraparound);
     979           0 : }
     980             : 
     981       26663 : WASM_SIMD_TEST(I32x4Mul) {
     982           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul,
     983          12 :                     base::MulWithWraparound);
     984           0 : }
     985             : 
     986       26663 : WASM_SIMD_TEST(I32x4MinS) {
     987          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum);
     988           0 : }
     989             : 
     990       26663 : WASM_SIMD_TEST(I32x4MaxS) {
     991          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum);
     992           0 : }
     993             : 
     994       26663 : WASM_SIMD_TEST(I32x4MinU) {
     995           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU,
     996          12 :                     UnsignedMinimum);
     997           0 : }
     998       26663 : WASM_SIMD_TEST(I32x4MaxU) {
     999           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU,
    1000             : 
    1001          12 :                     UnsignedMaximum);
    1002           0 : }
    1003             : 
    1004       26663 : WASM_SIMD_TEST(S128And) {
    1005          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And, And);
    1006           0 : }
    1007             : 
    1008       26663 : WASM_SIMD_TEST(S128Or) {
    1009          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or, Or);
    1010           0 : }
    1011             : 
    1012       26663 : WASM_SIMD_TEST(S128Xor) {
    1013          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor, Xor);
    1014           0 : }
    1015             : 
    1016       26663 : WASM_SIMD_TEST(I32x4Eq) {
    1017          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal);
    1018           0 : }
    1019             : 
    1020       26663 : WASM_SIMD_TEST(I32x4Ne) {
    1021          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual);
    1022           0 : }
    1023             : 
    1024       26663 : WASM_SIMD_TEST(I32x4LtS) {
    1025          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less);
    1026           0 : }
    1027             : 
    1028       26663 : WASM_SIMD_TEST(I32x4LeS) {
    1029          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual);
    1030           0 : }
    1031             : 
    1032       26663 : WASM_SIMD_TEST(I32x4GtS) {
    1033          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater);
    1034           0 : }
    1035             : 
    1036       26663 : WASM_SIMD_TEST(I32x4GeS) {
    1037          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual);
    1038           0 : }
    1039             : 
    1040       26663 : WASM_SIMD_TEST(I32x4LtU) {
    1041          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess);
    1042           0 : }
    1043             : 
    1044       26663 : WASM_SIMD_TEST(I32x4LeU) {
    1045           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4LeU,
    1046          12 :                     UnsignedLessEqual);
    1047           0 : }
    1048             : 
    1049       26663 : WASM_SIMD_TEST(I32x4GtU) {
    1050          12 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater);
    1051           0 : }
    1052             : 
    1053       26663 : WASM_SIMD_TEST(I32x4GeU) {
    1054           0 :   RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4GeU,
    1055          12 :                     UnsignedGreaterEqual);
    1056           0 : }
    1057             : 
    1058          36 : void RunI32x4ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1059             :                          WasmOpcode opcode, Int32ShiftOp expected_op) {
    1060        2268 :   for (int shift = 1; shift < 32; shift++) {
    1061        1116 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1062             :     int32_t* g = r.builder().AddGlobal<int32_t>(kWasmS128);
    1063             :     byte value = 0;
    1064             :     byte simd1 = r.AllocateLocal(kWasmS128);
    1065        1116 :     BUILD(r,
    1066             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
    1067             :           WASM_SET_GLOBAL(
    1068             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
    1069             :           WASM_ONE);
    1070             : 
    1071      130572 :     FOR_INT32_INPUTS(x) {
    1072       64728 :       r.Call(x);
    1073       64728 :       float expected = expected_op(x, shift);
    1074      582552 :       for (int i = 0; i < 4; i++) {
    1075      517824 :         CHECK_EQ(expected, ReadLittleEndianValue<int32_t>(&g[i]));
    1076             :       }
    1077             :     }
    1078             :   }
    1079          36 : }
    1080             : 
    1081       26663 : WASM_SIMD_TEST(I32x4Shl) {
    1082           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl,
    1083          12 :                       LogicalShiftLeft);
    1084           0 : }
    1085             : 
    1086       26663 : WASM_SIMD_TEST(I32x4ShrS) {
    1087           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS,
    1088          12 :                       ArithmeticShiftRight);
    1089           0 : }
    1090             : 
    1091       26663 : WASM_SIMD_TEST(I32x4ShrU) {
    1092           0 :   RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU,
    1093          12 :                       LogicalShiftRight);
    1094           0 : }
    1095             : 
    1096             : // Tests both signed and unsigned conversion from I8x16 (unpacking).
    1097       26687 : WASM_SIMD_TEST(I16x8ConvertI8x16) {
    1098          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1099             :   // Create four output vectors to hold signed and unsigned results.
    1100             :   int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1101             :   int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1102             :   int16_t* g2 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1103             :   int16_t* g3 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1104             :   // Build fn to splat test value, perform conversions, and write the results.
    1105             :   byte value = 0;
    1106             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1107          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1108             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High,
    1109             :                                           WASM_GET_LOCAL(temp1))),
    1110             :         WASM_SET_GLOBAL(1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low,
    1111             :                                           WASM_GET_LOCAL(temp1))),
    1112             :         WASM_SET_GLOBAL(2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High,
    1113             :                                           WASM_GET_LOCAL(temp1))),
    1114             :         WASM_SET_GLOBAL(3, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low,
    1115             :                                           WASM_GET_LOCAL(temp1))),
    1116             :         WASM_ONE);
    1117             : 
    1118         228 :   FOR_INT8_INPUTS(x) {
    1119         108 :     r.Call(x);
    1120             :     int16_t expected_signed = static_cast<int16_t>(Widen<int8_t>(x));
    1121             :     int16_t expected_unsigned = static_cast<int16_t>(UnsignedWiden<int8_t>(x));
    1122        1836 :     for (int i = 0; i < 8; i++) {
    1123         864 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
    1124         864 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g1[i]));
    1125         864 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g2[i]));
    1126         864 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g3[i]));
    1127             :     }
    1128             :   }
    1129          12 : }
    1130             : 
    1131             : // Tests both signed and unsigned conversion from I32x4 (packing).
    1132       26687 : WASM_SIMD_TEST(I16x8ConvertI32x4) {
    1133          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1134             :   // Create output vectors to hold signed and unsigned results.
    1135             :   int16_t* g0 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1136             :   int16_t* g1 = r.builder().AddGlobal<int16_t>(kWasmS128);
    1137             :   // Build fn to splat test value, perform conversions, and write the results.
    1138             :   byte value = 0;
    1139             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1140          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value))),
    1141             :         WASM_SET_GLOBAL(
    1142             :             0, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_GET_LOCAL(temp1),
    1143             :                                WASM_GET_LOCAL(temp1))),
    1144             :         WASM_SET_GLOBAL(
    1145             :             1, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_GET_LOCAL(temp1),
    1146             :                                WASM_GET_LOCAL(temp1))),
    1147             :         WASM_ONE);
    1148             : 
    1149        1404 :   FOR_INT32_INPUTS(x) {
    1150         696 :     r.Call(x);
    1151         696 :     int16_t expected_signed = Narrow<int16_t>(x);
    1152             :     int16_t expected_unsigned = UnsignedNarrow<int16_t>(x);
    1153       11832 :     for (int i = 0; i < 8; i++) {
    1154        5568 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int16_t>(&g0[i]));
    1155        5568 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int16_t>(&g1[i]));
    1156             :     }
    1157             :   }
    1158          12 : }
    1159             : 
    1160          12 : void RunI16x8UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1161             :                       WasmOpcode opcode, Int16UnOp expected_op) {
    1162          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1163             :   // Global to hold output.
    1164             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1165             :   // Build fn to splat test value, perform unop, and write the result.
    1166             :   byte value = 0;
    1167             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1168          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1169             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
    1170             :         WASM_ONE);
    1171             : 
    1172         228 :   FOR_INT16_INPUTS(x) {
    1173         108 :     r.Call(x);
    1174         108 :     int16_t expected = expected_op(x);
    1175        1836 :     for (int i = 0; i < 8; i++) {
    1176         864 :       CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1177             :     }
    1178             :   }
    1179          12 : }
    1180             : 
    1181       26663 : WASM_SIMD_TEST(I16x8Neg) {
    1182           0 :   RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg,
    1183          12 :                    base::NegateWithWraparound);
    1184           0 : }
    1185             : 
    1186         252 : void RunI16x8BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1187             :                        WasmOpcode opcode, Int16BinOp expected_op) {
    1188         252 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    1189             :   // Global to hold output.
    1190             :   int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1191             :   // Build fn to splat test values, perform binop, and write the result.
