Line data Source code
1 : // Copyright 2016 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_CODE_STUB_ASSEMBLER_H_
6 : #define V8_CODE_STUB_ASSEMBLER_H_
7 :
8 : #include <functional>
9 :
10 : #include "src/bailout-reason.h"
11 : #include "src/base/macros.h"
12 : #include "src/compiler/code-assembler.h"
13 : #include "src/frames.h"
14 : #include "src/globals.h"
15 : #include "src/message-template.h"
16 : #include "src/objects.h"
17 : #include "src/objects/arguments.h"
18 : #include "src/objects/bigint.h"
19 : #include "src/objects/shared-function-info.h"
20 : #include "src/objects/smi.h"
21 : #include "src/roots.h"
22 :
23 : #include "torque-generated/builtins-base-from-dsl-gen.h"
24 :
25 : namespace v8 {
26 : namespace internal {
27 :
28 : class CallInterfaceDescriptor;
29 : class CodeStubArguments;
30 : class CodeStubAssembler;
31 : class StatsCounter;
32 : class StubCache;
33 :
34 : enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
35 :
36 : #define HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
37 : V(ArraySpeciesProtector, array_species_protector, ArraySpeciesProtector) \
38 : V(PromiseSpeciesProtector, promise_species_protector, \
39 : PromiseSpeciesProtector) \
40 : V(TypedArraySpeciesProtector, typed_array_species_protector, \
41 : TypedArraySpeciesProtector) \
42 : V(RegExpSpeciesProtector, regexp_species_protector, RegExpSpeciesProtector)
43 :
44 : #define HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V) \
45 : V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \
46 : V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \
47 : V(AllocationSiteWithWeakNextMap, allocation_site_map, AllocationSiteMap) \
48 : V(AllocationSiteWithoutWeakNextMap, allocation_site_without_weaknext_map, \
49 : AllocationSiteWithoutWeakNextMap) \
50 : V(BooleanMap, boolean_map, BooleanMap) \
51 : V(CodeMap, code_map, CodeMap) \
52 : V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
53 : V(EmptyPropertyDictionary, empty_property_dictionary, \
54 : EmptyPropertyDictionary) \
55 : V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
56 : EmptySlowElementDictionary) \
57 : V(empty_string, empty_string, EmptyString) \
58 : V(FalseValue, false_value, False) \
59 : V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \
60 : V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
61 : V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
62 : V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \
63 : V(FunctionTemplateInfoMap, function_template_info_map, \
64 : FunctionTemplateInfoMap) \
65 : V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
66 : V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
67 : V(HeapNumberMap, heap_number_map, HeapNumberMap) \
68 : V(iterator_symbol, iterator_symbol, IteratorSymbol) \
69 : V(length_string, length_string, LengthString) \
70 : V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
71 : V(MetaMap, meta_map, MetaMap) \
72 : V(MinusZeroValue, minus_zero_value, MinusZero) \
73 : V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \
74 : V(NanValue, nan_value, Nan) \
75 : V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
76 : V(NoFeedbackCellMap, no_feedback_cell_map, NoFeedbackCellMap) \
77 : V(NullValue, null_value, Null) \
78 : V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
79 : V(PreparseDataMap, preparse_data_map, PreparseDataMap) \
80 : V(prototype_string, prototype_string, PrototypeString) \
81 : V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap) \
82 : V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
83 : V(SymbolMap, symbol_map, SymbolMap) \
84 : V(TheHoleValue, the_hole_value, TheHole) \
85 : V(TransitionArrayMap, transition_array_map, TransitionArrayMap) \
86 : V(TrueValue, true_value, True) \
87 : V(Tuple2Map, tuple2_map, Tuple2Map) \
88 : V(Tuple3Map, tuple3_map, Tuple3Map) \
89 : V(ArrayBoilerplateDescriptionMap, array_boilerplate_description_map, \
90 : ArrayBoilerplateDescriptionMap) \
91 : V(UncompiledDataWithoutPreparseDataMap, \
92 : uncompiled_data_without_preparse_data_map, \
93 : UncompiledDataWithoutPreparseDataMap) \
94 : V(UncompiledDataWithPreparseDataMap, uncompiled_data_with_preparse_data_map, \
95 : UncompiledDataWithPreparseDataMap) \
96 : V(UndefinedValue, undefined_value, Undefined) \
97 : V(WeakFixedArrayMap, weak_fixed_array_map, WeakFixedArrayMap)
98 :
99 : #define HEAP_IMMOVABLE_OBJECT_LIST(V) \
100 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(V) \
101 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(V)
102 :
103 : #ifdef DEBUG
104 : #define CSA_CHECK(csa, x) \
105 : (csa)->Check( \
106 : [&]() -> compiler::Node* { \
107 : return implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
108 : }, \
109 : #x, __FILE__, __LINE__)
110 : #else
111 : #define CSA_CHECK(csa, x) (csa)->FastCheck(x)
112 : #endif
113 :
114 : #ifdef DEBUG
115 : // Add stringified versions to the given values, except the first. That is,
116 : // transform
117 : // x, a, b, c, d, e, f
118 : // to
119 : // a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
120 : //
121 : // __VA_ARGS__ is ignored to allow the caller to pass through too many
122 : // parameters, and the first element is ignored to support having no extra
123 : // values without empty __VA_ARGS__ (which cause all sorts of problems with
124 : // extra commas).
125 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
126 : v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
127 :
128 : // Stringify the given variable number of arguments. The arguments are trimmed
129 : // to 5 if there are too many, and padded with nullptr if there are not enough.
130 : #define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...) \
131 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
132 : nullptr, nullptr)
133 :
134 : #define CSA_ASSERT_GET_FIRST(x, ...) (x)
135 : #define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
136 :
137 : // CSA_ASSERT(csa, <condition>, <extra values to print...>)
138 :
139 : // We have to jump through some hoops to allow <extra values to print...> to be
140 : // empty.
141 : #define CSA_ASSERT(csa, ...) \
142 : (csa)->Assert( \
143 : [&]() -> compiler::Node* { \
144 : return implicit_cast<compiler::SloppyTNode<Word32T>>( \
145 : EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__))); \
146 : }, \
147 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
148 : CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
149 :
150 : // CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
151 : // <extra values to print...>)
152 :
153 : #define CSA_ASSERT_BRANCH(csa, ...) \
154 : (csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)), \
155 : EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
156 : __LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
157 :
158 : #define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
159 : (csa)->Assert( \
160 : [&]() -> compiler::Node* { \
161 : compiler::Node* const argc = \
162 : (csa)->Parameter(Descriptor::kJSActualArgumentsCount); \
163 : return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
164 : }, \
165 : "argc " #op " " #expected, __FILE__, __LINE__, \
166 : SmiFromInt32((csa)->Parameter(Descriptor::kJSActualArgumentsCount)), \
167 : "argc")
168 :
169 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
170 : CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
171 :
172 : #define CSA_DEBUG_INFO(name) \
173 : { #name, __FILE__, __LINE__ }
174 : #define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
175 : #define VARIABLE(name, ...) \
176 : Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
177 : #define VARIABLE_CONSTRUCTOR(name, ...) \
178 : name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
179 : #define TYPED_VARIABLE_DEF(type, name, ...) \
180 : TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
181 : #else // DEBUG
182 : #define CSA_ASSERT(csa, ...) ((void)0)
183 : #define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
184 : #define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
185 : #define BIND(label) Bind(label)
186 : #define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
187 : #define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
188 : #define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
189 : #endif // DEBUG
190 :
191 : #define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
192 :
193 : #ifdef ENABLE_SLOW_DCHECKS
194 : #define CSA_SLOW_ASSERT(csa, ...) \
195 : if (FLAG_enable_slow_asserts) { \
196 : CSA_ASSERT(csa, __VA_ARGS__); \
197 : }
198 : #else
199 : #define CSA_SLOW_ASSERT(csa, ...) ((void)0)
200 : #endif
201 :
202 : // Provides JavaScript-specific "macro-assembler" functionality on top of the
203 : // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
204 : // it's possible to add JavaScript-specific useful CodeAssembler "macros"
205 : // without modifying files in the compiler directory (and requiring a review
206 : // from a compiler directory OWNER).
207 484441 : class V8_EXPORT_PRIVATE CodeStubAssembler
208 : : public compiler::CodeAssembler,
209 : public BaseBuiltinsFromDSLAssembler {
210 : public:
211 : using Node = compiler::Node;
212 : template <class T>
213 : using TNode = compiler::TNode<T>;
214 : template <class T>
215 : using SloppyTNode = compiler::SloppyTNode<T>;
216 :
217 : template <typename T>
218 : using LazyNode = std::function<TNode<T>()>;
219 :
220 : explicit CodeStubAssembler(compiler::CodeAssemblerState* state);
221 :
222 : enum AllocationFlag : uint8_t {
223 : kNone = 0,
224 : kDoubleAlignment = 1,
225 : kPretenured = 1 << 1,
226 : kAllowLargeObjectAllocation = 1 << 2,
227 : };
228 :
229 : enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
230 :
231 : typedef base::Flags<AllocationFlag> AllocationFlags;
232 :
233 : enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
234 :
235 : // On 32-bit platforms, there is a slight performance advantage to doing all
236 : // of the array offset/index arithmetic with SMIs, since it's possible
237 : // to save a few tag/untag operations without paying an extra expense when
238 : // calculating array offset (the smi math can be folded away) and there are
239 : // fewer live ranges. Thus only convert indices to untagged value on 64-bit
240 : // platforms.
241 2480 : ParameterMode OptimalParameterMode() const {
242 2492 : return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
243 : }
244 :
245 876 : MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
246 : return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
247 876 : : MachineRepresentation::kTaggedSigned;
248 : }
249 :
250 428 : MachineRepresentation OptimalParameterRepresentation() const {
251 428 : return ParameterRepresentation(OptimalParameterMode());
252 : }
253 :
254 20144 : TNode<IntPtrT> ParameterToIntPtr(Node* value, ParameterMode mode) {
255 20144 : if (mode == SMI_PARAMETERS) value = SmiUntag(value);
256 20144 : return UncheckedCast<IntPtrT>(value);
257 : }
258 :
259 5860 : Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
260 5860 : if (mode == SMI_PARAMETERS) return SmiTag(value);
261 5860 : return value;
262 : }
263 :
264 : Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
265 : return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
266 : }
267 :
268 22564 : TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
269 22564 : if (mode != SMI_PARAMETERS) return SmiTag(value);
270 2664 : return UncheckedCast<Smi>(value);
271 : }
272 :
273 11736 : Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
274 11736 : if (mode != SMI_PARAMETERS) return SmiUntag(value);
275 4 : return value;
276 : }
277 :
278 14484 : bool ToParameterConstant(Node* node, intptr_t* out, ParameterMode mode) {
279 14484 : if (mode == ParameterMode::SMI_PARAMETERS) {
280 984 : Smi constant;
281 984 : if (ToSmiConstant(node, &constant)) {
282 8 : *out = static_cast<intptr_t>(constant->value());
283 8 : return true;
284 : }
285 : } else {
286 : DCHECK_EQ(mode, ParameterMode::INTPTR_PARAMETERS);
287 : intptr_t constant;
288 13500 : if (ToIntPtrConstant(node, constant)) {
289 700 : *out = constant;
290 700 : return true;
291 : }
292 : }
293 :
294 13776 : return false;
295 : }
296 :
297 : #if defined(V8_HOST_ARCH_32_BIT)
298 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return source; }
299 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) {
300 : return SmiToIntPtr(source);
301 : }
302 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return source; }
303 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) {
304 : return SmiFromIntPtr(source);
305 : }
306 : #elif defined(V8_HOST_ARCH_64_BIT)
307 : TNode<Smi> BIntToSmi(TNode<BInt> source) { return SmiFromIntPtr(source); }
308 : TNode<IntPtrT> BIntToIntPtr(TNode<BInt> source) { return source; }
309 168 : TNode<BInt> SmiToBInt(TNode<Smi> source) { return SmiToIntPtr(source); }
310 168 : TNode<BInt> IntPtrToBInt(TNode<IntPtrT> source) { return source; }
311 : #else
312 : #error Unknown architecture.
313 : #endif
314 :
315 1556 : TNode<Smi> TaggedToSmi(TNode<Object> value, Label* fail) {
316 1556 : GotoIf(TaggedIsNotSmi(value), fail);
317 1556 : return UncheckedCast<Smi>(value);
318 : }
319 :
320 56 : TNode<Smi> TaggedToPositiveSmi(TNode<Object> value, Label* fail) {
321 56 : GotoIfNot(TaggedIsPositiveSmi(value), fail);
322 56 : return UncheckedCast<Smi>(value);
323 : }
324 :
325 : TNode<String> TaggedToDirectString(TNode<Object> value, Label* fail);
326 :
327 1848 : TNode<Number> TaggedToNumber(TNode<Object> value, Label* fail) {
328 1848 : GotoIfNot(IsNumber(value), fail);
329 1848 : return UncheckedCast<Number>(value);
330 : }
331 :
332 7636 : TNode<HeapObject> TaggedToHeapObject(TNode<Object> value, Label* fail) {
333 7636 : GotoIf(TaggedIsSmi(value), fail);
334 7636 : return UncheckedCast<HeapObject>(value);
335 : }
336 :
337 956 : TNode<JSArray> HeapObjectToJSArray(TNode<HeapObject> heap_object,
338 : Label* fail) {
339 956 : GotoIfNot(IsJSArray(heap_object), fail);
340 956 : return UncheckedCast<JSArray>(heap_object);
341 : }
342 :
343 168 : TNode<JSArrayBuffer> HeapObjectToJSArrayBuffer(TNode<HeapObject> heap_object,
344 : Label* fail) {
345 168 : GotoIfNot(IsJSArrayBuffer(heap_object), fail);
346 168 : return UncheckedCast<JSArrayBuffer>(heap_object);
347 : }
348 :
349 : TNode<JSArray> TaggedToFastJSArray(TNode<Context> context,
350 : TNode<Object> value, Label* fail) {
351 : GotoIf(TaggedIsSmi(value), fail);
352 : TNode<HeapObject> heap_object = CAST(value);
353 : GotoIfNot(IsFastJSArray(heap_object, context), fail);
354 : return UncheckedCast<JSArray>(heap_object);
355 : }
356 :
357 1288 : TNode<JSDataView> HeapObjectToJSDataView(TNode<HeapObject> heap_object,
358 : Label* fail) {
359 1288 : GotoIfNot(IsJSDataView(heap_object), fail);
360 1288 : return CAST(heap_object);
361 : }
362 :
363 1120 : TNode<JSReceiver> HeapObjectToCallable(TNode<HeapObject> heap_object,
364 : Label* fail) {
365 1120 : GotoIfNot(IsCallable(heap_object), fail);
366 1120 : return CAST(heap_object);
367 : }
368 :
369 336 : TNode<String> HeapObjectToString(TNode<HeapObject> heap_object, Label* fail) {
370 336 : GotoIfNot(IsString(heap_object), fail);
371 336 : return CAST(heap_object);
372 : }
373 :
374 56 : TNode<JSReceiver> HeapObjectToConstructor(TNode<HeapObject> heap_object,
375 : Label* fail) {
376 56 : GotoIfNot(IsConstructor(heap_object), fail);
377 56 : return CAST(heap_object);
378 : }
379 :
380 : Node* MatchesParameterMode(Node* value, ParameterMode mode);
381 :
382 : #define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
383 : Node* OpName(Node* a, Node* b, ParameterMode mode) { \
384 : if (mode == SMI_PARAMETERS) { \
385 : return SmiOpName(CAST(a), CAST(b)); \
386 : } else { \
387 : DCHECK_EQ(INTPTR_PARAMETERS, mode); \
388 : return IntPtrOpName(a, b); \
389 : } \
390 : }
391 56 : PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
392 76636 : PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
393 12000 : PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
394 : PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
395 56 : PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
396 : SmiLessThanOrEqual)
397 16804 : PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
398 : PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
399 : SmiGreaterThanOrEqual)
400 : PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
401 16052 : PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
402 : SmiAboveOrEqual)
403 : #undef PARAMETER_BINOP
404 :
405 172 : uintptr_t ConstexprUintPtrShl(uintptr_t a, int32_t b) { return a << b; }
406 : uintptr_t ConstexprUintPtrShr(uintptr_t a, int32_t b) { return a >> b; }
407 112 : intptr_t ConstexprIntPtrAdd(intptr_t a, intptr_t b) { return a + b; }
408 : uintptr_t ConstexprUintPtrAdd(uintptr_t a, uintptr_t b) { return a + b; }
409 112 : intptr_t ConstexprWordNot(intptr_t a) { return ~a; }
410 : uintptr_t ConstexprWordNot(uintptr_t a) { return ~a; }
411 :
412 : TNode<Object> NoContextConstant();
413 :
414 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
415 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
416 : std::declval<ReadOnlyRoots>().rootAccessorName())>::type>::type> \
417 : name##Constant();
418 : HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
419 : #undef HEAP_CONSTANT_ACCESSOR
420 :
421 : #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
422 : compiler::TNode<std::remove_pointer<std::remove_reference<decltype( \
423 : std::declval<Heap>().rootAccessorName())>::type>::type> \
424 : name##Constant();
425 : HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR)
426 : #undef HEAP_CONSTANT_ACCESSOR
427 :
428 : #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
429 : TNode<BoolT> Is##name(SloppyTNode<Object> value); \
430 : TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
431 : HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST)
432 : #undef HEAP_CONSTANT_TEST
433 :
434 : Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
435 :
436 : bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
437 : bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
438 : ParameterMode mode);
439 :
440 : // Round the 32bits payload of the provided word up to the next power of two.
441 : TNode<IntPtrT> IntPtrRoundUpToPowerOfTwo32(TNode<IntPtrT> value);
442 : // Select the maximum of the two provided IntPtr values.
443 : TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
444 : SloppyTNode<IntPtrT> right);
445 : // Select the minimum of the two provided IntPtr values.
446 : TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
447 : SloppyTNode<IntPtrT> right);
448 :
449 : // Float64 operations.
450 : TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
451 : TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
452 : TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
453 : TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
454 : TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
455 : // Select the minimum of the two provided Number values.
456 : TNode<Number> NumberMax(SloppyTNode<Number> left, SloppyTNode<Number> right);
457 : // Select the minimum of the two provided Number values.
458 : TNode<Number> NumberMin(SloppyTNode<Number> left, SloppyTNode<Number> right);
459 :
460 : // After converting an index to an integer, calculate a relative index: if
461 : // index < 0, max(length + index, 0); else min(index, length)
462 : TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
463 : TNode<Object> index,
464 : TNode<IntPtrT> length);
465 :
466 : // Returns true iff the given value fits into smi range and is >= 0.
467 : TNode<BoolT> IsValidPositiveSmi(TNode<IntPtrT> value);
468 :
469 : // Tag an IntPtr as a Smi value.
470 : TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
471 : // Untag a Smi value as an IntPtr.
472 : TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
473 :
474 : // Smi conversions.
475 : TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
476 7960 : TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
477 : TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
478 1296 : TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
479 : TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
480 :
481 : // Smi operations.
