Line data Source code
1 : // Copyright 2015 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/compiler/js-inlining-heuristic.h"
6 :
7 : #include "src/compiler/common-operator.h"
8 : #include "src/compiler/compiler-source-position-table.h"
9 : #include "src/compiler/node-matchers.h"
10 : #include "src/compiler/simplified-operator.h"
11 : #include "src/objects-inl.h"
12 : #include "src/optimized-compilation-info.h"
13 :
14 : namespace v8 {
15 : namespace internal {
16 : namespace compiler {
17 :
18 : #define TRACE(...) \
19 : do { \
20 : if (FLAG_trace_turbo_inlining) PrintF(__VA_ARGS__); \
21 : } while (false)
22 :
23 : namespace {
24 :
25 591065 : int CollectFunctions(Node* node, Handle<JSFunction>* functions,
26 : Handle<BytecodeArray>* bytecode, int functions_size,
27 : Handle<SharedFunctionInfo>& shared, Isolate* isolate) {
28 : DCHECK_NE(0, functions_size);
29 : HeapObjectMatcher m(node);
30 786081 : if (m.HasValue() && m.Value()->IsJSFunction()) {
31 96628 : functions[0] = Handle<JSFunction>::cast(m.Value());
32 96628 : if (functions[0]->shared()->HasBytecodeArray()) {
33 168072 : bytecode[0] = handle(functions[0]->shared()->GetBytecodeArray(), isolate);
34 : }
35 : return 1;
36 : }
37 494437 : if (m.IsPhi()) {
38 21408 : int const value_input_count = m.node()->op()->ValueInputCount();
39 21408 : if (value_input_count > functions_size) return 0;
40 1274 : for (int n = 0; n < value_input_count; ++n) {
41 : HeapObjectMatcher m(node->InputAt(n));
42 25034 : if (!m.HasValue() || !m.Value()->IsJSFunction()) return 0;
43 1274 : functions[n] = Handle<JSFunction>::cast(m.Value());
44 1274 : if (functions[n]->shared()->HasBytecodeArray()) {
45 : bytecode[n] =
46 2226 : handle(functions[n]->shared()->GetBytecodeArray(), isolate);
47 : }
48 : }
49 : return value_input_count;
50 : }
51 473029 : if (m.IsJSCreateClosure()) {
52 24692 : CreateClosureParameters const& p = CreateClosureParametersOf(m.op());
53 24694 : functions[0] = Handle<JSFunction>::null();
54 24694 : shared = p.shared_info();
55 24694 : if (shared->HasBytecodeArray()) {
56 46279 : bytecode[0] = handle(shared->GetBytecodeArray(), isolate);
57 : }
58 : return 1;
59 : }
60 : return 0;
61 : }
62 :
63 121832 : bool IsSmallInlineFunction(Handle<BytecodeArray> bytecode) {
64 : // Forcibly inline small functions.
65 : // Don't forcibly inline functions that weren't compiled yet.
66 229095 : if (!bytecode.is_null() &&
67 107263 : bytecode->length() <= FLAG_max_inlined_bytecode_size_small) {
68 : return true;
69 : }
70 98460 : return false;
71 : }
72 :
73 : } // namespace
74 :
75 36829570 : Reduction JSInliningHeuristic::Reduce(Node* node) {
76 34730806 : if (!IrOpcode::IsInlineeOpcode(node->opcode())) return NoChange();
77 :
78 : // Check if we already saw that {node} before, and if so, just skip it.
79 1439397 : if (seen_.find(node->id()) != seen_.end()) return NoChange();
80 1182136 : seen_.insert(node->id());
81 :
82 : // Check if the {node} is an appropriate candidate for inlining.