    1192             :   byte value1 = 0, value2 = 1;
    1193             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1194             :   byte temp2 = r.AllocateLocal(kWasmS128);
    1195         252 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
    1196             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
    1197             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    1198             :                                            WASM_GET_LOCAL(temp2))),
    1199             :         WASM_ONE);
    1200             : 
    1201        4788 :   FOR_INT16_INPUTS(x) {
    1202       43092 :     FOR_INT16_INPUTS(y) {
    1203       20412 :       r.Call(x, y);
    1204       20412 :       int16_t expected = expected_op(x, y);
    1205      347004 :       for (int i = 0; i < 8; i++) {
    1206      163296 :         CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1207             :       }
    1208             :     }
    1209             :   }
    1210         252 : }
    1211             : 
    1212       26663 : WASM_SIMD_TEST(I16x8Add) {
    1213           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add,
    1214          12 :                     base::AddWithWraparound);
    1215           0 : }
    1216             : 
    1217       26663 : WASM_SIMD_TEST(I16x8AddSaturateS) {
    1218           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateS,
    1219          12 :                     AddSaturate);
    1220           0 : }
    1221             : 
    1222       26663 : WASM_SIMD_TEST(I16x8Sub) {
    1223           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub,
    1224          12 :                     base::SubWithWraparound);
    1225           0 : }
    1226             : 
    1227       26663 : WASM_SIMD_TEST(I16x8SubSaturateS) {
    1228           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateS,
    1229          12 :                     SubSaturate);
    1230           0 : }
    1231             : 
    1232       26663 : WASM_SIMD_TEST(I16x8Mul) {
    1233           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul,
    1234          12 :                     base::MulWithWraparound);
    1235           0 : }
    1236             : 
    1237       26663 : WASM_SIMD_TEST(I16x8MinS) {
    1238          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum);
    1239           0 : }
    1240             : 
    1241       26663 : WASM_SIMD_TEST(I16x8MaxS) {
    1242          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum);
    1243           0 : }
    1244             : 
    1245       26663 : WASM_SIMD_TEST(I16x8AddSaturateU) {
    1246           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateU,
    1247          12 :                     UnsignedAddSaturate);
    1248           0 : }
    1249             : 
    1250       26663 : WASM_SIMD_TEST(I16x8SubSaturateU) {
    1251           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateU,
    1252          12 :                     UnsignedSubSaturate);
    1253           0 : }
    1254             : 
    1255       26663 : WASM_SIMD_TEST(I16x8MinU) {
    1256           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU,
    1257          12 :                     UnsignedMinimum);
    1258           0 : }
    1259             : 
    1260       26663 : WASM_SIMD_TEST(I16x8MaxU) {
    1261           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU,
    1262          12 :                     UnsignedMaximum);
    1263           0 : }
    1264             : 
    1265       26663 : WASM_SIMD_TEST(I16x8Eq) {
    1266          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal);
    1267           0 : }
    1268             : 
    1269       26663 : WASM_SIMD_TEST(I16x8Ne) {
    1270          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual);
    1271           0 : }
    1272             : 
    1273       26663 : WASM_SIMD_TEST(I16x8LtS) {
    1274          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less);
    1275           0 : }
    1276             : 
    1277       26663 : WASM_SIMD_TEST(I16x8LeS) {
    1278          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual);
    1279           0 : }
    1280             : 
    1281       26663 : WASM_SIMD_TEST(I16x8GtS) {
    1282          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater);
    1283           0 : }
    1284             : 
    1285       26663 : WASM_SIMD_TEST(I16x8GeS) {
    1286          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual);
    1287           0 : }
    1288             : 
    1289       26663 : WASM_SIMD_TEST(I16x8GtU) {
    1290          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater);
    1291           0 : }
    1292             : 
    1293       26663 : WASM_SIMD_TEST(I16x8GeU) {
    1294           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8GeU,
    1295          12 :                     UnsignedGreaterEqual);
    1296           0 : }
    1297             : 
    1298       26663 : WASM_SIMD_TEST(I16x8LtU) {
    1299          12 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess);
    1300           0 : }
    1301             : 
    1302       26663 : WASM_SIMD_TEST(I16x8LeU) {
    1303           0 :   RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8LeU,
    1304          12 :                     UnsignedLessEqual);
    1305           0 : }
    1306             : 
    1307          36 : void RunI16x8ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1308             :                          WasmOpcode opcode, Int16ShiftOp expected_op) {
    1309        1116 :   for (int shift = 1; shift < 16; shift++) {
    1310         540 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1311             :     int16_t* g = r.builder().AddGlobal<int16_t>(kWasmS128);
    1312             :     byte value = 0;
    1313             :     byte simd1 = r.AllocateLocal(kWasmS128);
    1314         540 :     BUILD(r,
    1315             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1316             :           WASM_SET_GLOBAL(
    1317             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
    1318             :           WASM_ONE);
    1319             : 
    1320       10260 :     FOR_INT16_INPUTS(x) {
    1321        4860 :       r.Call(x);
    1322        4860 :       float expected = expected_op(x, shift);
    1323       82620 :       for (int i = 0; i < 8; i++) {
    1324       77760 :         CHECK_EQ(expected, ReadLittleEndianValue<int16_t>(&g[i]));
    1325             :       }
    1326             :     }
    1327             :   }
    1328          36 : }
    1329             : 
    1330       26663 : WASM_SIMD_TEST(I16x8Shl) {
    1331           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl,
    1332          12 :                       LogicalShiftLeft);
    1333           0 : }
    1334             : 
    1335       26663 : WASM_SIMD_TEST(I16x8ShrS) {
    1336           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS,
    1337          12 :                       ArithmeticShiftRight);
    1338           0 : }
    1339             : 
    1340       26663 : WASM_SIMD_TEST(I16x8ShrU) {
    1341           0 :   RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU,
    1342          12 :                       LogicalShiftRight);
    1343           0 : }
    1344             : 
    1345          12 : void RunI8x16UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1346             :                       WasmOpcode opcode, Int8UnOp expected_op) {
    1347          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1348             :   // Global to hold output.
    1349             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1350             :   // Build fn to splat test value, perform unop, and write the result.
    1351             :   byte value = 0;
    1352             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1353          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1354             :         WASM_SET_GLOBAL(0, WASM_SIMD_UNOP(opcode, WASM_GET_LOCAL(temp1))),
    1355             :         WASM_ONE);
    1356             : 
    1357         228 :   FOR_INT8_INPUTS(x) {
    1358         108 :     r.Call(x);
    1359         108 :     int8_t expected = expected_op(x);
    1360        3564 :     for (int i = 0; i < 16; i++) {
    1361        1728 :       CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1362             :     }
    1363             :   }
    1364          12 : }
    1365             : 
    1366       26663 : WASM_SIMD_TEST(I8x16Neg) {
    1367           0 :   RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg,
    1368          12 :                    base::NegateWithWraparound);
    1369           0 : }
    1370             : 
    1371             : // Tests both signed and unsigned conversion from I16x8 (packing).
    1372       26687 : WASM_SIMD_TEST(I8x16ConvertI16x8) {
    1373          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1374             :   // Create output vectors to hold signed and unsigned results.
    1375             :   int8_t* g0 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1376             :   int8_t* g1 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1377             :   // Build fn to splat test value, perform conversions, and write the results.
    1378             :   byte value = 0;
    1379             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1380          12 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value))),
    1381             :         WASM_SET_GLOBAL(
    1382             :             0, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_GET_LOCAL(temp1),
    1383             :                                WASM_GET_LOCAL(temp1))),
    1384             :         WASM_SET_GLOBAL(
    1385             :             1, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_GET_LOCAL(temp1),
    1386             :                                WASM_GET_LOCAL(temp1))),
    1387             :         WASM_ONE);
    1388             : 
    1389         228 :   FOR_INT16_INPUTS(x) {
    1390         108 :     r.Call(x);
    1391         108 :     int8_t expected_signed = Narrow<int8_t>(x);
    1392             :     int8_t expected_unsigned = UnsignedNarrow<int8_t>(x);
    1393        3564 :     for (int i = 0; i < 16; i++) {
    1394        1728 :       CHECK_EQ(expected_signed, ReadLittleEndianValue<int8_t>(&g0[i]));
    1395        1728 :       CHECK_EQ(expected_unsigned, ReadLittleEndianValue<int8_t>(&g1[i]));
    1396             :     }
    1397             :   }
    1398          12 : }
    1399             : 
    1400         252 : void RunI8x16BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1401             :                        WasmOpcode opcode, Int8BinOp expected_op) {
    1402         252 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    1403             :   // Global to hold output.
    1404             :   int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1405             :   // Build fn to splat test values, perform binop, and write the result.