482 : #define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName, Int32OpName) \
483 : TNode<Smi> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
484 : if (SmiValuesAre32Bits()) { \
485 : return BitcastWordToTaggedSigned( \
486 : IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
487 : } else { \
488 : DCHECK(SmiValuesAre31Bits()); \
489 : if (kSystemPointerSize == kInt64Size) { \
490 : CSA_ASSERT(this, IsValidSmi(a)); \
491 : CSA_ASSERT(this, IsValidSmi(b)); \
492 : } \
493 : return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr( \
494 : Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
495 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))))); \
496 : } \
497 : }
498 22152 : SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd, Int32Add)
499 8108 : SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub, Int32Sub)
500 1176 : SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd, Word32And)
501 35672 : SMI_ARITHMETIC_BINOP(SmiOr, WordOr, Word32Or)
502 : #undef SMI_ARITHMETIC_BINOP
503 56 : TNode<Smi> SmiInc(TNode<Smi> value) { return SmiAdd(value, SmiConstant(1)); }
504 :
505 : TNode<IntPtrT> TryIntPtrAdd(TNode<IntPtrT> a, TNode<IntPtrT> b,
506 : Label* if_overflow);
507 : TNode<Smi> TrySmiAdd(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
508 : TNode<Smi> TrySmiSub(TNode<Smi> a, TNode<Smi> b, Label* if_overflow);
509 :
510 4088 : TNode<Smi> SmiShl(TNode<Smi> a, int shift) {
511 4088 : return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
512 : }
513 :
514 3196 : TNode<Smi> SmiShr(TNode<Smi> a, int shift) {
515 : return BitcastWordToTaggedSigned(
516 : WordAnd(WordShr(BitcastTaggedToWord(a), shift),
517 3196 : BitcastTaggedToWord(SmiConstant(-1))));
518 : }
519 :
520 280 : TNode<Smi> SmiSar(TNode<Smi> a, int shift) {
521 : return BitcastWordToTaggedSigned(
522 : WordAnd(WordSar(BitcastTaggedToWord(a), shift),
523 280 : BitcastTaggedToWord(SmiConstant(-1))));
524 : }
525 :
526 : Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
527 : if (mode == SMI_PARAMETERS) {
528 : return SmiShl(CAST(a), shift);
529 : } else {
530 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
531 : return WordShl(a, shift);
532 : }
533 : }
534 :
535 2396 : Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
536 2396 : if (mode == SMI_PARAMETERS) {
537 116 : return SmiShr(CAST(a), shift);
538 : } else {
539 : DCHECK_EQ(INTPTR_PARAMETERS, mode);
540 2280 : return WordShr(a, shift);
541 : }
542 : }
543 :
544 : #define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName, Int32OpName) \
545 : TNode<BoolT> SmiOpName(TNode<Smi> a, TNode<Smi> b) { \
546 : if (SmiValuesAre32Bits()) { \
547 : return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
548 : } else { \
549 : DCHECK(SmiValuesAre31Bits()); \
550 : if (kSystemPointerSize == kInt64Size) { \
551 : CSA_ASSERT(this, IsValidSmi(a)); \
552 : CSA_ASSERT(this, IsValidSmi(b)); \
553 : } \
554 : return Int32OpName(TruncateIntPtrToInt32(BitcastTaggedToWord(a)), \
555 : TruncateIntPtrToInt32(BitcastTaggedToWord(b))); \
556 : } \
557 : }
558 24400 : SMI_COMPARISON_OP(SmiEqual, WordEqual, Word32Equal)
559 896 : SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual, Word32NotEqual)
560 2912 : SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan, Uint32GreaterThan)
561 224 : SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual,
562 : Uint32GreaterThanOrEqual)
563 9636 : SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan, Uint32LessThan)
564 12988 : SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan, Int32LessThan)
565 5172 : SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual,
566 : Int32LessThanOrEqual)
567 5968 : SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan, Int32GreaterThan)
568 2912 : SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
569 : Int32GreaterThanOrEqual)
570 : #undef SMI_COMPARISON_OP
571 : TNode<Smi> SmiMax(TNode<Smi> a, TNode<Smi> b);
572 : TNode<Smi> SmiMin(TNode<Smi> a, TNode<Smi> b);
573 : // Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
574 : TNode<Number> SmiMod(TNode<Smi> a, TNode<Smi> b);
575 : // Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
576 : TNode<Number> SmiMul(TNode<Smi> a, TNode<Smi> b);
577 : // Tries to compute dividend / divisor for Smi inputs; branching to bailout
578 : // if the division needs to be performed as a floating point operation.
579 : TNode<Smi> TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, Label* bailout);
580 :
581 : // Compares two Smis a and b as if they were converted to strings and then
582 : // compared lexicographically. Returns:
583 : // -1 iff x < y.
584 : // 0 iff x == y.
585 : // 1 iff x > y.
586 : TNode<Smi> SmiLexicographicCompare(TNode<Smi> x, TNode<Smi> y);
587 :
588 : // Smi | HeapNumber operations.
589 : TNode<Number> NumberInc(SloppyTNode<Number> value);
590 : TNode<Number> NumberDec(SloppyTNode<Number> value);
591 : TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
592 : TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
593 : void GotoIfNotNumber(Node* value, Label* is_not_number);
594 : void GotoIfNumber(Node* value, Label* is_number);
595 : TNode<Number> SmiToNumber(TNode<Smi> v) { return v; }
596 :
597 : TNode<Number> BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
598 :
599 : // Allocate an object of the given size.
600 : TNode<HeapObject> AllocateInNewSpace(TNode<IntPtrT> size,
601 : AllocationFlags flags = kNone);
602 : TNode<HeapObject> AllocateInNewSpace(int size, AllocationFlags flags = kNone);
603 : TNode<HeapObject> Allocate(TNode<IntPtrT> size,
604 : AllocationFlags flags = kNone);
605 : TNode<HeapObject> Allocate(int size, AllocationFlags flags = kNone);
606 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous, int offset);
607 : TNode<HeapObject> InnerAllocate(TNode<HeapObject> previous,
608 : TNode<IntPtrT> offset);
609 :
610 : TNode<BoolT> IsRegularHeapObjectSize(TNode<IntPtrT> size);
611 :
612 : typedef std::function<void(Label*, Label*)> BranchGenerator;
613 : typedef std::function<Node*()> NodeGenerator;
614 :
615 : void Assert(const BranchGenerator& branch, const char* message = nullptr,
616 : const char* file = nullptr, int line = 0,
617 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
618 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
619 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
620 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
621 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
622 : void Assert(const NodeGenerator& condition_body,
623 : const char* message = nullptr, const char* file = nullptr,
624 : int line = 0, Node* extra_node1 = nullptr,
625 : const char* extra_node1_name = "", Node* extra_node2 = nullptr,
626 : const char* extra_node2_name = "", Node* extra_node3 = nullptr,
627 : const char* extra_node3_name = "", Node* extra_node4 = nullptr,
628 : const char* extra_node4_name = "", Node* extra_node5 = nullptr,
629 : const char* extra_node5_name = "");
630 : void Check(const BranchGenerator& branch, const char* message = nullptr,
631 : const char* file = nullptr, int line = 0,
632 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
633 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
634 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
635 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
636 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
637 : void Check(const NodeGenerator& condition_body, const char* message = nullptr,
638 : const char* file = nullptr, int line = 0,
639 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
640 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
641 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
642 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
643 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
644 : void FailAssert(
645 : const char* message = nullptr, const char* file = nullptr, int line = 0,
646 : Node* extra_node1 = nullptr, const char* extra_node1_name = "",
647 : Node* extra_node2 = nullptr, const char* extra_node2_name = "",
648 : Node* extra_node3 = nullptr, const char* extra_node3_name = "",
649 : Node* extra_node4 = nullptr, const char* extra_node4_name = "",
650 : Node* extra_node5 = nullptr, const char* extra_node5_name = "");
651 :
652 : void FastCheck(TNode<BoolT> condition);
653 :
654 : // The following Call wrappers call an object according to the semantics that
655 : // one finds in the EcmaScript spec, operating on an Callable (e.g. a
656 : // JSFunction or proxy) rather than a Code object.
657 : template <class... TArgs>
658 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
659 : TNode<JSReceiver> receiver, TArgs... args) {
660 : return UncheckedCast<Object>(CallJS(
661 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined),
662 : context, callable, receiver, args...));
663 : }
664 : template <class... TArgs>
665 1344 : TNode<Object> Call(TNode<Context> context, TNode<Object> callable,
666 : TNode<Object> receiver, TArgs... args) {
667 1344 : if (IsUndefinedConstant(receiver) || IsNullConstant(receiver)) {
668 : return UncheckedCast<Object>(CallJS(
669 : CodeFactory::Call(isolate(), ConvertReceiverMode::kNullOrUndefined),
670 168 : context, callable, receiver, args...));
671 : }
672 : return UncheckedCast<Object>(CallJS(CodeFactory::Call(isolate()), context,
673 1176 : callable, receiver, args...));
674 : }
675 :
676 : template <class... TArgs>
677 1064 : TNode<JSReceiver> ConstructWithTarget(TNode<Context> context,
678 : TNode<JSReceiver> target,
679 : TNode<JSReceiver> new_target,
680 : TArgs... args) {
681 1960 : return CAST(ConstructJSWithTarget(CodeFactory::Construct(isolate()),
682 : context, target, new_target,
683 : implicit_cast<TNode<Object>>(args)...));
684 : }
685 : template <class... TArgs>
686 952 : TNode<JSReceiver> Construct(TNode<Context> context,
687 : TNode<JSReceiver> new_target, TArgs... args) {
688 952 : return ConstructWithTarget(context, new_target, new_target, args...);
689 : }
690 :
691 : template <class A, class F, class G>
692 40092 : TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
693 : const G& false_body) {
694 : return UncheckedCast<A>(SelectImpl(
695 : condition,
696 80184 : [&]() -> Node* { return implicit_cast<TNode<A>>(true_body()); },
697 80184 : [&]() -> Node* { return implicit_cast<TNode<A>>(false_body()); },
698 40092 : MachineRepresentationOf<A>::value));
699 : }
700 :
701 : template <class A>
702 12216 : TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
703 : TNode<A> false_value) {
704 12216 : return Select<A>(condition, [=] { return true_value; },
705 24432 : [=] { return false_value; });
706 : }
707 :
708 : TNode<Int32T> SelectInt32Constant(SloppyTNode<BoolT> condition,
709 : int true_value, int false_value);
710 : TNode<IntPtrT> SelectIntPtrConstant(SloppyTNode<BoolT> condition,
711 : int true_value, int false_value);
712 : TNode<Oddball> SelectBooleanConstant(SloppyTNode<BoolT> condition);
713 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
714 : Smi false_value);
715 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
716 : Smi false_value) {
717 : return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
718 : }
719 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, Smi true_value,
720 : int false_value) {
721 : return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
722 : }
723 4144 : TNode<Smi> SelectSmiConstant(SloppyTNode<BoolT> condition, int true_value,
724 : int false_value) {
725 : return SelectSmiConstant(condition, Smi::FromInt(true_value),
726 4144 : Smi::FromInt(false_value));
727 : }
728 :
729 : TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
730 :
731 : // Check a value for smi-ness
732 : TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
733 : TNode<BoolT> TaggedIsSmi(TNode<MaybeObject> a);
734 : TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
735 : // Check that the value is a non-negative smi.
736 : TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
737 : // Check that a word has a word-aligned address.
738 : TNode<BoolT> WordIsAligned(SloppyTNode<WordT> word, size_t alignment);
739 : TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
740 :
741 : #if DEBUG
742 : void Bind(Label* label, AssemblerDebugInfo debug_info);
743 : #endif // DEBUG
744 : void Bind(Label* label);
745 :
746 : template <class... T>
747 : void Bind(compiler::CodeAssemblerParameterizedLabel<T...>* label,
748 : TNode<T>*... phis) {
749 : CodeAssembler::Bind(label, phis...);
750 : }
751 :
752 8132 : void BranchIfSmiEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
753 : Label* if_false) {
754 8132 : Branch(SmiEqual(a, b), if_true, if_false);
755 8132 : }
756 :
757 5432 : void BranchIfSmiLessThan(TNode<Smi> a, TNode<Smi> b, Label* if_true,
758 : Label* if_false) {
759 5432 : Branch(SmiLessThan(a, b), if_true, if_false);
760 5432 : }
761 :
762 3996 : void BranchIfSmiLessThanOrEqual(TNode<Smi> a, TNode<Smi> b, Label* if_true,
763 : Label* if_false) {
764 3996 : Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
765 3996 : }
766 :
767 1680 : void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
768 1680 : Branch(Float64Equal(value, value), if_false, if_true);
769 1680 : }
770 :
771 : // Branches to {if_true} if ToBoolean applied to {value} yields true,
772 : // otherwise goes to {if_false}.
773 : void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
774 :
775 : void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
776 :
777 : // Branches to {if_true} when --force-slow-path flag has been passed.
778 : // It's used for testing to ensure that slow path implementation behave
779 : // equivalent to corresponding fast paths (where applicable).
780 : //
781 : // Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
782 : void GotoIfForceSlowPath(Label* if_true);
783 :
784 : // Branches to {if_true} when Debug::ExecutionMode is DebugInfo::kSideEffect.
785 : void GotoIfDebugExecutionModeChecksSideEffects(Label* if_true);
786 :
787 : // Load value from current parent frame by given offset in bytes.
788 : Node* LoadFromParentFrame(int offset,
789 : MachineType rep = MachineType::AnyTagged());
790 :
791 : // Load an object pointer from a buffer that isn't in the heap.
792 : Node* LoadBufferObject(Node* buffer, int offset,
793 : MachineType rep = MachineType::AnyTagged());
794 168 : TNode<RawPtrT> LoadBufferPointer(TNode<RawPtrT> buffer, int offset) {
795 : return UncheckedCast<RawPtrT>(
796 168 : LoadBufferObject(buffer, offset, MachineType::Pointer()));
797 : }
798 168 : TNode<Smi> LoadBufferSmi(TNode<RawPtrT> buffer, int offset) {
799 168 : return CAST(LoadBufferObject(buffer, offset, MachineType::TaggedSigned()));
800 : }
801 : // Load a field from an object on the heap.
802 : Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
803 : MachineType rep);
804 : template <class T, typename std::enable_if<
805 : std::is_convertible<TNode<T>, TNode<Object>>::value,
806 : int>::type = 0>
807 11428 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
808 11428 : return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
809 : }
810 : template <class T, typename std::enable_if<
811 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
812 : int>::type = 0>
813 53420 : TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
814 : return UncheckedCast<T>(
815 53420 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
816 : }
817 250032 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
818 : return UncheckedCast<Object>(
819 250212 : LoadObjectField(object, offset, MachineType::AnyTagged()));
820 : }
821 : Node* LoadObjectField(SloppyTNode<HeapObject> object,
822 : SloppyTNode<IntPtrT> offset, MachineType rep);
823 5268 : TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
824 : SloppyTNode<IntPtrT> offset) {
825 : return UncheckedCast<Object>(
826 5268 : LoadObjectField(object, offset, MachineType::AnyTagged()));
827 : }
828 : template <class T, typename std::enable_if<
829 : std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
830 : int>::type = 0>
831 280 : TNode<T> LoadObjectField(TNode<HeapObject> object, TNode<IntPtrT> offset) {
832 : return UncheckedCast<T>(
833 280 : LoadObjectField(object, offset, MachineTypeOf<T>::value));
834 : }
835 : // Load a SMI field and untag it.
836 : TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
837 : int offset);
838 : // Load a SMI field, untag it, and convert to Word32.
839 : TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
840 : // Load a SMI and untag it.
841 : TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
842 :
843 5656 : TNode<MaybeObject> LoadMaybeWeakObjectField(SloppyTNode<HeapObject> object,
844 : int offset) {
845 : return UncheckedCast<MaybeObject>(
846 5656 : LoadObjectField(object, offset, MachineType::AnyTagged()));
847 : }
848 :
849 : // Tag a smi and store it.
850 : void StoreAndTagSmi(Node* base, int offset, Node* value);
851 :
852 : // Load the floating point value of a HeapNumber.
853 : TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
854 : // Load the Map of an HeapObject.
855 : TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
856 : // Load the instance type of an HeapObject.
857 : TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
858 : // Compare the instance the type of the object against the provided one.
859 : TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
860 : InstanceType type);
861 : TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
862 : InstanceType type);
863 : TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
864 : InstanceType type);
865 : // Load the properties backing store of a JSObject.
866 : TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
867 : TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
868 : // Load the elements backing store of a JSObject.
869 25304 : TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object) {
870 25304 : return LoadJSObjectElements(object);
871 : }
872 : // Load the length of a JSArray instance.
873 : TNode<Object> LoadJSArgumentsObjectWithLength(
874 : SloppyTNode<JSArgumentsObjectWithLength> array);
875 : // Load the length of a JSArray instance.
876 : TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
877 : // Load the length of a fast JSArray instance. Returns a positive Smi.
878 : TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
879 : // Load the length of a fixed array base instance.
880 : TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
881 : // Load the length of a fixed array base instance.
882 : TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
883 : SloppyTNode<FixedArrayBase> array);
884 : // Load the length of a WeakFixedArray.
885 : TNode<Smi> LoadWeakFixedArrayLength(TNode<WeakFixedArray> array);
886 : TNode<IntPtrT> LoadAndUntagWeakFixedArrayLength(
887 : SloppyTNode<WeakFixedArray> array);
888 : // Load the number of descriptors in DescriptorArray.
889 : TNode<Int32T> LoadNumberOfDescriptors(TNode<DescriptorArray> array);
890 : // Load the bit field of a Map.
891 : TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
892 : // Load bit field 2 of a map.
893 : TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
894 : // Load bit field 3 of a map.
895 : TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
896 : // Load the instance type of a map.
897 : TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
898 : // Load the ElementsKind of a map.
899 : TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
900 : TNode<Int32T> LoadElementsKind(SloppyTNode<HeapObject> object);
901 : // Load the instance descriptors of a map.
902 : TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
903 : // Load the prototype of a map.
904 : TNode<HeapObject> LoadMapPrototype(SloppyTNode<Map> map);
905 : // Load the prototype info of a map. The result has to be checked if it is a
906 : // prototype info object or not.
907 : TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
908 : Label* if_has_no_proto_info);
909 : // Load the instance size of a Map.
910 : TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
911 : // Load the inobject properties start of a Map (valid only for JSObjects).
912 : TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
913 : // Load the constructor function index of a Map (only for primitive maps).
914 : TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
915 : // Load the constructor of a Map (equivalent to Map::GetConstructor()).
916 : TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
917 : // Load the EnumLength of a Map.
918 : Node* LoadMapEnumLength(SloppyTNode<Map> map);
919 : // Load the back-pointer of a Map.
920 : TNode<Object> LoadMapBackPointer(SloppyTNode<Map> map);
921 : // Checks that |map| has only simple properties, returns bitfield3.
922 : TNode<Uint32T> EnsureOnlyHasSimpleProperties(TNode<Map> map,
923 : TNode<Int32T> instance_type,
924 : Label* bailout);
925 : // Load the identity hash of a JSRececiver.
926 : TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
927 : Label* if_no_hash = nullptr);
928 :
929 : // This is only used on a newly allocated PropertyArray which
930 : // doesn't have an existing hash.
931 : void InitializePropertyArrayLength(Node* property_array, Node* length,
932 : ParameterMode mode);
933 :
934 : // Check if the map is set for slow properties.
935 : TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
936 :
937 : // Load the hash field of a name as an uint32 value.
938 : TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
939 : // Load the hash value of a name as an uint32 value.
940 : // If {if_hash_not_computed} label is specified then it also checks if
941 : // hash is actually computed.
942 : TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
943 : Label* if_hash_not_computed = nullptr);
944 :
945 : // Load length field of a String object as Smi value.
946 : TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> string);
947 : // Load length field of a String object as intptr_t value.
948 : TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> string);
949 : // Load length field of a String object as uint32_t value.
950 : TNode<Uint32T> LoadStringLengthAsWord32(SloppyTNode<String> string);
951 : // Loads a pointer to the sequential String char array.
952 : Node* PointerToSeqStringData(Node* seq_string);
953 : // Load value field of a JSValue object.
954 : Node* LoadJSValueValue(Node* object);
955 :
956 : // Figures out whether the value of maybe_object is:
957 : // - a SMI (jump to "if_smi", "extracted" will be the SMI value)
958 : // - a cleared weak reference (jump to "if_cleared", "extracted" will be
959 : // untouched)
960 : // - a weak reference (jump to "if_weak", "extracted" will be the object
961 : // pointed to)
962 : // - a strong reference (jump to "if_strong", "extracted" will be the object
963 : // pointed to)
964 : void DispatchMaybeObject(TNode<MaybeObject> maybe_object, Label* if_smi,
965 : Label* if_cleared, Label* if_weak, Label* if_strong,
966 : TVariable<Object>* extracted);
967 : // See MaybeObject for semantics of these functions.
968 : TNode<BoolT> IsStrong(TNode<MaybeObject> value);
969 : // This variant is for overzealous checking.
970 : TNode<BoolT> IsStrong(TNode<Object> value) {
971 : return IsStrong(ReinterpretCast<MaybeObject>(value));
972 : }
973 : TNode<HeapObject> GetHeapObjectIfStrong(TNode<MaybeObject> value,
974 : Label* if_not_strong);
975 :
976 : TNode<BoolT> IsWeakOrCleared(TNode<MaybeObject> value);
977 : TNode<BoolT> IsCleared(TNode<MaybeObject> value);
978 : TNode<BoolT> IsNotCleared(TNode<MaybeObject> value);
979 :
980 : // Removes the weak bit + asserts it was set.
981 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value);
982 :
983 : TNode<HeapObject> GetHeapObjectAssumeWeak(TNode<MaybeObject> value,
984 : Label* if_cleared);
985 :
986 : TNode<BoolT> IsWeakReferenceTo(TNode<MaybeObject> object,
987 : TNode<Object> value);
988 : TNode<BoolT> IsNotWeakReferenceTo(TNode<MaybeObject> object,
989 : TNode<Object> value);
990 : TNode<BoolT> IsStrongReferenceTo(TNode<MaybeObject> object,
991 : TNode<Object> value);
992 :
993 : TNode<MaybeObject> MakeWeak(TNode<HeapObject> value);
994 :
995 : void FixedArrayBoundsCheck(TNode<FixedArrayBase> array, Node* index,
996 : int additional_offset = 0,
997 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
998 :
999 : // Array is any array-like type that has a fixed header followed by
1000 : // tagged elements.
1001 : template <typename Array>
1002 : TNode<IntPtrT> LoadArrayLength(TNode<Array> array);
1003 :
1004 : // Array is any array-like type that has a fixed header followed by
1005 : // tagged elements.
1006 : template <typename Array>
1007 : TNode<MaybeObject> LoadArrayElement(
1008 : TNode<Array> array, int array_header_size, Node* index,
1009 : int additional_offset = 0,
1010 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1011 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1012 :
1013 : TNode<Object> LoadFixedArrayElement(
1014 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1015 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1016 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe,
1017 : CheckBounds check_bounds = CheckBounds::kAlways);
1018 :
1019 : // This doesn't emit a bounds-check. As part of the security-performance
1020 : // tradeoff, only use it if it is performance critical.
