LCOV - code coverage report
Current view: top level - src/heap - heap.h (source / functions) Hit Total Coverage
Test: app.info Lines: 114 122 93.4 %
Date: 2019-02-19 Functions: 34 48 70.8 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_HEAP_HEAP_H_
       6             : #define V8_HEAP_HEAP_H_
       7             : 
       8             : #include <cmath>
       9             : #include <map>
      10             : #include <unordered_map>
      11             : #include <unordered_set>
      12             : #include <vector>
      13             : 
      14             : // Clients of this interface shouldn't depend on lots of heap internals.
      15             : // Do not include anything from src/heap here!
      16             : #include "include/v8-internal.h"
      17             : #include "include/v8.h"
      18             : #include "src/accessors.h"
      19             : #include "src/allocation.h"
      20             : #include "src/assert-scope.h"
      21             : #include "src/base/atomic-utils.h"
      22             : #include "src/globals.h"
      23             : #include "src/heap-symbols.h"
      24             : #include "src/objects.h"
      25             : #include "src/objects/allocation-site.h"
      26             : #include "src/objects/fixed-array.h"
      27             : #include "src/objects/heap-object.h"
      28             : #include "src/objects/smi.h"
      29             : #include "src/objects/string-table.h"
      30             : #include "src/roots.h"
      31             : #include "src/visitors.h"
      32             : 
      33             : namespace v8 {
      34             : 
      35             : namespace debug {
      36             : typedef void (*OutOfMemoryCallback)(void* data);
      37             : }  // namespace debug
      38             : 
      39             : namespace internal {
      40             : 
      41             : namespace heap {
      42             : class HeapTester;
      43             : class TestMemoryAllocatorScope;
      44             : }  // namespace heap
      45             : 
      46             : class ObjectBoilerplateDescription;
      47             : class BytecodeArray;
      48             : class CodeDataContainer;
      49             : class DeoptimizationData;
      50             : class HandlerTable;
      51             : class IncrementalMarking;
      52             : class JSArrayBuffer;
      53             : class ExternalString;
      54             : using v8::MemoryPressureLevel;
      55             : 
      56             : class AllocationObserver;
      57             : class ArrayBufferCollector;
      58             : class ArrayBufferTracker;
      59             : class CodeLargeObjectSpace;
      60             : class ConcurrentMarking;
      61             : class GCIdleTimeAction;
      62             : class GCIdleTimeHandler;
      63             : class GCIdleTimeHeapState;
      64             : class GCTracer;
      65             : class HeapController;
      66             : class HeapObjectAllocationTracker;
      67             : class HeapObjectsFilter;
      68             : class HeapStats;
      69             : class HistogramTimer;
      70             : class Isolate;
      71             : class JSFinalizationGroup;
      72             : class LocalEmbedderHeapTracer;
      73             : class MemoryAllocator;
      74             : class MemoryReducer;
      75             : class MinorMarkCompactCollector;
      76             : class ObjectIterator;
      77             : class ObjectStats;
      78             : class Page;
      79             : class PagedSpace;
      80             : class RootVisitor;
      81             : class ScavengeJob;
      82             : class Scavenger;
      83             : class ScavengerCollector;
      84             : class Space;
      85             : class StoreBuffer;
      86             : class StressScavengeObserver;
      87             : class TimedHistogram;
      88             : class TracePossibleWrapperReporter;
      89             : class WeakObjectRetainer;
      90             : 
      91             : enum ArrayStorageAllocationMode {
      92             :   DONT_INITIALIZE_ARRAY_ELEMENTS,
      93             :   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
      94             : };
      95             : 
      96             : enum class ClearRecordedSlots { kYes, kNo };
      97             : 
      98             : enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory };
      99             : 
     100             : enum ExternalBackingStoreType { kArrayBuffer, kExternalString, kNumTypes };
     101             : 
     102             : enum class FixedArrayVisitationMode { kRegular, kIncremental };
     103             : 
     104             : enum class TraceRetainingPathMode { kEnabled, kDisabled };
     105             : 
     106             : enum class RetainingPathOption { kDefault, kTrackEphemeronPath };
     107             : 
     108             : enum class GarbageCollectionReason {
     109             :   kUnknown = 0,
     110             :   kAllocationFailure = 1,
     111             :   kAllocationLimit = 2,
     112             :   kContextDisposal = 3,
     113             :   kCountersExtension = 4,
     114             :   kDebugger = 5,
     115             :   kDeserializer = 6,
     116             :   kExternalMemoryPressure = 7,
     117             :   kFinalizeMarkingViaStackGuard = 8,
     118             :   kFinalizeMarkingViaTask = 9,
     119             :   kFullHashtable = 10,
     120             :   kHeapProfiler = 11,
     121             :   kIdleTask = 12,
     122             :   kLastResort = 13,
     123             :   kLowMemoryNotification = 14,
     124             :   kMakeHeapIterable = 15,
     125             :   kMemoryPressure = 16,
     126             :   kMemoryReducer = 17,
     127             :   kRuntime = 18,
     128             :   kSamplingProfiler = 19,
     129             :   kSnapshotCreator = 20,
     130             :   kTesting = 21,
     131             :   kExternalFinalize = 22
     132             :   // If you add new items here, then update the incremental_marking_reason,
     133             :   // mark_compact_reason, and scavenge_reason counters in counters.h.