    1406             :   byte value1 = 0, value2 = 1;
    1407             :   byte temp1 = r.AllocateLocal(kWasmS128);
    1408             :   byte temp2 = r.AllocateLocal(kWasmS128);
    1409         252 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))),
    1410             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value2))),
    1411             :         WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    1412             :                                            WASM_GET_LOCAL(temp2))),
    1413             :         WASM_ONE);
    1414             : 
    1415        4788 :   FOR_INT8_INPUTS(x) {
    1416       43092 :     FOR_INT8_INPUTS(y) {
    1417       20412 :       r.Call(x, y);
    1418       20412 :       int8_t expected = expected_op(x, y);
    1419      673596 :       for (int i = 0; i < 16; i++) {
    1420      326592 :         CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1421             :       }
    1422             :     }
    1423             :   }
    1424         252 : }
    1425             : 
    1426       26663 : WASM_SIMD_TEST(I8x16Add) {
    1427           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add,
    1428          12 :                     base::AddWithWraparound);
    1429           0 : }
    1430             : 
    1431       26663 : WASM_SIMD_TEST(I8x16AddSaturateS) {
    1432           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateS,
    1433          12 :                     AddSaturate);
    1434           0 : }
    1435             : 
    1436       26663 : WASM_SIMD_TEST(I8x16Sub) {
    1437           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub,
    1438          12 :                     base::SubWithWraparound);
    1439           0 : }
    1440             : 
    1441       26663 : WASM_SIMD_TEST(I8x16SubSaturateS) {
    1442           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateS,
    1443          12 :                     SubSaturate);
    1444           0 : }
    1445             : 
    1446       26663 : WASM_SIMD_TEST(I8x16MinS) {
    1447          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum);
    1448           0 : }
    1449             : 
    1450       26663 : WASM_SIMD_TEST(I8x16MaxS) {
    1451          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum);
    1452           0 : }
    1453             : 
    1454       26663 : WASM_SIMD_TEST(I8x16AddSaturateU) {
    1455           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateU,
    1456          12 :                     UnsignedAddSaturate);
    1457           0 : }
    1458             : 
    1459       26663 : WASM_SIMD_TEST(I8x16SubSaturateU) {
    1460           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateU,
    1461          12 :                     UnsignedSubSaturate);
    1462           0 : }
    1463             : 
    1464       26663 : WASM_SIMD_TEST(I8x16MinU) {
    1465           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU,
    1466          12 :                     UnsignedMinimum);
    1467           0 : }
    1468             : 
    1469       26663 : WASM_SIMD_TEST(I8x16MaxU) {
    1470           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU,
    1471          12 :                     UnsignedMaximum);
    1472           0 : }
    1473             : 
    1474       26663 : WASM_SIMD_TEST(I8x16Eq) {
    1475          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal);
    1476           0 : }
    1477             : 
    1478       26663 : WASM_SIMD_TEST(I8x16Ne) {
    1479          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual);
    1480           0 : }
    1481             : 
    1482       26663 : WASM_SIMD_TEST(I8x16GtS) {
    1483          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater);
    1484           0 : }
    1485             : 
    1486       26663 : WASM_SIMD_TEST(I8x16GeS) {
    1487          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual);
    1488           0 : }
    1489             : 
    1490       26663 : WASM_SIMD_TEST(I8x16LtS) {
    1491          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less);
    1492           0 : }
    1493             : 
    1494       26663 : WASM_SIMD_TEST(I8x16LeS) {
    1495          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual);
    1496           0 : }
    1497             : 
    1498       26663 : WASM_SIMD_TEST(I8x16GtU) {
    1499          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater);
    1500           0 : }
    1501             : 
    1502       26663 : WASM_SIMD_TEST(I8x16GeU) {
    1503           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16GeU,
    1504          12 :                     UnsignedGreaterEqual);
    1505           0 : }
    1506             : 
    1507       26663 : WASM_SIMD_TEST(I8x16LtU) {
    1508          12 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess);
    1509           0 : }
    1510             : 
    1511       26663 : WASM_SIMD_TEST(I8x16LeU) {
    1512           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16LeU,
    1513          12 :                     UnsignedLessEqual);
    1514           0 : }
    1515             : 
    1516       26663 : WASM_SIMD_TEST(I8x16Mul) {
    1517           0 :   RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul,
    1518          12 :                     base::MulWithWraparound);
    1519           0 : }
    1520             : 
    1521          36 : void RunI8x16ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1522             :                          WasmOpcode opcode, Int8ShiftOp expected_op) {
    1523         540 :   for (int shift = 1; shift < 8; shift++) {
    1524         252 :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    1525             :     int8_t* g = r.builder().AddGlobal<int8_t>(kWasmS128);
    1526             :     byte value = 0;
    1527             :     byte simd1 = r.AllocateLocal(kWasmS128);
    1528         252 :     BUILD(r,
    1529             :           WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value))),
    1530             :           WASM_SET_GLOBAL(
    1531             :               0, WASM_SIMD_SHIFT_OP(opcode, shift, WASM_GET_LOCAL(simd1))),
    1532             :           WASM_ONE);
    1533             : 
    1534        4788 :     FOR_INT8_INPUTS(x) {
    1535        2268 :       r.Call(x);
    1536        2268 :       float expected = expected_op(x, shift);
    1537       74844 :       for (int i = 0; i < 16; i++) {
    1538       72576 :         CHECK_EQ(expected, ReadLittleEndianValue<int8_t>(&g[i]));
    1539             :       }
    1540             :     }
    1541             :   }
    1542          36 : }
    1543             : 
    1544       26663 : WASM_SIMD_TEST(I8x16Shl) {
    1545           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl,
    1546          12 :                       LogicalShiftLeft);
    1547           0 : }
    1548             : 
    1549       26663 : WASM_SIMD_TEST(I8x16ShrS) {
    1550           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS,
    1551          12 :                       ArithmeticShiftRight);
    1552           0 : }
    1553             : 
    1554       26663 : WASM_SIMD_TEST(I8x16ShrU) {
    1555           0 :   RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU,
    1556          12 :                       LogicalShiftRight);
    1557           0 : }
    1558             : 
    1559             : // Test Select by making a mask where the 0th and 3rd lanes are true and the
    1560             : // rest false, and comparing for non-equality with zero to convert to a boolean
    1561             : // vector.
    1562             : #define WASM_SIMD_SELECT_TEST(format)                                        \
    1563             :   WASM_SIMD_TEST(S##format##Select) {                                        \
    1564             :     WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);     \
    1565             :     byte val1 = 0;                                                           \
    1566             :     byte val2 = 1;                                                           \
    1567             :     byte src1 = r.AllocateLocal(kWasmS128);                                  \
    1568             :     byte src2 = r.AllocateLocal(kWasmS128);                                  \
    1569             :     byte zero = r.AllocateLocal(kWasmS128);                                  \
    1570             :     byte mask = r.AllocateLocal(kWasmS128);                                  \
    1571             :     BUILD(r,                                                                 \
    1572             :           WASM_SET_LOCAL(src1,                                               \
    1573             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \
    1574             :           WASM_SET_LOCAL(src2,                                               \
    1575             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \
    1576             :           WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),      \
    1577             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(           \
    1578             :                                    1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \
    1579             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(           \
    1580             :                                    2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \
    1581             :           WASM_SET_LOCAL(                                                    \
    1582             :               mask,                                                          \
    1583             :               WASM_SIMD_SELECT(                                              \
    1584             :                   format, WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2),        \
    1585             :                   WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(mask),  \
    1586             :                                   WASM_GET_LOCAL(zero)))),                   \
    1587             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0),               \
    1588             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 1),               \
    1589             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 2),               \
    1590             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE);    \
    1591             :                                                                              \
    1592             :     CHECK_EQ(1, r.Call(0x12, 0x34));                                         \
    1593             :   }
    1594             : 
    1595       26699 : WASM_SIMD_SELECT_TEST(32x4)
    1596       26699 : WASM_SIMD_SELECT_TEST(16x8)
    1597       26699 : WASM_SIMD_SELECT_TEST(8x16)
    1598             : 
    1599             : // Test Select by making a mask where the 0th and 3rd lanes are non-zero and the
    1600             : // rest 0. The mask is not the result of a comparison op.