1021 7408 : TNode<Object> UnsafeLoadFixedArrayElement(
1022 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1023 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1024 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1025 : return LoadFixedArrayElement(object, index, additional_offset,
1026 : parameter_mode, needs_poisoning,
1027 7408 : CheckBounds::kDebugOnly);
1028 : }
1029 :
1030 8592 : TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
1031 : TNode<IntPtrT> index,
1032 : LoadSensitivity needs_poisoning) {
1033 : return LoadFixedArrayElement(object, index, 0, INTPTR_PARAMETERS,
1034 8592 : needs_poisoning);
1035 : }
1036 :
1037 35860 : TNode<Object> LoadFixedArrayElement(
1038 : TNode<FixedArray> object, TNode<IntPtrT> index, int additional_offset = 0,
1039 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1040 : return LoadFixedArrayElement(object, index, additional_offset,
1041 41092 : INTPTR_PARAMETERS, needs_poisoning);
1042 : }
1043 :
1044 19928 : TNode<Object> LoadFixedArrayElement(
1045 : TNode<FixedArray> object, int index, int additional_offset = 0,
1046 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1047 19928 : return LoadFixedArrayElement(object, IntPtrConstant(index),
1048 : additional_offset, INTPTR_PARAMETERS,
1049 23528 : needs_poisoning);
1050 : }
1051 : // This doesn't emit a bounds-check. As part of the security-performance
1052 : // tradeoff, only use it if it is performance critical.
1053 9424 : TNode<Object> UnsafeLoadFixedArrayElement(
1054 : TNode<FixedArray> object, int index, int additional_offset = 0,
1055 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1056 9424 : return LoadFixedArrayElement(object, IntPtrConstant(index),
1057 : additional_offset, INTPTR_PARAMETERS,
1058 9424 : needs_poisoning, CheckBounds::kDebugOnly);
1059 : }
1060 5376 : TNode<Object> LoadFixedArrayElement(TNode<FixedArray> object,
1061 : TNode<Smi> index) {
1062 5376 : return LoadFixedArrayElement(object, index, 0, SMI_PARAMETERS);
1063 : }
1064 :
1065 : TNode<Object> LoadPropertyArrayElement(TNode<PropertyArray> object,
1066 : SloppyTNode<IntPtrT> index);
1067 : TNode<IntPtrT> LoadPropertyArrayLength(TNode<PropertyArray> object);
1068 :
1069 : // Load an element from an array and untag it and return it as Word32.
1070 : // Array is any array-like type that has a fixed header followed by
1071 : // tagged elements.
1072 : template <typename Array>
1073 : TNode<Int32T> LoadAndUntagToWord32ArrayElement(
1074 : TNode<Array> array, int array_header_size, Node* index,
1075 : int additional_offset = 0,
1076 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1077 :
1078 : // Load an array element from a FixedArray, untag it and return it as Word32.
1079 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1080 : TNode<FixedArray> object, Node* index, int additional_offset = 0,
1081 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1082 :
1083 : TNode<Int32T> LoadAndUntagToWord32FixedArrayElement(
1084 : TNode<FixedArray> object, int index, int additional_offset = 0) {
1085 : return LoadAndUntagToWord32FixedArrayElement(
1086 : object, IntPtrConstant(index), additional_offset, INTPTR_PARAMETERS);
1087 : }
1088 :
1089 : // Load an array element from a WeakFixedArray.
1090 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1091 : TNode<WeakFixedArray> object, Node* index, int additional_offset = 0,
1092 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1093 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe);
1094 :
1095 : TNode<MaybeObject> LoadWeakFixedArrayElement(
1096 : TNode<WeakFixedArray> object, int index, int additional_offset = 0,
1097 : LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
1098 : return LoadWeakFixedArrayElement(object, IntPtrConstant(index),
1099 : additional_offset, INTPTR_PARAMETERS,
1100 : needs_poisoning);
1101 : }
1102 :
1103 : // Load an array element from a FixedDoubleArray.
1104 : TNode<Float64T> LoadFixedDoubleArrayElement(
1105 : SloppyTNode<FixedDoubleArray> object, Node* index,
1106 : MachineType machine_type, int additional_offset = 0,
1107 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1108 : Label* if_hole = nullptr);
1109 :
1110 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1111 : TNode<Smi> index,
1112 : Label* if_hole = nullptr) {
1113 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1114 : SMI_PARAMETERS, if_hole);
1115 : }
1116 :
1117 112 : Node* LoadFixedDoubleArrayElement(TNode<FixedDoubleArray> object,
1118 : TNode<IntPtrT> index,
1119 : Label* if_hole = nullptr) {
1120 : return LoadFixedDoubleArrayElement(object, index, MachineType::Float64(), 0,
1121 112 : INTPTR_PARAMETERS, if_hole);
1122 : }
1123 :
1124 : // Load an array element from a FixedArray, FixedDoubleArray or a
1125 : // NumberDictionary (depending on the |elements_kind|) and return
1126 : // it as a tagged value. Assumes that the |index| passed a length
1127 : // check before. Bails out to |if_accessor| if the element that
1128 : // was found is an accessor, or to |if_hole| if the element at
1129 : // the given |index| is not found in |elements|.
1130 : TNode<Object> LoadFixedArrayBaseElementAsTagged(
1131 : TNode<FixedArrayBase> elements, TNode<IntPtrT> index,
1132 : TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole);
1133 :
1134 : // Load a feedback slot from a FeedbackVector.
1135 : TNode<MaybeObject> LoadFeedbackVectorSlot(
1136 : Node* object, Node* index, int additional_offset = 0,
1137 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1138 :
1139 : TNode<IntPtrT> LoadFeedbackVectorLength(TNode<FeedbackVector>);
1140 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1141 : TNode<Smi> index,
1142 : Label* if_hole = nullptr);
1143 : TNode<Float64T> LoadDoubleWithHoleCheck(TNode<FixedDoubleArray> array,
1144 : TNode<IntPtrT> index,
1145 : Label* if_hole = nullptr);
1146 :
1147 : // Load Float64 value by |base| + |offset| address. If the value is a double
1148 : // hole then jump to |if_hole|. If |machine_type| is None then only the hole
1149 : // check is generated.
1150 : TNode<Float64T> LoadDoubleWithHoleCheck(
1151 : SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole,
1152 : MachineType machine_type = MachineType::Float64());
1153 : TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
1154 : TNode<FixedTypedArrayBase> typed_array);
1155 : TNode<RawPtrT> LoadFixedTypedArrayOnHeapBackingStore(
1156 : TNode<FixedTypedArrayBase> typed_array);
1157 : Node* LoadFixedTypedArrayElementAsTagged(
1158 : Node* data_pointer, Node* index_node, ElementsKind elements_kind,
1159 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1160 : TNode<Numeric> LoadFixedTypedArrayElementAsTagged(
1161 : TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind);
1162 : // Parts of the above, factored out for readability:
1163 : Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
1164 : Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
1165 : Node* offset);
1166 : // 64-bit platforms only:
1167 : TNode<BigInt> BigIntFromInt64(TNode<IntPtrT> value);
1168 : TNode<BigInt> BigIntFromUint64(TNode<UintPtrT> value);
1169 : // 32-bit platforms only:
1170 : TNode<BigInt> BigIntFromInt32Pair(TNode<IntPtrT> low, TNode<IntPtrT> high);
1171 : TNode<BigInt> BigIntFromUint32Pair(TNode<UintPtrT> low, TNode<UintPtrT> high);
1172 :
1173 : void StoreFixedTypedArrayElementFromTagged(
1174 : TNode<Context> context, TNode<FixedTypedArrayBase> elements,
1175 : TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind,
1176 : ParameterMode parameter_mode);
1177 :
1178 : // Context manipulation
1179 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1180 : int slot_index);
1181 : TNode<Object> LoadContextElement(SloppyTNode<Context> context,
1182 : SloppyTNode<IntPtrT> slot_index);
1183 : TNode<Object> LoadContextElement(TNode<Context> context,
1184 : TNode<Smi> slot_index);
1185 : void StoreContextElement(SloppyTNode<Context> context, int slot_index,
1186 : SloppyTNode<Object> value);
1187 : void StoreContextElement(SloppyTNode<Context> context,
1188 : SloppyTNode<IntPtrT> slot_index,
1189 : SloppyTNode<Object> value);
1190 : void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
1191 : int slot_index,
1192 : SloppyTNode<Object> value);
1193 : TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
1194 : // Calling this is only valid if there's a module context in the chain.
1195 : TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
1196 :
1197 : void GotoIfContextElementEqual(Node* value, Node* native_context,
1198 : int slot_index, Label* if_equal) {
1199 : GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
1200 : if_equal);
1201 : }
1202 :
1203 : TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
1204 : SloppyTNode<Context> native_context);
1205 : TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
1206 : SloppyTNode<Context> native_context);
1207 :
1208 : TNode<BoolT> IsGeneratorFunction(TNode<JSFunction> function);
1209 : TNode<BoolT> HasPrototypeProperty(TNode<JSFunction> function, TNode<Map> map);
1210 : void GotoIfPrototypeRequiresRuntimeLookup(TNode<JSFunction> function,
1211 : TNode<Map> map, Label* runtime);
1212 : // Load the "prototype" property of a JSFunction.
1213 : Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
1214 :
1215 : TNode<BytecodeArray> LoadSharedFunctionInfoBytecodeArray(
1216 : SloppyTNode<SharedFunctionInfo> shared);
1217 :
1218 : void StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, int offset,
1219 : TNode<Word32T> value);
1220 :
1221 : // Store the floating point value of a HeapNumber.
1222 : void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
1223 : SloppyTNode<Float64T> value);
1224 : void StoreMutableHeapNumberValue(SloppyTNode<MutableHeapNumber> object,
1225 : SloppyTNode<Float64T> value);
1226 : // Store a field to an object on the heap.
1227 : void StoreObjectField(Node* object, int offset, Node* value);
1228 : void StoreObjectField(Node* object, Node* offset, Node* value);
1229 : void StoreObjectFieldNoWriteBarrier(
1230 : Node* object, int offset, Node* value,
1231 : MachineRepresentation rep = MachineRepresentation::kTagged);
1232 : void StoreObjectFieldNoWriteBarrier(
1233 : Node* object, Node* offset, Node* value,
1234 : MachineRepresentation rep = MachineRepresentation::kTagged);
1235 :
1236 : template <class T = Object>
1237 728 : void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object,
1238 : TNode<IntPtrT> offset, TNode<T> value) {
1239 728 : StoreObjectFieldNoWriteBarrier(object, offset, value,
1240 : MachineRepresentationOf<T>::value);
1241 728 : }
1242 : template <class T = Object>
1243 14020 : void StoreObjectFieldNoWriteBarrier(TNode<HeapObject> object, int offset,
1244 : TNode<T> value) {
1245 14020 : StoreObjectFieldNoWriteBarrier(object, offset, value,
1246 : MachineRepresentationOf<T>::value);
1247 14020 : }
1248 :
1249 : // Store the Map of an HeapObject.
1250 : void StoreMap(Node* object, Node* map);
1251 : void StoreMapNoWriteBarrier(Node* object, RootIndex map_root_index);
1252 : void StoreMapNoWriteBarrier(Node* object, Node* map);
1253 : void StoreObjectFieldRoot(Node* object, int offset, RootIndex root);
1254 : // Store an array element to a FixedArray.
1255 20828 : void StoreFixedArrayElement(
1256 : TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1257 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1258 : CheckBounds check_bounds = CheckBounds::kAlways) {
1259 20828 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1260 : barrier_mode, 0, INTPTR_PARAMETERS,
1261 27796 : check_bounds);
1262 : }
1263 : // This doesn't emit a bounds-check. As part of the security-performance
1264 : // tradeoff, only use it if it is performance critical.
1265 3088 : void UnsafeStoreFixedArrayElement(
1266 : TNode<FixedArray> object, int index, SloppyTNode<Object> value,
1267 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1268 : return StoreFixedArrayElement(object, index, value, barrier_mode,
1269 3088 : CheckBounds::kDebugOnly);
1270 : }
1271 3192 : void StoreFixedArrayElement(TNode<FixedArray> object, int index,
1272 : TNode<Smi> value,
1273 : CheckBounds check_bounds = CheckBounds::kAlways) {
1274 3192 : return StoreFixedArrayElement(object, IntPtrConstant(index), value,
1275 : SKIP_WRITE_BARRIER, 0, INTPTR_PARAMETERS,
1276 6384 : check_bounds);
1277 : }
1278 : // This doesn't emit a bounds-check. As part of the security-performance
1279 : // tradeoff, only use it if it is performance critical.
1280 1464 : void UnsafeStoreFixedArrayElement(TNode<FixedArray> object, int index,
1281 : TNode<Smi> value) {
1282 : return StoreFixedArrayElement(object, index, value,
1283 1464 : CheckBounds::kDebugOnly);
1284 : }
1285 :
1286 : void StoreJSArrayLength(TNode<JSArray> array, TNode<Smi> length);
1287 : void StoreElements(TNode<Object> object, TNode<FixedArrayBase> elements);
1288 :
1289 : void StoreFixedArrayOrPropertyArrayElement(
1290 : Node* array, Node* index, Node* value,
1291 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1292 : int additional_offset = 0,
1293 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1294 :
1295 39276 : void StoreFixedArrayElement(
1296 : TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1297 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1298 : int additional_offset = 0,
1299 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1300 : CheckBounds check_bounds = CheckBounds::kAlways) {
1301 39276 : if (NeedsBoundsCheck(check_bounds)) {
1302 34500 : FixedArrayBoundsCheck(array, index, additional_offset, parameter_mode);
1303 : }
1304 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1305 39276 : additional_offset, parameter_mode);
1306 39276 : }
1307 :
1308 : // This doesn't emit a bounds-check. As part of the security-performance
1309 : // tradeoff, only use it if it is performance critical.
1310 224 : void UnsafeStoreFixedArrayElement(
1311 : TNode<FixedArray> array, Node* index, SloppyTNode<Object> value,
1312 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1313 : int additional_offset = 0,
1314 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1315 : return StoreFixedArrayElement(array, index, value, barrier_mode,
1316 : additional_offset, parameter_mode,
1317 224 : CheckBounds::kDebugOnly);
1318 : }
1319 :
1320 728 : void StorePropertyArrayElement(
1321 : TNode<PropertyArray> array, Node* index, SloppyTNode<Object> value,
1322 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1323 : int additional_offset = 0,
1324 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1325 : StoreFixedArrayOrPropertyArrayElement(array, index, value, barrier_mode,
1326 728 : additional_offset, parameter_mode);
1327 728 : }
1328 :
1329 2240 : void StoreFixedArrayElementSmi(
1330 : TNode<FixedArray> array, TNode<Smi> index, TNode<Object> value,
1331 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1332 : StoreFixedArrayElement(array, index, value, barrier_mode, 0,
1333 2240 : SMI_PARAMETERS);
1334 2240 : }
1335 896 : void StoreFixedArrayElement(TNode<FixedArray> array, TNode<IntPtrT> index,
1336 : TNode<Smi> value) {
1337 896 : StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0);
1338 896 : }
1339 448 : void StoreFixedArrayElement(TNode<FixedArray> array, TNode<Smi> index,
1340 : TNode<Smi> value) {
1341 : StoreFixedArrayElement(array, index, value, SKIP_WRITE_BARRIER, 0,
1342 448 : SMI_PARAMETERS);
1343 448 : }
1344 :
1345 : void StoreFixedDoubleArrayElement(
1346 : TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1347 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1348 : CheckBounds check_bounds = CheckBounds::kAlways);
1349 : // This doesn't emit a bounds-check. As part of the security-performance
1350 : // tradeoff, only use it if it is performance critical.
1351 : void UnsafeStoreFixedDoubleArrayElement(
1352 : TNode<FixedDoubleArray> object, Node* index, TNode<Float64T> value,
1353 : ParameterMode parameter_mode = INTPTR_PARAMETERS) {
1354 : return StoreFixedDoubleArrayElement(object, index, value, parameter_mode,
1355 : CheckBounds::kDebugOnly);
1356 : }
1357 :
1358 336 : void StoreFixedDoubleArrayElementSmi(TNode<FixedDoubleArray> object,
1359 : TNode<Smi> index,
1360 : TNode<Float64T> value) {
1361 336 : StoreFixedDoubleArrayElement(object, index, value, SMI_PARAMETERS);
1362 336 : }
1363 :
1364 : void StoreFixedDoubleArrayHole(TNode<FixedDoubleArray> array, Node* index,
1365 : ParameterMode mode = INTPTR_PARAMETERS);
1366 56 : void StoreFixedDoubleArrayHoleSmi(TNode<FixedDoubleArray> array,
1367 : TNode<Smi> index) {
1368 56 : StoreFixedDoubleArrayHole(array, index, SMI_PARAMETERS);
1369 56 : }
1370 :
1371 : void StoreFeedbackVectorSlot(
1372 : Node* object, Node* index, Node* value,
1373 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1374 : int additional_offset = 0,
1375 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1376 :
1377 : void EnsureArrayLengthWritable(TNode<Map> map, Label* bailout);
1378 :
1379 : // EnsureArrayPushable verifies that receiver with this map is:
1380 : // 1. Is not a prototype.
1381 : // 2. Is not a dictionary.
1382 : // 3. Has a writeable length property.
1383 : // It returns ElementsKind as a node for further division into cases.
1384 : TNode<Int32T> EnsureArrayPushable(TNode<Map> map, Label* bailout);
1385 :
1386 : void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
1387 : Label* bailout, Node* elements, Node* index,
1388 : Node* value);
1389 : // Consumes args into the array, and returns tagged new length.
1390 : TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
1391 : CodeStubArguments* args,
1392 : TVariable<IntPtrT>* arg_index, Label* bailout);
1393 : // Pushes value onto the end of array.
1394 : void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
1395 : Label* bailout);
1396 :
1397 : void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
1398 : Node* value);
1399 :
1400 : Node* AllocateCellWithValue(Node* value,
1401 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1402 : Node* AllocateSmiCell(int value = 0) {
1403 : return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
1404 : }
1405 :
1406 : Node* LoadCellValue(Node* cell);
1407 :
1408 : void StoreCellValue(Node* cell, Node* value,
1409 : WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
1410 :
1411 : // Allocate a HeapNumber without initializing its value.
1412 : TNode<HeapNumber> AllocateHeapNumber();
1413 : // Allocate a HeapNumber with a specific value.
1414 : TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value);
1415 : TNode<HeapNumber> AllocateHeapNumberWithValue(double value) {
1416 : return AllocateHeapNumberWithValue(Float64Constant(value));
1417 : }
1418 :
1419 : // Allocate a MutableHeapNumber with a specific value.
1420 : TNode<MutableHeapNumber> AllocateMutableHeapNumberWithValue(
1421 : SloppyTNode<Float64T> value);
1422 :
1423 : // Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
1424 : // Does not initialize the digits.
1425 : TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
1426 : // Like above, but allowing custom bitfield initialization.
1427 : TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
1428 : void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<Word32T> bitfield);
1429 : void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
1430 : TNode<UintPtrT> digit);
1431 : TNode<Word32T> LoadBigIntBitfield(TNode<BigInt> bigint);
1432 : TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
1433 :
1434 : // Allocate a SeqOneByteString with the given length.
1435 : TNode<String> AllocateSeqOneByteString(uint32_t length,
1436 : AllocationFlags flags = kNone);
1437 : TNode<String> AllocateSeqOneByteString(Node* context, TNode<Uint32T> length,
1438 : AllocationFlags flags = kNone);
1439 : // Allocate a SeqTwoByteString with the given length.
1440 : TNode<String> AllocateSeqTwoByteString(uint32_t length,
1441 : AllocationFlags flags = kNone);
1442 : TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Uint32T> length,
1443 : AllocationFlags flags = kNone);
1444 :
1445 : // Allocate a SlicedOneByteString with the given length, parent and offset.
1446 : // |length| and |offset| are expected to be tagged.
1447 :
1448 : TNode<String> AllocateSlicedOneByteString(TNode<Uint32T> length,
1449 : TNode<String> parent,
1450 : TNode<Smi> offset);
1451 : // Allocate a SlicedTwoByteString with the given length, parent and offset.
1452 : // |length| and |offset| are expected to be tagged.
1453 : TNode<String> AllocateSlicedTwoByteString(TNode<Uint32T> length,
1454 : TNode<String> parent,
1455 : TNode<Smi> offset);
1456 :
1457 : // Allocate a one-byte ConsString with the given length, first and second
1458 : // parts. |length| is expected to be tagged, and |first| and |second| are
1459 : // expected to be one-byte strings.
1460 : TNode<String> AllocateOneByteConsString(TNode<Uint32T> length,
1461 : TNode<String> first,
1462 : TNode<String> second,
1463 : AllocationFlags flags = kNone);
1464 : // Allocate a two-byte ConsString with the given length, first and second
1465 : // parts. |length| is expected to be tagged, and |first| and |second| are
1466 : // expected to be two-byte strings.