83 : Node* callee = node->InputAt(0);
84 : Candidate candidate;
85 591068 : candidate.node = node;
86 : candidate.num_functions =
87 : CollectFunctions(callee, candidate.functions, candidate.bytecode,
88 591068 : kMaxCallPolymorphism, candidate.shared_info, isolate());
89 591067 : if (candidate.num_functions == 0) {
90 : return NoChange();
91 121577 : } else if (candidate.num_functions > 1 && !FLAG_polymorphic_inlining) {
92 0 : TRACE(
93 : "Not considering call site #%d:%s, because polymorphic inlining "
94 : "is disabled\n",
95 : node->id(), node->op()->mnemonic());
96 : return NoChange();
97 : }
98 :
99 : bool can_inline = false, small_inline = true;
100 121577 : candidate.total_size = 0;
101 121577 : Node* frame_state = NodeProperties::GetFrameStateInput(node);
102 243409 : FrameStateInfo const& frame_info = FrameStateInfoOf(frame_state->op());
103 : Handle<SharedFunctionInfo> frame_shared_info;
104 243408 : for (int i = 0; i < candidate.num_functions; ++i) {
105 : Handle<SharedFunctionInfo> shared =
106 121831 : candidate.functions[i].is_null()
107 : ? candidate.shared_info
108 437934 : : handle(candidate.functions[i]->shared(), isolate());
109 121832 : candidate.can_inline_function[i] = shared->IsInlineable();
110 : // Do not allow direct recursion i.e. f() -> f(). We still allow indirect
111 : // recurion like f() -> g() -> f(). The indirect recursion is helpful in
112 : // cases where f() is a small dispatch function that calls the appropriate
113 : // function. In the case of direct recursion, we only have some static
114 : // information for the first level of inlining and it may not be that useful
115 : // to just inline one level in recursive calls. In some cases like tail
116 : // recursion we may benefit from recursive inlining, if we have additional
117 : // analysis that converts them to iterative implementations. Though it is
118 : // not obvious if such an anlysis is needed.
119 243620 : if (frame_info.shared_info().ToHandle(&frame_shared_info) &&
120 : *frame_shared_info == *shared) {
121 5816 : TRACE("Not considering call site #%d:%s, because of recursive inlining\n",
122 : node->id(), node->op()->mnemonic());
123 5816 : candidate.can_inline_function[i] = false;
124 : }
125 121832 : Handle<BytecodeArray> bytecode = candidate.bytecode[i];
126 121832 : if (candidate.can_inline_function[i]) {
127 : can_inline = true;
128 99838 : candidate.total_size += bytecode->length();
129 : }
130 121832 : if (!IsSmallInlineFunction(bytecode)) {
131 : small_inline = false;
132 : }
133 : }
134 121577 : if (!can_inline) return NoChange();
135 :
136 : // Gather feedback on how often this call site has been hit before.
137 99795 : if (node->opcode() == IrOpcode::kJSCall) {
138 92948 : CallParameters const p = CallParametersOf(node->op());
139 92948 : candidate.frequency = p.frequency();
140 : } else {
141 6847 : ConstructParameters const p = ConstructParametersOf(node->op());
142 6847 : candidate.frequency = p.frequency();
143 : }
144 :
145 : // Handling of special inlining modes right away:
146 : // - For restricted inlining: stop all handling at this point.
147 : // - For stressing inlining: immediately handle all functions.
148 99795 : switch (mode_) {
149 : case kRestrictedInlining:
150 : return NoChange();
151 : case kStressInlining:
152 0 : return InlineCandidate(candidate, false);
153 : case kGeneralInlining:
154 : break;
155 : }
156 :
157 : // Don't consider a {candidate} whose frequency is below the
158 : // threshold, i.e. a call site that is only hit once every N
159 : // invocations of the caller.
160 196285 : if (candidate.frequency.IsKnown() &&
161 96815 : candidate.frequency.value() < FLAG_min_inlining_frequency) {
162 : return NoChange();
163 : }
164 :
165 : // Forcibly inline small functions here. In the case of polymorphic inlining
166 : // small_inline is set only when all functions are small.
167 86295 : if (small_inline &&
168 14778 : cumulative_count_ < FLAG_max_inlined_bytecode_size_absolute) {
169 14075 : TRACE("Inlining small function(s) at call site #%d:%s\n", node->id(),
170 : node->op()->mnemonic());
171 14075 : return InlineCandidate(candidate, true);
172 : }
173 :
174 : // In the general case we remember the candidate for later.
