Line data Source code
1 : // Copyright 2013 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #include "src/deoptimizer.h"
6 :
7 : #include <memory>
8 :
9 : #include "src/accessors.h"
10 : #include "src/assembler-inl.h"
11 : #include "src/ast/prettyprinter.h"
12 : #include "src/callable.h"
13 : #include "src/counters.h"
14 : #include "src/disasm.h"
15 : #include "src/frames-inl.h"
16 : #include "src/global-handles.h"
17 : #include "src/heap/heap-inl.h"
18 : #include "src/interpreter/interpreter.h"
19 : #include "src/log.h"
20 : #include "src/macro-assembler.h"
21 : #include "src/objects/debug-objects-inl.h"
22 : #include "src/objects/heap-number-inl.h"
23 : #include "src/objects/smi.h"
24 : #include "src/register-configuration.h"
25 : #include "src/tracing/trace-event.h"
26 : #include "src/v8.h"
27 : #include "src/v8threads.h"
28 :
29 : // Has to be the last include (doesn't have include guards)
30 : #include "src/objects/object-macros.h"
31 :
32 : namespace v8 {
33 : namespace internal {
34 :
35 : // {FrameWriter} offers a stack writer abstraction for writing
36 : // FrameDescriptions. The main service the class provides is managing
37 : // {top_offset_}, i.e. the offset of the next slot to write to.
38 : class FrameWriter {
39 : public:
40 : static const int NO_INPUT_INDEX = -1;
41 50303 : FrameWriter(Deoptimizer* deoptimizer, FrameDescription* frame,
42 : CodeTracer::Scope* trace_scope)
43 : : deoptimizer_(deoptimizer),
44 : frame_(frame),
45 : trace_scope_(trace_scope),
46 100606 : top_offset_(frame->GetFrameSize()) {}
47 :
48 20767 : void PushRawValue(intptr_t value, const char* debug_hint) {
49 : PushValue(value);
50 :
51 20767 : if (trace_scope_ != nullptr) {
52 0 : DebugPrintOutputValue(value, debug_hint);
53 : }
54 20767 : }
55 :
56 1382710 : void PushRawObject(Object obj, const char* debug_hint) {
57 691355 : intptr_t value = obj->ptr();
58 : PushValue(value);
59 691355 : if (trace_scope_ != nullptr) {
60 2880 : DebugPrintOutputObject(obj, top_offset_, debug_hint);
61 : }
62 691355 : }
63 :
64 50303 : void PushCallerPc(intptr_t pc) {
65 50303 : top_offset_ -= kPCOnStackSize;
66 50303 : frame_->SetCallerPc(top_offset_, pc);
67 50303 : DebugPrintOutputValue(pc, "caller's pc\n");
68 50303 : }
69 :
70 50303 : void PushCallerFp(intptr_t fp) {
71 50303 : top_offset_ -= kFPOnStackSize;
72 50303 : frame_->SetCallerFp(top_offset_, fp);
73 50303 : DebugPrintOutputValue(fp, "caller's fp\n");
74 50303 : }
75 :
76 : void PushCallerConstantPool(intptr_t cp) {
77 : top_offset_ -= kSystemPointerSize;
78 : frame_->SetCallerConstantPool(top_offset_, cp);
79 : DebugPrintOutputValue(cp, "caller's constant_pool\n");
80 : }
81 :
82 586399 : void PushTranslatedValue(const TranslatedFrame::iterator& iterator,
83 583999 : const char* debug_hint = "") {
84 583999 : Object obj = iterator->GetRawValue();
85 :
86 583999 : PushRawObject(obj, debug_hint);
87 :
88 583999 : if (trace_scope_) {
89 2400 : PrintF(trace_scope_->file(), " (input #%d)\n", iterator.input_index());
90 : }
91 :
92 : deoptimizer_->QueueValueForMaterialization(output_address(top_offset_), obj,
93 1167998 : iterator);
94 583999 : }
95 :
96 : unsigned top_offset() const { return top_offset_; }
97 :
98 : private:
99 : void PushValue(intptr_t value) {
100 : CHECK_GE(top_offset_, 0);
101 712122 : top_offset_ -= kSystemPointerSize;
102 : frame_->SetFrameSlot(top_offset_, value);
103 : }
104 :
105 : Address output_address(unsigned output_offset) {
106 : Address output_address =
107 587359 : static_cast<Address>(frame_->GetTop()) + output_offset;
108 : return output_address;
109 : }
110 :
111 101086 : void DebugPrintOutputValue(intptr_t value, const char* debug_hint = "") {
112 100606 : if (trace_scope_ != nullptr) {
113 : PrintF(trace_scope_->file(),
114 : " " V8PRIxPTR_FMT ": [top + %3d] <- " V8PRIxPTR_FMT " ; %s",
115 960 : output_address(top_offset_), top_offset_, value, debug_hint);
116 : }
117 100606 : }
118 :
119 2880 : void DebugPrintOutputObject(Object obj, unsigned output_offset,
120 2880 : const char* debug_hint = "") {
121 2880 : if (trace_scope_ != nullptr) {
122 : PrintF(trace_scope_->file(), " " V8PRIxPTR_FMT ": [top + %3d] <- ",
123 2880 : output_address(output_offset), output_offset);
124 2880 : if (obj->IsSmi()) {
125 312 : PrintF(V8PRIxPTR_FMT " <Smi %d>", obj->ptr(), Smi::cast(obj)->value());
126 : } else {
127 5136 : obj->ShortPrint(trace_scope_->file());
128 : }
129 5760 : PrintF(trace_scope_->file(), " ; %s", debug_hint);
130 : }
131 2880 : }
132 :
133 : Deoptimizer* deoptimizer_;
134 : FrameDescription* frame_;
135 : CodeTracer::Scope* trace_scope_;
136 : unsigned top_offset_;
137 : };
138 :
139 244196 : DeoptimizerData::DeoptimizerData(Heap* heap) : heap_(heap), current_(nullptr) {
140 : Code* start = &deopt_entry_code_[0];
141 : Code* end = &deopt_entry_code_[DeoptimizerData::kLastDeoptimizeKind + 1];
142 61049 : heap_->RegisterStrongRoots(FullObjectSlot(start), FullObjectSlot(end));
143 61049 : }
144 :
145 :
146 61034 : DeoptimizerData::~DeoptimizerData() {
147 : Code* start = &deopt_entry_code_[0];
148 61034 : heap_->UnregisterStrongRoots(FullObjectSlot(start));
149 61034 : }
150 :
151 0 : Code DeoptimizerData::deopt_entry_code(DeoptimizeKind kind) {
152 4720990 : return deopt_entry_code_[static_cast<int>(kind)];
153 : }
154 :
155 0 : void DeoptimizerData::set_deopt_entry_code(DeoptimizeKind kind, Code code) {
156 43929 : deopt_entry_code_[static_cast<int>(kind)] = code;
157 0 : }
158 :
159 45171 : Code Deoptimizer::FindDeoptimizingCode(Address addr) {
160 90342 : if (function_->IsHeapObject()) {
161 : // Search all deoptimizing code in the native context of the function.
162 45171 : Isolate* isolate = isolate_;
163 45171 : Context native_context = function_->context()->native_context();
164 45171 : Object element = native_context->DeoptimizedCodeListHead();
165 7650364 : while (!element->IsUndefined(isolate)) {
166 7584555 : Code code = Code::cast(element);
167 7584555 : CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
168 7584555 : if (code->contains(addr)) return code;
169 7560022 : element = code->next_code_link();
170 : }
171 : }
172 20638 : return Code();
173 : }
174 :
175 :
176 : // We rely on this function not causing a GC. It is called from generated code
177 : // without having a real stack frame in place.
178 45171 : Deoptimizer* Deoptimizer::New(Address raw_function, DeoptimizeKind kind,
179 : unsigned bailout_id, Address from,
180 45171 : int fp_to_sp_delta, Isolate* isolate) {
181 : JSFunction function = JSFunction::cast(Object(raw_function));
182 : Deoptimizer* deoptimizer = new Deoptimizer(isolate, function, kind,
183 90342 : bailout_id, from, fp_to_sp_delta);
184 45171 : CHECK_NULL(isolate->deoptimizer_data()->current_);
185 45171 : isolate->deoptimizer_data()->current_ = deoptimizer;
186 45171 : return deoptimizer;
187 : }
188 :
189 90342 : Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
190 45171 : Deoptimizer* result = isolate->deoptimizer_data()->current_;
191 45171 : CHECK_NOT_NULL(result);
192 45171 : result->DeleteFrameDescriptions();
193 45171 : isolate->deoptimizer_data()->current_ = nullptr;
194 45171 : return result;
195 : }
196 :
197 24920 : DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
198 : JavaScriptFrame* frame,
199 : int jsframe_index,
200 : Isolate* isolate) {
201 74760 : CHECK(frame->is_optimized());
202 :
203 24920 : TranslatedState translated_values(frame);
204 24920 : translated_values.Prepare(frame->fp());
205 :
206 : TranslatedState::iterator frame_it = translated_values.end();
207 : int counter = jsframe_index;
208 107942 : for (auto it = translated_values.begin(); it != translated_values.end();
209 : it++) {
210 194212 : if (it->kind() == TranslatedFrame::kInterpretedFunction ||
211 111162 : it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
212 : it->kind() ==
213 : TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
214 54882 : if (counter == 0) {
215 : frame_it = it;
216 : break;
217 : }
218 29962 : counter--;
219 : }
220 : }
221 24920 : CHECK(frame_it != translated_values.end());
222 : // We only include kJavaScriptBuiltinContinuation frames above to get the
223 : // counting right.
224 24920 : CHECK_EQ(frame_it->kind(), TranslatedFrame::kInterpretedFunction);
225 :
226 : DeoptimizedFrameInfo* info =
227 49840 : new DeoptimizedFrameInfo(&translated_values, frame_it, isolate);
228 :
229 24920 : return info;
230 : }
231 :
232 : namespace {
233 65042 : class ActivationsFinder : public ThreadVisitor {
234 : public:
235 : explicit ActivationsFinder(std::set<Code>* codes, Code topmost_optimized_code,
236 : bool safe_to_deopt_topmost_optimized_code)
237 65042 : : codes_(codes) {
238 : #ifdef DEBUG
239 : topmost_ = topmost_optimized_code;
240 : safe_to_deopt_ = safe_to_deopt_topmost_optimized_code;
241 : #endif
242 : }
243 :
244 : // Find the frames with activations of codes marked for deoptimization, search
245 : // for the trampoline to the deoptimizer call respective to each code, and use
246 : // it to replace the current pc on the stack.
247 128151 : void VisitThread(Isolate* isolate, ThreadLocalTop* top) override {
248 642819 : for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
249 514668 : if (it.frame()->type() == StackFrame::OPTIMIZED) {
250 59350 : Code code = it.frame()->LookupCode();
251 110376 : if (code->kind() == Code::OPTIMIZED_FUNCTION &&
252 51026 : code->marked_for_deoptimization()) {
253 26168 : codes_->erase(code);
254 : // Obtain the trampoline to the deoptimizer call.
255 52336 : SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
256 26168 : int trampoline_pc = safepoint.trampoline_pc();
257 : DCHECK_IMPLIES(code == topmost_, safe_to_deopt_);
258 : // Replace the current pc on the stack with the trampoline.
259 : it.frame()->set_pc(code->raw_instruction_start() + trampoline_pc);
260 : }
261 : }
262 : }
263 128151 : }
264 :
265 : private:
266 : std::set<Code>* codes_;
267 :
268 : #ifdef DEBUG
269 : Code topmost_;
270 : bool safe_to_deopt_;
271 : #endif
272 : };
273 : } // namespace
274 :
275 : // Move marked code from the optimized code list to the deoptimized code list,
276 : // and replace pc on the stack for codes marked for deoptimization.
277 65042 : void Deoptimizer::DeoptimizeMarkedCodeForContext(Context context) {
278 : DisallowHeapAllocation no_allocation;
279 :
280 65042 : Isolate* isolate = context->GetIsolate();
281 : Code topmost_optimized_code;
282 : bool safe_to_deopt_topmost_optimized_code = false;
283 : #ifdef DEBUG
284 : // Make sure all activations of optimized code can deopt at their current PC.
285 : // The topmost optimized code has special handling because it cannot be
286 : // deoptimized due to weak object dependency.
287 : for (StackFrameIterator it(isolate, isolate->thread_local_top());
288 : !it.done(); it.Advance()) {
289 : StackFrame::Type type = it.frame()->type();
290 : if (type == StackFrame::OPTIMIZED) {
291 : Code code = it.frame()->LookupCode();
292 : JSFunction function =
293 : static_cast<OptimizedFrame*>(it.frame())->function();
294 : if (FLAG_trace_deopt) {
295 : CodeTracer::Scope scope(isolate->GetCodeTracer());
296 : PrintF(scope.file(), "[deoptimizer found activation of function: ");
297 : function->PrintName(scope.file());
298 : PrintF(scope.file(), " / %" V8PRIxPTR "]\n", function.ptr());
299 : }
300 : SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
301 :
302 : // Turbofan deopt is checked when we are patching addresses on stack.
303 : bool safe_if_deopt_triggered = safepoint.has_deoptimization_index();
304 : bool is_builtin_code = code->kind() == Code::BUILTIN;
305 : DCHECK(topmost_optimized_code.is_null() || safe_if_deopt_triggered ||
306 : is_builtin_code);
307 : if (topmost_optimized_code.is_null()) {
308 : topmost_optimized_code = code;
309 : safe_to_deopt_topmost_optimized_code = safe_if_deopt_triggered;
310 : }
311 : }
312 : }
313 : #endif
314 :
315 : // We will use this set to mark those Code objects that are marked for
316 : // deoptimization and have not been found in stack frames.
317 : std::set<Code> codes;
318 :
319 : // Move marked code from the optimized code list to the deoptimized code list.
320 : // Walk over all optimized code objects in this native context.
321 65042 : Code prev;
322 65042 : Object element = context->OptimizedCodeListHead();
323 910232 : while (!element->IsUndefined(isolate)) {
324 780148 : Code code = Code::cast(element);
325 780148 : CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
326 : Object next = code->next_code_link();
327 :
328 780148 : if (code->marked_for_deoptimization()) {
329 : codes.insert(code);
330 :
331 308822 : if (!prev.is_null()) {
332 : // Skip this code in the optimized code list.
333 2213 : prev->set_next_code_link(next);
334 : } else {
335 : // There was no previous node, the next node is the new head.
336 306609 : context->SetOptimizedCodeListHead(next);
337 : }
338 :
339 : // Move the code to the _deoptimized_ code list.
340 308822 : code->set_next_code_link(context->DeoptimizedCodeListHead());
341 308822 : context->SetDeoptimizedCodeListHead(code);
342 : } else {
343 : // Not marked; preserve this element.
344 471326 : prev = code;
345 : }
346 780148 : element = next;
347 : }
348 :
349 : ActivationsFinder visitor(&codes, topmost_optimized_code,
350 : safe_to_deopt_topmost_optimized_code);
351 : // Iterate over the stack of this thread.
352 65042 : visitor.VisitThread(isolate, isolate->thread_local_top());
353 : // In addition to iterate over the stack of this thread, we also
354 : // need to consider all the other threads as they may also use
355 : // the code currently beings deoptimized.
356 65042 : isolate->thread_manager()->IterateArchivedThreads(&visitor);
357 :
358 : // If there's no activation of a code in any stack then we can remove its
359 : // deoptimization data. We do this to ensure that code objects that are
360 : // unlinked don't transitively keep objects alive unnecessarily.
361 435983 : for (Code code : codes) {
362 305899 : isolate->heap()->InvalidateCodeDeoptimizationData(code);
363 : }
364 65042 : }
365 :
366 :
367 6790 : void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
368 : RuntimeCallTimerScope runtimeTimer(isolate,
369 6790 : RuntimeCallCounterId::kDeoptimizeCode);
370 : TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
371 20370 : TRACE_EVENT0("v8", "V8.DeoptimizeCode");
372 6790 : if (FLAG_trace_deopt) {
373 0 : CodeTracer::Scope scope(isolate->GetCodeTracer());
374 0 : PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
375 : }
376 6790 : isolate->AbortConcurrentOptimization(BlockingBehavior::kBlock);
377 : DisallowHeapAllocation no_allocation;
378 : // For all contexts, mark all code, then deoptimize.
379 6790 : Object context = isolate->heap()->native_contexts_list();
380 39670 : while (!context->IsUndefined(isolate)) {
381 26090 : Context native_context = Context::cast(context);
382 26090 : MarkAllCodeForContext(native_context);
383 26090 : DeoptimizeMarkedCodeForContext(native_context);
384 26090 : context = native_context->next_context_link();
385 : }
386 6790 : }
387 :
388 :
389 1873 : void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
390 : RuntimeCallTimerScope runtimeTimer(isolate,
391 1873 : RuntimeCallCounterId::kDeoptimizeCode);
392 : TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
393 5619 : TRACE_EVENT0("v8", "V8.DeoptimizeCode");
394 1873 : if (FLAG_trace_deopt) {
395 2 : CodeTracer::Scope scope(isolate->GetCodeTracer());
396 2 : PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
397 : }
398 : DisallowHeapAllocation no_allocation;
399 : // For all contexts, deoptimize code already marked.
400 1873 : Object context = isolate->heap()->native_contexts_list();
401 7697 : while (!context->IsUndefined(isolate)) {
402 3951 : Context native_context = Context::cast(context);
403 3951 : DeoptimizeMarkedCodeForContext(native_context);
404 3951 : context = native_context->next_context_link();
405 : }
406 1873 : }
407 :
408 26090 : void Deoptimizer::MarkAllCodeForContext(Context context) {
409 26090 : Object element = context->OptimizedCodeListHead();
410 : Isolate* isolate = context->GetIsolate();
411 324352 : while (!element->IsUndefined(isolate)) {
412 272172 : Code code = Code::cast(element);
413 272172 : CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
414 272172 : code->set_marked_for_deoptimization(true);
415 272172 : element = code->next_code_link();
416 : }
417 26090 : }
418 :
419 585301 : void Deoptimizer::DeoptimizeFunction(JSFunction function, Code code) {
420 : Isolate* isolate = function->GetIsolate();
421 : RuntimeCallTimerScope runtimeTimer(isolate,
422 585301 : RuntimeCallCounterId::kDeoptimizeCode);
423 : TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
424 1755903 : TRACE_EVENT0("v8", "V8.DeoptimizeCode");
425 585301 : function->ResetIfBytecodeFlushed();
426 585301 : if (code.is_null()) code = function->code();
427 :
428 585301 : if (code->kind() == Code::OPTIMIZED_FUNCTION) {
429 : // Mark the code for deoptimization and unlink any functions that also
430 : // refer to that code. The code cannot be shared across native contexts,
431 : // so we only need to search one.
432 35001 : code->set_marked_for_deoptimization(true);
433 : // The code in the function's optimized code feedback vector slot might
434 : // be different from the code on the function - evict it if necessary.
435 : function->feedback_vector()->EvictOptimizedCodeMarkedForDeoptimization(
436 35001 : function->shared(), "unlinking code marked for deopt");
437 35001 : if (!code->deopt_already_counted()) {
438 29910 : function->feedback_vector()->increment_deopt_count();
439 14955 : code->set_deopt_already_counted(true);
440 : }
441 35001 : DeoptimizeMarkedCodeForContext(function->context()->native_context());
442 : }
443 585301 : }
444 :
445 45171 : void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
446 45171 : deoptimizer->DoComputeOutputFrames();
447 45171 : }
448 :
449 487 : const char* Deoptimizer::MessageFor(DeoptimizeKind kind) {
450 487 : switch (kind) {
451 : case DeoptimizeKind::kEager:
452 : return "eager";
453 : case DeoptimizeKind::kSoft:
454 3 : return "soft";
455 : case DeoptimizeKind::kLazy:
456 0 : return "lazy";
457 : }
458 0 : FATAL("Unsupported deopt kind");
459 : return nullptr;
460 : }
461 :
462 90342 : Deoptimizer::Deoptimizer(Isolate* isolate, JSFunction function,
463 : DeoptimizeKind kind, unsigned bailout_id, Address from,
464 : int fp_to_sp_delta)
465 : : isolate_(isolate),
466 : function_(function),
467 : bailout_id_(bailout_id),
468 : deopt_kind_(kind),
469 : from_(from),
470 : fp_to_sp_delta_(fp_to_sp_delta),
471 : deoptimizing_throw_(false),
472 : catch_handler_data_(-1),
473 : catch_handler_pc_offset_(-1),
474 : input_(nullptr),
475 : output_count_(0),
476 : jsframe_count_(0),
477 : output_(nullptr),
478 : caller_frame_top_(0),
479 : caller_fp_(0),
480 : caller_pc_(0),
481 : caller_constant_pool_(0),
482 : input_frame_context_(0),
483 : stack_fp_(0),
484 90342 : trace_scope_(nullptr) {
485 45171 : if (isolate->deoptimizer_lazy_throw()) {
486 : isolate->set_deoptimizer_lazy_throw(false);
487 6113 : deoptimizing_throw_ = true;
488 : }
489 :
490 : DCHECK_NE(from, kNullAddress);
491 45171 : compiled_code_ = FindOptimizedCode();
492 : DCHECK(!compiled_code_.is_null());
493 :
494 : DCHECK(function->IsJSFunction());
495 : trace_scope_ = FLAG_trace_deopt
496 : ? new CodeTracer::Scope(isolate->GetCodeTracer())
497 90342 : : nullptr;
498 : #ifdef DEBUG
499 : DCHECK(AllowHeapAllocation::IsAllowed());
500 : disallow_heap_allocation_ = new DisallowHeapAllocation();
501 : #endif // DEBUG
502 90342 : if (compiled_code_->kind() != Code::OPTIMIZED_FUNCTION ||
503 45171 : !compiled_code_->deopt_already_counted()) {
504 : // If the function is optimized, and we haven't counted that deopt yet, then
505 : // increment the function's deopt count so that we can avoid optimising
506 : // functions that deopt too often.
507 :
508 20972 : if (deopt_kind_ == DeoptimizeKind::kSoft) {
509 : // Soft deopts shouldn't count against the overall deoptimization count
510 : // that can eventually lead to disabling optimization for a function.