1467 : TNode<String> AllocateTwoByteConsString(TNode<Uint32T> length,
1468 : TNode<String> first,
1469 : TNode<String> second,
1470 : AllocationFlags flags = kNone);
1471 :
1472 : // Allocate an appropriate one- or two-byte ConsString with the first and
1473 : // second parts specified by |left| and |right|.
1474 : TNode<String> NewConsString(TNode<Uint32T> length, TNode<String> left,
1475 : TNode<String> right,
1476 : AllocationFlags flags = kNone);
1477 :
1478 : TNode<NameDictionary> AllocateNameDictionary(int at_least_space_for);
1479 : TNode<NameDictionary> AllocateNameDictionary(
1480 : TNode<IntPtrT> at_least_space_for);
1481 : TNode<NameDictionary> AllocateNameDictionaryWithCapacity(
1482 : TNode<IntPtrT> capacity);
1483 : TNode<NameDictionary> CopyNameDictionary(TNode<NameDictionary> dictionary,
1484 : Label* large_object_fallback);
1485 :
1486 : template <typename CollectionType>
1487 : Node* AllocateOrderedHashTable();
1488 :
1489 : // Builds code that finds OrderedHashTable entry for a key with hash code
1490 : // {hash} with using the comparison code generated by {key_compare}. The code
1491 : // jumps to {entry_found} if the key is found, or to {not_found} if the key
1492 : // was not found. In the {entry_found} branch, the variable
1493 : // entry_start_position will be bound to the index of the entry (relative to
1494 : // OrderedHashTable::kHashTableStartIndex).
1495 : //
1496 : // The {CollectionType} template parameter stands for the particular instance
1497 : // of OrderedHashTable, it should be OrderedHashMap or OrderedHashSet.
1498 : template <typename CollectionType>
1499 : void FindOrderedHashTableEntry(
1500 : Node* table, Node* hash,
1501 : const std::function<void(Node*, Label*, Label*)>& key_compare,
1502 : Variable* entry_start_position, Label* entry_found, Label* not_found);
1503 :
1504 : template <typename CollectionType>
1505 : TNode<CollectionType> AllocateSmallOrderedHashTable(TNode<IntPtrT> capacity);
1506 :
1507 : Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
1508 : void InitializeStructBody(Node* object, Node* map, Node* size,
1509 : int start_offset = Struct::kHeaderSize);
1510 :
1511 : Node* AllocateJSObjectFromMap(
1512 : Node* map, Node* properties = nullptr, Node* elements = nullptr,
1513 : AllocationFlags flags = kNone,
1514 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1515 :
1516 : void InitializeJSObjectFromMap(
1517 : Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
1518 : Node* elements = nullptr,
1519 : SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
1520 :
1521 : void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
1522 : Node* instance_size);
1523 : void InitializeJSObjectBodyNoSlackTracking(
1524 : Node* object, Node* map, Node* instance_size,
1525 : int start_offset = JSObject::kHeaderSize);
1526 :
1527 : TNode<BoolT> IsValidFastJSArrayCapacity(Node* capacity,
1528 : ParameterMode capacity_mode);
1529 :
1530 : //
1531 : // Allocate and return a JSArray with initialized header fields and its
1532 : // uninitialized elements.
1533 : // The ParameterMode argument is only used for the capacity parameter.
1534 : std::pair<TNode<JSArray>, TNode<FixedArrayBase>>
1535 : AllocateUninitializedJSArrayWithElements(
1536 : ElementsKind kind, TNode<Map> array_map, TNode<Smi> length,
1537 : Node* allocation_site, Node* capacity,
1538 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1539 : AllocationFlags allocation_flags = kNone);
1540 :
1541 : // Allocate a JSArray and fill elements with the hole.
1542 : // The ParameterMode argument is only used for the capacity parameter.
1543 : TNode<JSArray> AllocateJSArray(
1544 : ElementsKind kind, TNode<Map> array_map, Node* capacity,
1545 : TNode<Smi> length, Node* allocation_site = nullptr,
1546 : ParameterMode capacity_mode = INTPTR_PARAMETERS,
1547 : AllocationFlags allocation_flags = kNone);
1548 :
1549 224 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1550 : TNode<Smi> capacity, TNode<Smi> length) {
1551 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1552 224 : SMI_PARAMETERS);
1553 : }
1554 :
1555 336 : TNode<JSArray> AllocateJSArray(ElementsKind kind, TNode<Map> array_map,
1556 : TNode<IntPtrT> capacity, TNode<Smi> length) {
1557 : return AllocateJSArray(kind, array_map, capacity, length, nullptr,
1558 336 : INTPTR_PARAMETERS);
1559 : }
1560 :
1561 : // Allocate a JSArray and initialize the header fields.
1562 : TNode<JSArray> AllocateJSArray(TNode<Map> array_map,
1563 : TNode<FixedArrayBase> elements,
1564 : TNode<Smi> length,
1565 : Node* allocation_site = nullptr);
1566 :
1567 : enum class HoleConversionMode { kDontConvert, kConvertToUndefined };
1568 : // Clone a fast JSArray |array| into a new fast JSArray.
1569 : // |convert_holes| tells the function to convert holes into undefined or not.
1570 : // If |convert_holes| is set to kConvertToUndefined, but the function did not
1571 : // find any hole in |array|, the resulting array will have the same elements
1572 : // kind as |array|. If the function did find a hole, it will convert holes in
1573 : // |array| to undefined in the resulting array, who will now have
1574 : // PACKED_ELEMENTS kind.
1575 : // If |convert_holes| is set kDontConvert, holes are also copied to the
1576 : // resulting array, who will have the same elements kind as |array|. The
1577 : // function generates significantly less code in this case.
1578 : Node* CloneFastJSArray(
1579 : Node* context, Node* array, ParameterMode mode = INTPTR_PARAMETERS,
1580 : Node* allocation_site = nullptr,
1581 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert);
1582 :
1583 : Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
1584 : ParameterMode mode = INTPTR_PARAMETERS,
1585 : Node* capacity = nullptr,
1586 : Node* allocation_site = nullptr);
1587 :
1588 : TNode<FixedArrayBase> AllocateFixedArray(
1589 : ElementsKind kind, Node* capacity, ParameterMode mode = INTPTR_PARAMETERS,
1590 : AllocationFlags flags = kNone,
1591 : SloppyTNode<Map> fixed_array_map = nullptr);
1592 :
1593 2024 : TNode<FixedArrayBase> AllocateFixedArray(
1594 : ElementsKind kind, TNode<IntPtrT> capacity, AllocationFlags flags,
1595 : SloppyTNode<Map> fixed_array_map = nullptr) {
1596 : return AllocateFixedArray(kind, capacity, INTPTR_PARAMETERS, flags,
1597 2480 : fixed_array_map);
1598 : }
1599 :
1600 116 : TNode<FixedArray> AllocateUninitializedFixedArray(intptr_t capacity) {
1601 : return UncheckedCast<FixedArray>(AllocateFixedArray(
1602 116 : PACKED_ELEMENTS, IntPtrConstant(capacity), AllocationFlag::kNone));
1603 : }
1604 :
1605 1132 : TNode<FixedArray> AllocateZeroedFixedArray(TNode<IntPtrT> capacity) {
1606 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1607 : AllocateFixedArray(PACKED_ELEMENTS, capacity,
1608 676 : AllocationFlag::kAllowLargeObjectAllocation));
1609 1132 : FillFixedArrayWithSmiZero(result, capacity);
1610 1132 : return result;
1611 : }
1612 :
1613 56 : TNode<FixedDoubleArray> AllocateZeroedFixedDoubleArray(
1614 : TNode<IntPtrT> capacity) {
1615 : TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1616 : AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity,
1617 56 : AllocationFlag::kAllowLargeObjectAllocation));
1618 56 : FillFixedDoubleArrayWithZero(result, capacity);
1619 56 : return result;
1620 : }
1621 :
1622 336 : TNode<FixedArray> AllocateFixedArrayWithHoles(TNode<IntPtrT> capacity,
1623 : AllocationFlags flags) {
1624 : TNode<FixedArray> result = UncheckedCast<FixedArray>(
1625 336 : AllocateFixedArray(PACKED_ELEMENTS, capacity, flags));
1626 336 : FillFixedArrayWithValue(PACKED_ELEMENTS, result, IntPtrConstant(0),
1627 672 : capacity, RootIndex::kTheHoleValue);
1628 336 : return result;
1629 : }
1630 :
1631 112 : TNode<FixedDoubleArray> AllocateFixedDoubleArrayWithHoles(
1632 : TNode<IntPtrT> capacity, AllocationFlags flags) {
1633 : TNode<FixedDoubleArray> result = UncheckedCast<FixedDoubleArray>(
1634 112 : AllocateFixedArray(PACKED_DOUBLE_ELEMENTS, capacity, flags));
1635 112 : FillFixedArrayWithValue(PACKED_DOUBLE_ELEMENTS, result, IntPtrConstant(0),
1636 224 : capacity, RootIndex::kTheHoleValue);
1637 112 : return result;
1638 : }
1639 :
1640 : Node* AllocatePropertyArray(Node* capacity,
1641 : ParameterMode mode = INTPTR_PARAMETERS,
1642 : AllocationFlags flags = kNone);
1643 :
1644 : // Perform CreateArrayIterator (ES #sec-createarrayiterator).
1645 : TNode<JSArrayIterator> CreateArrayIterator(TNode<Context> context,
1646 : TNode<Object> object,
1647 : IterationKind mode);
1648 :
1649 : Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
1650 : Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
1651 :
1652 : TNode<JSReceiver> ArraySpeciesCreate(TNode<Context> context,
1653 : TNode<Object> originalArray,
1654 : TNode<Number> len);
1655 :
1656 : void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
1657 : Node* to_index, RootIndex value_root_index,
1658 : ParameterMode mode = INTPTR_PARAMETERS);
1659 :
1660 : // Uses memset to effectively initialize the given FixedArray with zeroes.
1661 : void FillFixedArrayWithSmiZero(TNode<FixedArray> array,
1662 : TNode<IntPtrT> length);
1663 : void FillFixedDoubleArrayWithZero(TNode<FixedDoubleArray> array,
1664 : TNode<IntPtrT> length);
1665 :
1666 : void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
1667 : Node* to_index,
1668 : ParameterMode mode = INTPTR_PARAMETERS);
1669 :
1670 : enum class DestroySource { kNo, kYes };
1671 :
1672 : // Specify DestroySource::kYes if {from_array} is being supplanted by
1673 : // {to_array}. This offers a slight performance benefit by simply copying the
1674 : // array word by word. The source may be destroyed at the end of this macro.
1675 : //
1676 : // Otherwise, specify DestroySource::kNo for operations where an Object is
1677 : // being cloned, to ensure that MutableHeapNumbers are unique between the
1678 : // source and cloned object.
1679 : void CopyPropertyArrayValues(Node* from_array, Node* to_array, Node* length,
1680 : WriteBarrierMode barrier_mode,
1681 : ParameterMode mode,
1682 : DestroySource destroy_source);
1683 :
1684 : // Copies all elements from |from_array| of |length| size to
1685 : // |to_array| of the same size respecting the elements kind.
1686 336 : void CopyFixedArrayElements(
1687 : ElementsKind kind, Node* from_array, Node* to_array, Node* length,
1688 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1689 : ParameterMode mode = INTPTR_PARAMETERS) {
1690 : CopyFixedArrayElements(kind, from_array, kind, to_array,
1691 : IntPtrOrSmiConstant(0, mode), length, length,
1692 336 : barrier_mode, mode);
1693 336 : }
1694 :
1695 : // Copies |element_count| elements from |from_array| starting from element
1696 : // zero to |to_array| of |capacity| size respecting both array's elements
1697 : // kinds.
1698 5468 : void CopyFixedArrayElements(
1699 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1700 : Node* to_array, Node* element_count, Node* capacity,
1701 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1702 : ParameterMode mode = INTPTR_PARAMETERS) {
1703 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1704 : IntPtrOrSmiConstant(0, mode), element_count,
1705 5468 : capacity, barrier_mode, mode);
1706 5468 : }
1707 :
1708 : // Copies |element_count| elements from |from_array| starting from element
1709 : // |first_element| to |to_array| of |capacity| size respecting both array's
1710 : // elements kinds.
1711 : // |convert_holes| tells the function whether to convert holes to undefined.
1712 : // |var_holes_converted| can be used to signify that the conversion happened
1713 : // (i.e. that there were holes). If |convert_holes_to_undefined| is
1714 : // HoleConversionMode::kConvertToUndefined, then it must not be the case that
1715 : // IsDoubleElementsKind(to_kind).
1716 : void CopyFixedArrayElements(
1717 : ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
1718 : Node* to_array, Node* first_element, Node* element_count, Node* capacity,
1719 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
1720 : ParameterMode mode = INTPTR_PARAMETERS,
1721 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1722 : TVariable<BoolT>* var_holes_converted = nullptr);
1723 :
1724 : void CopyFixedArrayElements(
1725 : ElementsKind from_kind, TNode<FixedArrayBase> from_array,
1726 : ElementsKind to_kind, TNode<FixedArrayBase> to_array,
1727 : TNode<Smi> first_element, TNode<Smi> element_count, TNode<Smi> capacity,
1728 : WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
1729 : CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
1730 : first_element, element_count, capacity, barrier_mode,
1731 : SMI_PARAMETERS);
1732 : }
1733 :
1734 : void JumpIfPointersFromHereAreInteresting(TNode<Object> object,
1735 : Label* interesting);
1736 :
1737 : // Efficiently copy elements within a single array. The regions
1738 : // [src_index, src_index + length) and [dst_index, dst_index + length)
1739 : // can be overlapping.
1740 : void MoveElements(ElementsKind kind, TNode<FixedArrayBase> elements,
1741 : TNode<IntPtrT> dst_index, TNode<IntPtrT> src_index,
1742 : TNode<IntPtrT> length);
1743 :
1744 : // Efficiently copy elements from one array to another. The ElementsKind
1745 : // needs to be the same. Copy from src_elements at
1746 : // [src_index, src_index + length) to dst_elements at
1747 : // [dst_index, dst_index + length).
1748 : // The function decides whether it can use memcpy. In case it cannot,
1749 : // |write_barrier| can help it to skip write barrier. SKIP_WRITE_BARRIER is
1750 : // only safe when copying to new space, or when copying to old space and the
1751 : // array does not contain object pointers.
1752 : void CopyElements(ElementsKind kind, TNode<FixedArrayBase> dst_elements,
1753 : TNode<IntPtrT> dst_index,
1754 : TNode<FixedArrayBase> src_elements,
1755 : TNode<IntPtrT> src_index, TNode<IntPtrT> length,
1756 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER);
1757 :
1758 : TNode<FixedArray> HeapObjectToFixedArray(TNode<HeapObject> base,
1759 : Label* cast_fail);
1760 :
1761 616 : TNode<FixedDoubleArray> HeapObjectToFixedDoubleArray(TNode<HeapObject> base,
1762 : Label* cast_fail) {
1763 : GotoIf(
1764 1232 : WordNotEqual(LoadMap(base), LoadRoot(RootIndex::kFixedDoubleArrayMap)),
1765 616 : cast_fail);
1766 616 : return UncheckedCast<FixedDoubleArray>(base);
1767 : }
1768 :
1769 56 : TNode<FixedArray> HeapObjectToSloppyArgumentsElements(TNode<HeapObject> base,
1770 : Label* cast_fail) {
1771 : GotoIf(WordNotEqual(LoadMap(base),
1772 112 : LoadRoot(RootIndex::kSloppyArgumentsElementsMap)),
1773 56 : cast_fail);
1774 56 : return UncheckedCast<FixedArray>(base);
1775 : }
1776 :
1777 56 : TNode<Int32T> ConvertElementsKindToInt(TNode<Int32T> elements_kind) {
1778 56 : return UncheckedCast<Int32T>(elements_kind);
1779 : }
1780 :
1781 : enum class ExtractFixedArrayFlag {
1782 : kFixedArrays = 1,
1783 : kFixedDoubleArrays = 2,
1784 : kDontCopyCOW = 4,
1785 : kNewSpaceAllocationOnly = 8,
1786 : kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
1787 : kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
1788 : };
1789 :
1790 : typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
1791 :
1792 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1793 : // array, including special appropriate handling for empty arrays and COW
1794 : // arrays. The result array will be of the same type as the original array.
1795 : //
1796 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1797 : // elements.
1798 : // * |first| is the starting element index to copy from, if nullptr is passed
1799 : // then index zero is used by default.
1800 : // * |count| is the number of elements to copy out of the source array
1801 : // starting from and including the element indexed by |start|. If |count| is
1802 : // nullptr, then all of the elements from |start| to the end of |source| are
1803 : // copied.
1804 : // * |capacity| determines the size of the allocated result array, with
1805 : // |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
1806 : // the destination array's capacity.
1807 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1808 : // are detected and copied. Although it's always correct to pass
1809 : // kAllFixedArrays, the generated code is more compact and efficient if the
1810 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1811 : // passed as the |source| parameter.
1812 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1813 : // |capacity|.
1814 : // * If |var_holes_converted| is given, any holes will be converted to
1815 : // undefined and the variable will be set according to whether or not there
1816 : // were any hole.
1817 : // * If |source_elements_kind| is given, the function will try to use the
1818 : // runtime elements kind of source to make copy faster. More specifically, it
1819 : // can skip write barriers.
1820 : TNode<FixedArrayBase> ExtractFixedArray(
1821 : Node* source, Node* first, Node* count = nullptr,
1822 : Node* capacity = nullptr,
1823 : ExtractFixedArrayFlags extract_flags =
1824 : ExtractFixedArrayFlag::kAllFixedArrays,
1825 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1826 : TVariable<BoolT>* var_holes_converted = nullptr,
1827 : Node* source_elements_kind = nullptr);
1828 :
1829 392 : TNode<FixedArrayBase> ExtractFixedArray(
1830 : TNode<FixedArrayBase> source, TNode<Smi> first, TNode<Smi> count,
1831 : TNode<Smi> capacity,
1832 : ExtractFixedArrayFlags extract_flags =
1833 : ExtractFixedArrayFlag::kAllFixedArrays) {
1834 : return ExtractFixedArray(source, first, count, capacity, extract_flags,
1835 392 : SMI_PARAMETERS);
1836 : }
1837 :
1838 : // Copy a portion of an existing FixedArray or FixedDoubleArray into a new
1839 : // FixedArray, including special appropriate handling for COW arrays.
1840 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1841 : // elements. |source| is assumed to be non-empty.
1842 : // * |first| is the starting element index to copy from.
1843 : // * |count| is the number of elements to copy out of the source array
1844 : // starting from and including the element indexed by |start|.
1845 : // * |capacity| determines the size of the allocated result array, with
1846 : // |capacity| >= |count|.
1847 : // * |source_map| is the map of the |source|.
1848 : // * |from_kind| is the elements kind that is consistent with |source| being
1849 : // a FixedArray or FixedDoubleArray. This function only cares about double vs.
1850 : // non-double, so as to distinguish FixedDoubleArray vs. FixedArray. It does
1851 : // not care about holeyness. For example, when |source| is a FixedArray,
1852 : // PACKED/HOLEY_ELEMENTS can be used, but not PACKED_DOUBLE_ELEMENTS.
1853 : // * |allocation_flags| and |extract_flags| influence how the target
1854 : // FixedArray is allocated.
1855 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1856 : // |capacity|.
1857 : // * |convert_holes| is used to signify that the target array should use
1858 : // undefined in places of holes.
1859 : // * If |convert_holes| is true and |var_holes_converted| not nullptr, then
1860 : // |var_holes_converted| is used to signal whether any holes were found and
1861 : // converted. The caller should use this information to decide which map is
1862 : // compatible with the result array. For example, if the input was of
1863 : // HOLEY_SMI_ELEMENTS kind, and a conversion took place, the result will be
1864 : // compatible only with HOLEY_ELEMENTS and PACKED_ELEMENTS.
1865 : TNode<FixedArray> ExtractToFixedArray(
1866 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1867 : ElementsKind from_kind = PACKED_ELEMENTS,
1868 : AllocationFlags allocation_flags = AllocationFlag::kNone,
1869 : ExtractFixedArrayFlags extract_flags =
1870 : ExtractFixedArrayFlag::kAllFixedArrays,
1871 : ParameterMode parameter_mode = INTPTR_PARAMETERS,
1872 : HoleConversionMode convert_holes = HoleConversionMode::kDontConvert,
1873 : TVariable<BoolT>* var_holes_converted = nullptr,
1874 : Node* source_runtime_kind = nullptr);
1875 :
1876 : // Attempt to copy a FixedDoubleArray to another FixedDoubleArray. In the case
1877 : // where the source array has a hole, produce a FixedArray instead where holes
1878 : // are replaced with undefined.
1879 : // * |source| is a FixedDoubleArray from which to copy elements.
1880 : // * |first| is the starting element index to copy from.
1881 : // * |count| is the number of elements to copy out of the source array
1882 : // starting from and including the element indexed by |start|.