175 : candidates_.insert(candidate);
176 : return NoChange();
177 : }
178 :
179 508718 : void JSInliningHeuristic::Finalize() {
180 508718 : if (candidates_.empty()) return; // Nothing to do without candidates.
181 52917 : if (FLAG_trace_turbo_inlining) PrintCandidates();
182 :
183 : // We inline at most one candidate in every iteration of the fixpoint.
184 : // This is to ensure that we don't consume the full inlining budget
185 : // on things that aren't called very often.
186 : // TODO(bmeurer): Use std::priority_queue instead of std::set here.
187 58366 : while (!candidates_.empty()) {
188 : auto i = candidates_.begin();
189 57442 : Candidate candidate = *i;
190 : candidates_.erase(i);
191 :
192 : // Make sure we have some extra budget left, so that any small functions
193 : // exposed by this function would be given a chance to inline.
194 : double size_of_candidate =
195 57442 : candidate.total_size * FLAG_reserve_inline_budget_scale_factor;
196 57442 : int total_size = cumulative_count_ + static_cast<int>(size_of_candidate);
197 57442 : if (total_size > FLAG_max_inlined_bytecode_size_cumulative) {
198 : // Try if any smaller functions are available to inline.
199 5444 : continue;
200 : }
201 :
202 : // Make sure we don't try to inline dead candidate nodes.
203 51998 : if (!candidate.node->IsDead()) {
204 51998 : Reduction const reduction = InlineCandidate(candidate, false);
205 51998 : if (reduction.Changed()) return;
206 : }
207 : }
208 : }
209 :
210 : namespace {
211 :
212 : struct NodeAndIndex {
213 : Node* node;
214 : int index;
215 : };
216 :
217 70 : bool CollectStateValuesOwnedUses(Node* node, Node* state_values,
218 : NodeAndIndex* uses_buffer, size_t* use_count,
219 : size_t max_uses) {
220 : // Only accumulate states that are not shared with other users.
221 70 : if (state_values->UseCount() > 1) return true;
222 189 : for (int i = 0; i < state_values->InputCount(); i++) {
223 77 : Node* input = state_values->InputAt(i);
224 77 : if (input->opcode() == IrOpcode::kStateValues) {
225 0 : if (!CollectStateValuesOwnedUses(node, input, uses_buffer, use_count,
226 0 : max_uses)) {
227 : return false;
228 : }
229 77 : } else if (input == node) {
230 35 : if (*use_count >= max_uses) return false;
231 35 : uses_buffer[*use_count] = {state_values, i};
232 35 : (*use_count)++;
233 : }
234 : }
235 : return true;
236 : }
237 :
238 : } // namespace
239 :
240 105 : Node* JSInliningHeuristic::DuplicateStateValuesAndRename(Node* state_values,
241 : Node* from, Node* to,
242 : StateCloneMode mode) {
243 : // Only rename in states that are not shared with other users. This needs to
244 : // be in sync with the condition in {CollectStateValuesOwnedUses}.
245 105 : if (state_values->UseCount() > 1) return state_values;
246 70 : Node* copy = mode == kChangeInPlace ? state_values : nullptr;
247 448 : for (int i = 0; i < state_values->InputCount(); i++) {
248 154 : Node* input = state_values->InputAt(i);
249 : Node* processed;
250 154 : if (input->opcode() == IrOpcode::kStateValues) {
251 0 : processed = DuplicateStateValuesAndRename(input, from, to, mode);
252 154 : } else if (input == from) {
253 : processed = to;
254 : } else {
255 : processed = input;
256 : }
257 154 : if (processed != input) {
258 70 : if (!copy) {
259 35 : copy = graph()->CloneNode(state_values);
260 : }
261 70 : copy->ReplaceInput(i, processed);
262 : }
263 : }
264 70 : return copy ? copy : state_values;
265 : }
266 :
267 : namespace {
268 :
269 70 : bool CollectFrameStateUniqueUses(Node* node, Node* frame_state,
270 : NodeAndIndex* uses_buffer, size_t* use_count,
271 : size_t max_uses) {
272 : // Only accumulate states that are not shared with other users.