511 4529 : isolate->counters()->soft_deopts_executed()->Increment();
512 16443 : } else if (!function.is_null()) {
513 32886 : function->feedback_vector()->increment_deopt_count();
514 : }
515 : }
516 45171 : if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
517 45171 : compiled_code_->set_deopt_already_counted(true);
518 90342 : PROFILE(isolate_,
519 : CodeDeoptEvent(compiled_code_, kind, from_, fp_to_sp_delta_));
520 : }
521 45171 : unsigned size = ComputeInputFrameSize();
522 : int parameter_count =
523 90342 : function->shared()->internal_formal_parameter_count() + 1;
524 45171 : input_ = new (size) FrameDescription(size, parameter_count);
525 45171 : }
526 :
527 45171 : Code Deoptimizer::FindOptimizedCode() {
528 45171 : Code compiled_code = FindDeoptimizingCode(from_);
529 : return !compiled_code.is_null() ? compiled_code
530 45171 : : isolate_->FindCodeObject(from_);
531 : }
532 :
533 :
534 480 : void Deoptimizer::PrintFunctionName() {
535 1440 : if (function_->IsHeapObject() && function_->IsJSFunction()) {
536 960 : function_->ShortPrint(trace_scope_->file());
537 : } else {
538 : PrintF(trace_scope_->file(),
539 0 : "%s", Code::Kind2String(compiled_code_->kind()));
540 : }
541 480 : }
542 :
543 90342 : Handle<JSFunction> Deoptimizer::function() const {
544 90342 : return Handle<JSFunction>(function_, isolate());
545 : }
546 0 : Handle<Code> Deoptimizer::compiled_code() const {
547 0 : return Handle<Code>(compiled_code_, isolate());
548 : }
549 :
550 45171 : Deoptimizer::~Deoptimizer() {
551 : DCHECK(input_ == nullptr && output_ == nullptr);
552 : DCHECK_NULL(disallow_heap_allocation_);
553 45411 : delete trace_scope_;
554 45171 : }
555 :
556 :
557 45171 : void Deoptimizer::DeleteFrameDescriptions() {
558 45171 : delete input_;
559 95474 : for (int i = 0; i < output_count_; ++i) {
560 50303 : if (output_[i] != input_) delete output_[i];
561 : }
562 45171 : delete[] output_;
563 45171 : input_ = nullptr;
564 45171 : output_ = nullptr;
565 : #ifdef DEBUG
566 : DCHECK(!AllowHeapAllocation::IsAllowed());
567 : DCHECK_NOT_NULL(disallow_heap_allocation_);
568 : delete disallow_heap_allocation_;
569 : disallow_heap_allocation_ = nullptr;
570 : #endif // DEBUG
571 45171 : }
572 :
573 3306868 : Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
574 : DeoptimizeKind kind) {
575 : DeoptimizerData* data = isolate->deoptimizer_data();
576 3306868 : CHECK_LE(kind, DeoptimizerData::kLastDeoptimizeKind);
577 3306868 : CHECK(!data->deopt_entry_code(kind).is_null());
578 3306868 : return data->deopt_entry_code(kind)->raw_instruction_start();
579 : }
580 :
581 0 : bool Deoptimizer::IsDeoptimizationEntry(Isolate* isolate, Address addr,
582 : DeoptimizeKind type) {
583 : DeoptimizerData* data = isolate->deoptimizer_data();
584 0 : CHECK_LE(type, DeoptimizerData::kLastDeoptimizeKind);
585 : Code code = data->deopt_entry_code(type);
586 0 : if (code.is_null()) return false;
587 0 : return addr == code->raw_instruction_start();
588 : }
589 :
590 0 : bool Deoptimizer::IsDeoptimizationEntry(Isolate* isolate, Address addr,
591 : DeoptimizeKind* type) {
592 0 : if (IsDeoptimizationEntry(isolate, addr, DeoptimizeKind::kEager)) {
593 0 : *type = DeoptimizeKind::kEager;
594 0 : return true;
595 : }
596 0 : if (IsDeoptimizationEntry(isolate, addr, DeoptimizeKind::kSoft)) {
597 0 : *type = DeoptimizeKind::kSoft;
598 0 : return true;
599 : }
600 0 : if (IsDeoptimizationEntry(isolate, addr, DeoptimizeKind::kLazy)) {
601 0 : *type = DeoptimizeKind::kLazy;
602 0 : return true;
603 : }
604 : return false;
605 : }
606 :
607 85 : int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
608 : int length = 0;
609 : // Count all entries in the deoptimizing code list of every context.
610 85 : Object context = isolate->heap()->native_contexts_list();
611 255 : while (!context->IsUndefined(isolate)) {
612 85 : Context native_context = Context::cast(context);
613 85 : Object element = native_context->DeoptimizedCodeListHead();
614 262 : while (!element->IsUndefined(isolate)) {
615 92 : Code code = Code::cast(element);
616 : DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
617 92 : if (!code->marked_for_deoptimization()) {
618 0 : length++;
619 : }
620 92 : element = code->next_code_link();
621 : }
622 85 : context = Context::cast(context)->next_context_link();
623 : }
624 85 : return length;
625 : }
626 :
627 : namespace {
628 :
629 6180 : int LookupCatchHandler(TranslatedFrame* translated_frame, int* data_out) {
630 6180 : switch (translated_frame->kind()) {
631 : case TranslatedFrame::kInterpretedFunction: {
632 : int bytecode_offset = translated_frame->node_id().ToInt();
633 : HandlerTable table(
634 6140 : translated_frame->raw_shared_info()->GetBytecodeArray());
635 6140 : return table.LookupRange(bytecode_offset, data_out, nullptr);
636 : }
637 : case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch: {
638 : return 0;
639 : }
640 : default:
641 : break;
642 : }
643 32 : return -1;
644 : }
645 :
646 : bool ShouldPadArguments(int arg_count) {
647 : return kPadArguments && (arg_count % 2 != 0);
648 : }
649 :
650 : } // namespace
651 :
652 : // We rely on this function not causing a GC. It is called from generated code
653 : // without having a real stack frame in place.
654 90342 : void Deoptimizer::DoComputeOutputFrames() {
655 : base::ElapsedTimer timer;
656 :
657 : // Determine basic deoptimization information. The optimized frame is
658 : // described by the input data.
659 : DeoptimizationData input_data =
660 90342 : DeoptimizationData::cast(compiled_code_->deoptimization_data());
661 :
662 : {
663 : // Read caller's PC, caller's FP and caller's constant pool values
664 : // from input frame. Compute caller's frame top address.
665 :
666 45171 : Register fp_reg = JavaScriptFrame::fp_register();
667 90342 : stack_fp_ = input_->GetRegister(fp_reg.code());
668 :
669 45171 : caller_frame_top_ = stack_fp_ + ComputeInputFrameAboveFpFixedSize();
670 :
671 45171 : Address fp_address = input_->GetFramePointerAddress();
672 45171 : caller_fp_ = Memory<intptr_t>(fp_address);
673 : caller_pc_ =
674 90342 : Memory<intptr_t>(fp_address + CommonFrameConstants::kCallerPCOffset);
675 : input_frame_context_ = Memory<intptr_t>(
676 90342 : fp_address + CommonFrameConstants::kContextOrFrameTypeOffset);
677 :
678 : if (FLAG_enable_embedded_constant_pool) {
679 : caller_constant_pool_ = Memory<intptr_t>(
680 : fp_address + CommonFrameConstants::kConstantPoolOffset);
681 : }
682 : }
683 :
684 45171 : if (trace_scope_ != nullptr) {
685 : timer.Start();
686 : PrintF(trace_scope_->file(), "[deoptimizing (DEOPT %s): begin ",
687 480 : MessageFor(deopt_kind_));
688 240 : PrintFunctionName();
689 : PrintF(trace_scope_->file(),
690 : " (opt #%d) @%d, FP to SP delta: %d, caller sp: " V8PRIxPTR_FMT
691 : "]\n",
692 : input_data->OptimizationId()->value(), bailout_id_, fp_to_sp_delta_,
693 720 : caller_frame_top_);
694 240 : if (deopt_kind_ == DeoptimizeKind::kEager ||
695 : deopt_kind_ == DeoptimizeKind::kSoft) {
696 : compiled_code_->PrintDeoptLocation(
697 480 : trace_scope_->file(), " ;;; deoptimize at ", from_);
698 : }
699 : }
700 :
701 45171 : BailoutId node_id = input_data->BytecodeOffset(bailout_id_);
702 45171 : ByteArray translations = input_data->TranslationByteArray();
703 : unsigned translation_index =
704 90342 : input_data->TranslationIndex(bailout_id_)->value();
705 :
706 : TranslationIterator state_iterator(translations, translation_index);
707 : translated_state_.Init(
708 : isolate_, input_->GetFramePointerAddress(), &state_iterator,
709 : input_data->LiteralArray(), input_->GetRegisterValues(),
710 45171 : trace_scope_ == nullptr ? nullptr : trace_scope_->file(),
711 45171 : function_->IsHeapObject()
712 135513 : ? function_->shared()->internal_formal_parameter_count()
713 225855 : : 0);
714 :
715 : // Do the input frame to output frame(s) translation.
716 45171 : size_t count = translated_state_.frames().size();
717 : // If we are supposed to go to the catch handler, find the catching frame
718 : // for the catch and make sure we only deoptimize upto that frame.
719 45171 : if (deoptimizing_throw_) {
720 : size_t catch_handler_frame_index = count;
721 6180 : for (size_t i = count; i-- > 0;) {
722 : catch_handler_pc_offset_ = LookupCatchHandler(
723 12360 : &(translated_state_.frames()[i]), &catch_handler_data_);
724 6180 : if (catch_handler_pc_offset_ >= 0) {
725 : catch_handler_frame_index = i;
726 : break;
727 : }
728 : }
729 6113 : CHECK_LT(catch_handler_frame_index, count);
730 6113 : count = catch_handler_frame_index + 1;
731 : }
732 :
733 : DCHECK_NULL(output_);
734 45171 : output_ = new FrameDescription*[count];
735 95474 : for (size_t i = 0; i < count; ++i) {
736 50303 : output_[i] = nullptr;
737 : }
738 45171 : output_count_ = static_cast<int>(count);
739 :
740 : // Translate each output frame.
741 : int frame_index = 0; // output_frame_index
742 95474 : for (size_t i = 0; i < count; ++i, ++frame_index) {
743 : // Read the ast node id, function, and frame height for this output frame.
744 100606 : TranslatedFrame* translated_frame = &(translated_state_.frames()[i]);
745 50303 : bool handle_exception = deoptimizing_throw_ && i == count - 1;
746 50303 : switch (translated_frame->kind()) {
747 : case TranslatedFrame::kInterpretedFunction:
748 : DoComputeInterpretedFrame(translated_frame, frame_index,
749 48322 : handle_exception);
750 48322 : jsframe_count_++;
751 48322 : break;
752 : case TranslatedFrame::kArgumentsAdaptor:
753 834 : DoComputeArgumentsAdaptorFrame(translated_frame, frame_index);
754 834 : break;
755 : case TranslatedFrame::kConstructStub:
756 534 : DoComputeConstructStubFrame(translated_frame, frame_index);
757 534 : break;
758 : case TranslatedFrame::kBuiltinContinuation:
759 : DoComputeBuiltinContinuation(translated_frame, frame_index,
760 16 : BuiltinContinuationMode::STUB);
761 16 : break;
762 : case TranslatedFrame::kJavaScriptBuiltinContinuation:
763 : DoComputeBuiltinContinuation(translated_frame, frame_index,
764 565 : BuiltinContinuationMode::JAVASCRIPT);
765 565 : break;
766 : case TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch:
767 : DoComputeBuiltinContinuation(
768 : translated_frame, frame_index,
769 : handle_exception
770 : ? BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION
771 32 : : BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH);
772 32 : break;
773 : case TranslatedFrame::kInvalid:
774 0 : FATAL("invalid frame");
775 : break;
776 : }
777 : }
778 :
779 45171 : FrameDescription* topmost = output_[count - 1];
780 : topmost->GetRegisterValues()->SetRegister(kRootRegister.code(),
781 45171 : isolate()->isolate_root());
782 :
783 : // Print some helpful diagnostic information.
784 45171 : if (trace_scope_ != nullptr) {
785 240 : double ms = timer.Elapsed().InMillisecondsF();
786 240 : int index = output_count_ - 1; // Index of the topmost frame.
787 : PrintF(trace_scope_->file(), "[deoptimizing (%s): end ",
788 480 : MessageFor(deopt_kind_));
789 240 : PrintFunctionName();
790 : PrintF(trace_scope_->file(),
791 : " @%d => node=%d, pc=" V8PRIxPTR_FMT ", caller sp=" V8PRIxPTR_FMT
792 : ", took %0.3f ms]\n",
793 240 : bailout_id_, node_id.ToInt(), output_[index]->GetPc(),
794 720 : caller_frame_top_, ms);
795 : }
796 45171 : }
797 :
798 248049 : void Deoptimizer::DoComputeInterpretedFrame(TranslatedFrame* translated_frame,
799 : int frame_index,
800 48322 : bool goto_catch_handler) {
801 48322 : SharedFunctionInfo shared = translated_frame->raw_shared_info();
802 :
803 : TranslatedFrame::iterator value_iterator = translated_frame->begin();
804 48322 : bool is_bottommost = (0 == frame_index);
805 48322 : bool is_topmost = (output_count_ - 1 == frame_index);
806 :
807 : int bytecode_offset = translated_frame->node_id().ToInt();
808 : int height = translated_frame->height();
809 48322 : int register_count = height - 1; // Exclude accumulator.
810 : int register_stack_slot_count =
811 48322 : InterpreterFrameConstants::RegisterStackSlotCount(register_count);
812 48322 : int height_in_bytes = register_stack_slot_count * kSystemPointerSize;
813 :
814 : // The topmost frame will contain the accumulator.
815 48322 : if (is_topmost) {
816 44912 : height_in_bytes += kSystemPointerSize;
817 44912 : if (PadTopOfStackRegister()) height_in_bytes += kSystemPointerSize;
818 : }
819 :
820 : TranslatedFrame::iterator function_iterator = value_iterator++;
821 48322 : if (trace_scope_ != nullptr) {
822 240 : PrintF(trace_scope_->file(), " translating interpreted frame ");
823 240 : std::unique_ptr<char[]> name = shared->DebugName()->ToCString();
824 480 : PrintF(trace_scope_->file(), "%s", name.get());
825 : PrintF(trace_scope_->file(), " => bytecode_offset=%d, height=%d%s\n",
826 : bytecode_offset, height_in_bytes,
827 480 : goto_catch_handler ? " (throw)" : "");
828 : }
829 48322 : if (goto_catch_handler) {
830 6105 : bytecode_offset = catch_handler_pc_offset_;
831 : }
832 :
833 : // The 'fixed' part of the frame consists of the incoming parameters and
834 : // the part described by InterpreterFrameConstants. This will include
835 : // argument padding, when needed.
836 : unsigned fixed_frame_size = ComputeInterpretedFixedSize(shared);
837 48322 : unsigned output_frame_size = height_in_bytes + fixed_frame_size;
838 :
839 : // Allocate and store the output frame description.
840 : int parameter_count = shared->internal_formal_parameter_count() + 1;
841 : FrameDescription* output_frame = new (output_frame_size)
842 48322 : FrameDescription(output_frame_size, parameter_count);
843 48322 : FrameWriter frame_writer(this, output_frame, trace_scope_);
844 :
845 48322 : CHECK(frame_index >= 0 && frame_index < output_count_);
846 48322 : CHECK_NULL(output_[frame_index]);
847 48322 : output_[frame_index] = output_frame;
848 :
849 : // The top address of the frame is computed from the previous frame's top and
850 : // this frame's size.
851 : intptr_t top_address;
852 48322 : if (is_bottommost) {
853 45171 : top_address = caller_frame_top_ - output_frame_size;
854 : } else {
855 9453 : top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
856 : }
857 : output_frame->SetTop(top_address);
858 :
859 : // Compute the incoming parameter translation.
860 :
861 : ReadOnlyRoots roots(isolate());
862 : if (ShouldPadArguments(parameter_count)) {
863 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
864 : }
865 :
866 286758 : for (int i = 0; i < parameter_count; ++i, ++value_iterator) {
867 95057 : frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
868 : }
869 :
870 : DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
871 : frame_writer.top_offset());
872 48322 : if (trace_scope_ != nullptr) {
873 240 : PrintF(trace_scope_->file(), " -------------------------\n");
874 : }
875 :
876 : // There are no translation commands for the caller's pc and fp, the
877 : // context, the function and the bytecode offset. Synthesize
878 : // their values and set them up
879 : // explicitly.
880 : //
881 : // The caller's pc for the bottommost output frame is the same as in the
882 : // input frame. For all subsequent output frames, it can be read from the
883 : // previous one. This frame's pc can be computed from the non-optimized
884 : // function code and AST id of the bailout.
885 : const intptr_t caller_pc =
886 48322 : is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
887 48322 : frame_writer.PushCallerPc(caller_pc);
888 :
889 : // The caller's frame pointer for the bottommost output frame is the same
890 : // as in the input frame. For all subsequent output frames, it can be
891 : // read from the previous one. Also compute and set this frame's frame
892 : // pointer.
893 : const intptr_t caller_fp =
894 48322 : is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
895 48322 : frame_writer.PushCallerFp(caller_fp);
896 :
897 48322 : intptr_t fp_value = top_address + frame_writer.top_offset();
898 : output_frame->SetFp(fp_value);
899 48322 : if (is_topmost) {
900 44912 : Register fp_reg = InterpretedFrame::fp_register();
901 44912 : output_frame->SetRegister(fp_reg.code(), fp_value);
902 : }
903 :
904 : if (FLAG_enable_embedded_constant_pool) {
905 : // For the bottommost output frame the constant pool pointer can be gotten
906 : // from the input frame. For subsequent output frames, it can be read from
907 : // the previous frame.
908 : const intptr_t caller_cp =
909 : is_bottommost ? caller_constant_pool_
910 : : output_[frame_index - 1]->GetConstantPool();
911 : frame_writer.PushCallerConstantPool(caller_cp);
912 : }
913 :
914 : // For the bottommost output frame the context can be gotten from the input
915 : // frame. For all subsequent output frames it can be gotten from the function
916 : // so long as we don't inline functions that need local contexts.
917 :
918 : // When deoptimizing into a catch block, we need to take the context
919 : // from a register that was specified in the handler table.
920 : TranslatedFrame::iterator context_pos = value_iterator++;
921 48322 : if (goto_catch_handler) {
922 : // Skip to the translated value of the register specified
923 : // in the handler table.
924 75243 : for (int i = 0; i < catch_handler_data_ + 1; ++i) {
925 75243 : context_pos++;
926 : }
927 : }
928 : // Read the context from the translations.
929 48322 : Object context = context_pos->GetRawValue();
930 48322 : output_frame->SetContext(static_cast<intptr_t>(context->ptr()));
931 48322 : frame_writer.PushTranslatedValue(context_pos, "context");
932 :
933 : // The function was mentioned explicitly in the BEGIN_FRAME.
934 48322 : frame_writer.PushTranslatedValue(function_iterator, "function");
935 :
936 : // Set the bytecode array pointer.
937 48322 : Object bytecode_array = shared->HasBreakInfo()
938 48804 : ? shared->GetDebugInfo()->DebugBytecodeArray()
939 96644 : : shared->GetBytecodeArray();
940 48322 : frame_writer.PushRawObject(bytecode_array, "bytecode array\n");
941 :
942 : // The bytecode offset was mentioned explicitly in the BEGIN_FRAME.
943 : int raw_bytecode_offset =
944 48322 : BytecodeArray::kHeaderSize - kHeapObjectTag + bytecode_offset;
945 48322 : Smi smi_bytecode_offset = Smi::FromInt(raw_bytecode_offset);
946 48322 : frame_writer.PushRawObject(smi_bytecode_offset, "bytecode offset\n");
947 :
948 48322 : if (trace_scope_ != nullptr) {
949 240 : PrintF(trace_scope_->file(), " -------------------------\n");
950 : }
951 :
952 : // Translate the rest of the interpreter registers in the frame.
953 : // The return_value_offset is counted from the top. Here, we compute the
954 : // register index (counted from the start).
955 : int return_value_first_reg =
956 48322 : register_count - translated_frame->return_value_offset();
957 : int return_value_count = translated_frame->return_value_count();
958 804994 : for (int i = 0; i < register_count; ++i, ++value_iterator) {
959 : // Ensure we write the return value if we have one and we are returning
960 : // normally to a lazy deopt point.
961 560431 : if (is_topmost && !goto_catch_handler &&
962 307184 : deopt_kind_ == DeoptimizeKind::kLazy && i >= return_value_first_reg &&
963 36 : i < return_value_first_reg + return_value_count) {
964 27 : int return_index = i - return_value_first_reg;
965 27 : if (return_index == 0) {
966 : frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()),
967 54 : "return value 0\n");
968 : // We do not handle the situation when one return value should go into
969 : // the accumulator and another one into an ordinary register. Since
970 : // the interpreter should never create such situation, just assert
971 : // this does not happen.
972 27 : CHECK_LE(return_value_first_reg + return_value_count, register_count);
973 : } else {
974 0 : CHECK_EQ(return_index, 1);
975 : frame_writer.PushRawValue(input_->GetRegister(kReturnRegister1.code()),
976 0 : "return value 1\n");
977 : }
978 : } else {
979 : // This is not return value, just write the value from the translations.
980 354148 : frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
981 : }
982 : }
983 :
984 : int register_slots_written = register_count;
985 : DCHECK_LE(register_slots_written, register_stack_slot_count);
986 : // Some architectures must pad the stack frame with extra stack slots
987 : // to ensure the stack frame is aligned. Do this now.
988 48322 : while (register_slots_written < register_stack_slot_count) {
989 0 : register_slots_written++;
990 0 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
991 : }
992 :
993 : // Translate the accumulator register (depending on frame position).
994 48322 : if (is_topmost) {
995 44912 : if (PadTopOfStackRegister()) {
996 0 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
997 : }
998 : // For topmost frame, put the accumulator on the stack. The
999 : // {NotifyDeoptimized} builtin pops it off the topmost frame (possibly
1000 : // after materialization).
1001 44912 : if (goto_catch_handler) {
1002 : // If we are lazy deopting to a catch handler, we set the accumulator to
1003 : // the exception (which lives in the result register).
1004 : intptr_t accumulator_value =
1005 6105 : input_->GetRegister(kInterpreterAccumulatorRegister.code());
1006 12210 : frame_writer.PushRawObject(Object(accumulator_value), "accumulator\n");
1007 : } else {
1008 : // If we are lazily deoptimizing make sure we store the deopt
1009 : // return value into the appropriate slot.