1883 : // * |capacity| determines the size of the allocated result array, with
1884 : // |capacity| >= |count|.
1885 : // * |source_map| is the map of |source|. It will be used as the map of the
1886 : // target array if the target can stay a FixedDoubleArray. Otherwise if the
1887 : // target array needs to be a FixedArray, the FixedArrayMap will be used.
1888 : // * |var_holes_converted| is used to signal whether a FixedAray
1889 : // is produced or not.
1890 : // * |allocation_flags| and |extract_flags| influence how the target array is
1891 : // allocated.
1892 : // * |parameter_mode| determines the parameter mode of |first|, |count| and
1893 : // |capacity|.
1894 : TNode<FixedArrayBase> ExtractFixedDoubleArrayFillingHoles(
1895 : Node* source, Node* first, Node* count, Node* capacity, Node* source_map,
1896 : TVariable<BoolT>* var_holes_converted, AllocationFlags allocation_flags,
1897 : ExtractFixedArrayFlags extract_flags =
1898 : ExtractFixedArrayFlag::kAllFixedArrays,
1899 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
1900 :
1901 : // Copy the entire contents of a FixedArray or FixedDoubleArray to a new
1902 : // array, including special appropriate handling for empty arrays and COW
1903 : // arrays.
1904 : //
1905 : // * |source| is either a FixedArray or FixedDoubleArray from which to copy
1906 : // elements.
1907 : // * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
1908 : // are detected and copied. Although it's always correct to pass
1909 : // kAllFixedArrays, the generated code is more compact and efficient if the
1910 : // caller can specify whether only FixedArrays or FixedDoubleArrays will be
1911 : // passed as the |source| parameter.
1912 348 : Node* CloneFixedArray(Node* source,
1913 : ExtractFixedArrayFlags flags =
1914 : ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
1915 336 : ParameterMode mode = OptimalParameterMode();
1916 : return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
1917 360 : nullptr, flags, mode);
1918 : }
1919 :
1920 : // Copies |character_count| elements from |from_string| to |to_string|
1921 : // starting at the |from_index|'th character. |from_string| and |to_string|
1922 : // can either be one-byte strings or two-byte strings, although if
1923 : // |from_string| is two-byte, then |to_string| must be two-byte.
1924 : // |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
1925 : // |from_index| <= |from_index| + |character_count| <= from_string.length and
1926 : // 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
1927 : void CopyStringCharacters(Node* from_string, Node* to_string,
1928 : TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
1929 : TNode<IntPtrT> character_count,
1930 : String::Encoding from_encoding,
1931 : String::Encoding to_encoding);
1932 :
1933 : // Loads an element from |array| of |from_kind| elements by given |offset|
1934 : // (NOTE: not index!), does a hole check if |if_hole| is provided and
1935 : // converts the value so that it becomes ready for storing to array of
1936 : // |to_kind| elements.
1937 : Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
1938 : ElementsKind from_kind,
1939 : ElementsKind to_kind, Label* if_hole);
1940 :
1941 : Node* CalculateNewElementsCapacity(Node* old_capacity,
1942 : ParameterMode mode = INTPTR_PARAMETERS);
1943 :
1944 112 : TNode<Smi> CalculateNewElementsCapacity(TNode<Smi> old_capacity) {
1945 112 : return CAST(CalculateNewElementsCapacity(old_capacity, SMI_PARAMETERS));
1946 : }
1947 :
1948 : // Tries to grow the |elements| array of given |object| to store the |key|
1949 : // or bails out if the growing gap is too big. Returns new elements.
1950 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1951 : Node* key, Label* bailout);
1952 :
1953 : // Tries to grow the |capacity|-length |elements| array of given |object|
1954 : // to store the |key| or bails out if the growing gap is too big. Returns
1955 : // new elements.
1956 : Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
1957 : Node* key, Node* capacity, ParameterMode mode,
1958 : Label* bailout);
1959 :
1960 : // Grows elements capacity of given object. Returns new elements.
1961 : Node* GrowElementsCapacity(Node* object, Node* elements,
1962 : ElementsKind from_kind, ElementsKind to_kind,
1963 : Node* capacity, Node* new_capacity,
1964 : ParameterMode mode, Label* bailout);
1965 :
1966 : // Given a need to grow by |growth|, allocate an appropriate new capacity
1967 : // if necessary, and return a new elements FixedArray object. Label |bailout|
1968 : // is followed for allocation failure.
1969 : void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
1970 : Node* array, Node* length,
1971 : Variable* var_elements, Node* growth,
1972 : Label* bailout);
1973 :
1974 : // Allocation site manipulation
1975 : void InitializeAllocationMemento(Node* base_allocation,
1976 : Node* base_allocation_size,
1977 : Node* allocation_site);
1978 :
1979 : Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
1980 : Node* TruncateTaggedToFloat64(Node* context, Node* value);
1981 : Node* TruncateTaggedToWord32(Node* context, Node* value);
1982 : void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
1983 : Variable* var_word32, Label* if_bigint,
1984 : Variable* var_bigint);
1985 : void TaggedToWord32OrBigIntWithFeedback(
1986 : Node* context, Node* value, Label* if_number, Variable* var_word32,
1987 : Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
1988 :
1989 : // Truncate the floating point value of a HeapNumber to an Int32.
1990 : Node* TruncateHeapNumberValueToWord32(Node* object);
1991 :
1992 : // Conversions.
1993 : void TryHeapNumberToSmi(TNode<HeapNumber> number, TVariable<Smi>& output,
1994 : Label* if_smi);
1995 : void TryFloat64ToSmi(TNode<Float64T> number, TVariable<Smi>& output,
1996 : Label* if_smi);
1997 : TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
1998 : TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
1999 : TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
2000 : TNode<Number> ChangeUintPtrToTagged(TNode<UintPtrT> value);
2001 : TNode<Uint32T> ChangeNumberToUint32(TNode<Number> value);
2002 : TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
2003 : TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value);
2004 :
2005 : void TaggedToNumeric(Node* context, Node* value, Label* done,
2006 : Variable* var_numeric);
2007 : void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
2008 : Variable* var_numeric,
2009 : Variable* var_feedback);
2010 :
2011 : TNode<WordT> TimesSystemPointerSize(SloppyTNode<WordT> value);
2012 448 : TNode<IntPtrT> TimesSystemPointerSize(TNode<IntPtrT> value) {
2013 896 : return Signed(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
2014 : }
2015 : TNode<UintPtrT> TimesSystemPointerSize(TNode<UintPtrT> value) {
2016 : return Unsigned(TimesSystemPointerSize(implicit_cast<TNode<WordT>>(value)));
2017 : }
2018 :
2019 : TNode<WordT> TimesTaggedSize(SloppyTNode<WordT> value);
2020 6028 : TNode<IntPtrT> TimesTaggedSize(TNode<IntPtrT> value) {
2021 12056 : return Signed(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
2022 : }
2023 504 : TNode<UintPtrT> TimesTaggedSize(TNode<UintPtrT> value) {
2024 1008 : return Unsigned(TimesTaggedSize(implicit_cast<TNode<WordT>>(value)));
2025 : }
2026 :
2027 : TNode<WordT> TimesDoubleSize(SloppyTNode<WordT> value);
2028 : TNode<UintPtrT> TimesDoubleSize(TNode<UintPtrT> value) {
2029 : return Unsigned(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
2030 : }
2031 56 : TNode<IntPtrT> TimesDoubleSize(TNode<IntPtrT> value) {
2032 112 : return Signed(TimesDoubleSize(implicit_cast<TNode<WordT>>(value)));
2033 : }
2034 :
2035 : // Type conversions.
2036 : // Throws a TypeError for {method_name} if {value} is not coercible to Object,
2037 : // or returns the {value} converted to a String otherwise.
2038 : TNode<String> ToThisString(Node* context, Node* value,
2039 : char const* method_name);
2040 : // Throws a TypeError for {method_name} if {value} is neither of the given
2041 : // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
2042 : // returns the {value} (or wrapped value) otherwise.
2043 : Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
2044 : char const* method_name);
2045 :
2046 : // Throws a TypeError for {method_name} if {value} is not of the given
2047 : // instance type. Returns {value}'s map.
2048 : Node* ThrowIfNotInstanceType(Node* context, Node* value,
2049 : InstanceType instance_type,
2050 : char const* method_name);
2051 : // Throws a TypeError for {method_name} if {value} is not a JSReceiver.
2052 : // Returns the {value}'s map.
2053 : Node* ThrowIfNotJSReceiver(Node* context, Node* value,
2054 : MessageTemplate msg_template,
2055 : const char* method_name = nullptr);
2056 :
2057 : void ThrowRangeError(Node* context, MessageTemplate message,
2058 : Node* arg0 = nullptr, Node* arg1 = nullptr,
2059 : Node* arg2 = nullptr);
2060 : void ThrowTypeError(Node* context, MessageTemplate message,
2061 : char const* arg0 = nullptr, char const* arg1 = nullptr);
2062 : void ThrowTypeError(Node* context, MessageTemplate message, Node* arg0,
2063 : Node* arg1 = nullptr, Node* arg2 = nullptr);
2064 :
2065 : // Type checks.
2066 : // Check whether the map is for an object with special properties, such as a
2067 : // JSProxy or an object with interceptors.
2068 : TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
2069 : TNode<BoolT> IsAccessorInfo(SloppyTNode<HeapObject> object);
2070 : TNode<BoolT> IsAccessorPair(SloppyTNode<HeapObject> object);
2071 : TNode<BoolT> IsAllocationSite(SloppyTNode<HeapObject> object);
2072 : TNode<BoolT> IsAnyHeapNumber(SloppyTNode<HeapObject> object);
2073 : TNode<BoolT> IsNoElementsProtectorCellInvalid();
2074 : TNode<BoolT> IsArrayIteratorProtectorCellInvalid();
2075 : TNode<BoolT> IsBigIntInstanceType(SloppyTNode<Int32T> instance_type);
2076 : TNode<BoolT> IsBigInt(SloppyTNode<HeapObject> object);
2077 : TNode<BoolT> IsBoolean(SloppyTNode<HeapObject> object);
2078 : TNode<BoolT> IsCallableMap(SloppyTNode<Map> map);
2079 : TNode<BoolT> IsCallable(SloppyTNode<HeapObject> object);
2080 : TNode<BoolT> TaggedIsCallable(TNode<Object> object);
2081 : TNode<BoolT> IsCell(SloppyTNode<HeapObject> object);
2082 : TNode<BoolT> IsCode(SloppyTNode<HeapObject> object);
2083 : TNode<BoolT> IsConsStringInstanceType(SloppyTNode<Int32T> instance_type);
2084 : TNode<BoolT> IsConstructorMap(SloppyTNode<Map> map);
2085 : TNode<BoolT> IsConstructor(SloppyTNode<HeapObject> object);
2086 : TNode<BoolT> IsDeprecatedMap(SloppyTNode<Map> map);
2087 : TNode<BoolT> IsNameDictionary(SloppyTNode<HeapObject> object);
2088 : TNode<BoolT> IsGlobalDictionary(SloppyTNode<HeapObject> object);
2089 : TNode<BoolT> IsExtensibleMap(SloppyTNode<Map> map);
2090 : TNode<BoolT> IsExtensibleNonPrototypeMap(TNode<Map> map);
2091 : TNode<BoolT> IsExternalStringInstanceType(SloppyTNode<Int32T> instance_type);
2092 : TNode<BoolT> IsFeedbackCell(SloppyTNode<HeapObject> object);
2093 : TNode<BoolT> IsFeedbackVector(SloppyTNode<HeapObject> object);
2094 : TNode<BoolT> IsContext(SloppyTNode<HeapObject> object);
2095 : TNode<BoolT> IsFixedArray(SloppyTNode<HeapObject> object);
2096 : TNode<BoolT> IsFixedArraySubclass(SloppyTNode<HeapObject> object);
2097 : TNode<BoolT> IsFixedArrayWithKind(SloppyTNode<HeapObject> object,
2098 : ElementsKind kind);
2099 : TNode<BoolT> IsFixedArrayWithKindOrEmpty(SloppyTNode<HeapObject> object,
2100 : ElementsKind kind);
2101 : TNode<BoolT> IsFixedDoubleArray(SloppyTNode<HeapObject> object);
2102 : TNode<BoolT> IsFixedTypedArray(SloppyTNode<HeapObject> object);
2103 : TNode<BoolT> IsFunctionWithPrototypeSlotMap(SloppyTNode<Map> map);
2104 : TNode<BoolT> IsHashTable(SloppyTNode<HeapObject> object);
2105 : TNode<BoolT> IsEphemeronHashTable(SloppyTNode<HeapObject> object);
2106 : TNode<BoolT> IsHeapNumber(SloppyTNode<HeapObject> object);
2107 : TNode<BoolT> IsHeapNumberInstanceType(SloppyTNode<Int32T> instance_type);
2108 : TNode<BoolT> IsOddball(SloppyTNode<HeapObject> object);
2109 : TNode<BoolT> IsOddballInstanceType(SloppyTNode<Int32T> instance_type);
2110 : TNode<BoolT> IsIndirectStringInstanceType(SloppyTNode<Int32T> instance_type);
2111 : TNode<BoolT> IsJSArrayBuffer(SloppyTNode<HeapObject> object);
2112 : TNode<BoolT> IsJSDataView(TNode<HeapObject> object);
2113 : TNode<BoolT> IsJSArrayInstanceType(SloppyTNode<Int32T> instance_type);
2114 : TNode<BoolT> IsJSArrayMap(SloppyTNode<Map> map);
2115 : TNode<BoolT> IsJSArray(SloppyTNode<HeapObject> object);
2116 : TNode<BoolT> IsJSArrayIterator(SloppyTNode<HeapObject> object);
2117 : TNode<BoolT> IsJSAsyncGeneratorObject(SloppyTNode<HeapObject> object);
2118 : TNode<BoolT> IsJSFunctionInstanceType(SloppyTNode<Int32T> instance_type);
2119 : TNode<BoolT> IsAllocationSiteInstanceType(SloppyTNode<Int32T> instance_type);
2120 : TNode<BoolT> IsJSFunctionMap(SloppyTNode<Map> map);
2121 : TNode<BoolT> IsJSFunction(SloppyTNode<HeapObject> object);
2122 : TNode<BoolT> IsJSGeneratorObject(SloppyTNode<HeapObject> object);
2123 : TNode<BoolT> IsJSGlobalProxyInstanceType(SloppyTNode<Int32T> instance_type);
2124 : TNode<BoolT> IsJSGlobalProxy(SloppyTNode<HeapObject> object);
2125 : TNode<BoolT> IsJSObjectInstanceType(SloppyTNode<Int32T> instance_type);
2126 : TNode<BoolT> IsJSObjectMap(SloppyTNode<Map> map);
2127 : TNode<BoolT> IsJSObject(SloppyTNode<HeapObject> object);
2128 : TNode<BoolT> IsJSPromiseMap(SloppyTNode<Map> map);
2129 : TNode<BoolT> IsJSPromise(SloppyTNode<HeapObject> object);
2130 : TNode<BoolT> IsJSProxy(SloppyTNode<HeapObject> object);
2131 : TNode<BoolT> IsJSReceiverInstanceType(SloppyTNode<Int32T> instance_type);
2132 : TNode<BoolT> IsJSReceiverMap(SloppyTNode<Map> map);
2133 : TNode<BoolT> IsJSReceiver(SloppyTNode<HeapObject> object);
2134 : TNode<BoolT> IsJSRegExp(SloppyTNode<HeapObject> object);
2135 : TNode<BoolT> IsJSTypedArray(SloppyTNode<HeapObject> object);
2136 : TNode<BoolT> IsJSValueInstanceType(SloppyTNode<Int32T> instance_type);
2137 : TNode<BoolT> IsJSValueMap(SloppyTNode<Map> map);
2138 : TNode<BoolT> IsJSValue(SloppyTNode<HeapObject> object);
2139 : TNode<BoolT> IsMap(SloppyTNode<HeapObject> object);
2140 : TNode<BoolT> IsMutableHeapNumber(SloppyTNode<HeapObject> object);
2141 : TNode<BoolT> IsName(SloppyTNode<HeapObject> object);
2142 : TNode<BoolT> IsNameInstanceType(SloppyTNode<Int32T> instance_type);
2143 : TNode<BoolT> IsNativeContext(SloppyTNode<HeapObject> object);
2144 : TNode<BoolT> IsNullOrJSReceiver(SloppyTNode<HeapObject> object);
2145 : TNode<BoolT> IsNullOrUndefined(SloppyTNode<Object> object);
2146 : TNode<BoolT> IsNumberDictionary(SloppyTNode<HeapObject> object);
2147 : TNode<BoolT> IsOneByteStringInstanceType(SloppyTNode<Int32T> instance_type);
2148 : TNode<BoolT> HasOnlyOneByteChars(TNode<Int32T> instance_type);
2149 : TNode<BoolT> IsPrimitiveInstanceType(SloppyTNode<Int32T> instance_type);
2150 : TNode<BoolT> IsPrivateSymbol(SloppyTNode<HeapObject> object);
2151 : TNode<BoolT> IsPromiseCapability(SloppyTNode<HeapObject> object);
2152 : TNode<BoolT> IsPropertyArray(SloppyTNode<HeapObject> object);
2153 : TNode<BoolT> IsPropertyCell(SloppyTNode<HeapObject> object);
2154 : TNode<BoolT> IsPrototypeInitialArrayPrototype(SloppyTNode<Context> context,
2155 : SloppyTNode<Map> map);
2156 : TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
2157 : SloppyTNode<Map> map);
2158 :
2159 : TNode<BoolT> IsFastAliasedArgumentsMap(TNode<Context> context,
2160 : TNode<Map> map);
2161 : TNode<BoolT> IsSlowAliasedArgumentsMap(TNode<Context> context,
2162 : TNode<Map> map);
2163 : TNode<BoolT> IsSloppyArgumentsMap(TNode<Context> context, TNode<Map> map);
2164 : TNode<BoolT> IsStrictArgumentsMap(TNode<Context> context, TNode<Map> map);
2165 :
2166 : TNode<BoolT> IsSequentialStringInstanceType(
2167 : SloppyTNode<Int32T> instance_type);
2168 : TNode<BoolT> IsUncachedExternalStringInstanceType(
2169 : SloppyTNode<Int32T> instance_type);
2170 : TNode<BoolT> IsSpecialReceiverInstanceType(TNode<Int32T> instance_type);
2171 : TNode<BoolT> IsCustomElementsReceiverInstanceType(
2172 : TNode<Int32T> instance_type);
2173 : TNode<BoolT> IsSpecialReceiverMap(SloppyTNode<Map> map);
2174 : // Returns true if the map corresponds to non-special fast or dictionary
2175 : // object.
2176 : TNode<BoolT> IsSimpleObjectMap(TNode<Map> map);
2177 : TNode<BoolT> IsStringInstanceType(SloppyTNode<Int32T> instance_type);
2178 : TNode<BoolT> IsString(SloppyTNode<HeapObject> object);
2179 : TNode<BoolT> IsSymbolInstanceType(SloppyTNode<Int32T> instance_type);
2180 : TNode<BoolT> IsSymbol(SloppyTNode<HeapObject> object);
2181 : TNode<BoolT> IsUndetectableMap(SloppyTNode<Map> map);
2182 : TNode<BoolT> IsNotWeakFixedArraySubclass(SloppyTNode<HeapObject> object);
2183 : TNode<BoolT> IsZeroOrContext(SloppyTNode<Object> object);
2184 :
2185 : inline Node* IsSharedFunctionInfo(Node* object) {
2186 : return IsSharedFunctionInfoMap(LoadMap(object));
2187 : }
2188 :
2189 : TNode<BoolT> IsPromiseResolveProtectorCellInvalid();
2190 : TNode<BoolT> IsPromiseThenProtectorCellInvalid();
2191 : TNode<BoolT> IsArraySpeciesProtectorCellInvalid();
2192 : TNode<BoolT> IsTypedArraySpeciesProtectorCellInvalid();
2193 : TNode<BoolT> IsRegExpSpeciesProtectorCellInvalid();
2194 : TNode<BoolT> IsPromiseSpeciesProtectorCellInvalid();
2195 :
2196 : // True iff |object| is a Smi or a HeapNumber.
2197 : TNode<BoolT> IsNumber(SloppyTNode<Object> object);
2198 : // True iff |object| is a Smi or a HeapNumber or a BigInt.
2199 : TNode<BoolT> IsNumeric(SloppyTNode<Object> object);
2200 :
2201 : // True iff |number| is either a Smi, or a HeapNumber whose value is not
2202 : // within Smi range.
2203 : TNode<BoolT> IsNumberNormalized(SloppyTNode<Number> number);
2204 : TNode<BoolT> IsNumberPositive(SloppyTNode<Number> number);
2205 : TNode<BoolT> IsHeapNumberPositive(TNode<HeapNumber> number);
2206 :
2207 : // True iff {number} is non-negative and less or equal than 2**53-1.
2208 : TNode<BoolT> IsNumberNonNegativeSafeInteger(TNode<Number> number);
2209 :
2210 : // True iff {number} represents an integer value.