273 70 : if (frame_state->UseCount() > 1) return true;
274 70 : if (frame_state->InputAt(kFrameStateStackInput) == node) {
275 0 : if (*use_count >= max_uses) return false;
276 0 : uses_buffer[*use_count] = {frame_state, kFrameStateStackInput};
277 0 : (*use_count)++;
278 : }
279 70 : if (!CollectStateValuesOwnedUses(node,
280 : frame_state->InputAt(kFrameStateLocalsInput),
281 70 : uses_buffer, use_count, max_uses)) {
282 : return false;
283 : }
284 70 : return true;
285 : }
286 :
287 : } // namespace
288 :
289 140 : Node* JSInliningHeuristic::DuplicateFrameStateAndRename(Node* frame_state,
290 : Node* from, Node* to,
291 : StateCloneMode mode) {
292 : // Only rename in states that are not shared with other users. This needs to
293 : // be in sync with the condition in {DuplicateFrameStateAndRename}.
294 140 : if (frame_state->UseCount() > 1) return frame_state;
295 105 : Node* copy = mode == kChangeInPlace ? frame_state : nullptr;
296 105 : if (frame_state->InputAt(kFrameStateStackInput) == from) {
297 0 : if (!copy) {
298 0 : copy = graph()->CloneNode(frame_state);
299 : }
300 0 : copy->ReplaceInput(kFrameStateStackInput, to);
301 : }
302 : Node* locals = frame_state->InputAt(kFrameStateLocalsInput);
303 105 : Node* new_locals = DuplicateStateValuesAndRename(locals, from, to, mode);
304 105 : if (new_locals != locals) {
305 35 : if (!copy) {
306 35 : copy = graph()->CloneNode(frame_state);
307 : }
308 35 : copy->ReplaceInput(kFrameStateLocalsInput, new_locals);
309 : }
310 105 : return copy ? copy : frame_state;
311 : }
312 :
313 112 : bool JSInliningHeuristic::TryReuseDispatch(Node* node, Node* callee,
314 : Candidate const& candidate,
315 : Node** if_successes, Node** calls,
316 140 : Node** inputs, int input_count) {
317 : // We will try to reuse the control flow branch created for computing
318 : // the {callee} target of the call. We only reuse the branch if there
319 : // is no side-effect between the call and the branch, and if the callee is
320 : // only used as the target (and possibly also in the related frame states).
321 :
322 42 : int const num_calls = candidate.num_functions;
323 :
324 : DCHECK_EQ(IrOpcode::kPhi, callee->opcode());
325 : DCHECK_EQ(num_calls, callee->op()->ValueInputCount());
326 :
327 : // We are trying to match the following pattern:
328 : //
329 : // C1 C2
330 : // . .
331 : // | |
332 : // Merge(merge) <-----------------+
333 : // ^ ^ |
334 : // V1 V2 | | E1 E2 |
335 : // . . | +----+ . . |
336 : // | | | | | | |
337 : // Phi(callee) EffectPhi(effect_phi) |
338 : // ^ ^ |
339 : // | | |
340 : // +----+ | |
341 : // | | | |
342 : // | StateValues | |
343 : // | ^ | |
344 : // +----+ | | |
345 : // | | | | |
346 : // | FrameState | |
347 : // | ^ | |
348 : // | | | +---+
349 : // | | | | |
350 : // +----+ Checkpoint(checkpoint) |
351 : // | | ^ |
352 : // | StateValues | +-------------+
353 : // | | | |
354 : // +-----+ | | |
355 : // | | | | |
356 : // | FrameState | |
357 : // | ^ | |
358 : // +-----------+ | | |
359 : // Call(node)
360 : // |
361 : // |
362 : // .
363 : //
364 : // The {callee} here is a phi that merges the possible call targets, {node}
365 : // is the actual call that we will try to duplicate and connect to the
366 : // control that comes into {merge}. There can be a {checkpoint} between
367 : // the call and the calle phi.
368 : //
369 : // The idea is to get rid of the merge, effect phi and phi, then duplicate
370 : // the call (with all the frame states and such), and connect the duplicated
371 : // calls and states directly to the inputs of the ex-phi, ex-effect-phi and
372 : // ex-merge. The tricky part is to make sure that there is no interference
373 : // from the outside. In particular, there should not be any unaccounted uses
374 : // of the phi, effect-phi and merge because we will remove them from
375 : // the graph.