    1601             : #define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format)                           \
    1602             :   WASM_SIMD_TEST_NO_LOWERING(S##format##NonCanonicalSelect) {                 \
    1603             :     WasmRunner<int32_t, int32_t, int32_t, int32_t> r(execution_tier,          \
    1604             :                                                      lower_simd);             \
    1605             :     byte val1 = 0;                                                            \
    1606             :     byte val2 = 1;                                                            \
    1607             :     byte combined = 2;                                                        \
    1608             :     byte src1 = r.AllocateLocal(kWasmS128);                                   \
    1609             :     byte src2 = r.AllocateLocal(kWasmS128);                                   \
    1610             :     byte zero = r.AllocateLocal(kWasmS128);                                   \
    1611             :     byte mask = r.AllocateLocal(kWasmS128);                                   \
    1612             :     BUILD(r,                                                                  \
    1613             :           WASM_SET_LOCAL(src1,                                                \
    1614             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))),  \
    1615             :           WASM_SET_LOCAL(src2,                                                \
    1616             :                          WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))),  \
    1617             :           WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),       \
    1618             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(            \
    1619             :                                    1, WASM_GET_LOCAL(zero), WASM_I32V(0xF))), \
    1620             :           WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE(            \
    1621             :                                    2, WASM_GET_LOCAL(mask), WASM_I32V(0xF))), \
    1622             :           WASM_SET_LOCAL(mask, WASM_SIMD_SELECT(format, WASM_GET_LOCAL(src1), \
    1623             :                                                 WASM_GET_LOCAL(src2),         \
    1624             :                                                 WASM_GET_LOCAL(mask))),       \
    1625             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0),                \
    1626             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 1),            \
    1627             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 2),            \
    1628             :           WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE);     \
    1629             :                                                                               \
    1630             :     CHECK_EQ(1, r.Call(0x12, 0x34, 0x32));                                    \
    1631             :   }
    1632             : 
    1633       26679 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4)
    1634       26679 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8)
    1635       26679 : WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16)
    1636             : 
    1637             : // Test binary ops with two lane test patterns, all lanes distinct.
    1638             : template <typename T>
    1639        7764 : void RunBinaryLaneOpTest(
    1640             :     ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op,
    1641             :     const std::array<T, kSimd128Size / sizeof(T)>& expected) {
    1642        7764 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1643             :   // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
    1644             :   T* src0 = r.builder().AddGlobal<T>(kWasmS128);
    1645             :   T* src1 = r.builder().AddGlobal<T>(kWasmS128);
    1646             :   static const int kElems = kSimd128Size / sizeof(T);
    1647      255444 :   for (int i = 0; i < kElems; i++) {
    1648      123840 :     WriteLittleEndianValue<T>(&src0[i], i);
    1649      123840 :     WriteLittleEndianValue<T>(&src1[i], kElems + i);
    1650             :   }
    1651        7764 :   if (simd_op == kExprS8x16Shuffle) {
    1652        7728 :     BUILD(r,
    1653             :           WASM_SET_GLOBAL(0, WASM_SIMD_S8x16_SHUFFLE_OP(simd_op, expected,
    1654             :                                                         WASM_GET_GLOBAL(0),
    1655             :                                                         WASM_GET_GLOBAL(1))),
    1656             :           WASM_ONE);
    1657             :   } else {
    1658          36 :     BUILD(r,
    1659             :           WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0),
    1660             :                                              WASM_GET_GLOBAL(1))),
    1661             :           WASM_ONE);
    1662             :   }
    1663             : 
    1664        7764 :   CHECK_EQ(1, r.Call());
    1665      255444 :   for (size_t i = 0; i < expected.size(); i++) {
    1666      123840 :     CHECK_EQ(ReadLittleEndianValue<T>(&src0[i]), expected[i]);
    1667             :   }
    1668        7764 : }
    1669             : 
    1670       26663 : WASM_SIMD_TEST(I32x4AddHoriz) {
    1671             :   // Inputs are [0 1 2 3] and [4 5 6 7].
    1672          24 :   RunBinaryLaneOpTest<int32_t>(execution_tier, lower_simd, kExprI32x4AddHoriz,
    1673          12 :                                {{1, 5, 9, 13}});
    1674           0 : }
    1675             : 
    1676       26687 : WASM_SIMD_TEST(I16x8AddHoriz) {
    1677             :   // Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15].
    1678          24 :   RunBinaryLaneOpTest<int16_t>(execution_tier, lower_simd, kExprI16x8AddHoriz,
    1679          12 :                                {{1, 5, 9, 13, 17, 21, 25, 29}});
    1680          12 : }
    1681             : 
    1682       26663 : WASM_SIMD_TEST(F32x4AddHoriz) {
    1683             :   // Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f].
    1684          24 :   RunBinaryLaneOpTest<float>(execution_tier, lower_simd, kExprF32x4AddHoriz,
    1685          12 :                              {{1.0f, 5.0f, 9.0f, 13.0f}});
    1686           0 : }
    1687             : 
    1688             : // Test shuffle ops.
    1689        1932 : void RunShuffleOpTest(ExecutionTier execution_tier, LowerSimd lower_simd,
    1690             :                       WasmOpcode simd_op,
    1691             :                       const std::array<int8_t, kSimd128Size>& shuffle) {
    1692             :   // Test the original shuffle.
    1693        1932 :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, shuffle);
    1694             : 
    1695             :   // Test a non-canonical (inputs reversed) version of the shuffle.
    1696        1932 :   std::array<int8_t, kSimd128Size> other_shuffle(shuffle);
    1697       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size;
    1698             :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
    1699        1932 :                               other_shuffle);
    1700             : 
    1701             :   // Test the swizzle (one-operand) version of the shuffle.
    1702        1932 :   std::array<int8_t, kSimd128Size> swizzle(shuffle);
    1703       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1);
    1704        1932 :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op, swizzle);
    1705             : 
    1706             :   // Test the non-canonical swizzle (one-operand) version of the shuffle.
    1707        1932 :   std::array<int8_t, kSimd128Size> other_swizzle(shuffle);
    1708       32844 :   for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size;
    1709             :   RunBinaryLaneOpTest<int8_t>(execution_tier, lower_simd, simd_op,
    1710        1932 :                               other_swizzle);
    1711        1932 : }
    1712             : 
    1713             : #define SHUFFLE_LIST(V)  \
    1714             :   V(S128Identity)        \
    1715             :   V(S32x4Dup)            \
    1716             :   V(S32x4ZipLeft)        \
    1717             :   V(S32x4ZipRight)       \
    1718             :   V(S32x4UnzipLeft)      \
    1719             :   V(S32x4UnzipRight)     \
    1720             :   V(S32x4TransposeLeft)  \
    1721             :   V(S32x4TransposeRight) \
    1722             :   V(S32x2Reverse)        \
    1723             :   V(S32x4Irregular)      \
    1724             :   V(S16x8Dup)            \
    1725             :   V(S16x8ZipLeft)        \
    1726             :   V(S16x8ZipRight)       \
    1727             :   V(S16x8UnzipLeft)      \
    1728             :   V(S16x8UnzipRight)     \
    1729             :   V(S16x8TransposeLeft)  \
    1730             :   V(S16x8TransposeRight) \
    1731             :   V(S16x4Reverse)        \
    1732             :   V(S16x2Reverse)        \
    1733             :   V(S16x8Irregular)      \
    1734             :   V(S8x16Dup)            \
    1735             :   V(S8x16ZipLeft)        \
    1736             :   V(S8x16ZipRight)       \
    1737             :   V(S8x16UnzipLeft)      \
    1738             :   V(S8x16UnzipRight)     \
    1739             :   V(S8x16TransposeLeft)  \
    1740             :   V(S8x16TransposeRight) \
    1741             :   V(S8x8Reverse)         \
    1742             :   V(S8x4Reverse)         \
    1743             :   V(S8x2Reverse)         \
    1744             :   V(S8x16Irregular)
    1745             : 
    1746             : enum ShuffleKey {
    1747             : #define SHUFFLE_ENUM_VALUE(Name) k##Name,
    1748             :   SHUFFLE_LIST(SHUFFLE_ENUM_VALUE)
    1749             : #undef SHUFFLE_ENUM_VALUE
    1750             :       kNumShuffleKeys
    1751             : };
    1752             : 
    1753             : using Shuffle = std::array<int8_t, kSimd128Size>;
    1754             : using ShuffleMap = std::map<ShuffleKey, const Shuffle>;
    1755             : 
    1756       26639 : ShuffleMap test_shuffles = {
    1757             :     {kS128Identity,
    1758             :      {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}},
    1759             :     {kS32x4Dup,
    1760             :      {{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}},
    1761             :     {kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}},
    1762             :     {kS32x4ZipRight,
    1763             :      {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}},
    1764             :     {kS32x4UnzipLeft,
    1765             :      {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}},
    1766             :     {kS32x4UnzipRight,
    1767             :      {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}},
    1768             :     {kS32x4TransposeLeft,
    1769             :      {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}},
    1770             :     {kS32x4TransposeRight,
    1771             :      {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}},
    1772             :     {kS32x2Reverse,  // swizzle only
    1773             :      {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}},
    1774             :     {kS32x4Irregular,
    1775             :      {{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}},
    1776             :     {kS16x8Dup,
    1777             :      {{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}},
    1778             :     {kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}},
    1779             :     {kS16x8ZipRight,
    1780             :      {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}},
    1781             :     {kS16x8UnzipLeft,
    1782             :      {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}},
    1783             :     {kS16x8UnzipRight,
    1784             :      {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}},
    1785             :     {kS16x8TransposeLeft,
    1786             :      {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}},
    1787             :     {kS16x8TransposeRight,
    1788             :      {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}},
    1789             :     {kS16x4Reverse,  // swizzle only
    1790             :      {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}},
    1791             :     {kS16x2Reverse,  // swizzle only
    1792             :      {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}},
    1793             :     {kS16x8Irregular,
    1794             :      {{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}},
    1795             :     {kS8x16Dup,
    1796             :      {{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}},
    1797             :     {kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
    1798             :     {kS8x16ZipRight,
    1799             :      {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}},
    1800             :     {kS8x16UnzipLeft,
    1801             :      {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}},
    1802             :     {kS8x16UnzipRight,
    1803             :      {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}},
    1804             :     {kS8x16TransposeLeft,
    1805             :      {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}},
    1806             :     {kS8x16TransposeRight,
    1807             :      {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}},
    1808             :     {kS8x8Reverse,  // swizzle only
    1809             :      {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}},
    1810             :     {kS8x4Reverse,  // swizzle only
    1811             :      {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}},
    1812             :     {kS8x2Reverse,  // swizzle only
    1813             :      {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}},
    1814             :     {kS8x16Irregular,
    1815             :      {{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}},
    1816             : };
    1817             : 
    1818             : #define SHUFFLE_TEST(Name)                                          \
    1819             :   WASM_SIMD_TEST(Name) {                                            \
    1820             :     ShuffleMap::const_iterator it = test_shuffles.find(k##Name);    \
    1821             :     DCHECK_NE(it, test_shuffles.end());                             \
    1822             :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, \
    1823             :                      it->second);                                   \
    1824             :   }
    1825       28499 : SHUFFLE_LIST(SHUFFLE_TEST)
    1826             : #undef SHUFFLE_TEST
    1827             : #undef SHUFFLE_LIST
    1828             : 
    1829             : // Test shuffles that blend the two vectors (elements remain in their lanes.)