2211 : TNode<BoolT> IsInteger(TNode<Object> number);
2212 : TNode<BoolT> IsInteger(TNode<HeapNumber> number);
2213 :
2214 : // True iff abs({number}) <= 2**53 -1
2215 : TNode<BoolT> IsSafeInteger(TNode<Object> number);
2216 : TNode<BoolT> IsSafeInteger(TNode<HeapNumber> number);
2217 :
2218 : // True iff {number} represents a valid uint32t value.
2219 : TNode<BoolT> IsHeapNumberUint32(TNode<HeapNumber> number);
2220 :
2221 : // True iff {number} is a positive number and a valid array index in the range
2222 : // [0, 2^32-1).
2223 : TNode<BoolT> IsNumberArrayIndex(TNode<Number> number);
2224 :
2225 : Node* FixedArraySizeDoesntFitInNewSpace(
2226 : Node* element_count, int base_size = FixedArray::kHeaderSize,
2227 : ParameterMode mode = INTPTR_PARAMETERS);
2228 :
2229 : // ElementsKind helpers:
2230 3136 : TNode<BoolT> ElementsKindEqual(TNode<Int32T> a, TNode<Int32T> b) {
2231 3136 : return Word32Equal(a, b);
2232 : }
2233 18864 : bool ElementsKindEqual(ElementsKind a, ElementsKind b) { return a == b; }
2234 : Node* IsFastElementsKind(Node* elements_kind);
2235 4 : bool IsFastElementsKind(ElementsKind kind) {
2236 4 : return v8::internal::IsFastElementsKind(kind);
2237 : }
2238 : TNode<BoolT> IsDictionaryElementsKind(TNode<Int32T> elements_kind) {
2239 : return ElementsKindEqual(elements_kind, Int32Constant(DICTIONARY_ELEMENTS));
2240 : }
2241 : TNode<BoolT> IsDoubleElementsKind(TNode<Int32T> elements_kind);
2242 153904 : bool IsDoubleElementsKind(ElementsKind kind) {
2243 153904 : return v8::internal::IsDoubleElementsKind(kind);
2244 : }
2245 : Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
2246 : Node* IsFastSmiElementsKind(Node* elements_kind);
2247 : Node* IsHoleyFastElementsKind(Node* elements_kind);
2248 : Node* IsElementsKindGreaterThan(Node* target_kind,
2249 : ElementsKind reference_kind);
2250 : TNode<BoolT> IsElementsKindLessThanOrEqual(TNode<Int32T> target_kind,
2251 : ElementsKind reference_kind);
2252 :
2253 : // String helpers.
2254 : // Load a character from a String (might flatten a ConsString).
2255 : TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
2256 : SloppyTNode<IntPtrT> index);
2257 : // Return the single character string with only {code}.
2258 : TNode<String> StringFromSingleCharCode(TNode<Int32T> code);
2259 :
2260 : // Return a new string object which holds a substring containing the range
2261 : // [from,to[ of string.
2262 : TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
2263 : TNode<IntPtrT> to);
2264 :
2265 : // Return a new string object produced by concatenating |first| with |second|.
2266 : TNode<String> StringAdd(Node* context, TNode<String> first,
2267 : TNode<String> second, AllocationFlags flags = kNone);
2268 :
2269 : // Check if |string| is an indirect (thin or flat cons) string type that can
2270 : // be dereferenced by DerefIndirectString.
2271 : void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
2272 : Label* can_deref, Label* cannot_deref);
2273 : // Unpack an indirect (thin or flat cons) string type.
2274 : void DerefIndirectString(Variable* var_string, Node* instance_type);
2275 : // Check if |var_string| has an indirect (thin or flat cons) string type,
2276 : // and unpack it if so.
2277 : void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
2278 : Label* did_deref, Label* cannot_deref);
2279 : // Check if |var_left| or |var_right| has an indirect (thin or flat cons)
2280 : // string type, and unpack it/them if so. Fall through if nothing was done.
2281 : void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
2282 : Variable* var_right, Node* right_instance_type,
2283 : Label* did_something);
2284 : Node* DerefIndirectString(TNode<String> string, TNode<Int32T> instance_type,
2285 : Label* cannot_deref);
2286 :
2287 : TNode<String> StringFromSingleCodePoint(TNode<Int32T> codepoint,
2288 : UnicodeEncoding encoding);
2289 :
2290 : // Type conversion helpers.
2291 : enum class BigIntHandling { kConvertToNumber, kThrow };
2292 : // Convert a String to a Number.
2293 : TNode<Number> StringToNumber(TNode<String> input);
2294 : // Convert a Number to a String.
2295 : TNode<String> NumberToString(TNode<Number> input);
2296 : // Convert a Non-Number object to a Number.
2297 : TNode<Number> NonNumberToNumber(
2298 : SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
2299 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2300 : // Convert a Non-Number object to a Numeric.
2301 : TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
2302 : SloppyTNode<HeapObject> input);
2303 : // Convert any object to a Number.
2304 : // Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
2305 : // With {bigint_handling} == kConvertToNumber, matches behavior of
2306 : // tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
2307 : TNode<Number> ToNumber(
2308 : SloppyTNode<Context> context, SloppyTNode<Object> input,
2309 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
2310 : TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
2311 : SloppyTNode<Object> input);
2312 :
2313 : // Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
2314 : // https://tc39.github.io/proposal-bigint/#sec-to-bigint
2315 : TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
2316 : SloppyTNode<Object> input);
2317 :
2318 : // Converts |input| to one of 2^32 integer values in the range 0 through
2319 : // 2^32-1, inclusive.
2320 : // ES#sec-touint32
2321 : TNode<Number> ToUint32(SloppyTNode<Context> context,
2322 : SloppyTNode<Object> input);
2323 :
2324 : // Convert any object to a String.
2325 : TNode<String> ToString(SloppyTNode<Context> context,
2326 : SloppyTNode<Object> input);
2327 : TNode<String> ToString_Inline(SloppyTNode<Context> context,
2328 : SloppyTNode<Object> input);
2329 :
2330 : // Convert any object to a Primitive.
2331 : Node* JSReceiverToPrimitive(Node* context, Node* input);
2332 :
2333 : TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
2334 : SloppyTNode<Object> input);
2335 :
2336 : // Same as ToObject but avoids the Builtin call if |input| is already a
2337 : // JSReceiver.
2338 : TNode<JSReceiver> ToObject_Inline(TNode<Context> context,
2339 : TNode<Object> input);
2340 :
2341 : enum ToIntegerTruncationMode {
2342 : kNoTruncation,
2343 : kTruncateMinusZero,
2344 : };
2345 :
2346 : // ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
2347 : TNode<Smi> ToSmiIndex(TNode<Context> context, TNode<Object> input,
2348 : Label* range_error);
2349 :
2350 : // ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
2351 : TNode<Smi> ToSmiLength(TNode<Context> context, TNode<Object> input,
2352 : Label* range_error);
2353 :
2354 : // ES6 7.1.15 ToLength, but with inlined fast path.
2355 : TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
2356 : SloppyTNode<Object> input);
2357 :
2358 : // ES6 7.1.4 ToInteger ( argument )
2359 : TNode<Number> ToInteger_Inline(SloppyTNode<Context> context,
2360 : SloppyTNode<Object> input,
2361 : ToIntegerTruncationMode mode = kNoTruncation);
2362 : TNode<Number> ToInteger(SloppyTNode<Context> context,
2363 : SloppyTNode<Object> input,
2364 : ToIntegerTruncationMode mode = kNoTruncation);
2365 :
2366 : // Returns a node that contains a decoded (unsigned!) value of a bit
2367 : // field |BitField| in |word32|. Returns result as an uint32 node.
2368 : template <typename BitField>
2369 35548 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
2370 35548 : return DecodeWord32(word32, BitField::kShift, BitField::kMask);
2371 : }
2372 :
2373 : // Returns a node that contains a decoded (unsigned!) value of a bit
2374 : // field |BitField| in |word|. Returns result as a word-size node.
2375 : template <typename BitField>
2376 21124 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
2377 21128 : return DecodeWord(word, BitField::kShift, BitField::kMask);
2378 : }
2379 :
2380 : // Returns a node that contains a decoded (unsigned!) value of a bit
2381 : // field |BitField| in |word32|. Returns result as a word-size node.
2382 : template <typename BitField>
2383 6680 : TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
2384 6684 : return DecodeWord<BitField>(ChangeUint32ToWord(word32));
2385 : }
2386 :
2387 : // Returns a node that contains a decoded (unsigned!) value of a bit
2388 : // field |BitField| in |word|. Returns result as an uint32 node.
2389 : template <typename BitField>
2390 56 : TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
2391 : return UncheckedCast<Uint32T>(
2392 56 : TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
2393 : }
2394 :
2395 : // Decodes an unsigned (!) value from |word32| to an uint32 node.
2396 : TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
2397 : uint32_t mask);
2398 :
2399 : // Decodes an unsigned (!) value from |word| to a word-size node.
2400 : TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
2401 : uint32_t mask);
2402 :
2403 : // Returns a node that contains the updated values of a |BitField|.
2404 : template <typename BitField>
2405 392 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value) {
2406 392 : return UpdateWord(word, value, BitField::kShift, BitField::kMask);
2407 : }
2408 :
2409 : // Returns a node that contains the updated {value} inside {word} starting
2410 : // at {shift} and fitting in {mask}.
2411 : TNode<WordT> UpdateWord(TNode<WordT> word, TNode<WordT> value, uint32_t shift,
2412 : uint32_t mask);
2413 :
2414 : // Returns true if any of the |T|'s bits in given |word32| are set.
2415 : template <typename T>
2416 47512 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
2417 47512 : return IsSetWord32(word32, T::kMask);
2418 : }
2419 :
2420 : // Returns true if any of the mask's bits in given |word32| are set.
2421 61864 : TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2422 123728 : return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
2423 185592 : Int32Constant(0));
2424 : }
2425 :
2426 : // Returns true if none of the mask's bits in given |word32| are set.
2427 392 : TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2428 784 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2429 1176 : Int32Constant(0));
2430 : }
2431 :
2432 : // Returns true if all of the mask's bits in a given |word32| are set.
2433 3980 : TNode<BoolT> IsAllSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2434 3980 : TNode<Int32T> const_mask = Int32Constant(mask);
2435 3980 : return Word32Equal(Word32And(word32, const_mask), const_mask);
2436 : }
2437 :
2438 : // Returns true if any of the |T|'s bits in given |word| are set.
2439 : template <typename T>
2440 6832 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word) {
2441 6832 : return IsSetWord(word, T::kMask);
2442 : }
2443 :
2444 : // Returns true if any of the mask's bits in given |word| are set.
2445 10980 : TNode<BoolT> IsSetWord(SloppyTNode<WordT> word, uint32_t mask) {
2446 10980 : return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2447 : }
2448 :
2449 : // Returns true if any of the mask's bit are set in the given Smi.
2450 : // Smi-encoding of the mask is performed implicitly!
2451 280 : TNode<BoolT> IsSetSmi(SloppyTNode<Smi> smi, int untagged_mask) {
2452 560 : intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
2453 : return WordNotEqual(
2454 560 : WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
2455 840 : IntPtrConstant(0));
2456 : }
2457 :
2458 : // Returns true if all of the |T|'s bits in given |word32| are clear.
2459 : template <typename T>
2460 504 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32) {
2461 504 : return IsClearWord32(word32, T::kMask);
2462 : }
2463 :
2464 : // Returns true if all of the mask's bits in given |word32| are clear.
2465 3648 : TNode<BoolT> IsClearWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
2466 7296 : return Word32Equal(Word32And(word32, Int32Constant(mask)),
2467 10944 : Int32Constant(0));
2468 : }
2469 :
2470 : // Returns true if all of the |T|'s bits in given |word| are clear.
2471 : template <typename T>
2472 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word) {
2473 : return IsClearWord(word, T::kMask);
2474 : }
2475 :
2476 : // Returns true if all of the mask's bits in given |word| are clear.
2477 616 : TNode<BoolT> IsClearWord(SloppyTNode<WordT> word, uint32_t mask) {
2478 616 : return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
2479 : }
2480 :
2481 : void SetCounter(StatsCounter* counter, int value);
2482 : void IncrementCounter(StatsCounter* counter, int delta);
2483 : void DecrementCounter(StatsCounter* counter, int delta);
2484 :
2485 : void Increment(Variable* variable, int value = 1,
2486 : ParameterMode mode = INTPTR_PARAMETERS);
2487 56 : void Decrement(Variable* variable, int value = 1,
2488 : ParameterMode mode = INTPTR_PARAMETERS) {
2489 56 : Increment(variable, -value, mode);
2490 56 : }
2491 :
2492 : // Generates "if (false) goto label" code. Useful for marking a label as
2493 : // "live" to avoid assertion failures during graph building. In the resulting
2494 : // code this check will be eliminated.
2495 : void Use(Label* label);
2496 :
2497 : // Various building blocks for stubs doing property lookups.
2498 :
2499 : // |if_notinternalized| is optional; |if_bailout| will be used by default.
2500 : void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
2501 : Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
2502 : Label* if_notinternalized = nullptr);
2503 :
2504 : // Performs a hash computation and string table lookup for the given string,
2505 : // and jumps to:
2506 : // - |if_index| if the string is an array index like "123"; |var_index|
2507 : // will contain the intptr representation of that index.
2508 : // - |if_internalized| if the string exists in the string table; the
2509 : // internalized version will be in |var_internalized|.
2510 : // - |if_not_internalized| if the string is not in the string table (but
2511 : // does not add it).
2512 : // - |if_bailout| for unsupported cases (e.g. uncachable array index).
2513 : void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
2514 : Label* if_internalized, Variable* var_internalized,
2515 : Label* if_not_internalized, Label* if_bailout);
2516 :
2517 : // Calculates array index for given dictionary entry and entry field.
2518 : // See Dictionary::EntryToIndex().
2519 : template <typename Dictionary>
2520 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry, int field_index);
2521 : template <typename Dictionary>
2522 32276 : TNode<IntPtrT> EntryToIndex(TNode<IntPtrT> entry) {
2523 32284 : return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
2524 : }
2525 :
2526 : // Loads the details for the entry with the given key_index.
2527 : // Returns an untagged int32.
2528 : template <class ContainerType>
2529 3700 : TNode<Uint32T> LoadDetailsByKeyIndex(Node* container, Node* key_index) {
2530 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2531 : "Use the non-templatized version for DescriptorArray");
2532 : const int kKeyToDetailsOffset =
2533 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2534 3700 : kTaggedSize;
2535 : return Unsigned(LoadAndUntagToWord32FixedArrayElement(
2536 3700 : CAST(container), key_index, kKeyToDetailsOffset));
2537 : }
2538 :
2539 : // Loads the value for the entry with the given key_index.
2540 : // Returns a tagged value.
2541 : template <class ContainerType>
2542 3476 : TNode<Object> LoadValueByKeyIndex(Node* container, Node* key_index) {
2543 : static_assert(!std::is_same<ContainerType, DescriptorArray>::value,
2544 : "Use the non-templatized version for DescriptorArray");
2545 : const int kKeyToValueOffset =
2546 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2547 3476 : kTaggedSize;
2548 3476 : return LoadFixedArrayElement(CAST(container), key_index, kKeyToValueOffset);
2549 : }
2550 :
2551 : // Stores the details for the entry with the given key_index.
2552 : // |details| must be a Smi.
2553 : template <class ContainerType>
2554 1064 : void StoreDetailsByKeyIndex(TNode<ContainerType> container,
2555 : TNode<IntPtrT> key_index, TNode<Smi> details) {
2556 : const int kKeyToDetailsOffset =
2557 : (ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
2558 1064 : kTaggedSize;
2559 1064 : StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
2560 : kKeyToDetailsOffset);
2561 1064 : }
2562 :
2563 : // Stores the value for the entry with the given key_index.
2564 : template <class ContainerType>
2565 1680 : void StoreValueByKeyIndex(
2566 : TNode<ContainerType> container, TNode<IntPtrT> key_index,
2567 : TNode<Object> value,
2568 : WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
2569 : const int kKeyToValueOffset =
2570 : (ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
2571 1680 : kTaggedSize;
2572 1680 : StoreFixedArrayElement(container, key_index, value, write_barrier,
2573 : kKeyToValueOffset);
2574 1680 : }
2575 :
2576 : // Calculate a valid size for the a hash table.
2577 : TNode<IntPtrT> HashTableComputeCapacity(TNode<IntPtrT> at_least_space_for);
2578 :
2579 : template <class Dictionary>
2580 1400 : TNode<Smi> GetNumberOfElements(TNode<Dictionary> dictionary) {
2581 1400 : return CAST(
2582 : LoadFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex));
2583 : }
2584 :
2585 112 : TNode<Smi> GetNumberDictionaryNumberOfElements(
2586 : TNode<NumberDictionary> dictionary) {
2587 112 : return GetNumberOfElements<NumberDictionary>(dictionary);
2588 : }
2589 :
2590 : template <class Dictionary>
2591 1064 : void SetNumberOfElements(TNode<Dictionary> dictionary,
2592 : TNode<Smi> num_elements_smi) {
2593 1064 : StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
2594 : num_elements_smi, SKIP_WRITE_BARRIER);
2595 1064 : }
2596 :
2597 : template <class Dictionary>
2598 1064 : TNode<Smi> GetNumberOfDeletedElements(TNode<Dictionary> dictionary) {
2599 1064 : return CAST(LoadFixedArrayElement(
2600 : dictionary, Dictionary::kNumberOfDeletedElementsIndex));
2601 : }
2602 :
2603 : template <class Dictionary>
2604 56 : void SetNumberOfDeletedElements(TNode<Dictionary> dictionary,
2605 : TNode<Smi> num_deleted_smi) {
2606 56 : StoreFixedArrayElement(dictionary,
2607 : Dictionary::kNumberOfDeletedElementsIndex,
2608 : num_deleted_smi, SKIP_WRITE_BARRIER);
2609 56 : }
2610 :
2611 : template <class Dictionary>
2612 9216 : TNode<Smi> GetCapacity(TNode<Dictionary> dictionary) {
2613 9216 : return CAST(LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex));
2614 : }
2615 :
2616 : template <class Dictionary>
2617 1008 : TNode<Smi> GetNextEnumerationIndex(TNode<Dictionary> dictionary) {
2618 1008 : return CAST(LoadFixedArrayElement(dictionary,
2619 : Dictionary::kNextEnumerationIndexIndex));
2620 : }
2621 :
2622 : template <class Dictionary>
2623 1008 : void SetNextEnumerationIndex(TNode<Dictionary> dictionary,
2624 : TNode<Smi> next_enum_index_smi) {
2625 1008 : StoreFixedArrayElement(dictionary, Dictionary::kNextEnumerationIndexIndex,
2626 : next_enum_index_smi, SKIP_WRITE_BARRIER);
2627 1008 : }
2628 :
2629 : // Looks up an entry in a NameDictionaryBase successor. If the entry is found
2630 : // control goes to {if_found} and {var_name_index} contains an index of the
2631 : // key field of the entry found. If the key is not found control goes to
2632 : // {if_not_found}.
2633 : static const int kInlinedDictionaryProbes = 4;
2634 : enum LookupMode { kFindExisting, kFindInsertionIndex };
2635 :
2636 : template <typename Dictionary>
2637 : TNode<HeapObject> LoadName(TNode<HeapObject> key);
2638 :
2639 : template <typename Dictionary>
2640 : void NameDictionaryLookup(TNode<Dictionary> dictionary,
2641 : TNode<Name> unique_name, Label* if_found,
2642 : TVariable<IntPtrT>* var_name_index,
2643 : Label* if_not_found,
2644 : int inlined_probes = kInlinedDictionaryProbes,
2645 : LookupMode mode = kFindExisting);
2646 :
2647 : Node* ComputeUnseededHash(Node* key);
2648 : Node* ComputeSeededHash(Node* key);
2649 :
2650 : void NumberDictionaryLookup(TNode<NumberDictionary> dictionary,
2651 : TNode<IntPtrT> intptr_index, Label* if_found,
2652 : TVariable<IntPtrT>* var_entry,
2653 : Label* if_not_found);
2654 :
2655 : TNode<Object> BasicLoadNumberDictionaryElement(
2656 : TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index,
2657 : Label* not_data, Label* if_hole);
2658 : void BasicStoreNumberDictionaryElement(TNode<NumberDictionary> dictionary,
2659 : TNode<IntPtrT> intptr_index,
2660 : TNode<Object> value, Label* not_data,
2661 : Label* if_hole, Label* read_only);
2662 :
2663 : template <class Dictionary>
2664 : void FindInsertionEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2665 : TVariable<IntPtrT>* var_key_index);
2666 :
2667 : template <class Dictionary>
2668 : void InsertEntry(TNode<Dictionary> dictionary, TNode<Name> key,
2669 : TNode<Object> value, TNode<IntPtrT> index,
2670 : TNode<Smi> enum_index);
2671 :
2672 : template <class Dictionary>
2673 : void Add(TNode<Dictionary> dictionary, TNode<Name> key, TNode<Object> value,
2674 : Label* bailout);
2675 :
2676 : // Tries to check if {object} has own {unique_name} property.