376 : //
377 : // V1 E1 C1 V2 E2 C2
378 : // . . . . . .
379 : // | | | | | |
380 : // +----+ | | +----+ |
381 : // | | | | | | |
382 : // | StateValues | | | StateValues |
383 : // | ^ | | | ^ |
384 : // +----+ | | | +----+ | |
385 : // | | | | | | | | |
386 : // | FrameState | | | FrameState |
387 : // | ^ | | | ^ |
388 : // | | | | | | |
389 : // | | | | | | |
390 : // +----+ Checkpoint | +----+ Checkpoint |
391 : // | | ^ | | | ^ |
392 : // | StateValues | | | StateValues | |
393 : // | | | | | | | |
394 : // +-----+ | | | +-----+ | | |
395 : // | | | | | | | | | |
396 : // | FrameState | | | FrameState | |
397 : // | ^ | | | ^ | |
398 : // +-------------+| | | +-------------+| | |
399 : // Call----+ Call----+
400 : // | |
401 : // +-------+ +------------+
402 : // | |
403 : // Merge
404 : // EffectPhi
405 : // Phi
406 : // |
407 : // ...
408 :
409 : // If there is a control node between the callee computation
410 : // and the call, bail out.
411 42 : Node* merge = NodeProperties::GetControlInput(callee);
412 42 : if (NodeProperties::GetControlInput(node) != merge) return false;
413 :
414 : // If there is a non-checkpoint effect node between the callee computation
415 : // and the call, bail out. We will drop any checkpoint between the call and
416 : // the callee phi because the callee computation should have its own
417 : // checkpoint that the call can fall back to.
418 70 : Node* checkpoint = nullptr;
419 84 : Node* effect = NodeProperties::GetEffectInput(node);
420 42 : if (effect->opcode() == IrOpcode::kCheckpoint) {
421 : checkpoint = effect;
422 42 : if (NodeProperties::GetControlInput(checkpoint) != merge) return false;
423 42 : effect = NodeProperties::GetEffectInput(effect);
424 : }
425 42 : if (effect->opcode() != IrOpcode::kEffectPhi) return false;
426 42 : if (NodeProperties::GetControlInput(effect) != merge) return false;
427 : Node* effect_phi = effect;
428 :
429 : // The effect phi, the callee, the call and the checkpoint must be the only
430 : // users of the merge.
431 238 : for (Node* merge_use : merge->uses()) {
432 252 : if (merge_use != effect_phi && merge_use != callee && merge_use != node &&
433 91 : merge_use != checkpoint) {
434 : return false;
435 : }
436 : }
437 :
438 : // The effect phi must be only used by the checkpoint or the call.
439 105 : for (Node* effect_phi_use : effect_phi->uses()) {
440 35 : if (effect_phi_use != node && effect_phi_use != checkpoint) return false;
441 : }
442 :
443 : // We must replace the callee phi with the appropriate constant in
444 : // the entire subgraph reachable by inputs from the call (terminating
445 : // at phis and merges). Since we do not want to walk (and later duplicate)
446 : // the subgraph here, we limit the possible uses to this set:
447 : //
448 : // 1. In the call (as a target).
449 : // 2. The checkpoint between the call and the callee computation merge.
450 : // 3. The lazy deoptimization frame state.
451 : //
452 : // This corresponds to the most common pattern, where the function is
453 : // called with only local variables or constants as arguments.
454 : //
455 : // To check the uses, we first collect all the occurrences of callee in 1, 2
456 : // and 3, and then we check that all uses of callee are in the collected
457 : // occurrences. If there is an unaccounted use, we do not try to rewire
458 : // the control flow.
459 : //
460 : // Note: With CFG, this would be much easier and more robust - we would just
461 : // duplicate all the nodes between the merge and the call, replacing all
462 : // occurrences of the {callee} phi with the appropriate constant.
463 :
464 : // First compute the set of uses that are only reachable from 2 and 3.