    1830       26687 : WASM_SIMD_TEST(S8x16Blend) {
    1831             :   std::array<int8_t, kSimd128Size> expected;
    1832         372 :   for (int bias = 1; bias < kSimd128Size; bias++) {
    1833        1620 :     for (int i = 0; i < bias; i++) expected[i] = i;
    1834        1620 :     for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size;
    1835         180 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected);
    1836             :   }
    1837          12 : }
    1838             : 
    1839             : // Test shuffles that concatenate the two vectors.
    1840       26687 : WASM_SIMD_TEST(S8x16Concat) {
    1841             :   std::array<int8_t, kSimd128Size> expected;
    1842             :   // n is offset or bias of concatenation.
    1843         372 :   for (int n = 1; n < kSimd128Size; ++n) {
    1844             :     int i = 0;
    1845             :     // last kLanes - n bytes of first vector.
    1846        3060 :     for (int j = n; j < kSimd128Size; ++j) {
    1847        1440 :       expected[i++] = j;
    1848             :     }
    1849             :     // first n bytes of second vector
    1850        3060 :     for (int j = 0; j < n; ++j) {
    1851        1440 :       expected[i++] = j + kSimd128Size;
    1852             :     }
    1853         180 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected);
    1854             :   }
    1855          12 : }
    1856             : 
    1857             : // Combine 3 shuffles a, b, and c by applying both a and b and then applying c
    1858             : // to those two results.
    1859           0 : Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) {
    1860             :   Shuffle result;
    1861       39600 :   for (int i = 0; i < kSimd128Size; ++i) {
    1862       19200 :     result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size];
    1863             :   }
    1864        1200 :   return result;
    1865             : }
    1866             : 
    1867       11680 : const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) {
    1868       11680 :   return test_shuffles[static_cast<ShuffleKey>(rng->NextInt(kNumShuffleKeys))];
    1869             : }
    1870             : 
    1871             : // Test shuffles that are random combinations of 3 test shuffles. Completely
    1872             : // random shuffles almost always generate the slow general shuffle code, so
    1873             : // don't exercise as many code paths.
    1874       26687 : WASM_SIMD_TEST(S8x16ShuffleFuzz) {
    1875          12 :   v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
    1876             :   static const int kTests = 100;
    1877        2412 :   for (int i = 0; i < kTests; ++i) {
    1878        1200 :     auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng),
    1879        2400 :                            GetRandomTestShuffle(rng));
    1880        1200 :     RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, shuffle);
    1881             :   }
    1882          12 : }
    1883             : 
    1884        8080 : void AppendShuffle(const Shuffle& shuffle, std::vector<byte>* buffer) {
    1885        8080 :   byte opcode[] = {WASM_SIMD_OP(kExprS8x16Shuffle)};
    1886       24240 :   for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]);
    1887      266640 :   for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i]));
    1888        8080 : }
    1889             : 
    1890         800 : void BuildShuffle(std::vector<Shuffle>& shuffles, std::vector<byte>* buffer) {
    1891             :   // Perform the leaf shuffles on globals 0 and 1.
    1892         800 :   size_t row_index = (shuffles.size() - 1) / 2;
    1893        9680 :   for (size_t i = row_index; i < shuffles.size(); ++i) {
    1894        4440 :     byte operands[] = {WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1)};
    1895       39960 :     for (size_t j = 0; j < arraysize(operands); ++j)
    1896       17760 :       buffer->push_back(operands[j]);
    1897        4440 :     AppendShuffle(shuffles[i], buffer);
    1898             :   }
    1899             :   // Now perform inner shuffles in the correct order on operands on the stack.
    1900             :   do {
    1901        5704 :     for (size_t i = row_index / 2; i < row_index; ++i) {
    1902        3640 :       AppendShuffle(shuffles[i], buffer);
    1903             :     }
    1904             :     row_index /= 2;
    1905        2064 :   } while (row_index != 0);
    1906         800 :   byte epilog[] = {kExprSetGlobal, static_cast<byte>(0), WASM_ONE};
    1907        4000 :   for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]);
    1908         800 : }
    1909             : 
    1910        1600 : void RunWasmCode(ExecutionTier execution_tier, LowerSimd lower_simd,
    1911             :                  const std::vector<byte>& code,
    1912             :                  std::array<int8_t, kSimd128Size>* result) {
    1913        1600 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    1914             :   // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7].
    1915             :   int8_t* src0 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1916             :   int8_t* src1 = r.builder().AddGlobal<int8_t>(kWasmS128);
    1917       52800 :   for (int i = 0; i < kSimd128Size; ++i) {
    1918       25600 :     WriteLittleEndianValue<int8_t>(&src0[i], i);
    1919       25600 :     WriteLittleEndianValue<int8_t>(&src1[i], kSimd128Size + i);
    1920             :   }
    1921        1600 :   r.Build(code.data(), code.data() + code.size());
    1922        1600 :   CHECK_EQ(1, r.Call());
    1923       52800 :   for (size_t i = 0; i < kSimd128Size; i++) {
    1924       25600 :     (*result)[i] = ReadLittleEndianValue<int8_t>(&src0[i]);
    1925             :   }
    1926        1600 : }
    1927             : 
    1928             : // Test multiple shuffles executed in sequence.
    1929       26671 : WASM_SIMD_COMPILED_TEST(S8x16MultiShuffleFuzz) {
    1930           8 :   v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator();
    1931             :   static const int kShuffles = 100;
    1932        1608 :   for (int i = 0; i < kShuffles; ++i) {
    1933             :     // Create an odd number in [3..23] of random test shuffles so we can build
    1934             :     // a complete binary tree (stored as a heap) of shuffle operations. The leaf
    1935             :     // shuffles operate on the test pattern inputs, while the interior shuffles
    1936             :     // operate on the results of the two child shuffles.
    1937         800 :     int num_shuffles = rng->NextInt(10) * 2 + 3;
    1938             :     std::vector<Shuffle> shuffles;
    1939       16960 :     for (int j = 0; j < num_shuffles; ++j) {
    1940        8080 :       shuffles.push_back(GetRandomTestShuffle(rng));
    1941             :     }
    1942             :     // Generate the code for the shuffle expression.
    1943             :     std::vector<byte> buffer;
    1944         800 :     BuildShuffle(shuffles, &buffer);
    1945             : 
    1946             :     // Run the code using the interpreter to get the expected result.
    1947             :     std::array<int8_t, kSimd128Size> expected;
    1948         800 :     RunWasmCode(ExecutionTier::kInterpreter, kNoLowerSimd, buffer, &expected);
    1949             :     // Run the SIMD or scalar lowered compiled code and compare results.