1010 95976 : if (deopt_kind_ == DeoptimizeKind::kLazy &&
1011 57142 : translated_frame->return_value_offset() == 0 &&
1012 : translated_frame->return_value_count() > 0) {
1013 18064 : CHECK_EQ(translated_frame->return_value_count(), 1);
1014 : frame_writer.PushRawValue(input_->GetRegister(kReturnRegister0.code()),
1015 36128 : "return value 0\n");
1016 : } else {
1017 20743 : frame_writer.PushTranslatedValue(value_iterator, "accumulator");
1018 : }
1019 : }
1020 : ++value_iterator; // Move over the accumulator.
1021 : } else {
1022 : // For non-topmost frames, skip the accumulator translation. For those
1023 : // frames, the return value from the callee will become the accumulator.
1024 : ++value_iterator;
1025 : }
1026 48322 : CHECK_EQ(translated_frame->end(), value_iterator);
1027 48322 : CHECK_EQ(0u, frame_writer.top_offset());
1028 :
1029 : // Compute this frame's PC and state. The PC will be a special builtin that
1030 : // continues the bytecode dispatch. Note that non-topmost and lazy-style
1031 : // bailout handlers also advance the bytecode offset before dispatch, hence
1032 : // simulating what normal handlers do upon completion of the operation.
1033 48322 : Builtins* builtins = isolate_->builtins();
1034 : Code dispatch_builtin =
1035 44912 : (!is_topmost || (deopt_kind_ == DeoptimizeKind::kLazy)) &&
1036 : !goto_catch_handler
1037 : ? builtins->builtin(Builtins::kInterpreterEnterBytecodeAdvance)
1038 70094 : : builtins->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
1039 : output_frame->SetPc(
1040 48322 : static_cast<intptr_t>(dispatch_builtin->InstructionStart()));
1041 :
1042 : // Update constant pool.
1043 : if (FLAG_enable_embedded_constant_pool) {
1044 : intptr_t constant_pool_value =
1045 : static_cast<intptr_t>(dispatch_builtin->constant_pool());
1046 : output_frame->SetConstantPool(constant_pool_value);
1047 : if (is_topmost) {
1048 : Register constant_pool_reg =
1049 : InterpretedFrame::constant_pool_pointer_register();
1050 : output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1051 : }
1052 : }
1053 :
1054 : // Clear the context register. The context might be a de-materialized object
1055 : // and will be materialized by {Runtime_NotifyDeoptimized}. For additional
1056 : // safety we use Smi(0) instead of the potential {arguments_marker} here.
1057 48322 : if (is_topmost) {
1058 : intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
1059 44912 : Register context_reg = JavaScriptFrame::context_register();
1060 44912 : output_frame->SetRegister(context_reg.code(), context_value);
1061 : // Set the continuation for the topmost frame.
1062 44912 : Code continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1063 : output_frame->SetContinuation(
1064 44912 : static_cast<intptr_t>(continuation->InstructionStart()));
1065 : }
1066 48322 : }
1067 :
1068 834 : void Deoptimizer::DoComputeArgumentsAdaptorFrame(
1069 1668 : TranslatedFrame* translated_frame, int frame_index) {
1070 : TranslatedFrame::iterator value_iterator = translated_frame->begin();
1071 834 : bool is_bottommost = (0 == frame_index);
1072 :
1073 834 : unsigned height = translated_frame->height();
1074 834 : unsigned height_in_bytes = height * kSystemPointerSize;
1075 : int parameter_count = height;
1076 : if (ShouldPadArguments(parameter_count))
1077 : height_in_bytes += kSystemPointerSize;
1078 :
1079 : TranslatedFrame::iterator function_iterator = value_iterator++;
1080 834 : if (trace_scope_ != nullptr) {
1081 : PrintF(trace_scope_->file(),
1082 0 : " translating arguments adaptor => height=%d\n", height_in_bytes);
1083 : }
1084 :
1085 : unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFixedFrameSize;
1086 834 : unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1087 :
1088 : // Allocate and store the output frame description.
1089 : FrameDescription* output_frame = new (output_frame_size)
1090 834 : FrameDescription(output_frame_size, parameter_count);
1091 834 : FrameWriter frame_writer(this, output_frame, trace_scope_);
1092 :
1093 : // Arguments adaptor can not be topmost.
1094 834 : CHECK(frame_index < output_count_ - 1);
1095 834 : CHECK_NULL(output_[frame_index]);
1096 834 : output_[frame_index] = output_frame;
1097 :
1098 : // The top address of the frame is computed from the previous frame's top and
1099 : // this frame's size.
1100 : intptr_t top_address;
1101 834 : if (is_bottommost) {
1102 0 : top_address = caller_frame_top_ - output_frame_size;
1103 : } else {
1104 2502 : top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1105 : }
1106 : output_frame->SetTop(top_address);
1107 :
1108 : ReadOnlyRoots roots(isolate());
1109 : if (ShouldPadArguments(parameter_count)) {
1110 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1111 : }
1112 :
1113 : // Compute the incoming parameter translation.
1114 6590 : for (int i = 0; i < parameter_count; ++i, ++value_iterator) {
1115 2461 : frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
1116 : }
1117 :
1118 : DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
1119 : frame_writer.top_offset());
1120 :
1121 : // Read caller's PC from the previous frame.
1122 : const intptr_t caller_pc =
1123 834 : is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
1124 834 : frame_writer.PushCallerPc(caller_pc);
1125 :
1126 : // Read caller's FP from the previous frame, and set this frame's FP.
1127 : const intptr_t caller_fp =
1128 834 : is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
1129 834 : frame_writer.PushCallerFp(caller_fp);
1130 :
1131 834 : intptr_t fp_value = top_address + frame_writer.top_offset();
1132 : output_frame->SetFp(fp_value);
1133 :
1134 : if (FLAG_enable_embedded_constant_pool) {
1135 : // Read the caller's constant pool from the previous frame.
1136 : const intptr_t caller_cp =
1137 : is_bottommost ? caller_constant_pool_
1138 : : output_[frame_index - 1]->GetConstantPool();
1139 : frame_writer.PushCallerConstantPool(caller_cp);
1140 : }
1141 :
1142 : // A marker value is used in place of the context.
1143 : intptr_t marker = StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR);
1144 834 : frame_writer.PushRawValue(marker, "context (adaptor sentinel)\n");
1145 :
1146 : // The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
1147 834 : frame_writer.PushTranslatedValue(function_iterator, "function\n");
1148 :
1149 : // Number of incoming arguments.
1150 1668 : frame_writer.PushRawObject(Smi::FromInt(height - 1), "argc\n");
1151 :
1152 834 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1153 :
1154 834 : CHECK_EQ(translated_frame->end(), value_iterator);
1155 : DCHECK_EQ(0, frame_writer.top_offset());
1156 :
1157 834 : Builtins* builtins = isolate_->builtins();
1158 : Code adaptor_trampoline =
1159 834 : builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
1160 : intptr_t pc_value = static_cast<intptr_t>(
1161 1668 : adaptor_trampoline->InstructionStart() +
1162 1668 : isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
1163 : output_frame->SetPc(pc_value);
1164 : if (FLAG_enable_embedded_constant_pool) {
1165 : intptr_t constant_pool_value =
1166 : static_cast<intptr_t>(adaptor_trampoline->constant_pool());
1167 : output_frame->SetConstantPool(constant_pool_value);
1168 : }
1169 834 : }
1170 :
1171 1068 : void Deoptimizer::DoComputeConstructStubFrame(TranslatedFrame* translated_frame,
1172 534 : int frame_index) {
1173 : TranslatedFrame::iterator value_iterator = translated_frame->begin();
1174 534 : bool is_topmost = (output_count_ - 1 == frame_index);
1175 : // The construct frame could become topmost only if we inlined a constructor
1176 : // call which does a tail call (otherwise the tail callee's frame would be
1177 : // the topmost one). So it could only be the DeoptimizeKind::kLazy case.
1178 534 : CHECK(!is_topmost || deopt_kind_ == DeoptimizeKind::kLazy);
1179 :
1180 534 : Builtins* builtins = isolate_->builtins();
1181 534 : Code construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
1182 : BailoutId bailout_id = translated_frame->node_id();
1183 534 : unsigned height = translated_frame->height();
1184 534 : unsigned parameter_count = height - 1; // Exclude the context.
1185 534 : unsigned height_in_bytes = parameter_count * kSystemPointerSize;
1186 :
1187 : // If the construct frame appears to be topmost we should ensure that the
1188 : // value of result register is preserved during continuation execution.
1189 : // We do this here by "pushing" the result of the constructor function to the
1190 : // top of the reconstructed stack and popping it in
1191 : // {Builtins::kNotifyDeoptimized}.
1192 534 : if (is_topmost) {
1193 40 : height_in_bytes += kSystemPointerSize;
1194 40 : if (PadTopOfStackRegister()) height_in_bytes += kSystemPointerSize;
1195 : }
1196 :
1197 : if (ShouldPadArguments(parameter_count))
1198 : height_in_bytes += kSystemPointerSize;
1199 :
1200 : TranslatedFrame::iterator function_iterator = value_iterator++;
1201 534 : if (trace_scope_ != nullptr) {
1202 : PrintF(trace_scope_->file(),
1203 : " translating construct stub => bailout_id=%d (%s), height=%d\n",
1204 : bailout_id.ToInt(),
1205 : bailout_id == BailoutId::ConstructStubCreate() ? "create" : "invoke",
1206 0 : height_in_bytes);
1207 : }
1208 :
1209 : unsigned fixed_frame_size = ConstructFrameConstants::kFixedFrameSize;
1210 534 : unsigned output_frame_size = height_in_bytes + fixed_frame_size;
1211 :
1212 : // Allocate and store the output frame description.
1213 : FrameDescription* output_frame = new (output_frame_size)
1214 534 : FrameDescription(output_frame_size, parameter_count);
1215 534 : FrameWriter frame_writer(this, output_frame, trace_scope_);
1216 :
1217 : // Construct stub can not be topmost.
1218 : DCHECK(frame_index > 0 && frame_index < output_count_);
1219 : DCHECK_NULL(output_[frame_index]);
1220 534 : output_[frame_index] = output_frame;
1221 :
1222 : // The top address of the frame is computed from the previous frame's top and
1223 : // this frame's size.
1224 : intptr_t top_address;
1225 1602 : top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1226 : output_frame->SetTop(top_address);
1227 :
1228 : ReadOnlyRoots roots(isolate());
1229 : if (ShouldPadArguments(parameter_count)) {
1230 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1231 : }
1232 :
1233 : // The allocated receiver of a construct stub frame is passed as the
1234 : // receiver parameter through the translation. It might be encoding
1235 : // a captured object, so we need save it for later.
1236 : TranslatedFrame::iterator receiver_iterator = value_iterator;
1237 :
1238 : // Compute the incoming parameter translation.
1239 4322 : for (unsigned i = 0; i < parameter_count; ++i, ++value_iterator) {
1240 1627 : frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
1241 : }
1242 :
1243 : DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
1244 : frame_writer.top_offset());
1245 :
1246 : // Read caller's PC from the previous frame.
1247 534 : const intptr_t caller_pc = output_[frame_index - 1]->GetPc();
1248 534 : frame_writer.PushCallerPc(caller_pc);
1249 :
1250 : // Read caller's FP from the previous frame, and set this frame's FP.
1251 534 : const intptr_t caller_fp = output_[frame_index - 1]->GetFp();
1252 534 : frame_writer.PushCallerFp(caller_fp);
1253 :
1254 534 : intptr_t fp_value = top_address + frame_writer.top_offset();
1255 : output_frame->SetFp(fp_value);
1256 534 : if (is_topmost) {
1257 40 : Register fp_reg = JavaScriptFrame::fp_register();
1258 40 : output_frame->SetRegister(fp_reg.code(), fp_value);
1259 : }
1260 :
1261 : if (FLAG_enable_embedded_constant_pool) {
1262 : // Read the caller's constant pool from the previous frame.
1263 : const intptr_t caller_cp = output_[frame_index - 1]->GetConstantPool();
1264 : frame_writer.PushCallerConstantPool(caller_cp);
1265 : }
1266 :
1267 : // A marker value is used to mark the frame.
1268 : intptr_t marker = StackFrame::TypeToMarker(StackFrame::CONSTRUCT);
1269 534 : frame_writer.PushRawValue(marker, "context (construct stub sentinel)\n");
1270 :
1271 534 : frame_writer.PushTranslatedValue(value_iterator++, "context");
1272 :
1273 : // Number of incoming arguments.
1274 1068 : frame_writer.PushRawObject(Smi::FromInt(parameter_count - 1), "argc\n");
1275 :
1276 : // The constructor function was mentioned explicitly in the
1277 : // CONSTRUCT_STUB_FRAME.
1278 534 : frame_writer.PushTranslatedValue(function_iterator, "constructor function\n");
1279 :
1280 : // The deopt info contains the implicit receiver or the new target at the
1281 : // position of the receiver. Copy it to the top of stack, with the hole value
1282 : // as padding to maintain alignment.
1283 :
1284 534 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1285 :
1286 534 : CHECK(bailout_id == BailoutId::ConstructStubCreate() ||
1287 : bailout_id == BailoutId::ConstructStubInvoke());
1288 : const char* debug_hint = bailout_id == BailoutId::ConstructStubCreate()
1289 : ? "new target\n"
1290 534 : : "allocated receiver\n";
1291 534 : frame_writer.PushTranslatedValue(receiver_iterator, debug_hint);
1292 :
1293 534 : if (is_topmost) {
1294 40 : if (PadTopOfStackRegister()) {
1295 0 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1296 : }
1297 : // Ensure the result is restored back when we return to the stub.
1298 : Register result_reg = kReturnRegister0;
1299 40 : intptr_t result = input_->GetRegister(result_reg.code());
1300 40 : frame_writer.PushRawValue(result, "subcall result\n");
1301 : }
1302 :
1303 534 : CHECK_EQ(translated_frame->end(), value_iterator);
1304 534 : CHECK_EQ(0u, frame_writer.top_offset());
1305 :
1306 : // Compute this frame's PC.
1307 : DCHECK(bailout_id.IsValidForConstructStub());
1308 534 : Address start = construct_stub->InstructionStart();
1309 : int pc_offset =
1310 : bailout_id == BailoutId::ConstructStubCreate()
1311 574 : ? isolate_->heap()->construct_stub_create_deopt_pc_offset()->value()
1312 1562 : : isolate_->heap()->construct_stub_invoke_deopt_pc_offset()->value();
1313 534 : intptr_t pc_value = static_cast<intptr_t>(start + pc_offset);
1314 : output_frame->SetPc(pc_value);
1315 :
1316 : // Update constant pool.
1317 : if (FLAG_enable_embedded_constant_pool) {
1318 : intptr_t constant_pool_value =
1319 : static_cast<intptr_t>(construct_stub->constant_pool());
1320 : output_frame->SetConstantPool(constant_pool_value);
1321 : if (is_topmost) {
1322 : Register constant_pool_reg =
1323 : JavaScriptFrame::constant_pool_pointer_register();
1324 : output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
1325 : }
1326 : }
1327 :
1328 : // Clear the context register. The context might be a de-materialized object
1329 : // and will be materialized by {Runtime_NotifyDeoptimized}. For additional
1330 : // safety we use Smi(0) instead of the potential {arguments_marker} here.
1331 534 : if (is_topmost) {
1332 : intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
1333 40 : Register context_reg = JavaScriptFrame::context_register();
1334 40 : output_frame->SetRegister(context_reg.code(), context_value);
1335 : }
1336 :
1337 : // Set the continuation for the topmost frame.
1338 534 : if (is_topmost) {
1339 40 : Builtins* builtins = isolate_->builtins();
1340 : DCHECK_EQ(DeoptimizeKind::kLazy, deopt_kind_);
1341 40 : Code continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
1342 : output_frame->SetContinuation(
1343 40 : static_cast<intptr_t>(continuation->InstructionStart()));
1344 : }
1345 534 : }
1346 :
1347 1226 : bool Deoptimizer::BuiltinContinuationModeIsJavaScript(
1348 : BuiltinContinuationMode mode) {
1349 1226 : switch (mode) {
1350 : case BuiltinContinuationMode::STUB:
1351 : return false;
1352 : case BuiltinContinuationMode::JAVASCRIPT:
1353 : case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
1354 : case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
1355 1194 : return true;
1356 : }
1357 0 : UNREACHABLE();
1358 : }
1359 :
1360 613 : bool Deoptimizer::BuiltinContinuationModeIsWithCatch(
1361 : BuiltinContinuationMode mode) {
1362 613 : switch (mode) {
1363 : case BuiltinContinuationMode::STUB:
1364 : case BuiltinContinuationMode::JAVASCRIPT:
1365 : return false;
1366 : case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
1367 : case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
1368 32 : return true;
1369 : }
1370 0 : UNREACHABLE();
1371 : }
1372 :
1373 613 : StackFrame::Type Deoptimizer::BuiltinContinuationModeToFrameType(
1374 : BuiltinContinuationMode mode) {
1375 613 : switch (mode) {
1376 : case BuiltinContinuationMode::STUB:
1377 : return StackFrame::BUILTIN_CONTINUATION;
1378 : case BuiltinContinuationMode::JAVASCRIPT:
1379 565 : return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION;
1380 : case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
1381 24 : return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
1382 : case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
1383 8 : return StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH;
1384 : }
1385 0 : UNREACHABLE();
1386 : }
1387 :
1388 613 : Builtins::Name Deoptimizer::TrampolineForBuiltinContinuation(
1389 : BuiltinContinuationMode mode, bool must_handle_result) {
1390 613 : switch (mode) {
1391 : case BuiltinContinuationMode::STUB:
1392 : return must_handle_result ? Builtins::kContinueToCodeStubBuiltinWithResult
1393 16 : : Builtins::kContinueToCodeStubBuiltin;
1394 : case BuiltinContinuationMode::JAVASCRIPT:
1395 : case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH:
1396 : case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION:
1397 : return must_handle_result
1398 : ? Builtins::kContinueToJavaScriptBuiltinWithResult
1399 597 : : Builtins::kContinueToJavaScriptBuiltin;
1400 : }
1401 0 : UNREACHABLE();
1402 : }
1403 :
1404 : // BuiltinContinuationFrames capture the machine state that is expected as input
1405 : // to a builtin, including both input register values and stack parameters. When
1406 : // the frame is reactivated (i.e. the frame below it returns), a
1407 : // ContinueToBuiltin stub restores the register state from the frame and tail
1408 : // calls to the actual target builtin, making it appear that the stub had been
1409 : // directly called by the frame above it. The input values to populate the frame
1410 : // are taken from the deopt's FrameState.
1411 : //
1412 : // Frame translation happens in two modes, EAGER and LAZY. In EAGER mode, all of
1413 : // the parameters to the Builtin are explicitly specified in the TurboFan
1414 : // FrameState node. In LAZY mode, there is always one fewer parameters specified
1415 : // in the FrameState than expected by the Builtin. In that case, construction of
1416 : // BuiltinContinuationFrame adds the final missing parameter during
1417 : // deoptimization, and that parameter is always on the stack and contains the
1418 : // value returned from the callee of the call site triggering the LAZY deopt
1419 : // (e.g. rax on x64). This requires that continuation Builtins for LAZY deopts
1420 : // must have at least one stack parameter.
1421 : //
1422 : // TO
1423 : // | .... |
1424 : // +-------------------------+
1425 : // | arg padding (arch dept) |<- at most 1*kSystemPointerSize
1426 : // +-------------------------+
1427 : // | builtin param 0 |<- FrameState input value n becomes
1428 : // +-------------------------+
1429 : // | ... |
1430 : // +-------------------------+
1431 : // | builtin param m |<- FrameState input value n+m-1, or in
1432 : // +-----needs-alignment-----+ the LAZY case, return LAZY result value
1433 : // | ContinueToBuiltin entry |
1434 : // +-------------------------+
1435 : // | | saved frame (FP) |
1436 : // | +=====needs=alignment=====+<- fpreg
1437 : // | |constant pool (if ool_cp)|
1438 : // v +-------------------------+
1439 : // |BUILTIN_CONTINUATION mark|
1440 : // +-------------------------+
1441 : // | JSFunction (or zero) |<- only if JavaScript builtin
1442 : // +-------------------------+
1443 : // | frame height above FP |
1444 : // +-------------------------+
1445 : // | context |<- this non-standard context slot contains
1446 : // +-------------------------+ the context, even for non-JS builtins.
1447 : // | builtin address |
1448 : // +-------------------------+
1449 : // | builtin input GPR reg0 |<- populated from deopt FrameState using
1450 : // +-------------------------+ the builtin's CallInterfaceDescriptor
1451 : // | ... | to map a FrameState's 0..n-1 inputs to
1452 : // +-------------------------+ the builtin's n input register params.
1453 : // | builtin input GPR regn |
1454 : // +-------------------------+
1455 : // | reg padding (arch dept) |
1456 : // +-----needs--alignment----+
1457 : // | res padding (arch dept) |<- only if {is_topmost}; result is pop'd by
1458 : // +-------------------------+<- kNotifyDeopt ASM stub and moved to acc
1459 : // | result value |<- reg, as ContinueToBuiltin stub expects.
1460 : // +-----needs-alignment-----+<- spreg
1461 : //
1462 613 : void Deoptimizer::DoComputeBuiltinContinuation(
1463 613 : TranslatedFrame* translated_frame, int frame_index,
1464 3065 : BuiltinContinuationMode mode) {
1465 : TranslatedFrame::iterator value_iterator = translated_frame->begin();
1466 :
1467 : // The output frame must have room for all of the parameters that need to be
1468 : // passed to the builtin continuation.
1469 : const int height_in_words = translated_frame->height();
1470 :
1471 613 : BailoutId bailout_id = translated_frame->node_id();
1472 613 : Builtins::Name builtin_name = Builtins::GetBuiltinFromBailoutId(bailout_id);
1473 613 : Code builtin = isolate()->builtins()->builtin(builtin_name);
1474 : Callable continuation_callable =
1475 613 : Builtins::CallableFor(isolate(), builtin_name);
1476 : CallInterfaceDescriptor continuation_descriptor =
1477 : continuation_callable.descriptor();
1478 :
1479 613 : const bool is_bottommost = (0 == frame_index);
1480 613 : const bool is_topmost = (output_count_ - 1 == frame_index);
1481 : const bool must_handle_result =
1482 613 : !is_topmost || deopt_kind_ == DeoptimizeKind::kLazy;
1483 :
1484 8582 : const RegisterConfiguration* config(RegisterConfiguration::Default());
1485 : const int allocatable_register_count =
1486 : config->num_allocatable_general_registers();
1487 : const int padding_slot_count =
1488 : BuiltinContinuationFrameConstants::PaddingSlotCount(
1489 613 : allocatable_register_count);
1490 :
1491 : const int register_parameter_count =
1492 : continuation_descriptor.GetRegisterParameterCount();
1493 : // Make sure to account for the context by removing it from the register
1494 : // parameter count.