465 : const size_t kMaxUses = 8;
466 : NodeAndIndex replaceable_uses[kMaxUses];
467 35 : size_t replaceable_uses_count = 0;
468 :
469 : // Collect the uses to check case 2.
470 : Node* checkpoint_state = nullptr;
471 35 : if (checkpoint) {
472 : checkpoint_state = checkpoint->InputAt(0);
473 35 : if (!CollectFrameStateUniqueUses(callee, checkpoint_state, replaceable_uses,
474 35 : &replaceable_uses_count, kMaxUses)) {
475 : return false;
476 : }
477 : }
478 :
479 : // Collect the uses to check case 3.
480 35 : Node* frame_state = NodeProperties::GetFrameStateInput(node);
481 35 : if (!CollectFrameStateUniqueUses(callee, frame_state, replaceable_uses,
482 35 : &replaceable_uses_count, kMaxUses)) {
483 : return false;
484 : }
485 :
486 : // Bail out if there is a use of {callee} that is not reachable from 1, 2
487 : // and 3.
488 140 : for (Edge edge : callee->use_edges()) {
489 : // Case 1 (use by the call as a target).
490 70 : if (edge.from() == node && edge.index() == 0) continue;
491 : // Case 2 and 3 - used in checkpoint and/or lazy deopt frame states.
492 : bool found = false;
493 0 : for (size_t i = 0; i < replaceable_uses_count; i++) {
494 105 : if (replaceable_uses[i].node == edge.from() &&
495 35 : replaceable_uses[i].index == edge.index()) {
496 : found = true;
497 : break;
498 : }
499 : }
500 35 : if (!found) return false;
501 : }
502 :
503 : // Clone the call and the framestate, including the uniquely reachable
504 : // state values, making sure that we replace the phi with the constant.
505 105 : for (int i = 0; i < num_calls; ++i) {
506 : // Clone the calls for each branch.
507 : // We need to specialize the calls to the correct target, effect, and
508 : // control. We also need to duplicate the checkpoint and the lazy
509 : // frame state, and change all the uses of the callee to the constant
510 : // callee.
511 : Node* target = callee->InputAt(i);
512 : Node* effect = effect_phi->InputAt(i);
513 : Node* control = merge->InputAt(i);
514 :
515 70 : if (checkpoint) {
516 : // Duplicate the checkpoint.
517 : Node* new_checkpoint_state = DuplicateFrameStateAndRename(
518 : checkpoint_state, callee, target,
519 70 : (i == num_calls - 1) ? kChangeInPlace : kCloneState);
520 : effect = graph()->NewNode(checkpoint->op(), new_checkpoint_state, effect,
521 : control);
522 : }
523 :
524 : // Duplicate the call.
525 : Node* new_lazy_frame_state = DuplicateFrameStateAndRename(
526 : frame_state, callee, target,
527 70 : (i == num_calls - 1) ? kChangeInPlace : kCloneState);
528 70 : inputs[0] = target;
529 70 : inputs[input_count - 3] = new_lazy_frame_state;
530 70 : inputs[input_count - 2] = effect;
531 70 : inputs[input_count - 1] = control;
532 70 : calls[i] = if_successes[i] =
533 70 : graph()->NewNode(node->op(), input_count, inputs);
534 : }
535 :
536 : // Mark the control inputs dead, so that we can kill the merge.
537 35 : node->ReplaceInput(input_count - 1, jsgraph()->Dead());
538 35 : callee->ReplaceInput(num_calls, jsgraph()->Dead());
539 35 : effect_phi->ReplaceInput(num_calls, jsgraph()->Dead());
540 35 : if (checkpoint) {
541 35 : checkpoint->ReplaceInput(2, jsgraph()->Dead());
542 : }
543 :
544 35 : merge->Kill();
545 35 : return true;
546 : }
547 :
548 70 : void JSInliningHeuristic::CreateOrReuseDispatch(Node* node, Node* callee,
549 : Candidate const& candidate,
550 : Node** if_successes,
551 : Node** calls, Node** inputs,
552 14 : int input_count) {
553 : SourcePositionTable::Scope position(
554 42 : source_positions_, source_positions_->GetSourcePosition(node));
555 42 : if (TryReuseDispatch(node, callee, candidate, if_successes, calls, inputs,
556 : input_count)) {
557 42 : return;
558 : }
559 :
560 7 : Node* fallthrough_control = NodeProperties::GetControlInput(node);
561 7 : int const num_calls = candidate.num_functions;
562 :
563 : // Create the appropriate control flow to dispatch to the cloned calls.