    1950             :     std::array<int8_t, kSimd128Size> result;
    1951         800 :     RunWasmCode(execution_tier, lower_simd, buffer, &result);
    1952       26400 :     for (size_t i = 0; i < kSimd128Size; ++i) {
    1953       12800 :       CHECK_EQ(result[i], expected[i]);
    1954             :     }
    1955             :   }
    1956           8 : }
    1957             : 
    1958             : // Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer
    1959             : // result. Use relational ops on numeric vectors to create the boolean vector
    1960             : // test inputs. Test inputs with all true, all false, one true, and one false.
    1961             : #define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes)                           \
    1962             :   WASM_SIMD_TEST(ReductionTest##lanes) {                                       \
    1963             :     WasmRunner<int32_t> r(execution_tier, lower_simd);                         \
    1964             :     byte zero = r.AllocateLocal(kWasmS128);                                    \
    1965             :     byte one_one = r.AllocateLocal(kWasmS128);                                 \
    1966             :     byte reduced = r.AllocateLocal(kWasmI32);                                  \
    1967             :     BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)),     \
    1968             :           WASM_SET_LOCAL(                                                      \
    1969             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1970             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1971             :                                                       WASM_GET_LOCAL(zero),    \
    1972             :                                                       WASM_GET_LOCAL(zero)))), \
    1973             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1974             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1975             :           WASM_SET_LOCAL(                                                      \
    1976             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    1977             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1978             :                                                       WASM_GET_LOCAL(zero),    \
    1979             :                                                       WASM_GET_LOCAL(zero)))), \
    1980             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1981             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1982             :           WASM_SET_LOCAL(                                                      \
    1983             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1984             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    1985             :                                                       WASM_GET_LOCAL(zero),    \
    1986             :                                                       WASM_GET_LOCAL(zero)))), \
    1987             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1988             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1989             :           WASM_SET_LOCAL(                                                      \
    1990             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    1991             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    1992             :                                                       WASM_GET_LOCAL(zero),    \
    1993             :                                                       WASM_GET_LOCAL(zero)))), \
    1994             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    1995             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    1996             :           WASM_SET_LOCAL(one_one,                                              \
    1997             :                          WASM_SIMD_I##format##_REPLACE_LANE(                   \
    1998             :                              lanes - 1, WASM_GET_LOCAL(zero), WASM_ONE)),      \
    1999             :           WASM_SET_LOCAL(                                                      \
    2000             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    2001             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    2002             :                                                       WASM_GET_LOCAL(one_one), \
    2003             :                                                       WASM_GET_LOCAL(zero)))), \
    2004             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    2005             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    2006             :           WASM_SET_LOCAL(                                                      \
    2007             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue,                \
    2008             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    2009             :                                                       WASM_GET_LOCAL(one_one), \
    2010             :                                                       WASM_GET_LOCAL(zero)))), \
    2011             :           WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    2012             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    2013             :           WASM_SET_LOCAL(                                                      \
    2014             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    2015             :                                       WASM_SIMD_BINOP(kExprI##format##Eq,      \
    2016             :                                                       WASM_GET_LOCAL(one_one), \
    2017             :                                                       WASM_GET_LOCAL(zero)))), \
    2018             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    2019             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    2020             :           WASM_SET_LOCAL(                                                      \
    2021             :               reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue,                \
    2022             :                                       WASM_SIMD_BINOP(kExprI##format##Ne,      \
    2023             :                                                       WASM_GET_LOCAL(one_one), \
    2024             :                                                       WASM_GET_LOCAL(zero)))), \
    2025             :           WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO),             \
    2026             :                   WASM_RETURN1(WASM_ZERO)),                                    \
    2027             :           WASM_ONE);                                                           \
    2028             :     CHECK_EQ(1, r.Call());                                                     \
    2029             :   }
    2030             : 
    2031       26699 : WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4)
    2032       26699 : WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8)
    2033       26699 : WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16)
    2034             : 
    2035       26687 : WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) {
    2036          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2037          12 :   BUILD(r, WASM_IF_ELSE_I(
    2038             :                WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE(
    2039             :                                0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))),
    2040             :                            WASM_I32_REINTERPRET_F32(WASM_F32(30.5))),
    2041             :                WASM_I32V(1), WASM_I32V(0)));
    2042          12 :   CHECK_EQ(1, r.Call());
    2043          12 : }
    2044             : 
    2045       26687 : WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) {
    2046          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2047          12 :   BUILD(r,
    2048             :         WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE(
    2049             :                                        0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))),
    2050             :                                    WASM_F32_REINTERPRET_I32(WASM_I32V(15))),
    2051             :                        WASM_I32V(1), WASM_I32V(0)));
    2052          12 :   CHECK_EQ(1, r.Call());
    2053          12 : }
    2054             : 
    2055       26687 : WASM_SIMD_TEST(SimdF32x4AddWithI32x4) {
    2056             :   // Choose two floating point values whose sum is normal and exactly
    2057             :   // representable as a float.
    2058             :   const int kOne = 0x3F800000;
    2059             :   const int kTwo = 0x40000000;
    2060          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2061          12 :   BUILD(r,
    2062             :         WASM_IF_ELSE_I(
    2063             :             WASM_F32_EQ(
    2064             :                 WASM_SIMD_F32x4_EXTRACT_LANE(
    2065             :                     0, WASM_SIMD_BINOP(kExprF32x4Add,
    2066             :                                        WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)),
    2067             :                                        WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))),
    2068             :                 WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)),
    2069             :                              WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))),
    2070             :             WASM_I32V(1), WASM_I32V(0)));
    2071          12 :   CHECK_EQ(1, r.Call());
    2072          12 : }
    2073             : 
    2074       26687 : WASM_SIMD_TEST(SimdI32x4AddWithF32x4) {
    2075          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2076          12 :   BUILD(r,
    2077             :         WASM_IF_ELSE_I(
    2078             :             WASM_I32_EQ(
    2079             :                 WASM_SIMD_I32x4_EXTRACT_LANE(
    2080             :                     0, WASM_SIMD_BINOP(kExprI32x4Add,
    2081             :                                        WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)),
    2082             :                                        WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))),
    2083             :                 WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)),
    2084             :                              WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))),
    2085             :             WASM_I32V(1), WASM_I32V(0)));
    2086          12 :   CHECK_EQ(1, r.Call());
    2087          12 : }
    2088             : 
    2089       26687 : WASM_SIMD_TEST(SimdI32x4Local) {
    2090          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2091             :   r.AllocateLocal(kWasmS128);
    2092          12 :   BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
    2093             : 
    2094             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0)));
    2095          12 :   CHECK_EQ(31, r.Call());
    2096          12 : }
    2097             : 
    2098       26687 : WASM_SIMD_TEST(SimdI32x4SplatFromExtract) {
    2099          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2100             :   r.AllocateLocal(kWasmI32);
    2101             :   r.AllocateLocal(kWasmS128);
    2102          12 :   BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE(
    2103             :                                  0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))),
    2104             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))),
    2105             :         WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)));
    2106          12 :   CHECK_EQ(76, r.Call());
    2107          12 : }
    2108             : 
    2109       26687 : WASM_SIMD_TEST(SimdI32x4For) {
    2110          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2111             :   r.AllocateLocal(kWasmI32);
    2112             :   r.AllocateLocal(kWasmS128);
    2113          12 :   BUILD(r,
    2114             : 
    2115             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))),
    2116             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1),
    2117             :                                                        WASM_I32V(53))),
    2118             :         WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1),
    2119             :                                                        WASM_I32V(23))),
    2120             :         WASM_SET_LOCAL(0, WASM_I32V(0)),
    2121             :         WASM_LOOP(
    2122             :             WASM_SET_LOCAL(
    2123             :                 1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1),
    2124             :                                    WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))),
    2125             :             WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))),
    2126             :         WASM_SET_LOCAL(0, WASM_I32V(1)),
    2127             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
    2128             :                             WASM_I32V(36)),
    2129             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2130             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)),
    2131             :                             WASM_I32V(58)),
    2132             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2133             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)),
    2134             :                             WASM_I32V(28)),
    2135             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2136             :         WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
    2137             :                             WASM_I32V(36)),
    2138             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2139             :         WASM_GET_LOCAL(0));
    2140          12 :   CHECK_EQ(1, r.Call());
    2141          12 : }
    2142             : 
    2143       26687 : WASM_SIMD_TEST(SimdF32x4For) {
    2144          12 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2145             :   r.AllocateLocal(kWasmI32);
    2146             :   r.AllocateLocal(kWasmS128);
    2147          12 :   BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))),
    2148             :         WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1),
    2149             :                                                        WASM_F32(19.5))),
    2150             :         WASM_SET_LOCAL(0, WASM_I32V(0)),
    2151             :         WASM_LOOP(
    2152             :             WASM_SET_LOCAL(
    2153             :                 1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1),
    2154             :                                    WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))),
    2155             :             WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))),
    2156             :         WASM_SET_LOCAL(0, WASM_I32V(1)),
    2157             :         WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)),
    2158             :                             WASM_F32(27.25)),
    2159             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2160             :         WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)),
    2161             :                             WASM_F32(25.5)),
    2162             :                 WASM_SET_LOCAL(0, WASM_I32V(0))),
    2163             :         WASM_GET_LOCAL(0));
    2164          12 :   CHECK_EQ(1, r.Call());
    2165          12 : }
    2166             : 
    2167             : template <typename T, int numLanes = 4>
    2168          24 : void SetVectorByLanes(T* v, const std::array<T, numLanes>& arr) {
    2169         216 :   for (int lane = 0; lane < numLanes; lane++) {
    2170          96 :     WriteLittleEndianValue<T>(&v[lane], arr[lane]);
    2171             :   }
    2172          24 : }
    2173             : 
    2174             : template <typename T>
    2175             : const T GetScalar(T* v, int lane) {
    2176             :   constexpr int kElems = kSimd128Size / sizeof(T);
    2177             :   const int index = lane;
    2178             :   USE(kElems);
    2179             :   DCHECK(index >= 0 && index < kElems);
    2180             :   return ReadLittleEndianValue<T>(&v[index]);
    2181             : }
    2182             : 
    2183       26687 : WASM_SIMD_TEST(SimdI32x4GetGlobal) {
    2184          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2185             :   // Pad the globals with a few unused slots to get a non-zero offset.