1495 : const int translated_stack_parameters =
1496 613 : height_in_words - register_parameter_count - 1;
1497 : const int stack_param_count =
1498 1226 : translated_stack_parameters + (must_handle_result ? 1 : 0) +
1499 1226 : (BuiltinContinuationModeIsWithCatch(mode) ? 1 : 0);
1500 : const int stack_param_pad_count =
1501 : ShouldPadArguments(stack_param_count) ? 1 : 0;
1502 :
1503 : // If the builtins frame appears to be topmost we should ensure that the
1504 : // value of result register is preserved during continuation execution.
1505 : // We do this here by "pushing" the result of callback function to the
1506 : // top of the reconstructed stack and popping it in
1507 : // {Builtins::kNotifyDeoptimized}.
1508 : const int push_result_count =
1509 613 : is_topmost ? (PadTopOfStackRegister() ? 2 : 1) : 0;
1510 :
1511 : const unsigned output_frame_size =
1512 613 : kSystemPointerSize * (stack_param_count + stack_param_pad_count +
1513 613 : allocatable_register_count + padding_slot_count +
1514 613 : push_result_count) +
1515 613 : BuiltinContinuationFrameConstants::kFixedFrameSize;
1516 :
1517 : const unsigned output_frame_size_above_fp =
1518 613 : kSystemPointerSize * (allocatable_register_count + padding_slot_count +
1519 613 : push_result_count) +
1520 : (BuiltinContinuationFrameConstants::kFixedFrameSize -
1521 : BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp);
1522 :
1523 : // Validate types of parameters. They must all be tagged except for argc for
1524 : // JS builtins.
1525 : bool has_argc = false;
1526 2404 : for (int i = 0; i < register_parameter_count; ++i) {
1527 : MachineType type = continuation_descriptor.GetParameterType(i);
1528 : int code = continuation_descriptor.GetRegisterParameter(i).code();
1529 : // Only tagged and int32 arguments are supported, and int32 only for the
1530 : // arguments count on JavaScript builtins.
1531 1791 : if (type == MachineType::Int32()) {
1532 597 : CHECK_EQ(code, kJavaScriptCallArgCountRegister.code());
1533 : has_argc = true;
1534 : } else {
1535 : // Any other argument must be a tagged value.
1536 1194 : CHECK(IsAnyTagged(type.representation()));
1537 : }
1538 : }
1539 613 : CHECK_EQ(BuiltinContinuationModeIsJavaScript(mode), has_argc);
1540 :
1541 613 : if (trace_scope_ != nullptr) {
1542 : PrintF(trace_scope_->file(),
1543 : " translating BuiltinContinuation to %s,"
1544 : " register param count %d,"
1545 : " stack param count %d\n",
1546 : Builtins::name(builtin_name), register_parameter_count,
1547 0 : stack_param_count);
1548 : }
1549 :
1550 : FrameDescription* output_frame = new (output_frame_size)
1551 613 : FrameDescription(output_frame_size, stack_param_count);
1552 613 : output_[frame_index] = output_frame;
1553 613 : FrameWriter frame_writer(this, output_frame, trace_scope_);
1554 :
1555 : // The top address of the frame is computed from the previous frame's top and
1556 : // this frame's size.
1557 : intptr_t top_address;
1558 613 : if (is_bottommost) {
1559 0 : top_address = caller_frame_top_ - output_frame_size;
1560 : } else {
1561 1839 : top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
1562 : }
1563 : output_frame->SetTop(top_address);
1564 :
1565 : // Get the possible JSFunction for the case that this is a
1566 : // JavaScriptBuiltinContinuationFrame, which needs the JSFunction pointer
1567 : // like a normal JavaScriptFrame.
1568 1226 : const intptr_t maybe_function = value_iterator->GetRawValue()->ptr();
1569 : ++value_iterator;
1570 :
1571 : ReadOnlyRoots roots(isolate());
1572 : if (ShouldPadArguments(stack_param_count)) {
1573 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1574 : }
1575 :
1576 7054 : for (int i = 0; i < translated_stack_parameters; ++i, ++value_iterator) {
1577 2914 : frame_writer.PushTranslatedValue(value_iterator, "stack parameter");
1578 : }
1579 :
1580 613 : switch (mode) {
1581 : case BuiltinContinuationMode::STUB:
1582 : break;
1583 : case BuiltinContinuationMode::JAVASCRIPT:
1584 : break;
1585 : case BuiltinContinuationMode::JAVASCRIPT_WITH_CATCH: {
1586 : frame_writer.PushRawObject(roots.the_hole_value(),
1587 24 : "placeholder for exception on lazy deopt\n");
1588 24 : } break;
1589 : case BuiltinContinuationMode::JAVASCRIPT_HANDLE_EXCEPTION: {
1590 : intptr_t accumulator_value =
1591 8 : input_->GetRegister(kInterpreterAccumulatorRegister.code());
1592 : frame_writer.PushRawObject(Object(accumulator_value),
1593 16 : "exception (from accumulator)\n");
1594 8 : } break;
1595 : }
1596 :
1597 613 : if (must_handle_result) {
1598 : frame_writer.PushRawObject(roots.the_hole_value(),
1599 436 : "placeholder for return result on lazy deopt\n");
1600 : }
1601 :
1602 : DCHECK_EQ(output_frame->GetLastArgumentSlotOffset(),
1603 : frame_writer.top_offset());
1604 :
1605 : std::vector<TranslatedFrame::iterator> register_values;
1606 : int total_registers = config->num_general_registers();
1607 613 : register_values.resize(total_registers, {value_iterator});
1608 :
1609 4808 : for (int i = 0; i < register_parameter_count; ++i, ++value_iterator) {
1610 : int code = continuation_descriptor.GetRegisterParameter(i).code();
1611 3582 : register_values[code] = value_iterator;
1612 : }
1613 :
1614 : // The context register is always implicit in the CallInterfaceDescriptor but
1615 : // its register must be explicitly set when continuing to the builtin. Make
1616 : // sure that it's harvested from the translation and copied into the register
1617 : // set (it was automatically added at the end of the FrameState by the
1618 : // instruction selector).
1619 613 : Object context = value_iterator->GetRawValue();
1620 613 : const intptr_t value = context->ptr();
1621 : TranslatedFrame::iterator context_register_value = value_iterator++;
1622 613 : register_values[kContextRegister.code()] = context_register_value;
1623 : output_frame->SetContext(value);
1624 : output_frame->SetRegister(kContextRegister.code(), value);
1625 :
1626 : // Set caller's PC (JSFunction continuation).
1627 : const intptr_t caller_pc =
1628 613 : is_bottommost ? caller_pc_ : output_[frame_index - 1]->GetPc();
1629 613 : frame_writer.PushCallerPc(caller_pc);
1630 :
1631 : // Read caller's FP from the previous frame, and set this frame's FP.
1632 : const intptr_t caller_fp =
1633 613 : is_bottommost ? caller_fp_ : output_[frame_index - 1]->GetFp();
1634 613 : frame_writer.PushCallerFp(caller_fp);
1635 :
1636 613 : const intptr_t fp_value = top_address + frame_writer.top_offset();
1637 : output_frame->SetFp(fp_value);
1638 :
1639 : DCHECK_EQ(output_frame_size_above_fp, frame_writer.top_offset());
1640 :
1641 : if (FLAG_enable_embedded_constant_pool) {
1642 : // Read the caller's constant pool from the previous frame.
1643 : const intptr_t caller_cp =
1644 : is_bottommost ? caller_constant_pool_
1645 : : output_[frame_index - 1]->GetConstantPool();
1646 : frame_writer.PushCallerConstantPool(caller_cp);
1647 : }
1648 :
1649 : // A marker value is used in place of the context.
1650 : const intptr_t marker =
1651 1226 : StackFrame::TypeToMarker(BuiltinContinuationModeToFrameType(mode));
1652 : frame_writer.PushRawValue(marker,
1653 613 : "context (builtin continuation sentinel)\n");
1654 :
1655 613 : if (BuiltinContinuationModeIsJavaScript(mode)) {
1656 597 : frame_writer.PushRawValue(maybe_function, "JSFunction\n");
1657 : } else {
1658 16 : frame_writer.PushRawValue(0, "unused\n");
1659 : }
1660 :
1661 : // The delta from the SP to the FP; used to reconstruct SP in
1662 : // Isolate::UnwindAndFindHandler.
1663 : frame_writer.PushRawObject(Smi::FromInt(output_frame_size_above_fp),
1664 613 : "frame height at deoptimization\n");
1665 :
1666 : // The context even if this is a stub contininuation frame. We can't use the
1667 : // usual context slot, because we must store the frame marker there.
1668 : frame_writer.PushTranslatedValue(context_register_value,
1669 613 : "builtin JavaScript context\n");
1670 :
1671 : // The builtin to continue to.
1672 613 : frame_writer.PushRawObject(builtin, "builtin address\n");
1673 :
1674 7969 : for (int i = 0; i < allocatable_register_count; ++i) {
1675 : int code = config->GetAllocatableGeneralCode(i);
1676 : ScopedVector<char> str(128);
1677 7356 : if (trace_scope_ != nullptr) {
1678 0 : if (BuiltinContinuationModeIsJavaScript(mode) &&
1679 : code == kJavaScriptCallArgCountRegister.code()) {
1680 : SNPrintF(
1681 : str,
1682 : "tagged argument count %s (will be untagged by continuation)\n",
1683 0 : RegisterName(Register::from_code(code)));
1684 : } else {
1685 : SNPrintF(str, "builtin register argument %s\n",
1686 0 : RegisterName(Register::from_code(code)));
1687 : }
1688 : }
1689 : frame_writer.PushTranslatedValue(
1690 14712 : register_values[code], trace_scope_ != nullptr ? str.start() : "");
1691 : }
1692 :
1693 : // Some architectures must pad the stack frame with extra stack slots
1694 : // to ensure the stack frame is aligned.
1695 0 : for (int i = 0; i < padding_slot_count; ++i) {
1696 0 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1697 : }
1698 :
1699 613 : if (is_topmost) {
1700 219 : if (PadTopOfStackRegister()) {
1701 0 : frame_writer.PushRawObject(roots.the_hole_value(), "padding\n");
1702 : }
1703 : // Ensure the result is restored back when we return to the stub.
1704 :
1705 219 : if (must_handle_result) {
1706 : Register result_reg = kReturnRegister0;
1707 : frame_writer.PushRawValue(input_->GetRegister(result_reg.code()),
1708 84 : "callback result\n");
1709 : } else {
1710 177 : frame_writer.PushRawObject(roots.undefined_value(), "callback result\n");
1711 : }
1712 : }
1713 :
1714 613 : CHECK_EQ(translated_frame->end(), value_iterator);
1715 613 : CHECK_EQ(0u, frame_writer.top_offset());
1716 :
1717 : // Clear the context register. The context might be a de-materialized object
1718 : // and will be materialized by {Runtime_NotifyDeoptimized}. For additional
1719 : // safety we use Smi(0) instead of the potential {arguments_marker} here.
1720 613 : if (is_topmost) {
1721 : intptr_t context_value = static_cast<intptr_t>(Smi::zero().ptr());
1722 219 : Register context_reg = JavaScriptFrame::context_register();
1723 219 : output_frame->SetRegister(context_reg.code(), context_value);
1724 : }
1725 :
1726 : // Ensure the frame pointer register points to the callee's frame. The builtin
1727 : // will build its own frame once we continue to it.
1728 613 : Register fp_reg = JavaScriptFrame::fp_register();
1729 613 : output_frame->SetRegister(fp_reg.code(), fp_value);
1730 :
1731 : Code continue_to_builtin = isolate()->builtins()->builtin(
1732 1226 : TrampolineForBuiltinContinuation(mode, must_handle_result));
1733 : output_frame->SetPc(
1734 613 : static_cast<intptr_t>(continue_to_builtin->InstructionStart()));
1735 :
1736 : Code continuation =
1737 613 : isolate()->builtins()->builtin(Builtins::kNotifyDeoptimized);
1738 : output_frame->SetContinuation(
1739 613 : static_cast<intptr_t>(continuation->InstructionStart()));
1740 613 : }
1741 :
1742 45171 : void Deoptimizer::MaterializeHeapObjects() {
1743 45171 : translated_state_.Prepare(static_cast<Address>(stack_fp_));
1744 45171 : if (FLAG_deopt_every_n_times > 0) {
1745 : // Doing a GC here will find problems with the deoptimized frames.
1746 : isolate_->heap()->CollectAllGarbage(Heap::kNoGCFlags,
1747 45191 : GarbageCollectionReason::kTesting);
1748 : }
1749 :
1750 110909 : for (auto& materialization : values_to_materialize_) {
1751 20567 : Handle<Object> value = materialization.value_->GetValue();
1752 :
1753 20567 : if (trace_scope_ != nullptr) {
1754 : PrintF("Materialization [" V8PRIxPTR_FMT "] <- " V8PRIxPTR_FMT " ; ",
1755 : static_cast<intptr_t>(materialization.output_slot_address_),
1756 0 : value->ptr());
1757 0 : value->ShortPrint(trace_scope_->file());
1758 0 : PrintF(trace_scope_->file(), "\n");
1759 : }
1760 :
1761 : *(reinterpret_cast<Address*>(materialization.output_slot_address_)) =
1762 41134 : value->ptr();
1763 : }
1764 :
1765 : translated_state_.VerifyMaterializedObjects();
1766 :
1767 45171 : bool feedback_updated = translated_state_.DoUpdateFeedback();
1768 45171 : if (trace_scope_ != nullptr && feedback_updated) {
1769 0 : PrintF(trace_scope_->file(), "Feedback updated");
1770 : compiled_code_->PrintDeoptLocation(trace_scope_->file(),
1771 0 : " from deoptimization at ", from_);
1772 : }
1773 :
1774 : isolate_->materialized_object_store()->Remove(
1775 90342 : static_cast<Address>(stack_fp_));
1776 45171 : }
1777 :
1778 583999 : void Deoptimizer::QueueValueForMaterialization(
1779 : Address output_address, Object obj,
1780 : const TranslatedFrame::iterator& iterator) {
1781 1167998 : if (obj == ReadOnlyRoots(isolate_).arguments_marker()) {
1782 61701 : values_to_materialize_.push_back({output_address, iterator});
1783 : }
1784 583999 : }
1785 :
1786 90342 : unsigned Deoptimizer::ComputeInputFrameAboveFpFixedSize() const {
1787 : unsigned fixed_size = CommonFrameConstants::kFixedFrameSizeAboveFp;
1788 : // TODO(jkummerow): If {function_->IsSmi()} can indeed be true, then
1789 : // {function_} should not have type {JSFunction}.
1790 180684 : if (!function_->IsSmi()) {
1791 180684 : fixed_size += ComputeIncomingArgumentSize(function_->shared());
1792 : }
1793 90342 : return fixed_size;
1794 : }
1795 :
1796 45171 : unsigned Deoptimizer::ComputeInputFrameSize() const {
1797 : // The fp-to-sp delta already takes the context, constant pool pointer and the
1798 : // function into account so we have to avoid double counting them.
1799 45171 : unsigned fixed_size_above_fp = ComputeInputFrameAboveFpFixedSize();
1800 45171 : unsigned result = fixed_size_above_fp + fp_to_sp_delta_;
1801 45171 : if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
1802 : unsigned stack_slots = compiled_code_->stack_slots();
1803 : unsigned outgoing_size = 0;
1804 : // ComputeOutgoingArgumentSize(compiled_code_, bailout_id_);
1805 45171 : CHECK_EQ(fixed_size_above_fp + (stack_slots * kSystemPointerSize) -
1806 : CommonFrameConstants::kFixedFrameSizeAboveFp + outgoing_size,
1807 : result);
1808 : }
1809 45171 : return result;
1810 : }
1811 :
1812 : // static
1813 0 : unsigned Deoptimizer::ComputeInterpretedFixedSize(SharedFunctionInfo shared) {
1814 : // The fixed part of the frame consists of the return address, frame
1815 : // pointer, function, context, bytecode offset and all the incoming arguments.
1816 : return ComputeIncomingArgumentSize(shared) +
1817 48322 : InterpreterFrameConstants::kFixedFrameSize;
1818 : }
1819 :
1820 : // static
1821 0 : unsigned Deoptimizer::ComputeIncomingArgumentSize(SharedFunctionInfo shared) {
1822 138664 : int parameter_slots = shared->internal_formal_parameter_count() + 1;
1823 : if (kPadArguments) parameter_slots = RoundUp(parameter_slots, 2);
1824 138664 : return parameter_slots * kSystemPointerSize;
1825 : }
1826 :
1827 1370193 : void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
1828 : DeoptimizeKind kind) {
1829 1370193 : CHECK(kind == DeoptimizeKind::kEager || kind == DeoptimizeKind::kSoft ||
1830 : kind == DeoptimizeKind::kLazy);
1831 1370193 : DeoptimizerData* data = isolate->deoptimizer_data();
1832 2696457 : if (!data->deopt_entry_code(kind).is_null()) return;
1833 :
1834 : MacroAssembler masm(isolate, CodeObjectRequired::kYes,
1835 131787 : NewAssemblerBuffer(16 * KB));
1836 : masm.set_emit_debug_code(false);
1837 43929 : GenerateDeoptimizationEntries(&masm, masm.isolate(), kind);
1838 43929 : CodeDesc desc;
1839 43929 : masm.GetCode(isolate, &desc);
1840 : DCHECK(!RelocInfo::RequiresRelocationAfterCodegen(desc));
1841 :
1842 : // Allocate the code as immovable since the entry addresses will be used
1843 : // directly and there is no support for relocating them.
1844 : Handle<Code> code = isolate->factory()->NewCode(
1845 : desc, Code::STUB, Handle<Object>(), Builtins::kNoBuiltinId,
1846 87858 : MaybeHandle<ByteArray>(), MaybeHandle<DeoptimizationData>(), kImmovable);
1847 43929 : CHECK(isolate->heap()->IsImmovable(*code));
1848 :
1849 43929 : CHECK(data->deopt_entry_code(kind).is_null());
1850 : data->set_deopt_entry_code(kind, *code);
1851 : }
1852 :
1853 456730 : void Deoptimizer::EnsureCodeForDeoptimizationEntries(Isolate* isolate) {
1854 456730 : EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kEager);
1855 456731 : EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kLazy);
1856 456731 : EnsureCodeForDeoptimizationEntry(isolate, DeoptimizeKind::kSoft);
1857 456731 : }
1858 :
1859 95474 : FrameDescription::FrameDescription(uint32_t frame_size, int parameter_count)
1860 : : frame_size_(frame_size),
1861 : parameter_count_(parameter_count),
1862 : top_(kZapUint32),
1863 : pc_(kZapUint32),
1864 : fp_(kZapUint32),
1865 : context_(kZapUint32),
1866 190948 : constant_pool_(kZapUint32) {
1867 : // Zap all the registers.
1868 1623058 : for (int r = 0; r < Register::kNumRegisters; r++) {
1869 : // TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
1870 : // isn't used before the next safepoint, the GC will try to scan it as a
1871 : // tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
1872 : #if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_ARM64)
1873 : // x18 is reserved as platform register on Windows arm64 platform
1874 : const int kPlatformRegister = 18;
1875 : if (r != kPlatformRegister) {
1876 : SetRegister(r, kZapUint32);
1877 : }
1878 : #else
1879 1527584 : SetRegister(r, kZapUint32);
1880 : #endif
1881 : }
1882 :
1883 : // Zap all the slots.
1884 1254872 : for (unsigned o = 0; o < frame_size; o += kSystemPointerSize) {
1885 : SetFrameSlot(o, kZapUint32);
1886 : }
1887 95474 : }
1888 :
1889 140119875 : void TranslationBuffer::Add(int32_t value) {
1890 : // This wouldn't handle kMinInt correctly if it ever encountered it.
1891 : DCHECK_NE(value, kMinInt);
1892 : // Encode the sign bit in the least significant bit.
1893 140119875 : bool is_negative = (value < 0);
1894 140119875 : uint32_t bits = (static_cast<uint32_t>(is_negative ? -value : value) << 1) |
1895 140119875 : static_cast<uint32_t>(is_negative);
1896 : // Encode the individual bytes using the least significant bit of
1897 : // each byte to indicate whether or not more bytes follow.
1898 144567209 : do {
1899 144567086 : uint32_t next = bits >> 7;
1900 144567086 : contents_.push_back(((bits << 1) & 0xFF) | (next != 0));
1901 : bits = next;
1902 : } while (bits != 0);
1903 140119998 : }
1904 :
1905 43439 : TranslationIterator::TranslationIterator(ByteArray buffer, int index)
1906 1439465 : : buffer_(buffer), index_(index) {
1907 : DCHECK(index >= 0 && index < buffer->length());
1908 43439 : }
1909 :
1910 60225653 : int32_t TranslationIterator::Next() {
1911 : // Run through the bytes until we reach one with a least significant
1912 : // bit of zero (marks the end).
1913 : uint32_t bits = 0;
1914 547559 : for (int i = 0; true; i += 7) {
1915 : DCHECK(HasNext());
1916 60773212 : uint8_t next = buffer_->get(index_++);
1917 60773212 : bits |= (next >> 1) << i;
1918 60773212 : if ((next & 1) == 0) break;
1919 547559 : }
1920 : // The bits encode the sign in the least significant bit.