2677 : void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
2678 : Node* unique_name, Label* if_found,
2679 : Label* if_not_found, Label* if_bailout);
2680 :
2681 : // Operating mode for TryGetOwnProperty and CallGetterIfAccessor
2682 : // kReturnAccessorPair is used when we're only getting the property descriptor
2683 : enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
2684 : // Tries to get {object}'s own {unique_name} property value. If the property
2685 : // is an accessor then it also calls a getter. If the property is a double
2686 : // field it re-wraps value in an immutable heap number.
2687 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2688 : Node* instance_type, Node* unique_name,
2689 : Label* if_found, Variable* var_value,
2690 : Label* if_not_found, Label* if_bailout);
2691 : void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
2692 : Node* instance_type, Node* unique_name,
2693 : Label* if_found, Variable* var_value,
2694 : Variable* var_details, Variable* var_raw_value,
2695 : Label* if_not_found, Label* if_bailout,
2696 : GetOwnPropertyMode mode);
2697 :
2698 8568 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2699 : SloppyTNode<Object> receiver, Handle<Name> name) {
2700 8568 : return GetProperty(context, receiver, HeapConstant(name));
2701 : }
2702 :
2703 12096 : TNode<Object> GetProperty(SloppyTNode<Context> context,
2704 : SloppyTNode<Object> receiver,
2705 : SloppyTNode<Object> name) {
2706 12096 : return CallBuiltin(Builtins::kGetProperty, context, receiver, name);
2707 : }
2708 :
2709 1680 : TNode<Object> SetPropertyStrict(TNode<Context> context,
2710 : TNode<Object> receiver, TNode<Object> key,
2711 : TNode<Object> value) {
2712 1680 : return CallBuiltin(Builtins::kSetProperty, context, receiver, key, value);
2713 : }
2714 :
2715 56 : TNode<Object> SetPropertyInLiteral(TNode<Context> context,
2716 : TNode<JSObject> receiver,
2717 : TNode<Object> key, TNode<Object> value) {
2718 : return CallBuiltin(Builtins::kSetPropertyInLiteral, context, receiver, key,
2719 56 : value);
2720 : }
2721 :
2722 : Node* GetMethod(Node* context, Node* object, Handle<Name> name,
2723 : Label* if_null_or_undefined);
2724 :
2725 : TNode<Object> GetIteratorMethod(TNode<Context> context,
2726 : TNode<HeapObject> heap_obj,
2727 : Label* if_iteratorundefined);
2728 :
2729 : template <class... TArgs>
2730 77868 : TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2731 : TArgs... args) {
2732 : return CallStub<Object>(Builtins::CallableFor(isolate(), id), context,
2733 77868 : args...);
2734 : }
2735 :
2736 : template <class... TArgs>
2737 2912 : void TailCallBuiltin(Builtins::Name id, SloppyTNode<Object> context,
2738 : TArgs... args) {
2739 2912 : return TailCallStub(Builtins::CallableFor(isolate(), id), context, args...);
2740 : }
2741 :
2742 : void LoadPropertyFromFastObject(Node* object, Node* map,
2743 : TNode<DescriptorArray> descriptors,
2744 : Node* name_index, Variable* var_details,
2745 : Variable* var_value);
2746 :
2747 : void LoadPropertyFromFastObject(Node* object, Node* map,
2748 : TNode<DescriptorArray> descriptors,
2749 : Node* name_index, Node* details,
2750 : Variable* var_value);
2751 :
2752 : void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
2753 : Variable* var_details,
2754 : Variable* var_value);
2755 :
2756 : void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
2757 : Variable* var_details,
2758 : Variable* var_value, Label* if_deleted);
2759 :
2760 : // Generic property lookup generator. If the {object} is fast and
2761 : // {unique_name} property is found then the control goes to {if_found_fast}
2762 : // label and {var_meta_storage} and {var_name_index} will contain
2763 : // DescriptorArray and an index of the descriptor's name respectively.
2764 : // If the {object} is slow or global then the control goes to {if_found_dict}
2765 : // or {if_found_global} and the {var_meta_storage} and {var_name_index} will
2766 : // contain a dictionary and an index of the key field of the found entry.
2767 : // If property is not found or given lookup is not supported then
2768 : // the control goes to {if_not_found} or {if_bailout} respectively.
2769 : //
2770 : // Note: this code does not check if the global dictionary points to deleted
2771 : // entry! This has to be done by the caller.
2772 : void TryLookupProperty(SloppyTNode<JSObject> object, SloppyTNode<Map> map,
2773 : SloppyTNode<Int32T> instance_type,
2774 : SloppyTNode<Name> unique_name, Label* if_found_fast,
2775 : Label* if_found_dict, Label* if_found_global,
2776 : TVariable<HeapObject>* var_meta_storage,
2777 : TVariable<IntPtrT>* var_name_index,
2778 : Label* if_not_found, Label* if_bailout);
2779 :
2780 : // This is a building block for TryLookupProperty() above. Supports only
2781 : // non-special fast and dictionary objects.
2782 : void TryLookupPropertyInSimpleObject(TNode<JSObject> object, TNode<Map> map,
2783 : TNode<Name> unique_name,
2784 : Label* if_found_fast,
2785 : Label* if_found_dict,
2786 : TVariable<HeapObject>* var_meta_storage,
2787 : TVariable<IntPtrT>* var_name_index,
2788 : Label* if_not_found);
2789 :
2790 : // This method jumps to if_found if the element is known to exist. To
2791 : // if_absent if it's known to not exist. To if_not_found if the prototype
2792 : // chain needs to be checked. And if_bailout if the lookup is unsupported.
2793 : void TryLookupElement(Node* object, Node* map,
2794 : SloppyTNode<Int32T> instance_type,
2795 : SloppyTNode<IntPtrT> intptr_index, Label* if_found,
2796 : Label* if_absent, Label* if_not_found,
2797 : Label* if_bailout);
2798 :
2799 : // This is a type of a lookup in holder generator function. In case of a
2800 : // property lookup the {key} is guaranteed to be an unique name and in case of
2801 : // element lookup the key is an Int32 index.
2802 : typedef std::function<void(Node* receiver, Node* holder, Node* map,
2803 : Node* instance_type, Node* key, Label* next_holder,
2804 : Label* if_bailout)>
2805 : LookupInHolder;
2806 :
2807 : // For integer indexed exotic cases, check if the given string cannot be a
2808 : // special index. If we are not sure that the given string is not a special
2809 : // index with a simple check, return False. Note that "False" return value
2810 : // does not mean that the name_string is a special index in the current
2811 : // implementation.
2812 : void BranchIfMaybeSpecialIndex(TNode<String> name_string,
2813 : Label* if_maybe_special_index,
2814 : Label* if_not_special_index);
2815 :
2816 : // Generic property prototype chain lookup generator.
2817 : // For properties it generates lookup using given {lookup_property_in_holder}
2818 : // and for elements it uses {lookup_element_in_holder}.
2819 : // Upon reaching the end of prototype chain the control goes to {if_end}.
2820 : // If it can't handle the case {receiver}/{key} case then the control goes
2821 : // to {if_bailout}.
2822 : // If {if_proxy} is nullptr, proxies go to if_bailout.
2823 : void TryPrototypeChainLookup(Node* receiver, Node* key,
2824 : const LookupInHolder& lookup_property_in_holder,
2825 : const LookupInHolder& lookup_element_in_holder,
2826 : Label* if_end, Label* if_bailout,
2827 : Label* if_proxy = nullptr);
2828 :
2829 : // Instanceof helpers.
2830 : // Returns true if {object} has {prototype} somewhere in it's prototype
2831 : // chain, otherwise false is returned. Might cause arbitrary side effects
2832 : // due to [[GetPrototypeOf]] invocations.
2833 : Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
2834 : // ES6 section 7.3.19 OrdinaryHasInstance (C, O)
2835 : Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
2836 :
2837 : // Load type feedback vector from the stub caller's frame.
2838 : TNode<FeedbackVector> LoadFeedbackVectorForStub();
2839 :
2840 : // Load type feedback vector for the given closure.
2841 : TNode<FeedbackVector> LoadFeedbackVector(SloppyTNode<JSFunction> closure,
2842 : Label* if_undefined = nullptr);
2843 :
2844 : // Load the object from feedback vector cell for the given closure.
2845 : // The returned object could be undefined if the closure does not have
2846 : // a feedback vector associated with it.
2847 : TNode<Object> LoadFeedbackVectorUnchecked(SloppyTNode<JSFunction> closure);
2848 :
2849 : // Update the type feedback vector.
2850 : void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
2851 :
2852 :
2853 : // Report that there was a feedback update, performing any tasks that should
2854 : // be done after a feedback update.
2855 : void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
2856 : SloppyTNode<IntPtrT> slot_id, const char* reason);
2857 :
2858 : // Combine the new feedback with the existing_feedback. Do nothing if
2859 : // existing_feedback is nullptr.
2860 : void CombineFeedback(Variable* existing_feedback, int feedback);
2861 : void CombineFeedback(Variable* existing_feedback, Node* feedback);
2862 :
2863 : // Overwrite the existing feedback with new_feedback. Do nothing if
2864 : // existing_feedback is nullptr.
2865 : void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
2866 :
2867 : // Check if a property name might require protector invalidation when it is
2868 : // used for a property store or deletion.
2869 : void CheckForAssociatedProtector(Node* name, Label* if_protector);
2870 :
2871 : TNode<Map> LoadReceiverMap(SloppyTNode<Object> receiver);
2872 :
2873 : // Emits keyed sloppy arguments load. Returns either the loaded value.
2874 56 : Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
2875 56 : return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
2876 : }
2877 :
2878 : // Emits keyed sloppy arguments store.
2879 224 : void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
2880 : Label* bailout) {
2881 : DCHECK_NOT_NULL(value);
2882 224 : EmitKeyedSloppyArguments(receiver, key, value, bailout);
2883 224 : }
2884 :
2885 : // Loads script context from the script context table.
2886 : TNode<Context> LoadScriptContext(TNode<Context> context,
2887 : TNode<IntPtrT> context_index);
2888 :
2889 : Node* Int32ToUint8Clamped(Node* int32_value);
2890 : Node* Float64ToUint8Clamped(Node* float64_value);
2891 :
2892 : Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
2893 : ElementsKind elements_kind,
2894 : TNode<Context> context);
2895 :
2896 : // Store value to an elements array with given elements kind.
2897 : void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
2898 : ParameterMode mode);
2899 :
2900 : void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
2901 : TNode<FixedTypedArrayBase> elements,
2902 : TNode<IntPtrT> intptr_key,
2903 : TNode<Object> value,
2904 : TNode<Context> context,
2905 : Label* opt_if_detached);
2906 : // Part of the above, refactored out to reuse in another place.
2907 : void EmitBigTypedArrayElementStore(TNode<FixedTypedArrayBase> elements,
2908 : TNode<RawPtrT> backing_store,
2909 : TNode<IntPtrT> offset,
2910 : TNode<BigInt> bigint_value);
2911 : // Implements the BigInt part of
2912 : // https://tc39.github.io/proposal-bigint/#sec-numbertorawbytes,
2913 : // including truncation to 64 bits (i.e. modulo 2^64).
2914 : // {var_high} is only used on 32-bit platforms.
2915 : void BigIntToRawBytes(TNode<BigInt> bigint, TVariable<UintPtrT>* var_low,
2916 : TVariable<UintPtrT>* var_high);
2917 :
2918 : void EmitElementStore(Node* object, Node* key, Node* value,
2919 : ElementsKind elements_kind,
2920 : KeyedAccessStoreMode store_mode, Label* bailout,
2921 : Node* context);
2922 :
2923 : Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
2924 : Node* length, Node* key, ParameterMode mode,
2925 : Label* bailout);
2926 :
2927 : Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
2928 : Node* length, ParameterMode mode, Label* bailout);
2929 :
2930 : void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
2931 : ElementsKind to_kind, Label* bailout);
2932 :
2933 : void TrapAllocationMemento(Node* object, Label* memento_found);
2934 :
2935 : TNode<IntPtrT> PageFromAddress(TNode<IntPtrT> address);
2936 :
2937 : // Store a weak in-place reference into the FeedbackVector.
2938 : TNode<MaybeObject> StoreWeakReferenceInFeedbackVector(
2939 : SloppyTNode<FeedbackVector> feedback_vector, Node* slot,
2940 : SloppyTNode<HeapObject> value, int additional_offset = 0,
2941 : ParameterMode parameter_mode = INTPTR_PARAMETERS);
2942 :
2943 : // Create a new AllocationSite and install it into a feedback vector.
2944 : TNode<AllocationSite> CreateAllocationSiteInFeedbackVector(
2945 : SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot);
2946 :
2947 : // TODO(ishell, cbruni): Change to HasBoilerplate.
2948 : TNode<BoolT> NotHasBoilerplate(TNode<Object> maybe_literal_site);
2949 : TNode<Smi> LoadTransitionInfo(TNode<AllocationSite> allocation_site);
2950 : TNode<JSObject> LoadBoilerplate(TNode<AllocationSite> allocation_site);
2951 : TNode<Int32T> LoadElementsKind(TNode<AllocationSite> allocation_site);
2952 :
2953 : enum class IndexAdvanceMode { kPre, kPost };
2954 :
2955 : typedef std::function<void(Node* index)> FastLoopBody;
2956 :
2957 : Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
2958 : Node* end_index, const FastLoopBody& body, int increment,
2959 : ParameterMode parameter_mode,
2960 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
2961 :
2962 8160 : Node* BuildFastLoop(Node* start_index, Node* end_index,
2963 : const FastLoopBody& body, int increment,
2964 : ParameterMode parameter_mode,
2965 : IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
2966 : return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
2967 8160 : increment, parameter_mode, advance_mode);
2968 : }
2969 :
2970 : enum class ForEachDirection { kForward, kReverse };
2971 :
2972 : typedef std::function<void(Node* fixed_array, Node* offset)>
2973 : FastFixedArrayForEachBody;
2974 :
2975 : void BuildFastFixedArrayForEach(
2976 : const CodeStubAssembler::VariableList& vars, Node* fixed_array,
2977 : ElementsKind kind, Node* first_element_inclusive,
2978 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2979 : ParameterMode mode = INTPTR_PARAMETERS,
2980 : ForEachDirection direction = ForEachDirection::kReverse);
2981 :
2982 17724 : void BuildFastFixedArrayForEach(
2983 : Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
2984 : Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
2985 : ParameterMode mode = INTPTR_PARAMETERS,
2986 : ForEachDirection direction = ForEachDirection::kReverse) {
2987 17724 : CodeStubAssembler::VariableList list(0, zone());
2988 : BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
2989 17724 : last_element_exclusive, body, mode, direction);
2990 17724 : }
2991 :
2992 18068 : TNode<IntPtrT> GetArrayAllocationSize(Node* element_count, ElementsKind kind,
2993 : ParameterMode mode, int header_size) {
2994 18068 : return ElementOffsetFromIndex(element_count, kind, mode, header_size);
2995 : }
2996 :
2997 14708 : TNode<IntPtrT> GetFixedArrayAllocationSize(Node* element_count,
2998 : ElementsKind kind,
2999 : ParameterMode mode) {
3000 : return GetArrayAllocationSize(element_count, kind, mode,
3001 14708 : FixedArray::kHeaderSize);
3002 : }
3003 :
3004 504 : TNode<IntPtrT> GetPropertyArrayAllocationSize(Node* element_count,
3005 : ParameterMode mode) {
3006 : return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
3007 504 : PropertyArray::kHeaderSize);
3008 : }
3009 :
3010 : void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
3011 : Label* doesnt_fit, int base_size,
3012 : ParameterMode mode);
3013 :
3014 : void InitializeFieldsWithRoot(Node* object, Node* start_offset,
3015 : Node* end_offset, RootIndex root);
3016 :
3017 : Node* RelationalComparison(Operation op, Node* left, Node* right,
3018 : Node* context,
3019 : Variable* var_type_feedback = nullptr);
3020 :
3021 : void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
3022 : Label* if_true, Label* if_false);
3023 :
3024 516 : void BranchIfNumberEqual(TNode<Number> left, TNode<Number> right,
3025 : Label* if_true, Label* if_false) {
3026 : BranchIfNumberRelationalComparison(Operation::kEqual, left, right, if_true,
3027 516 : if_false);
3028 516 : }
3029 :
3030 : void BranchIfNumberNotEqual(TNode<Number> left, TNode<Number> right,
3031 : Label* if_true, Label* if_false) {
3032 : BranchIfNumberEqual(left, right, if_false, if_true);
3033 : }
3034 :
3035 3024 : void BranchIfNumberLessThan(TNode<Number> left, TNode<Number> right,
3036 : Label* if_true, Label* if_false) {
3037 : BranchIfNumberRelationalComparison(Operation::kLessThan, left, right,
3038 3024 : if_true, if_false);
3039 3024 : }
3040 :
3041 56 : void BranchIfNumberLessThanOrEqual(TNode<Number> left, TNode<Number> right,
3042 : Label* if_true, Label* if_false) {
3043 : BranchIfNumberRelationalComparison(Operation::kLessThanOrEqual, left, right,
3044 56 : if_true, if_false);
3045 56 : }
3046 :
3047 1904 : void BranchIfNumberGreaterThan(TNode<Number> left, TNode<Number> right,
3048 : Label* if_true, Label* if_false) {
3049 : BranchIfNumberRelationalComparison(Operation::kGreaterThan, left, right,
3050 1904 : if_true, if_false);
3051 1904 : }
3052 :
3053 280 : void BranchIfNumberGreaterThanOrEqual(TNode<Number> left, TNode<Number> right,
3054 : Label* if_true, Label* if_false) {
3055 : BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left,
3056 280 : right, if_true, if_false);
3057 280 : }
3058 :
3059 168 : void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
3060 : Label* if_not_accessor_pair) {
3061 168 : GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
3062 168 : Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
3063 168 : }
3064 :
3065 : void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
3066 :
3067 : Node* Equal(Node* lhs, Node* rhs, Node* context,
3068 : Variable* var_type_feedback = nullptr);
3069 :
3070 : Node* StrictEqual(Node* lhs, Node* rhs,
3071 : Variable* var_type_feedback = nullptr);
3072 :
3073 : // ECMA#sec-samevalue
3074 : // Similar to StrictEqual except that NaNs are treated as equal and minus zero
3075 : // differs from positive zero.
3076 : void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);
3077 :
3078 : enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
3079 :
3080 : TNode<Oddball> HasProperty(SloppyTNode<Context> context,
3081 : SloppyTNode<Object> object,
3082 : SloppyTNode<Object> key,
3083 : HasPropertyLookupMode mode);
3084 :
3085 : // Due to naming conflict with the builtin function namespace.
3086 280 : TNode<Oddball> HasProperty_Inline(TNode<Context> context,
3087 : TNode<JSReceiver> object,
3088 : TNode<Object> key) {
3089 : return HasProperty(context, object, key,
3090 280 : HasPropertyLookupMode::kHasProperty);
3091 : }
3092 :
3093 : Node* Typeof(Node* value);
3094 :
3095 : TNode<Object> GetSuperConstructor(SloppyTNode<Context> context,
3096 : SloppyTNode<JSFunction> active_function);
3097 :
3098 : TNode<JSReceiver> SpeciesConstructor(
3099 : SloppyTNode<Context> context, SloppyTNode<Object> object,
3100 : SloppyTNode<JSReceiver> default_constructor);
3101 :
3102 : Node* InstanceOf(Node* object, Node* callable, Node* context);
3103 :
3104 : // Debug helpers
3105 : Node* IsDebugActive();
3106 :
3107 : TNode<BoolT> IsRuntimeCallStatsEnabled();
3108 :
3109 : // JSArrayBuffer helpers
3110 : TNode<Uint32T> LoadJSArrayBufferBitField(TNode<JSArrayBuffer> array_buffer);
3111 : TNode<RawPtrT> LoadJSArrayBufferBackingStore(
3112 : TNode<JSArrayBuffer> array_buffer);
3113 : Node* IsDetachedBuffer(Node* buffer);
3114 : void ThrowIfArrayBufferIsDetached(SloppyTNode<Context> context,
3115 : TNode<JSArrayBuffer> array_buffer,
3116 : const char* method_name);
3117 :
3118 : // JSArrayBufferView helpers
3119 : TNode<JSArrayBuffer> LoadJSArrayBufferViewBuffer(
3120 : TNode<JSArrayBufferView> array_buffer_view);
3121 : TNode<UintPtrT> LoadJSArrayBufferViewByteLength(
3122 : TNode<JSArrayBufferView> array_buffer_view);
3123 : TNode<UintPtrT> LoadJSArrayBufferViewByteOffset(
3124 : TNode<JSArrayBufferView> array_buffer_view);
3125 : void ThrowIfArrayBufferViewBufferIsDetached(
3126 : SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view,
3127 : const char* method_name);
3128 :
3129 : // JSTypedArray helpers
3130 : TNode<Smi> LoadJSTypedArrayLength(TNode<JSTypedArray> typed_array);
3131 :
3132 : TNode<IntPtrT> ElementOffsetFromIndex(Node* index, ElementsKind kind,
3133 : ParameterMode mode, int base_size = 0);
3134 :
3135 : // Check that a field offset is within the bounds of the an object.