    2186             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2187             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2188             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2189             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2190             :   int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
    2191          12 :   SetVectorByLanes(global, {{0, 1, 2, 3}});
    2192             :   r.AllocateLocal(kWasmI32);
    2193          12 :   BUILD(
    2194             :       r, WASM_SET_LOCAL(1, WASM_I32V(1)),
    2195             :       WASM_IF(WASM_I32_NE(WASM_I32V(0),
    2196             :                           WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(4))),
    2197             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2198             :       WASM_IF(WASM_I32_NE(WASM_I32V(1),
    2199             :                           WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(4))),
    2200             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2201             :       WASM_IF(WASM_I32_NE(WASM_I32V(2),
    2202             :                           WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(4))),
    2203             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2204             :       WASM_IF(WASM_I32_NE(WASM_I32V(3),
    2205             :                           WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(4))),
    2206             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2207             :       WASM_GET_LOCAL(1));
    2208          12 :   CHECK_EQ(1, r.Call(0));
    2209          12 : }
    2210             : 
    2211       26687 : WASM_SIMD_TEST(SimdI32x4SetGlobal) {
    2212          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2213             :   // Pad the globals with a few unused slots to get a non-zero offset.
    2214             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2215             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2216             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2217             :   r.builder().AddGlobal<int32_t>(kWasmI32);  // purposefully unused
    2218             :   int32_t* global = r.builder().AddGlobal<int32_t>(kWasmS128);
    2219          12 :   BUILD(r, WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))),
    2220             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(4),
    2221             :                                                         WASM_I32V(34))),
    2222             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(4),
    2223             :                                                         WASM_I32V(45))),
    2224             :         WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(4),
    2225             :                                                         WASM_I32V(56))),
    2226             :         WASM_I32V(1));
    2227          12 :   CHECK_EQ(1, r.Call(0));
    2228          12 :   CHECK_EQ(GetScalar(global, 0), 23);
    2229          12 :   CHECK_EQ(GetScalar(global, 1), 34);
    2230          12 :   CHECK_EQ(GetScalar(global, 2), 45);
    2231          12 :   CHECK_EQ(GetScalar(global, 3), 56);
    2232          12 : }
    2233             : 
    2234       26687 : WASM_SIMD_TEST(SimdF32x4GetGlobal) {
    2235          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2236             :   float* global = r.builder().AddGlobal<float>(kWasmS128);
    2237          12 :   SetVectorByLanes<float>(global, {{0.0, 1.5, 2.25, 3.5}});
    2238             :   r.AllocateLocal(kWasmI32);
    2239          12 :   BUILD(
    2240             :       r, WASM_SET_LOCAL(1, WASM_I32V(1)),
    2241             :       WASM_IF(WASM_F32_NE(WASM_F32(0.0),
    2242             :                           WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))),
    2243             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2244             :       WASM_IF(WASM_F32_NE(WASM_F32(1.5),
    2245             :                           WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))),
    2246             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2247             :       WASM_IF(WASM_F32_NE(WASM_F32(2.25),
    2248             :                           WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))),
    2249             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2250             :       WASM_IF(WASM_F32_NE(WASM_F32(3.5),
    2251             :                           WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))),
    2252             :               WASM_SET_LOCAL(1, WASM_I32V(0))),
    2253             :       WASM_GET_LOCAL(1));
    2254          12 :   CHECK_EQ(1, r.Call(0));
    2255          12 : }
    2256             : 
    2257       26687 : WASM_SIMD_TEST(SimdF32x4SetGlobal) {
    2258          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2259             :   float* global = r.builder().AddGlobal<float>(kWasmS128);
    2260          12 :   BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))),
    2261             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0),
    2262             :                                                         WASM_F32(45.5))),
    2263             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0),
    2264             :                                                         WASM_F32(32.25))),
    2265             :         WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0),
    2266             :                                                         WASM_F32(65.0))),
    2267             :         WASM_I32V(1));
    2268          12 :   CHECK_EQ(1, r.Call(0));
    2269          12 :   CHECK_EQ(GetScalar(global, 0), 13.5f);
    2270          12 :   CHECK_EQ(GetScalar(global, 1), 45.5f);
    2271          12 :   CHECK_EQ(GetScalar(global, 2), 32.25f);
    2272          12 :   CHECK_EQ(GetScalar(global, 3), 65.0f);
    2273          12 : }
    2274             : 
    2275       26671 : WASM_SIMD_COMPILED_TEST(SimdLoadStoreLoad) {
    2276           8 :   WasmRunner<int32_t> r(execution_tier, lower_simd);
    2277             :   int32_t* memory =
    2278             :       r.builder().AddMemoryElems<int32_t>(kWasmPageSize / sizeof(int32_t));
    2279             :   // Load memory, store it, then reload it and extract the first lane. Use a
    2280             :   // non-zero offset into the memory of 1 lane (4 bytes) to test indexing.
    2281           8 :   BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(4), WASM_SIMD_LOAD_MEM(WASM_I32V(4))),
    2282             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(4))));
    2283             : 
    2284         936 :   FOR_INT32_INPUTS(i) {
    2285             :     int32_t expected = i;
    2286         464 :     r.builder().WriteMemory(&memory[1], expected);
    2287         464 :     CHECK_EQ(expected, r.Call());
    2288             :   }
    2289           8 : }
    2290             : 
    2291             : #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
    2292             : // V8:8665 - Tracking bug to enable reduction tests in the interpreter,
    2293             : // and for SIMD lowering.