1921 60225653 : bool is_negative = (bits & 1) == 1;
1922 60225653 : int32_t result = bits >> 1;
1923 60225653 : return is_negative ? -result : result;
1924 : }
1925 :
1926 1396026 : bool TranslationIterator::HasNext() const { return index_ < buffer_->length(); }
1927 :
1928 456571 : Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
1929 456571 : Handle<ByteArray> result = factory->NewByteArray(CurrentIndex(), TENURED);
1930 456573 : contents_.CopyTo(result->GetDataStartAddress());
1931 456572 : return result;
1932 : }
1933 :
1934 2100 : void Translation::BeginBuiltinContinuationFrame(BailoutId bailout_id,
1935 : int literal_id,
1936 : unsigned height) {
1937 2100 : buffer_->Add(BUILTIN_CONTINUATION_FRAME);
1938 2100 : buffer_->Add(bailout_id.ToInt());
1939 2100 : buffer_->Add(literal_id);
1940 2100 : buffer_->Add(height);
1941 2100 : }
1942 :
1943 11184 : void Translation::BeginJavaScriptBuiltinContinuationFrame(BailoutId bailout_id,
1944 : int literal_id,
1945 : unsigned height) {
1946 11184 : buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME);
1947 11184 : buffer_->Add(bailout_id.ToInt());
1948 11184 : buffer_->Add(literal_id);
1949 11184 : buffer_->Add(height);
1950 11184 : }
1951 :
1952 267 : void Translation::BeginJavaScriptBuiltinContinuationWithCatchFrame(
1953 : BailoutId bailout_id, int literal_id, unsigned height) {
1954 267 : buffer_->Add(JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME);
1955 267 : buffer_->Add(bailout_id.ToInt());
1956 267 : buffer_->Add(literal_id);
1957 267 : buffer_->Add(height);
1958 267 : }
1959 :
1960 26155 : void Translation::BeginConstructStubFrame(BailoutId bailout_id, int literal_id,
1961 : unsigned height) {
1962 26155 : buffer_->Add(CONSTRUCT_STUB_FRAME);
1963 26155 : buffer_->Add(bailout_id.ToInt());
1964 26155 : buffer_->Add(literal_id);
1965 26155 : buffer_->Add(height);
1966 26155 : }
1967 :
1968 :
1969 83729 : void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
1970 83729 : buffer_->Add(ARGUMENTS_ADAPTOR_FRAME);
1971 83729 : buffer_->Add(literal_id);
1972 83729 : buffer_->Add(height);
1973 83729 : }
1974 :
1975 3823523 : void Translation::BeginInterpretedFrame(BailoutId bytecode_offset,
1976 : int literal_id, unsigned height,
1977 : int return_value_offset,
1978 : int return_value_count) {
1979 3823523 : buffer_->Add(INTERPRETED_FRAME);
1980 3823528 : buffer_->Add(bytecode_offset.ToInt());
1981 3823532 : buffer_->Add(literal_id);
1982 3823533 : buffer_->Add(height);
1983 3823530 : buffer_->Add(return_value_offset);
1984 3823530 : buffer_->Add(return_value_count);
1985 3823532 : }
1986 :
1987 6180 : void Translation::ArgumentsElements(CreateArgumentsType type) {
1988 6180 : buffer_->Add(ARGUMENTS_ELEMENTS);
1989 6180 : buffer_->Add(static_cast<uint8_t>(type));
1990 6180 : }
1991 :
1992 6500 : void Translation::ArgumentsLength(CreateArgumentsType type) {
1993 6500 : buffer_->Add(ARGUMENTS_LENGTH);
1994 6500 : buffer_->Add(static_cast<uint8_t>(type));
1995 6500 : }
1996 :
1997 98457 : void Translation::BeginCapturedObject(int length) {
1998 98457 : buffer_->Add(CAPTURED_OBJECT);
1999 98457 : buffer_->Add(length);
2000 98457 : }
2001 :
2002 :
2003 22779 : void Translation::DuplicateObject(int object_index) {
2004 22779 : buffer_->Add(DUPLICATED_OBJECT);
2005 22779 : buffer_->Add(object_index);
2006 22779 : }
2007 :
2008 :
2009 473999 : void Translation::StoreRegister(Register reg) {
2010 473999 : buffer_->Add(REGISTER);
2011 474000 : buffer_->Add(reg.code());
2012 474002 : }
2013 :
2014 :
2015 35569 : void Translation::StoreInt32Register(Register reg) {
2016 35569 : buffer_->Add(INT32_REGISTER);
2017 35569 : buffer_->Add(reg.code());
2018 35569 : }
2019 :
2020 14 : void Translation::StoreInt64Register(Register reg) {
2021 14 : buffer_->Add(INT64_REGISTER);
2022 14 : buffer_->Add(reg.code());
2023 14 : }
2024 :
2025 1603 : void Translation::StoreUint32Register(Register reg) {
2026 1603 : buffer_->Add(UINT32_REGISTER);
2027 1603 : buffer_->Add(reg.code());
2028 1603 : }
2029 :
2030 :
2031 3797 : void Translation::StoreBoolRegister(Register reg) {
2032 3797 : buffer_->Add(BOOL_REGISTER);
2033 3797 : buffer_->Add(reg.code());
2034 3797 : }
2035 :
2036 118 : void Translation::StoreFloatRegister(FloatRegister reg) {
2037 118 : buffer_->Add(FLOAT_REGISTER);
2038 118 : buffer_->Add(reg.code());
2039 118 : }
2040 :
2041 64182 : void Translation::StoreDoubleRegister(DoubleRegister reg) {
2042 64182 : buffer_->Add(DOUBLE_REGISTER);
2043 64181 : buffer_->Add(reg.code());
2044 64183 : }
2045 :
2046 :
2047 18829076 : void Translation::StoreStackSlot(int index) {
2048 18829076 : buffer_->Add(STACK_SLOT);
2049 18829080 : buffer_->Add(index);
2050 18829079 : }
2051 :
2052 :
2053 475418 : void Translation::StoreInt32StackSlot(int index) {
2054 475418 : buffer_->Add(INT32_STACK_SLOT);
2055 475418 : buffer_->Add(index);
2056 475417 : }
2057 :
2058 135 : void Translation::StoreInt64StackSlot(int index) {
2059 135 : buffer_->Add(INT64_STACK_SLOT);
2060 135 : buffer_->Add(index);
2061 135 : }
2062 :
2063 11119 : void Translation::StoreUint32StackSlot(int index) {
2064 11119 : buffer_->Add(UINT32_STACK_SLOT);
2065 11119 : buffer_->Add(index);
2066 11119 : }
2067 :
2068 :
2069 21554 : void Translation::StoreBoolStackSlot(int index) {
2070 21554 : buffer_->Add(BOOL_STACK_SLOT);
2071 21554 : buffer_->Add(index);
2072 21554 : }
2073 :
2074 897 : void Translation::StoreFloatStackSlot(int index) {
2075 897 : buffer_->Add(FLOAT_STACK_SLOT);
2076 897 : buffer_->Add(index);
2077 897 : }
2078 :
2079 251434 : void Translation::StoreDoubleStackSlot(int index) {
2080 251434 : buffer_->Add(DOUBLE_STACK_SLOT);
2081 251435 : buffer_->Add(index);
2082 251434 : }
2083 :
2084 :
2085 30886330 : void Translation::StoreLiteral(int literal_id) {
2086 30886330 : buffer_->Add(LITERAL);
2087 30886311 : buffer_->Add(literal_id);
2088 30886331 : }
2089 :
2090 38854 : void Translation::AddUpdateFeedback(int vector_literal, int slot) {
2091 38854 : buffer_->Add(UPDATE_FEEDBACK);
2092 38854 : buffer_->Add(vector_literal);
2093 38854 : buffer_->Add(slot);
2094 38854 : }
2095 :
2096 3597586 : void Translation::StoreJSFrameFunction() {
2097 : StoreStackSlot((StandardFrameConstants::kCallerPCOffset -
2098 : StandardFrameConstants::kFunctionOffset) /
2099 3597586 : kSystemPointerSize);
2100 3597591 : }
2101 :
2102 211358 : int Translation::NumberOfOperandsFor(Opcode opcode) {
2103 211358 : switch (opcode) {
2104 : case DUPLICATED_OBJECT:
2105 : case ARGUMENTS_ELEMENTS:
2106 : case ARGUMENTS_LENGTH:
2107 : case CAPTURED_OBJECT:
2108 : case REGISTER:
2109 : case INT32_REGISTER:
2110 : case INT64_REGISTER:
2111 : case UINT32_REGISTER:
2112 : case BOOL_REGISTER:
2113 : case FLOAT_REGISTER:
2114 : case DOUBLE_REGISTER:
2115 : case STACK_SLOT:
2116 : case INT32_STACK_SLOT:
2117 : case INT64_STACK_SLOT:
2118 : case UINT32_STACK_SLOT:
2119 : case BOOL_STACK_SLOT:
2120 : case FLOAT_STACK_SLOT:
2121 : case DOUBLE_STACK_SLOT:
2122 : case LITERAL:
2123 : return 1;
2124 : case ARGUMENTS_ADAPTOR_FRAME:
2125 : case UPDATE_FEEDBACK:
2126 0 : return 2;
2127 : case BEGIN:
2128 : case CONSTRUCT_STUB_FRAME:
2129 : case BUILTIN_CONTINUATION_FRAME:
2130 : case JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
2131 : case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
2132 0 : return 3;
2133 : case INTERPRETED_FRAME:
2134 55943 : return 5;
2135 : }
2136 0 : FATAL("Unexpected translation type");
2137 : return -1;
2138 : }
2139 :
2140 :
2141 : #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
2142 :
2143 : const char* Translation::StringFor(Opcode opcode) {
2144 : #define TRANSLATION_OPCODE_CASE(item) case item: return #item;
2145 : switch (opcode) {
2146 : TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
2147 : }
2148 : #undef TRANSLATION_OPCODE_CASE
2149 : UNREACHABLE();
2150 : }
2151 :
2152 : #endif
2153 :
2154 :
2155 1396420 : Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
2156 1396195 : int index = StackIdToIndex(fp);
2157 1396195 : if (index == -1) {
2158 : return Handle<FixedArray>::null();
2159 : }
2160 225 : Handle<FixedArray> array = GetStackEntries();
2161 225 : CHECK_GT(array->length(), index);
2162 225 : return Handle<FixedArray>::cast(Handle<Object>(array->get(index), isolate()));
2163 : }
2164 :
2165 :
2166 141 : void MaterializedObjectStore::Set(Address fp,
2167 : Handle<FixedArray> materialized_objects) {
2168 141 : int index = StackIdToIndex(fp);
2169 141 : if (index == -1) {
2170 282 : index = static_cast<int>(frame_fps_.size());
2171 141 : frame_fps_.push_back(fp);
2172 : }
2173 :
2174 141 : Handle<FixedArray> array = EnsureStackEntries(index + 1);
2175 282 : array->set(index, *materialized_objects);
2176 141 : }
2177 :
2178 :
2179 3101261 : bool MaterializedObjectStore::Remove(Address fp) {
2180 141 : auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
2181 3100979 : if (it == frame_fps_.end()) return false;
2182 141 : int index = static_cast<int>(std::distance(frame_fps_.begin(), it));
2183 :
2184 141 : frame_fps_.erase(it);
2185 141 : FixedArray array = isolate()->heap()->materialized_objects();
2186 :
2187 141 : CHECK_LT(index, array->length());
2188 141 : int fps_size = static_cast<int>(frame_fps_.size());
2189 282 : for (int i = index; i < fps_size; i++) {
2190 0 : array->set(i, array->get(i + 1));
2191 : }
2192 141 : array->set(fps_size, ReadOnlyRoots(isolate()).undefined_value());
2193 141 : return true;
2194 : }
2195 :
2196 :
2197 1396336 : int MaterializedObjectStore::StackIdToIndex(Address fp) {
2198 : auto it = std::find(frame_fps_.begin(), frame_fps_.end(), fp);
2199 : return it == frame_fps_.end()
2200 : ? -1
2201 1396561 : : static_cast<int>(std::distance(frame_fps_.begin(), it));
2202 : }
2203 :
2204 :
2205 366 : Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
2206 : return Handle<FixedArray>(isolate()->heap()->materialized_objects(),
2207 732 : isolate());
2208 : }
2209 :
2210 :
2211 285 : Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
2212 141 : Handle<FixedArray> array = GetStackEntries();
2213 141 : if (array->length() >= length) {
2214 93 : return array;
2215 : }
2216 :
2217 48 : int new_length = length > 10 ? length : 10;
2218 48 : if (new_length < 2 * array->length()) {
2219 0 : new_length = 2 * array->length();
2220 : }
2221 :
2222 : Handle<FixedArray> new_array =
2223 48 : isolate()->factory()->NewFixedArray(new_length, TENURED);
2224 96 : for (int i = 0; i < array->length(); i++) {
2225 0 : new_array->set(i, array->get(i));
2226 : }
2227 48 : HeapObject undefined_value = ReadOnlyRoots(isolate()).undefined_value();
2228 96 : for (int i = array->length(); i < length; i++) {
2229 48 : new_array->set(i, undefined_value);
2230 : }
2231 48 : isolate()->heap()->SetRootMaterializedObjects(*new_array);
2232 48 : return new_array;
2233 : }
2234 :
2235 : namespace {
2236 :
2237 181399 : Handle<Object> GetValueForDebugger(TranslatedFrame::iterator it,
2238 : Isolate* isolate) {
2239 362798 : if (it->GetRawValue() == ReadOnlyRoots(isolate).arguments_marker()) {
2240 21261 : if (!it->IsMaterializableByDebugger()) {
2241 236 : return isolate->factory()->optimized_out();
2242 : }
2243 : }
2244 181163 : return it->GetValue();
2245 : }
2246 :
2247 : } // namespace
2248 :
2249 24920 : DeoptimizedFrameInfo::DeoptimizedFrameInfo(TranslatedState* state,
2250 : TranslatedState::iterator frame_it,
2251 : Isolate* isolate) {
2252 : int parameter_count =
2253 24920 : frame_it->shared_info()->internal_formal_parameter_count();
2254 : TranslatedFrame::iterator stack_it = frame_it->begin();
2255 :
2256 : // Get the function. Note that this might materialize the function.
2257 : // In case the debugger mutates this value, we should deoptimize
2258 : // the function and remember the value in the materialized value store.
2259 24920 : function_ = Handle<JSFunction>::cast(stack_it->GetValue());
2260 24920 : stack_it++; // Skip the function.
2261 24920 : stack_it++; // Skip the receiver.
2262 :
2263 : DCHECK_EQ(TranslatedFrame::kInterpretedFunction, frame_it->kind());
2264 : source_position_ = Deoptimizer::ComputeSourcePositionFromBytecodeArray(
2265 24920 : *frame_it->shared_info(), frame_it->node_id());
2266 :
2267 : DCHECK_EQ(parameter_count,
2268 : function_->shared()->internal_formal_parameter_count());
2269 :
2270 24920 : parameters_.resize(static_cast<size_t>(parameter_count));
2271 66185 : for (int i = 0; i < parameter_count; i++) {
2272 41265 : Handle<Object> parameter = GetValueForDebugger(stack_it, isolate);
2273 : SetParameter(i, parameter);
2274 41265 : stack_it++;
2275 : }
2276 :
2277 : // Get the context.
2278 24920 : context_ = GetValueForDebugger(stack_it, isolate);
2279 24920 : stack_it++;
2280 :
2281 : // Get the expression stack.
2282 24920 : int stack_height = frame_it->height();
2283 24920 : if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
2284 : // For interpreter frames, we should not count the accumulator.
2285 : // TODO(jarin): Clean up the indexing in translated frames.
2286 24920 : stack_height--;
2287 : }
2288 24920 : expression_stack_.resize(static_cast<size_t>(stack_height));
2289 140134 : for (int i = 0; i < stack_height; i++) {
2290 115214 : Handle<Object> expression = GetValueForDebugger(stack_it, isolate);
2291 : SetExpression(i, expression);
2292 115214 : stack_it++;
2293 : }
2294 :
2295 : // For interpreter frame, skip the accumulator.
2296 24920 : if (frame_it->kind() == TranslatedFrame::kInterpretedFunction) {
2297 24920 : stack_it++;
2298 : }
2299 24920 : CHECK(stack_it == frame_it->end());
2300 24920 : }
2301 :
2302 247 : Deoptimizer::DeoptInfo Deoptimizer::GetDeoptInfo(Code code, Address pc) {
2303 247 : CHECK(code->InstructionStart() <= pc && pc <= code->InstructionEnd());
2304 : SourcePosition last_position = SourcePosition::Unknown();
2305 : DeoptimizeReason last_reason = DeoptimizeReason::kUnknown;
2306 : int last_deopt_id = kNoDeoptimizationId;
2307 : int mask = RelocInfo::ModeMask(RelocInfo::DEOPT_REASON) |
2308 : RelocInfo::ModeMask(RelocInfo::DEOPT_ID) |
2309 : RelocInfo::ModeMask(RelocInfo::DEOPT_SCRIPT_OFFSET) |
2310 : RelocInfo::ModeMask(RelocInfo::DEOPT_INLINING_ID);
2311 2068 : for (RelocIterator it(code, mask); !it.done(); it.next()) {
2312 5710 : RelocInfo* info = it.rinfo();
2313 2068 : if (info->pc() >= pc) break;
2314 1821 : if (info->rmode() == RelocInfo::DEOPT_SCRIPT_OFFSET) {
2315 607 : int script_offset = static_cast<int>(info->data());
2316 607 : it.next();
2317 : DCHECK(it.rinfo()->rmode() == RelocInfo::DEOPT_INLINING_ID);
2318 607 : int inlining_id = static_cast<int>(it.rinfo()->data());
2319 : last_position = SourcePosition(script_offset, inlining_id);
2320 1214 : } else if (info->rmode() == RelocInfo::DEOPT_ID) {
2321 607 : last_deopt_id = static_cast<int>(info->data());
2322 607 : } else if (info->rmode() == RelocInfo::DEOPT_REASON) {
2323 607 : last_reason = static_cast<DeoptimizeReason>(info->data());
2324 : }
2325 : }
2326 247 : return DeoptInfo(last_position, last_reason, last_deopt_id);
2327 : }
2328 :
2329 :
2330 : // static
2331 24920 : int Deoptimizer::ComputeSourcePositionFromBytecodeArray(
2332 : SharedFunctionInfo shared, BailoutId node_id) {
2333 : DCHECK(shared->HasBytecodeArray());
2334 49840 : return AbstractCode::cast(shared->GetBytecodeArray())
2335 49840 : ->SourcePosition(node_id.ToInt());
2336 : }
2337 :
2338 : // static
2339 0 : TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
2340 : int length,
2341 : int object_index) {
2342 : TranslatedValue slot(container, kCapturedObject);
2343 152718 : slot.materialization_info_ = {object_index, length};
2344 0 : return slot;
2345 : }
2346 :
2347 :
2348 : // static
2349 0 : TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
2350 : int id) {
2351 : TranslatedValue slot(container, kDuplicatedObject);
2352 83150 : slot.materialization_info_ = {id, -1};
2353 0 : return slot;
2354 : }
2355 :
2356 :
2357 : // static
2358 0 : TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
2359 : Float32 value) {
2360 : TranslatedValue slot(container, kFloat);
2361 288 : slot.float_value_ = value;
2362 0 : return slot;
2363 : }
2364 :
2365 : // static
2366 0 : TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
2367 : Float64 value) {
2368 : TranslatedValue slot(container, kDouble);
2369 521488 : slot.double_value_ = value;
2370 0 : return slot;
2371 : }
2372 :
2373 :
2374 : // static
2375 0 : TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
2376 : int32_t value) {
2377 : TranslatedValue slot(container, kInt32);
2378 316916 : slot.int32_value_ = value;
2379 0 : return slot;
2380 : }
2381 :
2382 : // static
2383 0 : TranslatedValue TranslatedValue::NewInt64(TranslatedState* container,
2384 : int64_t value) {
2385 : TranslatedValue slot(container, kInt64);
2386 9 : slot.int64_value_ = value;
2387 0 : return slot;
2388 : }
2389 :
2390 : // static
2391 0 : TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
2392 : uint32_t value) {
2393 : TranslatedValue slot(container, kUInt32);
2394 50145 : slot.uint32_value_ = value;
2395 0 : return slot;
2396 : }
2397 :
2398 :
2399 : // static
2400 0 : TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
2401 : uint32_t value) {
2402 : TranslatedValue slot(container, kBoolBit);
2403 438 : slot.uint32_value_ = value;
2404 0 : return slot;
2405 : }
2406 :
2407 :
2408 : // static
2409 0 : TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
2410 : Object literal) {
2411 : TranslatedValue slot(container, kTagged);
2412 20054528 : slot.raw_literal_ = literal;
2413 0 : return slot;
2414 : }
2415 :
2416 : // static
2417 0 : TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
2418 0 : return TranslatedValue(container, kInvalid);
2419 : }
2420 :
2421 :
2422 20196733 : Isolate* TranslatedValue::isolate() const { return container_->isolate(); }
2423 :
2424 0 : Object TranslatedValue::raw_literal() const {
2425 : DCHECK_EQ(kTagged, kind());
2426 20664905 : return raw_literal_;
2427 : }
2428 :
2429 0 : int32_t TranslatedValue::int32_value() const {
2430 : DCHECK_EQ(kInt32, kind());
2431 27043 : return int32_value_;
2432 : }
2433 :
2434 0 : int64_t TranslatedValue::int64_value() const {
2435 : DCHECK_EQ(kInt64, kind());
2436 9 : return int64_value_;
2437 : }
2438 :
2439 0 : uint32_t TranslatedValue::uint32_value() const {
2440 : DCHECK(kind() == kUInt32 || kind() == kBoolBit);
2441 175 : return uint32_value_;
2442 : }
2443 :
2444 0 : Float32 TranslatedValue::float_value() const {
2445 : DCHECK_EQ(kFloat, kind());
2446 280 : return float_value_;
2447 : }
2448 :
2449 0 : Float64 TranslatedValue::double_value() const {
2450 : DCHECK_EQ(kDouble, kind());
2451 23813 : return double_value_;
2452 : }
2453 :
2454 :
2455 0 : int TranslatedValue::object_length() const {
2456 : DCHECK_EQ(kind(), kCapturedObject);
2457 1911425 : return materialization_info_.length_;
2458 : }
2459 :
2460 :
2461 0 : int TranslatedValue::object_index() const {
2462 : DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
2463 151240 : return materialization_info_.id_;
2464 : }
2465 :
2466 1557951 : Object TranslatedValue::GetRawValue() const {
2467 : // If we have a value, return it.
2468 854070 : if (materialization_state() == kFinished) {
2469 : return *storage_;
2470 : }
2471 :
2472 : // Otherwise, do a best effort to get the value without allocation.