564 21 : for (int i = 0; i < num_calls; ++i) {
565 : // TODO(2206): Make comparison be based on underlying SharedFunctionInfo
566 : // instead of the target JSFunction reference directly.
567 14 : Node* target = jsgraph()->HeapConstant(candidate.functions[i]);
568 14 : if (i != (num_calls - 1)) {
569 : Node* check =
570 7 : graph()->NewNode(simplified()->ReferenceEqual(), callee, target);
571 : Node* branch =
572 7 : graph()->NewNode(common()->Branch(), check, fallthrough_control);
573 7 : fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
574 21 : if_successes[i] = graph()->NewNode(common()->IfTrue(), branch);
575 : } else {
576 7 : if_successes[i] = fallthrough_control;
577 : }
578 :
579 : // Clone the calls for each branch.
580 : // The first input to the call is the actual target (which we specialize
581 : // to the known {target}); the last input is the control dependency.
582 : // We also specialize the new.target of JSConstruct {node}s if it refers
583 : // to the same node as the {node}'s target input, so that we can later
584 : // properly inline the JSCreate operations.
585 14 : if (node->opcode() == IrOpcode::kJSConstruct && inputs[0] == inputs[1]) {
586 0 : inputs[1] = target;
587 : }
588 14 : inputs[0] = target;
589 14 : inputs[input_count - 1] = if_successes[i];
590 14 : calls[i] = if_successes[i] =
591 14 : graph()->NewNode(node->op(), input_count, inputs);
592 : }
593 : }
594 :
595 66073 : Reduction JSInliningHeuristic::InlineCandidate(Candidate const& candidate,
596 : bool small_function) {
597 66073 : int const num_calls = candidate.num_functions;
598 66073 : Node* const node = candidate.node;
599 66073 : if (num_calls == 1) {
600 66031 : Reduction const reduction = inliner_.ReduceJSCall(node);
601 66031 : if (reduction.Changed()) {
602 66020 : cumulative_count_ += candidate.bytecode[0]->length();
603 : }
604 66031 : return reduction;
605 : }
606 :
607 : // Expand the JSCall/JSConstruct node to a subgraph first if
608 : // we have multiple known target functions.
609 : DCHECK_LT(1, num_calls);
610 : Node* calls[kMaxCallPolymorphism + 1];
611 : Node* if_successes[kMaxCallPolymorphism];
612 42 : Node* callee = NodeProperties::GetValueInput(node, 0);
613 :
614 : // Setup the inputs for the cloned call nodes.
615 : int const input_count = node->InputCount();
616 84 : Node** inputs = graph()->zone()->NewArray<Node*>(input_count);
617 336 : for (int i = 0; i < input_count; ++i) {
618 588 : inputs[i] = node->InputAt(i);
619 : }
620 :
621 : // Create the appropriate control flow to dispatch to the cloned calls.
622 : CreateOrReuseDispatch(node, callee, candidate, if_successes, calls, inputs,
623 42 : input_count);
624 :
625 : // Check if we have an exception projection for the call {node}.
626 42 : Node* if_exception = nullptr;
627 42 : if (NodeProperties::IsExceptionalCall(node, &if_exception)) {
628 : Node* if_exceptions[kMaxCallPolymorphism + 1];
629 0 : for (int i = 0; i < num_calls; ++i) {
630 0 : if_successes[i] = graph()->NewNode(common()->IfSuccess(), calls[i]);
631 : if_exceptions[i] =
632 0 : graph()->NewNode(common()->IfException(), calls[i], calls[i]);
633 : }
634 :
635 : // Morph the {if_exception} projection into a join.