    2294             : // TODO(gdeepti): Enable these tests for ARM/ARM64
    2295             : #define WASM_SIMD_ANYTRUE_TEST(format, lanes, max)                            \
    2296             :   WASM_SIMD_TEST_NO_LOWERING(S##format##AnyTrue) {                            \
    2297             :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);               \
    2298             :     byte simd = r.AllocateLocal(kWasmS128);                                   \
    2299             :     BUILD(                                                                    \
    2300             :         r,                                                                    \
    2301             :         WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
    2302             :         WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, WASM_GET_LOCAL(simd)));      \
    2303             :     DCHECK_EQ(1, r.Call(max));                                                \
    2304             :     DCHECK_EQ(1, r.Call(5));                                                  \
    2305             :     DCHECK_EQ(0, r.Call(0));                                                  \
    2306             :   }
    2307       26679 : WASM_SIMD_ANYTRUE_TEST(32x4, 4, 0xffffffff)
    2308       26679 : WASM_SIMD_ANYTRUE_TEST(16x8, 8, 0xffff)
    2309       26679 : WASM_SIMD_ANYTRUE_TEST(8x16, 16, 0xff)
    2310             : 
    2311             : #define WASM_SIMD_ALLTRUE_TEST(format, lanes, max)                            \
    2312             :   WASM_SIMD_TEST_NO_LOWERING(S##format##AllTrue) {                            \
    2313             :     WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);               \
    2314             :     byte simd = r.AllocateLocal(kWasmS128);                                   \
    2315             :     BUILD(                                                                    \
    2316             :         r,                                                                    \
    2317             :         WASM_SET_LOCAL(simd, WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(0))), \
    2318             :         WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, WASM_GET_LOCAL(simd)));      \
    2319             :     DCHECK_EQ(1, r.Call(max));                                                \
    2320             :     DCHECK_EQ(0, r.Call(0));                                                  \
    2321             :   }
    2322       26679 : WASM_SIMD_ALLTRUE_TEST(32x4, 4, 0xffffffff)
    2323       26679 : WASM_SIMD_ALLTRUE_TEST(16x8, 8, 0xffff)
    2324       26679 : WASM_SIMD_ALLTRUE_TEST(8x16, 16, 0xff)
    2325             : #endif  // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
    2326             : 
    2327       26687 : WASM_SIMD_TEST(BitSelect) {
    2328          12 :   WasmRunner<int32_t, int32_t> r(execution_tier, lower_simd);
    2329             :   byte simd = r.AllocateLocal(kWasmS128);
    2330          12 :   BUILD(r,
    2331             :         WASM_SET_LOCAL(
    2332             :             simd,
    2333             :             WASM_SIMD_SELECT(32x4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(0x01020304)),
    2334             :                              WASM_SIMD_I32x4_SPLAT(WASM_I32V(0)),
    2335             :                              WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0)))),
    2336             :         WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(simd)));
    2337             :   DCHECK_EQ(0x01020304, r.Call(0xFFFFFFFF));
    2338          12 : }
    2339             : 
    2340          32 : void RunI8x16MixedRelationalOpTest(ExecutionTier execution_tier,
    2341             :                                    LowerSimd lower_simd, WasmOpcode opcode,
    2342             :                                    Int8BinOp expected_op) {
    2343          32 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    2344             :   byte value1 = 0, value2 = 1;
    2345             :   byte temp1 = r.AllocateLocal(kWasmS128);
    2346             :   byte temp2 = r.AllocateLocal(kWasmS128);
    2347             :   byte temp3 = r.AllocateLocal(kWasmS128);
    2348          32 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(value1))),
    2349             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value2))),
    2350             :         WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    2351             :                                               WASM_GET_LOCAL(temp2))),
    2352             :         WASM_SIMD_I8x16_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3)));
    2353             : 
    2354             :   DCHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7fff)),
    2355             :             r.Call(0xff, 0x7fff));
    2356             :   DCHECK_EQ(expected_op(0xfe, static_cast<uint8_t>(0x7fff)),
    2357             :             r.Call(0xfe, 0x7fff));
    2358             :   DCHECK_EQ(expected_op(0xff, static_cast<uint8_t>(0x7ffe)),
    2359             :             r.Call(0xff, 0x7ffe));
    2360          32 : }
    2361             : 
    2362       26655 : WASM_SIMD_TEST_NO_LOWERING(I8x16LeUMixed) {
    2363           0 :   RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LeU,
    2364           8 :                                 UnsignedLessEqual);
    2365           0 : }
    2366       26655 : WASM_SIMD_TEST_NO_LOWERING(I8x16LtUMixed) {
    2367           0 :   RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16LtU,
    2368           8 :                                 UnsignedLess);
    2369           0 : }
    2370       26655 : WASM_SIMD_TEST_NO_LOWERING(I8x16GeUMixed) {
    2371           0 :   RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GeU,
    2372           8 :                                 UnsignedGreaterEqual);
    2373           0 : }
    2374       26655 : WASM_SIMD_TEST_NO_LOWERING(I8x16GtUMixed) {
    2375           0 :   RunI8x16MixedRelationalOpTest(execution_tier, lower_simd, kExprI8x16GtU,
    2376           8 :                                 UnsignedGreater);
    2377           0 : }
    2378             : 
    2379          32 : void RunI16x8MixedRelationalOpTest(ExecutionTier execution_tier,
    2380             :                                    LowerSimd lower_simd, WasmOpcode opcode,
    2381             :                                    Int16BinOp expected_op) {
    2382          32 :   WasmRunner<int32_t, int32_t, int32_t> r(execution_tier, lower_simd);
    2383             :   byte value1 = 0, value2 = 1;
    2384             :   byte temp1 = r.AllocateLocal(kWasmS128);
    2385             :   byte temp2 = r.AllocateLocal(kWasmS128);
    2386             :   byte temp3 = r.AllocateLocal(kWasmS128);
    2387          32 :   BUILD(r, WASM_SET_LOCAL(temp1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(value1))),
    2388             :         WASM_SET_LOCAL(temp2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(value2))),
    2389             :         WASM_SET_LOCAL(temp3, WASM_SIMD_BINOP(opcode, WASM_GET_LOCAL(temp1),
    2390             :                                               WASM_GET_LOCAL(temp2))),
    2391             :         WASM_SIMD_I16x8_EXTRACT_LANE(0, WASM_GET_LOCAL(temp3)));
    2392             : 
    2393             :   DCHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7fffffff)),
    2394             :             r.Call(0xffff, 0x7fffffff));
    2395             :   DCHECK_EQ(expected_op(0xfeff, static_cast<uint16_t>(0x7fffffff)),
    2396             :             r.Call(0xfeff, 0x7fffffff));
    2397             :   DCHECK_EQ(expected_op(0xffff, static_cast<uint16_t>(0x7ffffeff)),
    2398             :             r.Call(0xffff, 0x7ffffeff));
    2399          32 : }
    2400             : 
    2401       26655 : WASM_SIMD_TEST_NO_LOWERING(I16x8LeUMixed) {
    2402           0 :   RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LeU,
    2403           8 :                                 UnsignedLessEqual);
    2404           0 : }
    2405       26655 : WASM_SIMD_TEST_NO_LOWERING(I16x8LtUMixed) {
    2406           0 :   RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8LtU,
    2407           8 :                                 UnsignedLess);
    2408           0 : }
    2409       26655 : WASM_SIMD_TEST_NO_LOWERING(I16x8GeUMixed) {
    2410           0 :   RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GeU,
    2411           8 :                                 UnsignedGreaterEqual);
    2412           0 : }
    2413       26655 : WASM_SIMD_TEST_NO_LOWERING(I16x8GtUMixed) {
    2414           0 :   RunI16x8MixedRelationalOpTest(execution_tier, lower_simd, kExprI16x8GtU,
    2415           8 :                                 UnsignedGreater);
    2416           0 : }
    2417             : 
    2418             : #undef WASM_SIMD_TEST
    2419             : #undef WASM_SIMD_CHECK_LANE
    2420             : #undef TO_BYTE
    2421             : #undef WASM_SIMD_OP
    2422             : #undef WASM_SIMD_SPLAT
    2423             : #undef WASM_SIMD_UNOP
    2424             : #undef WASM_SIMD_BINOP
    2425             : #undef WASM_SIMD_SHIFT_OP
    2426             : #undef WASM_SIMD_CONCAT_OP
    2427             : #undef WASM_SIMD_SELECT
    2428             : #undef WASM_SIMD_F32x4_SPLAT
    2429             : #undef WASM_SIMD_F32x4_EXTRACT_LANE
    2430             : #undef WASM_SIMD_F32x4_REPLACE_LANE
    2431             : #undef WASM_SIMD_I32x4_SPLAT
    2432             : #undef WASM_SIMD_I32x4_EXTRACT_LANE
    2433             : #undef WASM_SIMD_I32x4_REPLACE_LANE
    2434             : #undef WASM_SIMD_I16x8_SPLAT
    2435             : #undef WASM_SIMD_I16x8_EXTRACT_LANE
    2436             : #undef WASM_SIMD_I16x8_REPLACE_LANE
    2437             : #undef WASM_SIMD_I8x16_SPLAT
    2438             : #undef WASM_SIMD_I8x16_EXTRACT_LANE
    2439             : #undef WASM_SIMD_I8x16_REPLACE_LANE
    2440             : #undef WASM_SIMD_S8x16_SHUFFLE_OP
    2441             : #undef WASM_SIMD_LOAD_MEM
    2442             : #undef WASM_SIMD_STORE_MEM
    2443             : #undef WASM_SIMD_SELECT_TEST
    2444             : #undef WASM_SIMD_NON_CANONICAL_SELECT_TEST
    2445             : #undef WASM_SIMD_COMPILED_TEST
    2446             : #undef WASM_SIMD_BOOL_REDUCTION_TEST
    2447             : #undef WASM_SIMD_TEST_NO_LOWERING
    2448             : #undef WASM_SIMD_ANYTRUE_TEST
    2449             : #undef WASM_SIMD_ALLTRUE_TEST
    2450             : 
    2451             : }  // namespace test_run_wasm_simd
    2452             : }  // namespace wasm
    2453             : }  // namespace internal
    2454       79917 : }  // namespace v8

Generated by: LCOV version 1.10