2473 703881 : switch (kind()) {
2474 : case kTagged:
2475 : return raw_literal();
2476 :
2477 : case kInt32: {
2478 : bool is_smi = Smi::IsValid(int32_value());
2479 : if (is_smi) {
2480 27043 : return Smi::FromInt(int32_value());
2481 : }
2482 : break;
2483 : }
2484 :
2485 : case kInt64: {
2486 9 : bool is_smi = (int64_value() >= static_cast<int64_t>(Smi::kMinValue) &&
2487 : int64_value() <= static_cast<int64_t>(Smi::kMaxValue));
2488 9 : if (is_smi) {
2489 9 : return Smi::FromIntptr(static_cast<intptr_t>(int64_value()));
2490 : }
2491 : break;
2492 : }
2493 :
2494 : case kUInt32: {
2495 93 : bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
2496 93 : if (is_smi) {
2497 79 : return Smi::FromInt(static_cast<int32_t>(uint32_value()));
2498 : }
2499 : break;
2500 : }
2501 :
2502 : case kBoolBit: {
2503 75 : if (uint32_value() == 0) {
2504 58 : return ReadOnlyRoots(isolate()).false_value();
2505 : } else {
2506 17 : CHECK_EQ(1U, uint32_value());
2507 17 : return ReadOnlyRoots(isolate()).true_value();
2508 : }
2509 : }
2510 :
2511 : default:
2512 : break;
2513 : }
2514 :
2515 : // If we could not get the value without allocation, return the arguments
2516 : // marker.
2517 66298 : return ReadOnlyRoots(isolate()).arguments_marker();
2518 : }
2519 :
2520 0 : void TranslatedValue::set_initialized_storage(Handle<Object> storage) {
2521 : DCHECK_EQ(kUninitialized, materialization_state());
2522 20092753 : storage_ = storage;
2523 20092753 : materialization_state_ = kFinished;
2524 0 : }
2525 :
2526 3649226 : Handle<Object> TranslatedValue::GetValue() {
2527 : // If we already have a value, then get it.
2528 3564847 : if (materialization_state() == kFinished) return storage_;
2529 :
2530 : // Otherwise we have to materialize.
2531 84379 : switch (kind()) {
2532 : case TranslatedValue::kTagged:
2533 : case TranslatedValue::kInt32:
2534 : case TranslatedValue::kInt64:
2535 : case TranslatedValue::kUInt32:
2536 : case TranslatedValue::kBoolBit:
2537 : case TranslatedValue::kFloat:
2538 : case TranslatedValue::kDouble: {
2539 37338 : MaterializeSimple();
2540 37338 : return storage_;
2541 : }
2542 :
2543 : case TranslatedValue::kCapturedObject:
2544 : case TranslatedValue::kDuplicatedObject: {
2545 : // We need to materialize the object (or possibly even object graphs).
2546 : // To make the object verifier happy, we materialize in two steps.
2547 :
2548 : // 1. Allocate storage for reachable objects. This makes sure that for
2549 : // each object we have allocated space on heap. The space will be
2550 : // a byte array that will be later initialized, or a fully
2551 : // initialized object if it is safe to allocate one that will
2552 : // pass the verifier.
2553 47041 : container_->EnsureObjectAllocatedAt(this);
2554 :
2555 : // 2. Initialize the objects. If we have allocated only byte arrays
2556 : // for some objects, we now overwrite the byte arrays with the
2557 : // correct object fields. Note that this phase does not allocate
2558 : // any new objects, so it does not trigger the object verifier.
2559 47041 : return container_->InitializeObjectAt(this);
2560 : }
2561 :
2562 : case TranslatedValue::kInvalid:
2563 0 : FATAL("unexpected case");
2564 : return Handle<Object>::null();
2565 : }
2566 :
2567 0 : FATAL("internal error: value missing");
2568 : return Handle<Object>::null();
2569 : }
2570 :
2571 718187 : void TranslatedValue::MaterializeSimple() {
2572 : // If we already have materialized, return.
2573 1388174 : if (materialization_state() == kFinished) return;
2574 :
2575 37916 : Object raw_value = GetRawValue();
2576 37916 : if (raw_value != ReadOnlyRoots(isolate()).arguments_marker()) {
2577 : // We can get the value without allocation, just return it here.
2578 : set_initialized_storage(Handle<Object>(raw_value, isolate()));
2579 13816 : return;
2580 : }
2581 :
2582 24100 : switch (kind()) {
2583 : case kInt32:
2584 : set_initialized_storage(
2585 0 : Handle<Object>(isolate()->factory()->NewNumber(int32_value())));
2586 : return;
2587 :
2588 : case kInt64:
2589 : set_initialized_storage(Handle<Object>(
2590 0 : isolate()->factory()->NewNumber(static_cast<double>(int64_value()))));
2591 : return;
2592 :
2593 : case kUInt32:
2594 : set_initialized_storage(
2595 14 : Handle<Object>(isolate()->factory()->NewNumber(uint32_value())));
2596 : return;
2597 :
2598 : case kFloat: {
2599 280 : double scalar_value = float_value().get_scalar();
2600 : set_initialized_storage(
2601 280 : Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
2602 : return;
2603 : }
2604 :
2605 : case kDouble: {
2606 23813 : double scalar_value = double_value().get_scalar();
2607 : set_initialized_storage(
2608 23813 : Handle<Object>(isolate()->factory()->NewNumber(scalar_value)));
2609 : return;
2610 : }
2611 :
2612 : case kCapturedObject:
2613 : case kDuplicatedObject:
2614 : case kInvalid:
2615 : case kTagged:
2616 : case kBoolBit:
2617 0 : FATAL("internal error: unexpected materialization.");
2618 : break;
2619 : }
2620 : }
2621 :
2622 :
2623 10841 : bool TranslatedValue::IsMaterializedObject() const {
2624 10841 : switch (kind()) {
2625 : case kCapturedObject:
2626 : case kDuplicatedObject:
2627 : return true;
2628 : default:
2629 9907 : return false;
2630 : }
2631 : }
2632 :
2633 21261 : bool TranslatedValue::IsMaterializableByDebugger() const {
2634 : // At the moment, we only allow materialization of doubles.
2635 0 : return (kind() == kDouble);
2636 : }
2637 :
2638 27144204 : int TranslatedValue::GetChildrenCount() const {
2639 27192291 : if (kind() == kCapturedObject) {
2640 0 : return object_length();
2641 : } else {
2642 : return 0;
2643 : }
2644 : }
2645 :
2646 0 : uint64_t TranslatedState::GetUInt64Slot(Address fp, int slot_offset) {
2647 : #if V8_TARGET_ARCH_32_BIT
2648 : return ReadUnalignedValue<uint64_t>(fp + slot_offset);
2649 : #else
2650 1042146 : return Memory<uint64_t>(fp + slot_offset);
2651 : #endif
2652 : }
2653 :
2654 0 : uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
2655 366241 : Address address = fp + slot_offset;
2656 : #if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
2657 : return Memory<uint32_t>(address + kIntSize);
2658 : #else
2659 366241 : return Memory<uint32_t>(address);
2660 : #endif
2661 : }
2662 :
2663 0 : Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
2664 : #if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
2665 0 : return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
2666 : #else
2667 : return Float32::FromBits(Memory<uint32_t>(fp + slot_offset));
2668 : #endif
2669 : }
2670 :
2671 0 : Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
2672 0 : return Float64::FromBits(GetUInt64Slot(fp, slot_offset));
2673 : }
2674 :
2675 21179680 : void TranslatedValue::Handlify() {
2676 21179680 : if (kind() == kTagged) {
2677 : set_initialized_storage(Handle<Object>(raw_literal(), isolate()));
2678 20054528 : raw_literal_ = Object();
2679 : }
2680 21179680 : }
2681 :
2682 0 : TranslatedFrame TranslatedFrame::InterpretedFrame(
2683 : BailoutId bytecode_offset, SharedFunctionInfo shared_info, int height,
2684 : int return_value_offset, int return_value_count) {
2685 : TranslatedFrame frame(kInterpretedFunction, shared_info, height,
2686 : return_value_offset, return_value_count);
2687 1750608 : frame.node_id_ = bytecode_offset;
2688 0 : return frame;
2689 : }
2690 :
2691 0 : TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
2692 : SharedFunctionInfo shared_info, int height) {
2693 0 : return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
2694 : }
2695 :
2696 0 : TranslatedFrame TranslatedFrame::ConstructStubFrame(
2697 : BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
2698 : TranslatedFrame frame(kConstructStub, shared_info, height);
2699 40117 : frame.node_id_ = bailout_id;
2700 0 : return frame;
2701 : }
2702 :
2703 0 : TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
2704 : BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
2705 : TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
2706 42231 : frame.node_id_ = bailout_id;
2707 0 : return frame;
2708 : }
2709 :
2710 0 : TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
2711 : BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
2712 : TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
2713 2066 : frame.node_id_ = bailout_id;
2714 0 : return frame;
2715 : }
2716 :
2717 0 : TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
2718 : BailoutId bailout_id, SharedFunctionInfo shared_info, int height) {
2719 : TranslatedFrame frame(kJavaScriptBuiltinContinuationWithCatch, shared_info,
2720 : height);
2721 82 : frame.node_id_ = bailout_id;
2722 0 : return frame;
2723 : }
2724 :
2725 1971282 : int TranslatedFrame::GetValueCount() {
2726 1971282 : switch (kind()) {
2727 : case kInterpretedFunction: {
2728 : int parameter_count =
2729 1753008 : raw_shared_info_->internal_formal_parameter_count() + 1;
2730 : // + 2 for function and context.
2731 1753008 : return height_ + parameter_count + 2;
2732 : }
2733 :
2734 : case kArgumentsAdaptor:
2735 : case kConstructStub:
2736 : case kBuiltinContinuation:
2737 : case kJavaScriptBuiltinContinuation:
2738 : case kJavaScriptBuiltinContinuationWithCatch:
2739 218274 : return 1 + height_;
2740 :
2741 : case kInvalid:
2742 0 : UNREACHABLE();
2743 : break;
2744 : }
2745 0 : UNREACHABLE();
2746 : }
2747 :
2748 :
2749 1968882 : void TranslatedFrame::Handlify() {
2750 1968882 : if (!raw_shared_info_.is_null()) {
2751 : shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_,
2752 1968882 : raw_shared_info_->GetIsolate());
2753 1968882 : raw_shared_info_ = SharedFunctionInfo();
2754 : }
2755 23148562 : for (auto& value : values_) {
2756 21179680 : value.Handlify();
2757 : }
2758 1968882 : }
2759 :
2760 1968882 : TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
2761 : TranslationIterator* iterator, FixedArray literal_array, Address fp,
2762 : FILE* trace_file) {
2763 : Translation::Opcode opcode =
2764 1968882 : static_cast<Translation::Opcode>(iterator->Next());
2765 1968882 : switch (opcode) {
2766 : case Translation::INTERPRETED_FRAME: {
2767 1750608 : BailoutId bytecode_offset = BailoutId(iterator->Next());
2768 : SharedFunctionInfo shared_info =
2769 3501216 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2770 1750608 : int height = iterator->Next();
2771 1750608 : int return_value_offset = iterator->Next();
2772 1750608 : int return_value_count = iterator->Next();
2773 1750608 : if (trace_file != nullptr) {
2774 240 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2775 240 : PrintF(trace_file, " reading input frame %s", name.get());
2776 240 : int arg_count = shared_info->internal_formal_parameter_count() + 1;
2777 : PrintF(trace_file,
2778 : " => bytecode_offset=%d, args=%d, height=%d, retval=%i(#%i); "
2779 : "inputs:\n",
2780 : bytecode_offset.ToInt(), arg_count, height, return_value_offset,
2781 240 : return_value_count);
2782 : }
2783 : return TranslatedFrame::InterpretedFrame(bytecode_offset, shared_info,
2784 : height, return_value_offset,
2785 : return_value_count);
2786 : }
2787 :
2788 : case Translation::ARGUMENTS_ADAPTOR_FRAME: {
2789 : SharedFunctionInfo shared_info =
2790 267556 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2791 133778 : int height = iterator->Next();
2792 133778 : if (trace_file != nullptr) {
2793 0 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2794 0 : PrintF(trace_file, " reading arguments adaptor frame %s", name.get());
2795 0 : PrintF(trace_file, " => height=%d; inputs:\n", height);
2796 : }
2797 : return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
2798 : }
2799 :
2800 : case Translation::CONSTRUCT_STUB_FRAME: {
2801 40117 : BailoutId bailout_id = BailoutId(iterator->Next());
2802 : SharedFunctionInfo shared_info =
2803 80234 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2804 40117 : int height = iterator->Next();
2805 40117 : if (trace_file != nullptr) {
2806 0 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2807 0 : PrintF(trace_file, " reading construct stub frame %s", name.get());
2808 : PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
2809 0 : bailout_id.ToInt(), height);
2810 : }
2811 : return TranslatedFrame::ConstructStubFrame(bailout_id, shared_info,
2812 : height);
2813 : }
2814 :
2815 : case Translation::BUILTIN_CONTINUATION_FRAME: {
2816 42231 : BailoutId bailout_id = BailoutId(iterator->Next());
2817 : SharedFunctionInfo shared_info =
2818 84462 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2819 42231 : int height = iterator->Next();
2820 42231 : if (trace_file != nullptr) {
2821 0 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2822 : PrintF(trace_file, " reading builtin continuation frame %s",
2823 0 : name.get());
2824 : PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
2825 0 : bailout_id.ToInt(), height);
2826 : }
2827 : // Add one to the height to account for the context which was implicitly
2828 : // added to the translation during code generation.
2829 42231 : int height_with_context = height + 1;
2830 : return TranslatedFrame::BuiltinContinuationFrame(bailout_id, shared_info,
2831 : height_with_context);
2832 : }
2833 :
2834 : case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
2835 2066 : BailoutId bailout_id = BailoutId(iterator->Next());
2836 : SharedFunctionInfo shared_info =
2837 4132 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2838 2066 : int height = iterator->Next();
2839 2066 : if (trace_file != nullptr) {
2840 0 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2841 : PrintF(trace_file, " reading JavaScript builtin continuation frame %s",
2842 0 : name.get());
2843 : PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
2844 0 : bailout_id.ToInt(), height);
2845 : }
2846 : // Add one to the height to account for the context which was implicitly
2847 : // added to the translation during code generation.
2848 2066 : int height_with_context = height + 1;
2849 : return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
2850 : bailout_id, shared_info, height_with_context);
2851 : }
2852 : case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
2853 82 : BailoutId bailout_id = BailoutId(iterator->Next());
2854 : SharedFunctionInfo shared_info =
2855 164 : SharedFunctionInfo::cast(literal_array->get(iterator->Next()));
2856 82 : int height = iterator->Next();
2857 82 : if (trace_file != nullptr) {
2858 0 : std::unique_ptr<char[]> name = shared_info->DebugName()->ToCString();
2859 : PrintF(trace_file,
2860 : " reading JavaScript builtin continuation frame with catch %s",
2861 0 : name.get());
2862 : PrintF(trace_file, " => bailout_id=%d, height=%d; inputs:\n",
2863 0 : bailout_id.ToInt(), height);
2864 : }
2865 : // Add one to the height to account for the context which was implicitly
2866 : // added to the translation during code generation.
2867 82 : int height_with_context = height + 1;
2868 : return TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
2869 : bailout_id, shared_info, height_with_context);
2870 : }
2871 : case Translation::UPDATE_FEEDBACK:
2872 : case Translation::BEGIN:
2873 : case Translation::DUPLICATED_OBJECT:
2874 : case Translation::ARGUMENTS_ELEMENTS:
2875 : case Translation::ARGUMENTS_LENGTH:
2876 : case Translation::CAPTURED_OBJECT:
2877 : case Translation::REGISTER:
2878 : case Translation::INT32_REGISTER:
2879 : case Translation::INT64_REGISTER:
2880 : case Translation::UINT32_REGISTER:
2881 : case Translation::BOOL_REGISTER:
2882 : case Translation::FLOAT_REGISTER:
2883 : case Translation::DOUBLE_REGISTER:
2884 : case Translation::STACK_SLOT:
2885 : case Translation::INT32_STACK_SLOT:
2886 : case Translation::INT64_STACK_SLOT:
2887 : case Translation::UINT32_STACK_SLOT:
2888 : case Translation::BOOL_STACK_SLOT:
2889 : case Translation::FLOAT_STACK_SLOT:
2890 : case Translation::DOUBLE_STACK_SLOT:
2891 : case Translation::LITERAL:
2892 : break;
2893 : }
2894 0 : FATAL("We should never get here - unexpected deopt info.");
2895 : return TranslatedFrame::InvalidFrame();
2896 : }
2897 :
2898 : // static
2899 4184503 : void TranslatedFrame::AdvanceIterator(
2900 4849998 : std::deque<TranslatedValue>::iterator* iter) {
2901 : int values_to_skip = 1;
2902 13219004 : while (values_to_skip > 0) {
2903 : // Consume the current element.
2904 4849998 : values_to_skip--;
2905 : // Add all the children.
2906 4849998 : values_to_skip += (*iter)->GetChildrenCount();
2907 :
2908 4849998 : (*iter)++;
2909 : }
2910 4184503 : }
2911 :
2912 501 : Address TranslatedState::ComputeArgumentsPosition(Address input_frame_pointer,
2913 : CreateArgumentsType type,
2914 : int* length) {
2915 : Address parent_frame_pointer = *reinterpret_cast<Address*>(
2916 501 : input_frame_pointer + StandardFrameConstants::kCallerFPOffset);
2917 : intptr_t parent_frame_type = Memory<intptr_t>(
2918 1002 : parent_frame_pointer + CommonFrameConstants::kContextOrFrameTypeOffset);
2919 :
2920 : Address arguments_frame;
2921 501 : if (parent_frame_type ==
2922 : StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)) {
2923 327 : if (length)
2924 : *length = Smi::cast(*FullObjectSlot(
2925 : parent_frame_pointer +
2926 327 : ArgumentsAdaptorFrameConstants::kLengthOffset))
2927 327 : ->value();
2928 : arguments_frame = parent_frame_pointer;
2929 : } else {
2930 174 : if (length) *length = formal_parameter_count_;
2931 : arguments_frame = input_frame_pointer;
2932 : }
2933 :
2934 501 : if (type == CreateArgumentsType::kRestParameter) {
2935 : // If the actual number of arguments is less than the number of formal
2936 : // parameters, we have zero rest parameters.
2937 72 : if (length) *length = std::max(0, *length - formal_parameter_count_);
2938 : }
2939 :
2940 501 : return arguments_frame;
2941 : }
2942 :
2943 : // Creates translated values for an arguments backing store, or the backing
2944 : // store for rest parameters depending on the given {type}. The TranslatedValue
2945 : // objects for the fields are not read from the TranslationIterator, but instead
2946 : // created on-the-fly based on dynamic information in the optimized frame.
2947 247 : void TranslatedState::CreateArgumentsElementsTranslatedValues(
2948 : int frame_index, Address input_frame_pointer, CreateArgumentsType type,
2949 : FILE* trace_file) {
2950 247 : TranslatedFrame& frame = frames_[frame_index];
2951 :
2952 : int length;
2953 : Address arguments_frame =
2954 247 : ComputeArgumentsPosition(input_frame_pointer, type, &length);
2955 :
2956 247 : int object_index = static_cast<int>(object_positions_.size());
2957 247 : int value_index = static_cast<int>(frame.values_.size());
2958 247 : if (trace_file != nullptr) {
2959 : PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
2960 0 : object_index, static_cast<uint8_t>(type), length);
2961 : }
2962 :
2963 494 : object_positions_.push_back({frame_index, value_index});
2964 : frame.Add(TranslatedValue::NewDeferredObject(
2965 494 : this, length + FixedArray::kHeaderSize / kTaggedSize, object_index));
2966 :
2967 247 : ReadOnlyRoots roots(isolate_);
2968 247 : frame.Add(TranslatedValue::NewTagged(this, roots.fixed_array_map()));
2969 494 : frame.Add(TranslatedValue::NewInt32(this, length));
2970 :
2971 : int number_of_holes = 0;
2972 247 : if (type == CreateArgumentsType::kMappedArguments) {
2973 : // If the actual number of arguments is less than the number of formal
2974 : // parameters, we have fewer holes to fill to not overshoot the length.
2975 43 : number_of_holes = Min(formal_parameter_count_, length);
2976 : }
2977 305 : for (int i = 0; i < number_of_holes; ++i) {
2978 58 : frame.Add(TranslatedValue::NewTagged(this, roots.the_hole_value()));
2979 : }
2980 573940 : for (int i = length - number_of_holes - 1; i >= 0; --i) {
2981 : Address argument_slot = arguments_frame +
2982 573693 : CommonFrameConstants::kFixedFrameSizeAboveFp +
2983 1147386 : i * kSystemPointerSize;
2984 573693 : frame.Add(TranslatedValue::NewTagged(this, *FullObjectSlot(argument_slot)));
2985 : }
2986 247 : }
2987 :
2988 : // We can't intermix stack decoding and allocations because the deoptimization
2989 : // infrastracture is not GC safe.
2990 : // Thus we build a temporary structure in malloced space.
2991 : // The TranslatedValue objects created correspond to the static translation
2992 : // instructions from the TranslationIterator, except for
2993 : // Translation::ARGUMENTS_ELEMENTS, where the number and values of the
2994 : // FixedArray elements depend on dynamic information from the optimized frame.
2995 : // Returns the number of expected nested translations from the
2996 : // TranslationIterator.
2997 20605435 : int TranslatedState::CreateNextTranslatedValue(
2998 : int frame_index, TranslationIterator* iterator, FixedArray literal_array,
2999 : Address fp, RegisterValues* registers, FILE* trace_file) {
3000 : disasm::NameConverter converter;
3001 :
3002 20605435 : TranslatedFrame& frame = frames_[frame_index];
3003 20605435 : int value_index = static_cast<int>(frame.values_.size());
3004 :
3005 : Translation::Opcode opcode =
3006 20605435 : static_cast<Translation::Opcode>(iterator->Next());
3007 20605435 : switch (opcode) {
3008 : case Translation::BEGIN:
3009 : case Translation::INTERPRETED_FRAME:
3010 : case Translation::ARGUMENTS_ADAPTOR_FRAME:
3011 : case Translation::CONSTRUCT_STUB_FRAME:
3012 : case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
3013 : case Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
3014 : case Translation::BUILTIN_CONTINUATION_FRAME:
3015 : case Translation::UPDATE_FEEDBACK:
3016 : // Peeled off before getting here.