636 : Node* exception_control =
637 0 : graph()->NewNode(common()->Merge(num_calls), num_calls, if_exceptions);
638 0 : if_exceptions[num_calls] = exception_control;
639 : Node* exception_effect = graph()->NewNode(common()->EffectPhi(num_calls),
640 0 : num_calls + 1, if_exceptions);
641 : Node* exception_value = graph()->NewNode(
642 : common()->Phi(MachineRepresentation::kTagged, num_calls), num_calls + 1,
643 0 : if_exceptions);
644 : ReplaceWithValue(if_exception, exception_value, exception_effect,
645 42 : exception_control);
646 : }
647 :
648 : // Morph the original call site into a join of the dispatched call sites.
649 : Node* control =
650 84 : graph()->NewNode(common()->Merge(num_calls), num_calls, if_successes);
651 42 : calls[num_calls] = control;
652 : Node* effect =
653 126 : graph()->NewNode(common()->EffectPhi(num_calls), num_calls + 1, calls);
654 : Node* value =
655 : graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, num_calls),
656 84 : num_calls + 1, calls);
657 : ReplaceWithValue(node, value, effect, control);
658 :
659 : // Inline the individual, cloned call sites.
660 126 : for (int i = 0; i < num_calls; ++i) {
661 84 : Node* node = calls[i];
662 84 : if (small_function ||
663 0 : (candidate.can_inline_function[i] &&
664 0 : cumulative_count_ < FLAG_max_inlined_bytecode_size_cumulative)) {
665 84 : Reduction const reduction = inliner_.ReduceJSCall(node);
666 84 : if (reduction.Changed()) {
667 : // Killing the call node is not strictly necessary, but it is safer to
668 : // make sure we do not resurrect the node.
669 84 : node->Kill();
670 168 : cumulative_count_ += candidate.bytecode[i]->length();
671 : }
672 : }
673 : }
674 :
675 : return Replace(value);
676 : }
677 :
678 193744 : bool JSInliningHeuristic::CandidateCompare::operator()(
679 : const Candidate& left, const Candidate& right) const {
680 193744 : if (right.frequency.IsUnknown()) {
681 1049 : if (left.frequency.IsUnknown()) {
682 : // If left and right are both unknown then the ordering is indeterminate,
683 : // which breaks strict weak ordering requirements, so we fall back to the
684 : // node id as a tie breaker.
685 296620 : return left.node->id() > right.node->id();
686 : }
687 : return true;
688 192695 : } else if (left.frequency.IsUnknown()) {
689 : return false;
690 192682 : } else if (left.frequency.value() > right.frequency.value()) {
691 : return true;
692 153060 : } else if (left.frequency.value() < right.frequency.value()) {
693 : return false;
694 : } else {
695 440241 : return left.node->id() > right.node->id();
696 : }
697 : }
698 :
699 0 : void JSInliningHeuristic::PrintCandidates() {
700 0 : StdoutStream os;
701 0 : os << "Candidates for inlining (size=" << candidates_.size() << "):\n";
702 0 : for (const Candidate& candidate : candidates_) {
703 0 : os << " #" << candidate.node->id() << ":"
704 0 : << candidate.node->op()->mnemonic()
705 0 : << ", frequency: " << candidate.frequency << std::endl;
706 0 : for (int i = 0; i < candidate.num_functions; ++i) {
707 : Handle<SharedFunctionInfo> shared =
708 0 : candidate.functions[i].is_null()
709 : ? candidate.shared_info
710 0 : : handle(candidate.functions[i]->shared(), isolate());
711 0 : PrintF(" - size:%d, name: %s\n", candidate.bytecode[i]->length(),
712 0 : shared->DebugName()->ToCString().get());
713 : }
714 0 : }
715 0 : }
716 :
717 420 : Graph* JSInliningHeuristic::graph() const { return jsgraph()->graph(); }
718 :
719 147 : CommonOperatorBuilder* JSInliningHeuristic::common() const {
720 147 : return jsgraph()->common();
721 : }
722 :
723 7 : SimplifiedOperatorBuilder* JSInliningHeuristic::simplified() const {
724 7 : return jsgraph()->simplified();
725 : }
726 :
727 : #undef TRACE
728 :
729 : } // namespace compiler
730 : } // namespace internal
731 178779 : } // namespace v8
|