3136 : TNode<BoolT> IsOffsetInBounds(SloppyTNode<IntPtrT> offset,
3137 : SloppyTNode<IntPtrT> length, int header_size,
3138 : ElementsKind kind = HOLEY_ELEMENTS);
3139 :
3140 : // Load a builtin's code from the builtin array in the isolate.
3141 : TNode<Code> LoadBuiltin(TNode<Smi> builtin_id);
3142 :
3143 : // Figure out the SFI's code object using its data field.
3144 : // If |if_compile_lazy| is provided then the execution will go to the given
3145 : // label in case of an CompileLazy code object.
3146 : TNode<Code> GetSharedFunctionInfoCode(
3147 : SloppyTNode<SharedFunctionInfo> shared_info,
3148 : Label* if_compile_lazy = nullptr);
3149 :
3150 : Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
3151 : Node* context);
3152 :
3153 : // Promise helpers
3154 : Node* IsPromiseHookEnabled();
3155 : Node* HasAsyncEventDelegate();
3156 : Node* IsPromiseHookEnabledOrHasAsyncEventDelegate();
3157 : Node* IsPromiseHookEnabledOrDebugIsActiveOrHasAsyncEventDelegate();
3158 :
3159 : // Helpers for StackFrame markers.
3160 : Node* MarkerIsFrameType(Node* marker_or_function,
3161 : StackFrame::Type frame_type);
3162 : Node* MarkerIsNotFrameType(Node* marker_or_function,
3163 : StackFrame::Type frame_type);
3164 :
3165 : // for..in helpers
3166 : void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
3167 : Label* if_fast, Label* if_slow);
3168 : Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
3169 :
3170 : TNode<IntPtrT> GetArgumentsLength(CodeStubArguments* args);
3171 : TNode<Object> GetArgumentValue(CodeStubArguments* args, TNode<IntPtrT> index);
3172 :
3173 : // Support for printf-style debugging
3174 : void Print(const char* s);
3175 : void Print(const char* prefix, Node* tagged_value);
3176 : inline void Print(SloppyTNode<Object> tagged_value) {
3177 : return Print(nullptr, tagged_value);
3178 : }
3179 : inline void Print(TNode<MaybeObject> tagged_value) {
3180 : return Print(nullptr, tagged_value);
3181 : }
3182 :
3183 : template <class... TArgs>
3184 504 : Node* MakeTypeError(MessageTemplate message, Node* context, TArgs... args) {
3185 : STATIC_ASSERT(sizeof...(TArgs) <= 3);
3186 : Node* const make_type_error = LoadContextElement(
3187 504 : LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
3188 : return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
3189 504 : UndefinedConstant(), SmiConstant(message), args...);
3190 : }
3191 :
3192 224 : void Abort(AbortReason reason) {
3193 224 : CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
3194 224 : Unreachable();
3195 224 : }
3196 :
3197 4 : bool ConstexprBoolNot(bool value) { return !value; }
3198 :
3199 0 : bool ConstexprInt31Equal(int31_t a, int31_t b) { return a == b; }
3200 : bool ConstexprInt31GreaterThanEqual(int31_t a, int31_t b) { return a >= b; }
3201 112 : uint32_t ConstexprUint32Add(uint32_t a, uint32_t b) { return a + b; }
3202 :
3203 : void PerformStackCheck(TNode<Context> context);
3204 :
3205 : void SetPropertyLength(TNode<Context> context, TNode<Object> array,
3206 : TNode<Number> length);
3207 :
3208 : // Checks that {object_map}'s prototype map is the {initial_prototype_map} and
3209 : // makes sure that the field with name at index {descriptor} is still
3210 : // constant. If it is not, go to label {if_modified}.
3211 : //
3212 : // To make the checks robust, the method also asserts that the descriptor has
3213 : // the right key, the caller must pass the root index of the key
3214 : // in {field_name_root_index}.
3215 : //
3216 : // This is useful for checking that given function has not been patched
3217 : // on the prototype.
3218 : void GotoIfInitialPrototypePropertyModified(TNode<Map> object_map,
3219 : TNode<Map> initial_prototype_map,
3220 : int descfriptor,
3221 : RootIndex field_name_root_index,
3222 : Label* if_modified);
3223 : struct DescriptorIndexAndName {
3224 2016 : DescriptorIndexAndName() {}
3225 1456 : DescriptorIndexAndName(int descriptor_index, RootIndex name_root_index)
3226 : : descriptor_index(descriptor_index),
3227 1456 : name_root_index(name_root_index) {}
3228 :
3229 : int descriptor_index;
3230 : RootIndex name_root_index;
3231 : };
3232 : void GotoIfInitialPrototypePropertiesModified(
3233 : TNode<Map> object_map, TNode<Map> initial_prototype_map,
3234 : Vector<DescriptorIndexAndName> properties, Label* if_modified);
3235 :
3236 : // Implements DescriptorArray::Search().
3237 : void DescriptorLookup(SloppyTNode<Name> unique_name,
3238 : SloppyTNode<DescriptorArray> descriptors,
3239 : SloppyTNode<Uint32T> bitfield3, Label* if_found,
3240 : TVariable<IntPtrT>* var_name_index,
3241 : Label* if_not_found);
3242 :
3243 : // Implements TransitionArray::SearchName() - searches for first transition
3244 : // entry with given name (note that there could be multiple entries with
3245 : // the same name).
3246 : void TransitionLookup(SloppyTNode<Name> unique_name,
3247 : SloppyTNode<TransitionArray> transitions,
3248 : Label* if_found, TVariable<IntPtrT>* var_name_index,
3249 : Label* if_not_found);
3250 :
3251 : // Implements generic search procedure like i::Search<Array>().
3252 : template <typename Array>
3253 : void Lookup(TNode<Name> unique_name, TNode<Array> array,
3254 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3255 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3256 :
3257 : // Implements generic linear search procedure like i::LinearSearch<Array>().
3258 : template <typename Array>
3259 : void LookupLinear(TNode<Name> unique_name, TNode<Array> array,
3260 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3261 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3262 :
3263 : // Implements generic binary search procedure like i::BinarySearch<Array>().
3264 : template <typename Array>
3265 : void LookupBinary(TNode<Name> unique_name, TNode<Array> array,
3266 : TNode<Uint32T> number_of_valid_entries, Label* if_found,
3267 : TVariable<IntPtrT>* var_name_index, Label* if_not_found);
3268 :
3269 : // Converts [Descriptor/Transition]Array entry number to a fixed array index.
3270 : template <typename Array>
3271 : TNode<IntPtrT> EntryIndexToIndex(TNode<Uint32T> entry_index);
3272 :
3273 : // Implements [Descriptor/Transition]Array::ToKeyIndex.
3274 : template <typename Array>
3275 : TNode<IntPtrT> ToKeyIndex(TNode<Uint32T> entry_index);
3276 :
3277 : // Implements [Descriptor/Transition]Array::GetKey.
3278 : template <typename Array>
3279 : TNode<Name> GetKey(TNode<Array> array, TNode<Uint32T> entry_index);
3280 :
3281 : // Implements DescriptorArray::GetDetails.
3282 : TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
3283 : TNode<Uint32T> descriptor_number);
3284 :
3285 : typedef std::function<void(TNode<IntPtrT> descriptor_key_index)>
3286 : ForEachDescriptorBodyFunction;
3287 :
3288 : void DescriptorArrayForEach(VariableList& variable_list,
3289 : TNode<Uint32T> start_descriptor,
3290 : TNode<Uint32T> end_descriptor,
3291 : const ForEachDescriptorBodyFunction& body);
3292 :
3293 : // Descriptor array accessors based on key_index, which is equal to
3294 : // DescriptorArray::ToKeyIndex(descriptor).
3295 : TNode<Name> LoadKeyByKeyIndex(TNode<DescriptorArray> container,
3296 : TNode<IntPtrT> key_index);
3297 : TNode<Uint32T> LoadDetailsByKeyIndex(TNode<DescriptorArray> container,
3298 : TNode<IntPtrT> key_index);
3299 : TNode<Object> LoadValueByKeyIndex(TNode<DescriptorArray> container,
3300 : TNode<IntPtrT> key_index);
3301 : TNode<MaybeObject> LoadFieldTypeByKeyIndex(TNode<DescriptorArray> container,
3302 : TNode<IntPtrT> key_index);
3303 :
3304 : TNode<IntPtrT> DescriptorEntryToIndex(TNode<IntPtrT> descriptor);
3305 :
3306 : // Descriptor array accessors based on descriptor.
3307 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3308 : TNode<IntPtrT> descriptor);
3309 : TNode<Name> LoadKeyByDescriptorEntry(TNode<DescriptorArray> descriptors,
3310 : int descriptor);
3311 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3312 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3313 : TNode<Uint32T> LoadDetailsByDescriptorEntry(
3314 : TNode<DescriptorArray> descriptors, int descriptor);
3315 : TNode<Object> LoadValueByDescriptorEntry(TNode<DescriptorArray> descriptors,
3316 : int descriptor);
3317 : TNode<MaybeObject> LoadFieldTypeByDescriptorEntry(
3318 : TNode<DescriptorArray> descriptors, TNode<IntPtrT> descriptor);
3319 :
3320 : typedef std::function<void(TNode<Name> key, TNode<Object> value)>
3321 : ForEachKeyValueFunction;
3322 :
3323 : enum ForEachEnumerationMode {
3324 : // String and then Symbol properties according to the spec
3325 : // ES#sec-object.assign
3326 : kEnumerationOrder,
3327 : // Order of property addition
3328 : kPropertyAdditionOrder,
3329 : };
3330 :
3331 : // For each JSObject property (in DescriptorArray order), check if the key is
3332 : // enumerable, and if so, load the value from the receiver and evaluate the
3333 : // closure.
3334 : void ForEachEnumerableOwnProperty(TNode<Context> context, TNode<Map> map,
3335 : TNode<JSObject> object,
3336 : ForEachEnumerationMode mode,
3337 : const ForEachKeyValueFunction& body,
3338 : Label* bailout);
3339 :
3340 : TNode<Object> CallGetterIfAccessor(Node* value, Node* details, Node* context,
3341 : Node* receiver, Label* if_bailout,
3342 : GetOwnPropertyMode mode = kCallJSGetter);
3343 :
3344 : TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
3345 :
3346 : void BranchIfPrototypesHaveNoElements(Node* receiver_map,
3347 : Label* definitely_no_elements,
3348 : Label* possibly_elements);
3349 :
3350 : void InitializeFunctionContext(Node* native_context, Node* context,
3351 : int slots);
3352 :
3353 : TNode<JSArray> ArrayCreate(TNode<Context> context, TNode<Number> length);
3354 :
3355 : // Allocate a clone of a mutable primitive, if {object} is a
3356 : // MutableHeapNumber.
3357 : TNode<Object> CloneIfMutablePrimitive(TNode<Object> object);
3358 :
3359 : private:
3360 : friend class CodeStubArguments;
3361 :
3362 : void HandleBreakOnNode();
3363 :
3364 : TNode<HeapObject> AllocateRawDoubleAligned(TNode<IntPtrT> size_in_bytes,
3365 : AllocationFlags flags,
3366 : TNode<RawPtrT> top_address,
3367 : TNode<RawPtrT> limit_address);
3368 : TNode<HeapObject> AllocateRawUnaligned(TNode<IntPtrT> size_in_bytes,
3369 : AllocationFlags flags,
3370 : TNode<RawPtrT> top_address,
3371 : TNode<RawPtrT> limit_address);
3372 : TNode<HeapObject> AllocateRaw(TNode<IntPtrT> size_in_bytes,
3373 : AllocationFlags flags,
3374 : TNode<RawPtrT> top_address,
3375 : TNode<RawPtrT> limit_address);
3376 :
3377 : // Allocate and return a JSArray of given total size in bytes with header
3378 : // fields initialized.
3379 : TNode<JSArray> AllocateUninitializedJSArray(TNode<Map> array_map,
3380 : TNode<Smi> length,
3381 : Node* allocation_site,
3382 : TNode<IntPtrT> size_in_bytes);
3383 :
3384 : TNode<BoolT> IsValidSmi(TNode<Smi> smi);
3385 : Node* SmiShiftBitsConstant();
3386 :
3387 : // Emits keyed sloppy arguments load if the |value| is nullptr or store
3388 : // otherwise. Returns either the loaded value or |value|.
3389 : Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
3390 : Label* bailout);
3391 :
3392 : TNode<String> AllocateSlicedString(RootIndex map_root_index,
3393 : TNode<Uint32T> length,
3394 : TNode<String> parent, TNode<Smi> offset);
3395 :
3396 : TNode<String> AllocateConsString(RootIndex map_root_index,
3397 : TNode<Uint32T> length, TNode<String> first,
3398 : TNode<String> second, AllocationFlags flags);
3399 :
3400 : // Allocate a MutableHeapNumber without initializing its value.
3401 : TNode<MutableHeapNumber> AllocateMutableHeapNumber();
3402 :
3403 : Node* SelectImpl(TNode<BoolT> condition, const NodeGenerator& true_body,
3404 : const NodeGenerator& false_body, MachineRepresentation rep);
3405 :
3406 : // Implements [Descriptor/Transition]Array::number_of_entries.
3407 : template <typename Array>
3408 : TNode<Uint32T> NumberOfEntries(TNode<Array> array);
3409 :
3410 : // Implements [Descriptor/Transition]Array::GetSortedKeyIndex.
3411 : template <typename Array>
3412 : TNode<Uint32T> GetSortedKeyIndex(TNode<Array> descriptors,
3413 : TNode<Uint32T> entry_index);
3414 :
3415 : TNode<Smi> CollectFeedbackForString(SloppyTNode<Int32T> instance_type);
3416 : void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
3417 : Variable* var_type_feedback = nullptr);
3418 : TNode<String> AllocAndCopyStringCharacters(Node* from,
3419 : Node* from_instance_type,
3420 : TNode<IntPtrT> from_index,
3421 : TNode<IntPtrT> character_count);
3422 :
3423 : static const int kElementLoopUnrollThreshold = 8;
3424 :
3425 : // {convert_bigint} is only meaningful when {mode} == kToNumber.
3426 : Node* NonNumberToNumberOrNumeric(
3427 : Node* context, Node* input, Object::Conversion mode,
3428 : BigIntHandling bigint_handling = BigIntHandling::kThrow);
3429 :
3430 : void TaggedToNumeric(Node* context, Node* value, Label* done,
3431 : Variable* var_numeric, Variable* var_feedback);
3432 :
3433 : template <Object::Conversion conversion>
3434 : void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
3435 : Variable* var_word32,
3436 : Label* if_bigint = nullptr,
3437 : Variable* var_bigint = nullptr,
3438 : Variable* var_feedback = nullptr);
3439 :
3440 : private:
3441 : // Low-level accessors for Descriptor arrays.
3442 : TNode<MaybeObject> LoadDescriptorArrayElement(TNode<DescriptorArray> object,
3443 : Node* index,
3444 : int additional_offset = 0);
3445 : };
3446 :
3447 : class CodeStubArguments {
3448 : public:
3449 : typedef compiler::Node Node;
3450 : template <class T>
3451 : using TNode = compiler::TNode<T>;
3452 : template <class T>
3453 : using SloppyTNode = compiler::SloppyTNode<T>;
3454 : enum ReceiverMode { kHasReceiver, kNoReceiver };
3455 :
3456 : // |argc| is an intptr value which specifies the number of arguments passed
3457 : // to the builtin excluding the receiver. The arguments will include a
3458 : // receiver iff |receiver_mode| is kHasReceiver.
3459 6720 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
3460 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
3461 : : CodeStubArguments(assembler, argc, nullptr,
3462 6764 : CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
3463 6720 : }
3464 :
3465 : // |argc| is either a smi or intptr depending on |param_mode|. The arguments
3466 : // include a receiver iff |receiver_mode| is kHasReceiver.
3467 : CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
3468 : CodeStubAssembler::ParameterMode param_mode,
3469 : ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
3470 :
3471 : TNode<Object> GetReceiver() const;
3472 : // Replaces receiver argument on the expression stack. Should be used only
3473 : // for manipulating arguments in trampoline builtins before tail calling
3474 : // further with passing all the JS arguments as is.
3475 : void SetReceiver(TNode<Object> object) const;
3476 :
3477 : // Computes address of the index'th argument.
3478 : TNode<WordT> AtIndexPtr(Node* index,
3479 : CodeStubAssembler::ParameterMode mode =
3480 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3481 :
3482 : // |index| is zero-based and does not include the receiver
3483 : TNode<Object> AtIndex(Node* index,
3484 : CodeStubAssembler::ParameterMode mode =
3485 : CodeStubAssembler::INTPTR_PARAMETERS) const;
3486 :
3487 : TNode<Object> AtIndex(int index) const;
3488 :
3489 3920 : TNode<Object> GetOptionalArgumentValue(int index) {
3490 3920 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3491 : }
3492 : TNode<Object> GetOptionalArgumentValue(int index,
3493 : TNode<Object> default_value);
3494 :
3495 316 : Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
3496 : DCHECK_EQ(mode, argc_mode_);
3497 316 : return argc_;
3498 : }
3499 :
3500 5208 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index) {
3501 5208 : return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
3502 : }
3503 : TNode<Object> GetOptionalArgumentValue(TNode<IntPtrT> index,
3504 : TNode<Object> default_value);
3505 3920 : TNode<IntPtrT> GetLength() const {
3506 : DCHECK_EQ(argc_mode_, CodeStubAssembler::INTPTR_PARAMETERS);
3507 3920 : return assembler_->UncheckedCast<IntPtrT>(argc_);
3508 : }
3509 :
3510 : typedef std::function<void(Node* arg)> ForEachBodyFunction;
3511 :
3512 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3513 112 : void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
3514 : Node* last = nullptr,
3515 : CodeStubAssembler::ParameterMode mode =
3516 : CodeStubAssembler::INTPTR_PARAMETERS) {
3517 112 : CodeStubAssembler::VariableList list(0, assembler_->zone());
3518 112 : ForEach(list, body, first, last);
3519 112 : }
3520 :
3521 : // Iteration doesn't include the receiver. |first| and |last| are zero-based.
3522 : void ForEach(const CodeStubAssembler::VariableList& vars,
3523 : const ForEachBodyFunction& body, Node* first = nullptr,
3524 : Node* last = nullptr,
3525 : CodeStubAssembler::ParameterMode mode =
3526 : CodeStubAssembler::INTPTR_PARAMETERS);
3527 :
3528 : void PopAndReturn(Node* value);
3529 :
3530 : private:
3531 : Node* GetArguments();
3532 :
3533 : CodeStubAssembler* assembler_;
3534 : CodeStubAssembler::ParameterMode argc_mode_;
3535 : ReceiverMode receiver_mode_;
3536 : Node* argc_;
3537 : TNode<WordT> arguments_;
3538 : Node* fp_;
3539 : };
3540 :
3541 4816 : class ToDirectStringAssembler : public CodeStubAssembler {
3542 : private:
3543 : enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
3544 :
3545 : public:
3546 : enum Flag {
3547 : kDontUnpackSlicedStrings = 1 << 0,
3548 : };
3549 : typedef base::Flags<Flag> Flags;
3550 :
3551 : ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
3552 : Flags flags = Flags());
3553 :
3554 : // Converts flat cons, thin, and sliced strings and returns the direct
3555 : // string. The result can be either a sequential or external string.
3556 : // Jumps to if_bailout if the string if the string is indirect and cannot
3557 : // be unpacked.
3558 : TNode<String> TryToDirect(Label* if_bailout);
3559 :
3560 : // Returns a pointer to the beginning of the string data.
3561 : // Jumps to if_bailout if the external string cannot be unpacked.
3562 4368 : TNode<RawPtrT> PointerToData(Label* if_bailout) {
3563 4368 : return TryToSequential(PTR_TO_DATA, if_bailout);
3564 : }
3565 :
3566 : // Returns a pointer that, offset-wise, looks like a String.
3567 : // Jumps to if_bailout if the external string cannot be unpacked.
3568 448 : TNode<RawPtrT> PointerToString(Label* if_bailout) {
3569 448 : return TryToSequential(PTR_TO_STRING, if_bailout);
3570 : }
3571 :
3572 56 : Node* string() { return var_string_.value(); }
3573 4984 : Node* instance_type() { return var_instance_type_.value(); }
3574 5096 : TNode<IntPtrT> offset() {
3575 5096 : return UncheckedCast<IntPtrT>(var_offset_.value());
3576 : }
3577 5264 : Node* is_external() { return var_is_external_.value(); }
3578 :
3579 : private:
3580 : TNode<RawPtrT> TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
3581 :
3582 : Variable var_string_;
3583 : Variable var_instance_type_;
3584 : Variable var_offset_;
3585 : Variable var_is_external_;
3586 :
3587 : const Flags flags_;
3588 : };
3589 :
3590 4468 : DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags)
3591 :
3592 : } // namespace internal
3593 : } // namespace v8
3594 : #endif // V8_CODE_STUB_ASSEMBLER_H_
|