3017 : break;
3018 :
3019 : case Translation::DUPLICATED_OBJECT: {
3020 83150 : int object_id = iterator->Next();
3021 83150 : if (trace_file != nullptr) {
3022 0 : PrintF(trace_file, "duplicated object #%d", object_id);
3023 : }
3024 83150 : object_positions_.push_back(object_positions_[object_id]);
3025 : TranslatedValue translated_value =
3026 : TranslatedValue::NewDuplicateObject(this, object_id);
3027 : frame.Add(translated_value);
3028 : return translated_value.GetChildrenCount();
3029 : }
3030 :
3031 : case Translation::ARGUMENTS_ELEMENTS: {
3032 : CreateArgumentsType arguments_type =
3033 247 : static_cast<CreateArgumentsType>(iterator->Next());
3034 : CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
3035 247 : trace_file);
3036 247 : return 0;
3037 : }
3038 :
3039 : case Translation::ARGUMENTS_LENGTH: {
3040 : CreateArgumentsType arguments_type =
3041 254 : static_cast<CreateArgumentsType>(iterator->Next());
3042 : int length;
3043 254 : ComputeArgumentsPosition(fp, arguments_type, &length);
3044 254 : if (trace_file != nullptr) {
3045 : PrintF(trace_file, "arguments length field (type = %d, length = %d)",
3046 0 : static_cast<uint8_t>(arguments_type), length);
3047 : }
3048 508 : frame.Add(TranslatedValue::NewInt32(this, length));
3049 : return 0;
3050 : }
3051 :
3052 : case Translation::CAPTURED_OBJECT: {
3053 152471 : int field_count = iterator->Next();
3054 152471 : int object_index = static_cast<int>(object_positions_.size());
3055 152471 : if (trace_file != nullptr) {
3056 : PrintF(trace_file, "captured object #%d (length = %d)", object_index,
3057 0 : field_count);
3058 : }
3059 304942 : object_positions_.push_back({frame_index, value_index});
3060 : TranslatedValue translated_value =
3061 : TranslatedValue::NewDeferredObject(this, field_count, object_index);
3062 : frame.Add(translated_value);
3063 : return translated_value.GetChildrenCount();
3064 : }
3065 :
3066 : case Translation::REGISTER: {
3067 22377 : int input_reg = iterator->Next();
3068 22377 : if (registers == nullptr) {
3069 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3070 : frame.Add(translated_value);
3071 : return translated_value.GetChildrenCount();
3072 : }
3073 22377 : intptr_t value = registers->GetRegister(input_reg);
3074 22377 : if (trace_file != nullptr) {
3075 : PrintF(trace_file, V8PRIxPTR_FMT " ; %s ", value,
3076 360 : converter.NameOfCPURegister(input_reg));
3077 720 : Object(value)->ShortPrint(trace_file);
3078 : }
3079 : TranslatedValue translated_value =
3080 22377 : TranslatedValue::NewTagged(this, Object(value));
3081 : frame.Add(translated_value);
3082 22377 : return translated_value.GetChildrenCount();
3083 : }
3084 :
3085 : case Translation::INT32_REGISTER: {
3086 875 : int input_reg = iterator->Next();
3087 875 : if (registers == nullptr) {
3088 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3089 : frame.Add(translated_value);
3090 : return translated_value.GetChildrenCount();
3091 : }
3092 875 : intptr_t value = registers->GetRegister(input_reg);
3093 875 : if (trace_file != nullptr) {
3094 : PrintF(trace_file, "%" V8PRIdPTR " ; %s (int32)", value,
3095 0 : converter.NameOfCPURegister(input_reg));
3096 : }
3097 : TranslatedValue translated_value =
3098 875 : TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
3099 : frame.Add(translated_value);
3100 875 : return translated_value.GetChildrenCount();
3101 : }
3102 :
3103 : case Translation::INT64_REGISTER: {
3104 0 : int input_reg = iterator->Next();
3105 0 : if (registers == nullptr) {
3106 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3107 : frame.Add(translated_value);
3108 : return translated_value.GetChildrenCount();
3109 : }
3110 0 : intptr_t value = registers->GetRegister(input_reg);
3111 0 : if (trace_file != nullptr) {
3112 : PrintF(trace_file, "%" V8PRIdPTR " ; %s (int64)", value,
3113 0 : converter.NameOfCPURegister(input_reg));
3114 : }
3115 : TranslatedValue translated_value =
3116 : TranslatedValue::NewInt64(this, static_cast<int64_t>(value));
3117 : frame.Add(translated_value);
3118 0 : return translated_value.GetChildrenCount();
3119 : }
3120 :
3121 : case Translation::UINT32_REGISTER: {
3122 14 : int input_reg = iterator->Next();
3123 14 : if (registers == nullptr) {
3124 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3125 : frame.Add(translated_value);
3126 : return translated_value.GetChildrenCount();
3127 : }
3128 14 : intptr_t value = registers->GetRegister(input_reg);
3129 14 : if (trace_file != nullptr) {
3130 : PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint32)", value,
3131 0 : converter.NameOfCPURegister(input_reg));
3132 : }
3133 : TranslatedValue translated_value =
3134 14 : TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
3135 : frame.Add(translated_value);
3136 14 : return translated_value.GetChildrenCount();
3137 : }
3138 :
3139 : case Translation::BOOL_REGISTER: {
3140 65 : int input_reg = iterator->Next();
3141 65 : if (registers == nullptr) {
3142 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3143 : frame.Add(translated_value);
3144 : return translated_value.GetChildrenCount();
3145 : }
3146 65 : intptr_t value = registers->GetRegister(input_reg);
3147 65 : if (trace_file != nullptr) {
3148 : PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
3149 0 : converter.NameOfCPURegister(input_reg));
3150 : }
3151 : TranslatedValue translated_value =
3152 65 : TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
3153 : frame.Add(translated_value);
3154 65 : return translated_value.GetChildrenCount();
3155 : }
3156 :
3157 : case Translation::FLOAT_REGISTER: {
3158 91 : int input_reg = iterator->Next();
3159 91 : if (registers == nullptr) {
3160 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3161 : frame.Add(translated_value);
3162 : return translated_value.GetChildrenCount();
3163 : }
3164 182 : Float32 value = registers->GetFloatRegister(input_reg);
3165 91 : if (trace_file != nullptr) {
3166 : PrintF(trace_file, "%e ; %s (float)", value.get_scalar(),
3167 0 : RegisterName(FloatRegister::from_code(input_reg)));
3168 : }
3169 : TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
3170 : frame.Add(translated_value);
3171 91 : return translated_value.GetChildrenCount();
3172 : }
3173 :
3174 : case Translation::DOUBLE_REGISTER: {
3175 424 : int input_reg = iterator->Next();
3176 424 : if (registers == nullptr) {
3177 : TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
3178 : frame.Add(translated_value);
3179 : return translated_value.GetChildrenCount();
3180 : }
3181 848 : Float64 value = registers->GetDoubleRegister(input_reg);
3182 424 : if (trace_file != nullptr) {
3183 : PrintF(trace_file, "%e ; %s (double)", value.get_scalar(),
3184 0 : RegisterName(DoubleRegister::from_code(input_reg)));
3185 : }
3186 : TranslatedValue translated_value =
3187 : TranslatedValue::NewDouble(this, value);
3188 : frame.Add(translated_value);
3189 424 : return translated_value.GetChildrenCount();
3190 : }
3191 :
3192 : case Translation::STACK_SLOT: {
3193 : int slot_offset =
3194 7434736 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3195 7434736 : intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
3196 7434736 : if (trace_file != nullptr) {
3197 : PrintF(trace_file, V8PRIxPTR_FMT " ; [fp %c %3d] ", value,
3198 960 : slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3199 1920 : Object(value)->ShortPrint(trace_file);
3200 : }
3201 : TranslatedValue translated_value =
3202 7434736 : TranslatedValue::NewTagged(this, Object(value));
3203 : frame.Add(translated_value);
3204 : return translated_value.GetChildrenCount();
3205 : }
3206 :
3207 : case Translation::INT32_STACK_SLOT: {
3208 : int slot_offset =
3209 315540 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3210 : uint32_t value = GetUInt32Slot(fp, slot_offset);
3211 315540 : if (trace_file != nullptr) {
3212 : PrintF(trace_file, "%d ; (int32) [fp %c %3d] ",
3213 : static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
3214 0 : std::abs(slot_offset));
3215 : }
3216 315540 : TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
3217 : frame.Add(translated_value);
3218 : return translated_value.GetChildrenCount();
3219 : }
3220 :
3221 : case Translation::INT64_STACK_SLOT: {
3222 : int slot_offset =
3223 9 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3224 : uint64_t value = GetUInt64Slot(fp, slot_offset);
3225 9 : if (trace_file != nullptr) {
3226 : PrintF(trace_file, "%" V8PRIdPTR " ; (int64) [fp %c %3d] ",
3227 : static_cast<intptr_t>(value), slot_offset < 0 ? '-' : '+',
3228 0 : std::abs(slot_offset));
3229 : }
3230 9 : TranslatedValue translated_value = TranslatedValue::NewInt64(this, value);
3231 : frame.Add(translated_value);
3232 : return translated_value.GetChildrenCount();
3233 : }
3234 :
3235 : case Translation::UINT32_STACK_SLOT: {
3236 : int slot_offset =
3237 50131 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3238 : uint32_t value = GetUInt32Slot(fp, slot_offset);
3239 50131 : if (trace_file != nullptr) {
3240 : PrintF(trace_file, "%u ; (uint32) [fp %c %3d] ", value,
3241 0 : slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3242 : }
3243 : TranslatedValue translated_value =
3244 : TranslatedValue::NewUInt32(this, value);
3245 : frame.Add(translated_value);
3246 : return translated_value.GetChildrenCount();
3247 : }
3248 :
3249 : case Translation::BOOL_STACK_SLOT: {
3250 : int slot_offset =
3251 373 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3252 : uint32_t value = GetUInt32Slot(fp, slot_offset);
3253 373 : if (trace_file != nullptr) {
3254 : PrintF(trace_file, "%u ; (bool) [fp %c %3d] ", value,
3255 0 : slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3256 : }
3257 : TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
3258 : frame.Add(translated_value);
3259 : return translated_value.GetChildrenCount();
3260 : }
3261 :
3262 : case Translation::FLOAT_STACK_SLOT: {
3263 : int slot_offset =
3264 197 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3265 197 : Float32 value = GetFloatSlot(fp, slot_offset);
3266 197 : if (trace_file != nullptr) {
3267 : PrintF(trace_file, "%e ; (float) [fp %c %3d] ", value.get_scalar(),
3268 0 : slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3269 : }
3270 : TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
3271 : frame.Add(translated_value);
3272 : return translated_value.GetChildrenCount();
3273 : }
3274 :
3275 : case Translation::DOUBLE_STACK_SLOT: {
3276 : int slot_offset =
3277 521064 : OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
3278 521064 : Float64 value = GetDoubleSlot(fp, slot_offset);
3279 521064 : if (trace_file != nullptr) {
3280 : PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
3281 0 : slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
3282 : }
3283 : TranslatedValue translated_value =
3284 : TranslatedValue::NewDouble(this, value);
3285 : frame.Add(translated_value);
3286 : return translated_value.GetChildrenCount();
3287 : }
3288 :
3289 : case Translation::LITERAL: {
3290 12023417 : int literal_index = iterator->Next();
3291 12023417 : Object value = literal_array->get(literal_index);
3292 12023417 : if (trace_file != nullptr) {
3293 : PrintF(trace_file, V8PRIxPTR_FMT " ; (literal %2d) ", value->ptr(),
3294 1080 : literal_index);
3295 1080 : value->ShortPrint(trace_file);
3296 : }
3297 :
3298 : TranslatedValue translated_value =
3299 : TranslatedValue::NewTagged(this, value);
3300 : frame.Add(translated_value);
3301 : return translated_value.GetChildrenCount();
3302 : }
3303 : }
3304 :
3305 0 : FATAL("We should never get here - unexpected deopt info.");
3306 : }
3307 :
3308 4052565 : TranslatedState::TranslatedState(const JavaScriptFrame* frame) {
3309 1350855 : int deopt_index = Safepoint::kNoDeoptimizationIndex;
3310 : DeoptimizationData data =
3311 : static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
3312 1350855 : &deopt_index);
3313 : DCHECK(!data.is_null() && deopt_index != Safepoint::kNoDeoptimizationIndex);
3314 : TranslationIterator it(data->TranslationByteArray(),
3315 4052565 : data->TranslationIndex(deopt_index)->value());
3316 : Init(frame->isolate(), frame->fp(), &it, data->LiteralArray(),
3317 : nullptr /* registers */, nullptr /* trace file */,
3318 2701710 : frame->function()->shared()->internal_formal_parameter_count());
3319 1350855 : }
3320 :
3321 1396025 : void TranslatedState::Init(Isolate* isolate, Address input_frame_pointer,
3322 : TranslationIterator* iterator,
3323 : FixedArray literal_array, RegisterValues* registers,
3324 : FILE* trace_file, int formal_parameter_count) {
3325 : DCHECK(frames_.empty());
3326 :
3327 1396025 : formal_parameter_count_ = formal_parameter_count;
3328 1396025 : isolate_ = isolate;
3329 :
3330 : // Read out the 'header' translation.
3331 : Translation::Opcode opcode =
3332 1396025 : static_cast<Translation::Opcode>(iterator->Next());
3333 1396025 : CHECK(opcode == Translation::BEGIN);
3334 :
3335 1396025 : int count = iterator->Next();
3336 1396025 : frames_.reserve(count);
3337 1396025 : iterator->Next(); // Drop JS frames count.
3338 1396025 : int update_feedback_count = iterator->Next();
3339 1396025 : CHECK_GE(update_feedback_count, 0);
3340 1396025 : CHECK_LE(update_feedback_count, 1);
3341 :
3342 1396025 : if (update_feedback_count == 1) {
3343 1883 : ReadUpdateFeedback(iterator, literal_array, trace_file);
3344 : }
3345 :
3346 1396026 : std::stack<int> nested_counts;
3347 :
3348 : // Read the frames
3349 3364908 : for (int frame_index = 0; frame_index < count; frame_index++) {
3350 : // Read the frame descriptor.
3351 : frames_.push_back(CreateNextTranslatedFrame(
3352 3937764 : iterator, literal_array, input_frame_pointer, trace_file));
3353 1968882 : TranslatedFrame& frame = frames_.back();
3354 :
3355 : // Read the values.
3356 1968882 : int values_to_process = frame.GetValueCount();
3357 26512081 : while (values_to_process > 0 || !nested_counts.empty()) {
3358 20605435 : if (trace_file != nullptr) {
3359 2400 : if (nested_counts.empty()) {
3360 : // For top level values, print the value number.
3361 : PrintF(trace_file, " %3i: ",
3362 2400 : frame.GetValueCount() - values_to_process);
3363 : } else {
3364 : // Take care of indenting for nested values.
3365 0 : PrintF(trace_file, " ");
3366 0 : for (size_t j = 0; j < nested_counts.size(); j++) {
3367 0 : PrintF(trace_file, " ");
3368 : }
3369 : }
3370 : }
3371 :
3372 : int nested_count =
3373 : CreateNextTranslatedValue(frame_index, iterator, literal_array,
3374 20605435 : input_frame_pointer, registers, trace_file);
3375 :
3376 20605435 : if (trace_file != nullptr) {
3377 2400 : PrintF(trace_file, "\n");
3378 : }
3379 :
3380 : // Update the value count and resolve the nesting.
3381 20605435 : values_to_process--;
3382 20605435 : if (nested_count > 0) {
3383 : nested_counts.push(values_to_process);
3384 152471 : values_to_process = nested_count;
3385 : } else {
3386 22726788 : while (values_to_process == 0 && !nested_counts.empty()) {
3387 152471 : values_to_process = nested_counts.top();
3388 : nested_counts.pop();
3389 : }
3390 : }
3391 : }
3392 : }
3393 :
3394 1396026 : CHECK(!iterator->HasNext() ||
3395 : static_cast<Translation::Opcode>(iterator->Next()) ==
3396 : Translation::BEGIN);
3397 1396026 : }
3398 :
3399 1397909 : void TranslatedState::Prepare(Address stack_frame_pointer) {
3400 4760934 : for (auto& frame : frames_) frame.Handlify();
3401 :
3402 1396026 : if (!feedback_vector_.is_null()) {
3403 : feedback_vector_handle_ =
3404 1883 : Handle<FeedbackVector>(feedback_vector_, isolate());
3405 1883 : feedback_vector_ = FeedbackVector();
3406 : }
3407 1396026 : stack_frame_pointer_ = stack_frame_pointer;
3408 :
3409 1396026 : UpdateFromPreviouslyMaterializedObjects();
3410 1396026 : }
3411 :
3412 57091 : TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
3413 57091 : CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
3414 57091 : TranslatedState::ObjectPosition pos = object_positions_[object_index];
3415 114182 : return &(frames_[pos.frame_index_].values_[pos.value_index_]);
3416 : }
3417 :
3418 94082 : Handle<Object> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
3419 47041 : slot = ResolveCapturedObject(slot);
3420 :
3421 : DisallowHeapAllocation no_allocation;
3422 47041 : if (slot->materialization_state() != TranslatedValue::kFinished) {
3423 46081 : std::stack<int> worklist;
3424 92162 : worklist.push(slot->object_index());
3425 : slot->mark_finished();
3426 :
3427 92947 : while (!worklist.empty()) {
3428 46866 : int index = worklist.top();
3429 : worklist.pop();
3430 46866 : InitializeCapturedObjectAt(index, &worklist, no_allocation);
3431 : }
3432 : }
3433 47041 : return slot->GetStorage();
3434 : }
3435 :
3436 46866 : void TranslatedState::InitializeCapturedObjectAt(
3437 : int object_index, std::stack<int>* worklist,
3438 : const DisallowHeapAllocation& no_allocation) {
3439 46866 : CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
3440 46866 : TranslatedState::ObjectPosition pos = object_positions_[object_index];
3441 46866 : int value_index = pos.value_index_;
3442 :
3443 46866 : TranslatedFrame* frame = &(frames_[pos.frame_index_]);
3444 93732 : TranslatedValue* slot = &(frame->values_[value_index]);
3445 46866 : value_index++;
3446 :
3447 46866 : CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
3448 46866 : CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
3449 :
3450 : // Ensure all fields are initialized.
3451 46866 : int children_init_index = value_index;
3452 1595174 : for (int i = 0; i < slot->GetChildrenCount(); i++) {
3453 : // If the field is an object that has not been initialized yet, queue it
3454 : // for initialization (and mark it as such).
3455 1502447 : TranslatedValue* child_slot = frame->ValueAt(children_init_index);
3456 750721 : if (child_slot->kind() == TranslatedValue::kCapturedObject ||
3457 : child_slot->kind() == TranslatedValue::kDuplicatedObject) {
3458 1005 : child_slot = ResolveCapturedObject(child_slot);
3459 1005 : if (child_slot->materialization_state() != TranslatedValue::kFinished) {
3460 : DCHECK_EQ(TranslatedValue::kAllocated,
3461 : child_slot->materialization_state());
3462 1570 : worklist->push(child_slot->object_index());
3463 : child_slot->mark_finished();
3464 : }
3465 : }
3466 750721 : SkipSlots(1, frame, &children_init_index);
3467 : }
3468 :
3469 : // Read the map.
3470 : // The map should never be materialized, so let us check we already have
3471 : // an existing object here.
3472 93732 : CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
3473 93732 : Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
3474 93732 : CHECK(map->IsMap());
3475 46866 : value_index++;
3476 :
3477 : // Handle the special cases.
3478 46866 : switch (map->instance_type()) {
3479 : case MUTABLE_HEAP_NUMBER_TYPE:
3480 : case FIXED_DOUBLE_ARRAY_TYPE:
3481 39 : return;
3482 :
3483 : case FIXED_ARRAY_TYPE:
3484 : case AWAIT_CONTEXT_TYPE:
3485 : case BLOCK_CONTEXT_TYPE:
3486 : case CATCH_CONTEXT_TYPE:
3487 : case DEBUG_EVALUATE_CONTEXT_TYPE:
3488 : case EVAL_CONTEXT_TYPE:
3489 : case FUNCTION_CONTEXT_TYPE:
3490 : case MODULE_CONTEXT_TYPE:
3491 : case NATIVE_CONTEXT_TYPE:
3492 : case SCRIPT_CONTEXT_TYPE:
3493 : case WITH_CONTEXT_TYPE:
3494 : case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
3495 : case HASH_TABLE_TYPE:
3496 : case ORDERED_HASH_MAP_TYPE:
3497 : case ORDERED_HASH_SET_TYPE:
3498 : case NAME_DICTIONARY_TYPE:
3499 : case GLOBAL_DICTIONARY_TYPE:
3500 : case NUMBER_DICTIONARY_TYPE:
3501 : case SIMPLE_NUMBER_DICTIONARY_TYPE:
3502 : case STRING_TABLE_TYPE:
3503 : case PROPERTY_ARRAY_TYPE:
3504 : case SCRIPT_CONTEXT_TABLE_TYPE:
3505 : InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map,
3506 773 : no_allocation);
3507 773 : break;
3508 :
3509 : default:
3510 46054 : CHECK(map->IsJSObjectMap());
3511 46054 : InitializeJSObjectAt(frame, &value_index, slot, map, no_allocation);
3512 46054 : break;
3513 : }
3514 46827 : CHECK_EQ(value_index, children_init_index);
3515 : }
3516 :
3517 94082 : void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
3518 47041 : slot = ResolveCapturedObject(slot);
3519 :
3520 47041 : if (slot->materialization_state() == TranslatedValue::kUninitialized) {
3521 46081 : std::stack<int> worklist;
3522 92162 : worklist.push(slot->object_index());
3523 : slot->mark_allocated();
3524 :
3525 92908 : while (!worklist.empty()) {
3526 46827 : int index = worklist.top();
3527 : worklist.pop();
3528 46827 : EnsureCapturedObjectAllocatedAt(index, &worklist);
3529 : }
3530 : }
3531 47041 : }
3532 :
3533 31 : void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
3534 : int* value_index,
3535 : TranslatedValue* slot,
3536 46 : Handle<Map> map) {
3537 62 : int length = Smi::cast(frame->values_[*value_index].GetRawValue())->value();
3538 31 : (*value_index)++;
3539 : Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
3540 31 : isolate()->factory()->NewFixedDoubleArray(length));
3541 31 : CHECK_GT(length, 0);
3542 86 : for (int i = 0; i < length; i++) {
3543 172 : CHECK_NE(TranslatedValue::kCapturedObject,
3544 : frame->values_[*value_index].kind());
3545 172 : Handle<Object> value = frame->values_[*value_index].GetValue();
3546 172 : if (value->IsNumber()) {
3547 142 : array->set(i, value->Number());
3548 : } else {
3549 15 : CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
3550 : array->set_the_hole(isolate(), i);
3551 : }
3552 86 : (*value_index)++;
3553 : }
3554 : slot->set_storage(array);
3555 31 : }
3556 :
3557 8 : void TranslatedState::MaterializeMutableHeapNumber(TranslatedFrame* frame,
3558 : int* value_index,
3559 8 : TranslatedValue* slot) {
3560 16 : CHECK_NE(TranslatedValue::kCapturedObject,
3561 : frame->values_[*value_index].kind());
3562 16 : Handle<Object> value = frame->values_[*value_index].GetValue();
3563 16 : CHECK(value->IsNumber());
3564 : Handle<MutableHeapNumber> box =
3565 16 : isolate()->factory()->NewMutableHeapNumber(value->Number());
3566 8 : (*value_index)++;
3567 : slot->set_storage(box);
3568 8 : }
3569 :
3570 : namespace {
3571 :
3572 : enum DoubleStorageKind : uint8_t {
3573 : kStoreTagged,
3574 : kStoreUnboxedDouble,
3575 : kStoreMutableHeapNumber,
3576 : };
3577 :
3578 : } // namespace
3579 :
3580 2112166 : void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
3581 : int* value_index) {
3582 8066431 : while (slots_to_skip > 0) {
3583 7684198 : TranslatedValue* slot = &(frame->values_[*value_index]);
3584 3842099 : (*value_index)++;
3585 3842099 : slots_to_skip--;
3586 :
3587 3842099 : if (slot->kind() == TranslatedValue::kCapturedObject) {
3588 2033 : slots_to_skip += slot->GetChildrenCount();
3589 : }
3590 : }
3591 2112166 : }
3592 :
3593 46827 : void TranslatedState::EnsureCapturedObjectAllocatedAt(
3594 763 : int object_index, std::stack<int>* worklist) {
3595 46827 : CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
3596 46827 : TranslatedState::ObjectPosition pos = object_positions_[object_index];
3597 46827 : int value_index = pos.value_index_;
3598 :
3599 46827 : TranslatedFrame* frame = &(frames_[pos.frame_index_]);
3600 93654 : TranslatedValue* slot = &(frame->values_[value_index]);
3601 46827 : value_index++;
3602 :
3603 46827 : CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
3604 46827 : CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
3605 :
3606 : // Read the map.
3607 : // The map should never be materialized, so let us check we already have
3608 : // an existing object here.
3609 46827 : CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
3610 93654 : Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
3611 93654 : CHECK(map->IsMap());
3612 46827 : value_index++;
3613 :
3614 : // Handle the special cases.
3615 46827 : switch (map->instance_type()) {
3616 : case FIXED_DOUBLE_ARRAY_TYPE:
3617 : // Materialize (i.e. allocate&initialize) the array and return since
3618 : // there is no need to process the children.
3619 31 : return MaterializeFixedDoubleArray(frame, &value_index, slot, map);
3620 :
3621 : case MUTABLE_HEAP_NUMBER_TYPE:
3622 : // Materialize (i.e. allocate&initialize) the heap number and return.
3623 : // There is no need to process the children.
3624 8 : return MaterializeMutableHeapNumber(frame, &value_index, slot);
3625 :
3626 : case FIXED_ARRAY_TYPE:
3627 : case SCRIPT_CONTEXT_TABLE_TYPE:
3628 : case AWAIT_CONTEXT_TYPE:
3629 : case BLOCK_CONTEXT_TYPE:
3630 : case CATCH_CONTEXT_TYPE:
3631 : case DEBUG_EVALUATE_CONTEXT_TYPE:
3632 : case EVAL_CONTEXT_TYPE:
3633 : case FUNCTION_CONTEXT_TYPE:
3634 : case MODULE_CONTEXT_TYPE:
3635 : case NATIVE_CONTEXT_TYPE:
3636 : case SCRIPT_CONTEXT_TYPE:
3637 : case WITH_CONTEXT_TYPE:
3638 : case HASH_TABLE_TYPE:
3639 : case ORDERED_HASH_MAP_TYPE:
3640 : case ORDERED_HASH_SET_TYPE:
3641 : case NAME_DICTIONARY_TYPE:
3642 : case GLOBAL_DICTIONARY_TYPE:
3643 : case NUMBER_DICTIONARY_TYPE:
3644 : case SIMPLE_NUMBER_DICTIONARY_TYPE:
3645 : case STRING_TABLE_TYPE: {
3646 : // Check we have the right size.
3647 : int array_length =
3648 1468 : Smi::cast(frame->values_[value_index].GetRawValue())->value();
3649 :
3650 : int instance_size = FixedArray::SizeFor(array_length);
3651 734 : CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
3652 :
3653 : // Canonicalize empty fixed array.
3654 734 : if (*map == ReadOnlyRoots(isolate()).empty_fixed_array()->map() &&
3655 : array_length == 0) {
3656 : slot->set_storage(isolate()->factory()->empty_fixed_array());
3657 : } else {
3658 705 : slot->set_storage(AllocateStorageFor(slot));
3659 : }
3660 :
3661 : // Make sure all the remaining children (after the map) are allocated.
3662 : return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
3663 734 : &value_index, worklist);
3664 : }
3665 :
3666 : case PROPERTY_ARRAY_TYPE: {
3667 : // Check we have the right size.
3668 : int length_or_hash =
3669 0 : Smi::cast(frame->values_[value_index].GetRawValue())->value();
3670 : int array_length = PropertyArray::LengthField::decode(length_or_hash);
3671 : int instance_size = PropertyArray::SizeFor(array_length);
3672 0 : CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);
3673 :
3674 0 : slot->set_storage(AllocateStorageFor(slot));
3675 : // Make sure all the remaining children (after the map) are allocated.
3676 : return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
3677 0 : &value_index, worklist);
3678 : }
3679 :
3680 : default:
3681 46054 : CHECK(map->IsJSObjectMap());
3682 46054 : EnsureJSObjectAllocated(slot, map);
3683 92108 : TranslatedValue* properties_slot = &(frame->values_[value_index]);
3684 46054 : value_index++;
3685 46054 : if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
3686 : // If we are materializing the property array, make sure we put
3687 : // the mutable heap numbers at the right places.
3688 39 : EnsurePropertiesAllocatedAndMarked(properties_slot, map);
3689 : EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
3690 39 : &value_index, worklist);
3691 : }
3692 : // Make sure all the remaining children (after the map and properties) are
3693 : // allocated.
3694 : return EnsureChildrenAllocated(slot->GetChildrenCount() - 2, frame,
3695 46054 : &value_index, worklist);
3696 : }
3697 : UNREACHABLE();
3698 : }
3699 :
3700 46827 : void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
3701 : int* value_index,
3702 : std::stack<int>* worklist) {
3703 : // Ensure all children are allocated.
3704 704542 : for (int i = 0; i < count; i++) {
3705 : // If the field is an object that has not been allocated yet, queue it
3706 : // for initialization (and mark it as such).
3707 1316396 : TranslatedValue* child_slot = frame->ValueAt(*value_index);
3708 657715 : if (child_slot->kind() == TranslatedValue::kCapturedObject ||
3709 : child_slot->kind() == TranslatedValue::kDuplicatedObject) {
3710 966 : child_slot = ResolveCapturedObject(child_slot);
3711 966 : if (child_slot->materialization_state() ==
3712 : TranslatedValue::kUninitialized) {
3713 1492 : worklist->push(child_slot->object_index());
3714 : child_slot->mark_allocated();
3715 : }
3716 : } else {
3717 : // Make sure the simple values (heap numbers, etc.) are properly
3718 : // initialized.
3719 656749 : child_slot->MaterializeSimple();
3720 : }
3721 657715 : SkipSlots(1, frame, value_index);
3722 : }
3723 46827 : }
3724 :
3725 39 : void TranslatedState::EnsurePropertiesAllocatedAndMarked(
3726 78 : TranslatedValue* properties_slot, Handle<Map> map) {
3727 39 : CHECK_EQ(TranslatedValue::kUninitialized,
3728 : properties_slot->materialization_state());
3729 :
3730 39 : Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
3731 : properties_slot->mark_allocated();
3732 : properties_slot->set_storage(object_storage);
3733 :
3734 : // Set markers for the double properties.
3735 78 : Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate());
3736 : int field_count = map->NumberOfOwnDescriptors();
3737 86 : for (int i = 0; i < field_count; i++) {
3738 47 : FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3739 102 : if (descriptors->GetDetails(i).representation().IsDouble() &&
3740 : !index.is_inobject()) {
3741 8 : CHECK(!map->IsUnboxedDoubleField(index));
3742 : int outobject_index = index.outobject_array_index();
3743 8 : int array_index = outobject_index * kTaggedSize;
3744 : object_storage->set(array_index, kStoreMutableHeapNumber);
3745 : }
3746 : }
3747 39 : }
3748 :
3749 93596 : Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
3750 : int allocate_size =
3751 46798 : ByteArray::LengthFor(slot->GetChildrenCount() * kTaggedSize);
3752 : // It is important to allocate all the objects tenured so that the marker
3753 : // does not visit them.
3754 : Handle<ByteArray> object_storage =
3755 46798 : isolate()->factory()->NewByteArray(allocate_size, TENURED);
3756 10604044 : for (int i = 0; i < object_storage->length(); i++) {
3757 : object_storage->set(i, kStoreTagged);
3758 : }
3759 46798 : return object_storage;
3760 : }
3761 :
3762 46054 : void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
3763 46054 : Handle<Map> map) {
3764 92108 : CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kTaggedSize);
3765 :
3766 46054 : Handle<ByteArray> object_storage = AllocateStorageFor(slot);
3767 : // Now we handle the interesting (JSObject) case.
3768 92108 : Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate());
3769 : int field_count = map->NumberOfOwnDescriptors();
3770 :
3771 : // Set markers for the double properties.
3772 78798 : for (int i = 0; i < field_count; i++) {
3773 32744 : FieldIndex index = FieldIndex::ForDescriptor(*map, i);
3774 65519 : if (descriptors->GetDetails(i).representation().IsDouble() &&
3775 : index.is_inobject()) {
3776 15 : CHECK_GE(index.index(), FixedArray::kHeaderSize / kTaggedSize);
3777 15 : int array_index = index.index() * kTaggedSize - FixedArray::kHeaderSize;
3778 30 : uint8_t marker = map->IsUnboxedDoubleField(index)
3779 : ? kStoreUnboxedDouble
3780 15 : : kStoreMutableHeapNumber;
3781 : object_storage->set(array_index, marker);
3782 : }
3783 : }
3784 : slot->set_storage(object_storage);
3785 46054 : }
3786 :
3787 703730 : Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
3788 : int* value_index) {
3789 2111190 : TranslatedValue* slot = frame->ValueAt(*value_index);
3790 703730 : SkipSlots(1, frame, value_index);
3791 703730 : if (slot->kind() == TranslatedValue::kDuplicatedObject) {
3792 405 : slot = ResolveCapturedObject(slot);
3793 : }
3794 703730 : CHECK_NE(TranslatedValue::kUninitialized, slot->materialization_state());
3795 703730 : return slot->GetStorage();
3796 : }
3797 :
3798 46054 : void TranslatedState::InitializeJSObjectAt(
3799 : TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
3800 46054 : Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
3801 46054 : Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
3802 : DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
3803 :
3804 : // The object should have at least a map and some payload.
3805 46054 : CHECK_GE(slot->GetChildrenCount(), 2);
3806 :
3807 : // Notify the concurrent marker about the layout change.
3808 : isolate()->heap()->NotifyObjectLayoutChange(
3809 92108 : *object_storage, slot->GetChildrenCount() * kTaggedSize, no_allocation);
3810 :
3811 : // Fill the property array field.
3812 : {
3813 46054 : Handle<Object> properties = GetValueAndAdvance(frame, value_index);
3814 46054 : WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
3815 : *properties);
3816 92108 : WRITE_BARRIER(*object_storage, JSObject::kPropertiesOrHashOffset,
3817 : *properties);
3818 : }
3819 :
3820 : // For all the other fields we first look at the fixed array and check the
3821 : // marker to see if we store an unboxed double.
3822 : DCHECK_EQ(kTaggedSize, JSObject::kPropertiesOrHashOffset);
3823 253018 : for (int i = 2; i < slot->GetChildrenCount(); i++) {
3824 : // Initialize and extract the value from its slot.
3825 80455 : Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
3826 :
3827 : // Read out the marker and ensure the field is consistent with
3828 : // what the markers in the storage say (note that all heap numbers
3829 : // should be fully initialized by now).
3830 80455 : int offset = i * kTaggedSize;
3831 80455 : uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
3832 80455 : if (marker == kStoreUnboxedDouble) {
3833 : double double_field_value;
3834 30 : if (field_value->IsSmi()) {
3835 4 : double_field_value = Smi::cast(*field_value)->value();
3836 : } else {
3837 22 : CHECK(field_value->IsHeapNumber());
3838 : double_field_value = HeapNumber::cast(*field_value)->value();
3839 : }
3840 15 : WRITE_DOUBLE_FIELD(*object_storage, offset, double_field_value);
3841 80440 : } else if (marker == kStoreMutableHeapNumber) {
3842 0 : CHECK(field_value->IsMutableHeapNumber());
3843 0 : WRITE_FIELD(*object_storage, offset, *field_value);
3844 0 : WRITE_BARRIER(*object_storage, offset, *field_value);
3845 : } else {
3846 80440 : CHECK_EQ(kStoreTagged, marker);
3847 80440 : WRITE_FIELD(*object_storage, offset, *field_value);
3848 160880 : WRITE_BARRIER(*object_storage, offset, *field_value);
3849 : }
3850 : }
3851 46054 : object_storage->synchronized_set_map(*map);
3852 46054 : }
3853 :
3854 773 : void TranslatedState::InitializeObjectWithTaggedFieldsAt(
3855 : TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
3856 1517 : Handle<Map> map, const DisallowHeapAllocation& no_allocation) {
3857 773 : Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
3858 :
3859 : // Skip the writes if we already have the canonical empty fixed array.
3860 773 : if (*object_storage == ReadOnlyRoots(isolate()).empty_fixed_array()) {
3861 29 : CHECK_EQ(2, slot->GetChildrenCount());
3862 29 : Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
3863 87 : CHECK_EQ(*length_value, Smi::FromInt(0));
3864 773 : return;
3865 : }
3866 :
3867 : // Notify the concurrent marker about the layout change.
3868 : isolate()->heap()->NotifyObjectLayoutChange(
3869 1488 : *object_storage, slot->GetChildrenCount() * kTaggedSize, no_allocation);
3870 :
3871 : // Write the fields to the object.
3872 1155872 : for (int i = 1; i < slot->GetChildrenCount(); i++) {
3873 577192 : Handle<Object> field_value = GetValueAndAdvance(frame, value_index);
3874 577192 : int offset = i * kTaggedSize;
3875 577192 : uint8_t marker = READ_UINT8_FIELD(*object_storage, offset);
3876 577192 : if (i > 1 && marker == kStoreMutableHeapNumber) {
3877 16 : CHECK(field_value->IsMutableHeapNumber());
3878 : } else {
3879 577184 : CHECK(marker == kStoreTagged || i == 1);
3880 1154368 : CHECK(!field_value->IsMutableHeapNumber());
3881 : }
3882 :
3883 577192 : WRITE_FIELD(*object_storage, offset, *field_value);
3884 1154384 : WRITE_BARRIER(*object_storage, offset, *field_value);
3885 : }
3886 :
3887 744 : object_storage->synchronized_set_map(*map);
3888 : }
3889 :
3890 250007 : TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
3891 250007 : while (slot->kind() == TranslatedValue::kDuplicatedObject) {
3892 57091 : slot = GetValueByObjectIndex(slot->object_index());
3893 : }
3894 96458 : CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
3895 96458 : return slot;
3896 : }
3897 :
3898 42 : TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
3899 168 : for (size_t i = 0; i < frames_.size(); i++) {
3900 266 : if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
3901 84 : frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
3902 : frames_[i].kind() ==
3903 : TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
3904 84 : if (jsframe_index > 0) {
3905 42 : jsframe_index--;
3906 : } else {
3907 : return &(frames_[i]);
3908 : }
3909 : }
3910 : }
3911 : return nullptr;
3912 : }
3913 :
3914 2614 : TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
3915 : int jsframe_index, int* args_count) {
3916 28026 : for (size_t i = 0; i < frames_.size(); i++) {
3917 50036 : if (frames_[i].kind() == TranslatedFrame::kInterpretedFunction ||
3918 19389 : frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
3919 : frames_[i].kind() ==
3920 : TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
3921 8637 : if (jsframe_index > 0) {
3922 6023 : jsframe_index--;
3923 : } else {
3924 : // We have the JS function frame, now check if it has arguments
3925 : // adaptor.
3926 5228 : if (i > 0 &&
3927 5228 : frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
3928 2184 : *args_count = frames_[i - 1].height();
3929 1092 : return &(frames_[i - 1]);
3930 : }
3931 : *args_count =
3932 1522 : frames_[i].shared_info()->internal_formal_parameter_count() + 1;
3933 1522 : return &(frames_[i]);
3934 : }
3935 : }
3936 : }
3937 : return nullptr;
3938 : }
3939 :
3940 169 : void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
3941 : MaterializedObjectStore* materialized_store =
3942 169 : isolate_->materialized_object_store();
3943 : Handle<FixedArray> previously_materialized_objects =
3944 169 : materialized_store->Get(stack_frame_pointer_);
3945 :
3946 169 : Handle<Object> marker = isolate_->factory()->arguments_marker();
3947 :
3948 169 : int length = static_cast<int>(object_positions_.size());
3949 : bool new_store = false;
3950 169 : if (previously_materialized_objects.is_null()) {
3951 : previously_materialized_objects =
3952 141 : isolate_->factory()->NewFixedArray(length, TENURED);
3953 527 : for (int i = 0; i < length; i++) {
3954 386 : previously_materialized_objects->set(i, *marker);
3955 : }
3956 : new_store = true;
3957 : }
3958 :
3959 169 : CHECK_EQ(length, previously_materialized_objects->length());
3960 :
3961 : bool value_changed = false;
3962 456 : for (int i = 0; i < length; i++) {
3963 456 : TranslatedState::ObjectPosition pos = object_positions_[i];
3964 : TranslatedValue* value_info =
3965 597 : &(frames_[pos.frame_index_].values_[pos.value_index_]);
3966 :
3967 456 : CHECK(value_info->IsMaterializedObject());
3968 :
3969 : // Skip duplicate objects (i.e., those that point to some
3970 : // other object id).
3971 456 : if (value_info->object_index() != i) continue;
3972 :
3973 302 : Handle<Object> value(value_info->GetRawValue(), isolate_);
3974 :
3975 302 : if (!value.is_identical_to(marker)) {
3976 267 : if (previously_materialized_objects->get(i) == *marker) {
3977 225 : previously_materialized_objects->set(i, *value);
3978 : value_changed = true;
3979 : } else {
3980 42 : CHECK(previously_materialized_objects->get(i) == *value);
3981 : }
3982 : }
3983 : }
3984 169 : if (new_store && value_changed) {
3985 : materialized_store->Set(stack_frame_pointer_,
3986 141 : previously_materialized_objects);
3987 141 : CHECK_EQ(frames_[0].kind(), TranslatedFrame::kInterpretedFunction);
3988 282 : CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
3989 141 : Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
3990 : }
3991 169 : }
3992 :
3993 1396026 : void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
3994 : MaterializedObjectStore* materialized_store =
3995 1396026 : isolate_->materialized_object_store();
3996 : Handle<FixedArray> previously_materialized_objects =
3997 1396026 : materialized_store->Get(stack_frame_pointer_);
3998 :
3999 : // If we have no previously materialized objects, there is nothing to do.
4000 2792052 : if (previously_materialized_objects.is_null()) return;
4001 :
4002 197 : Handle<Object> marker = isolate_->factory()->arguments_marker();
4003 :
4004 197 : int length = static_cast<int>(object_positions_.size());
4005 197 : CHECK_EQ(length, previously_materialized_objects->length());
4006 :
4007 526 : for (int i = 0; i < length; i++) {
4008 : // For a previously materialized objects, inject their value into the
4009 : // translated values.
4010 526 : if (previously_materialized_objects->get(i) != *marker) {
4011 309 : TranslatedState::ObjectPosition pos = object_positions_[i];
4012 : TranslatedValue* value_info =
4013 309 : &(frames_[pos.frame_index_].values_[pos.value_index_]);
4014 309 : CHECK(value_info->IsMaterializedObject());
4015 :
4016 309 : if (value_info->kind() == TranslatedValue::kCapturedObject) {
4017 : value_info->set_initialized_storage(
4018 309 : Handle<Object>(previously_materialized_objects->get(i), isolate_));
4019 : }
4020 : }
4021 : }
4022 : }
4023 :
4024 0 : void TranslatedState::VerifyMaterializedObjects() {
4025 : #if VERIFY_HEAP
4026 : int length = static_cast<int>(object_positions_.size());
4027 : for (int i = 0; i < length; i++) {
4028 : TranslatedValue* slot = GetValueByObjectIndex(i);
4029 : if (slot->kind() == TranslatedValue::kCapturedObject) {
4030 : CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
4031 : if (slot->materialization_state() == TranslatedValue::kFinished) {
4032 : slot->GetStorage()->ObjectVerify(isolate());
4033 : } else {
4034 : CHECK_EQ(slot->materialization_state(),
4035 : TranslatedValue::kUninitialized);
4036 : }
4037 : }
4038 : }
4039 : #endif
4040 0 : }
4041 :
4042 47054 : bool TranslatedState::DoUpdateFeedback() {
4043 45171 : if (!feedback_vector_handle_.is_null()) {
4044 1883 : CHECK(!feedback_slot_.IsInvalid());
4045 1883 : isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
4046 1883 : FeedbackNexus nexus(feedback_vector_handle_, feedback_slot_);
4047 1883 : nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
4048 : return true;
4049 : }
4050 : return false;
4051 : }
4052 :
4053 1883 : void TranslatedState::ReadUpdateFeedback(TranslationIterator* iterator,
4054 : FixedArray literal_array,
4055 : FILE* trace_file) {
4056 3766 : CHECK_EQ(Translation::UPDATE_FEEDBACK, iterator->Next());
4057 3766 : feedback_vector_ = FeedbackVector::cast(literal_array->get(iterator->Next()));
4058 1883 : feedback_slot_ = FeedbackSlot(iterator->Next());
4059 1883 : if (trace_file != nullptr) {
4060 : PrintF(trace_file, " reading FeedbackVector (slot %d)\n",
4061 0 : feedback_slot_.ToInt());
4062 : }
4063 1883 : }
4064 :
4065 : } // namespace internal
4066 178779 : } // namespace v8
4067 :
4068 : // Undefine the heap manipulation macros.
4069 : #include "src/objects/object-macros-undef.h"
|