     134             :   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
     135             : };
     136             : 
     137             : enum class YoungGenerationHandling {
     138             :   kRegularScavenge = 0,
     139             :   kFastPromotionDuringScavenge = 1,
     140             :   // Histogram::InspectConstructionArguments in chromium requires us to have at
     141             :   // least three buckets.
     142             :   kUnusedBucket = 2,
     143             :   // If you add new items here, then update the young_generation_handling in
     144             :   // counters.h.
     145             :   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
     146             : };
     147             : 
     148             : class AllocationResult {
     149             :  public:
     150       20046 :   static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
     151       20046 :     return AllocationResult(space);
     152             :   }
     153             : 
     154             :   // Implicit constructor from Object.
     155   520719019 :   AllocationResult(Object object)  // NOLINT
     156   520719019 :       : object_(object) {
     157             :     // AllocationResults can't return Smis, which are used to represent
     158             :     // failure and the space to retry in.
     159   520511235 :     CHECK(!object->IsSmi());
     160   520501500 :   }
     161             : 
     162   708584518 :   AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {}
     163             : 
     164  1043657131 :   inline bool IsRetry() { return object_->IsSmi(); }
     165             :   inline HeapObject ToObjectChecked();
     166             :   inline AllocationSpace RetrySpace();
     167             : 
     168             :   template <typename T>
     169  1043644609 :   bool To(T* obj) {
     170  1043445343 :     if (IsRetry()) return false;
     171  1042854758 :     *obj = T::cast(object_);
     172  1042854758 :     return true;
     173             :   }
     174             : 
     175             :  private:
     176           0 :   explicit AllocationResult(AllocationSpace space)
     177       20409 :       : object_(Smi::FromInt(static_cast<int>(space))) {}
     178             : 
     179             :   Object object_;
     180             : };
     181             : 
     182             : STATIC_ASSERT(sizeof(AllocationResult) == kSystemPointerSize);
     183             : 
     184             : #ifdef DEBUG
     185             : struct CommentStatistic {
     186             :   const char* comment;
     187             :   int size;
     188             :   int count;
     189             :   void Clear() {
     190             :     comment = nullptr;
     191             :     size = 0;
     192             :     count = 0;
     193             :   }
     194             :   // Must be small, since an iteration is used for lookup.
     195             :   static const int kMaxComments = 64;
     196             : };
     197             : #endif
     198             : 
     199      244136 : class Heap {
     200             :  public:
     201             :   enum FindMementoMode { kForRuntime, kForGC };
     202             : 
     203             :   enum HeapState {
     204             :     NOT_IN_GC,
     205             :     SCAVENGE,
     206             :     MARK_COMPACT,
     207             :     MINOR_MARK_COMPACT,
     208             :     TEAR_DOWN
     209             :   };
     210             : 
     211             :   using PretenuringFeedbackMap =
     212             :       std::unordered_map<AllocationSite, size_t, Object::Hasher>;
     213             : 
     214             :   // Taking this mutex prevents the GC from entering a phase that relocates
     215             :   // object references.
     216             :   base::Mutex* relocation_mutex() { return &relocation_mutex_; }
     217             : 
     218             :   // Support for partial snapshots.  After calling this we have a linear
     219             :   // space to write objects in each space.
     220             :   struct Chunk {
     221             :     uint32_t size;
     222             :     Address start;
     223             :     Address end;
     224             :   };
     225             :   typedef std::vector<Chunk> Reservation;
     226             : 
     227             :   static const int kInitalOldGenerationLimitFactor = 2;
     228             : 
     229             : #if V8_OS_ANDROID
     230             :   // Don't apply pointer multiplier on Android since it has no swap space and
     231             :   // should instead adapt it's heap size based on available physical memory.
     232             :   static const int kPointerMultiplier = 1;
     233             : #else
     234             :   // TODO(ishell): kSystePointerMultiplier?
     235             :   static const int kPointerMultiplier = i::kSystemPointerSize / 4;
     236             : #endif
     237             : 
     238             :   // Semi-space size needs to be a multiple of page size.
     239             :   static const size_t kMinSemiSpaceSizeInKB =
     240             :       1 * kPointerMultiplier * ((1 << kPageSizeBits) / KB);
     241             :   static const size_t kMaxSemiSpaceSizeInKB =
     242             :       16 * kPointerMultiplier * ((1 << kPageSizeBits) / KB);
     243             : 
     244             :   static const int kTraceRingBufferSize = 512;
     245             :   static const int kStacktraceBufferSize = 512;
     246             : 
     247             :   static const int kNoGCFlags = 0;
     248             :   static const int kReduceMemoryFootprintMask = 1;
     249             : 
     250             :   // The minimum size of a HeapObject on the heap.
     251             :   static const int kMinObjectSizeInTaggedWords = 2;
     252             : 
     253             :   static const int kMinPromotedPercentForFastPromotionMode = 90;
     254             : 
     255             :   STATIC_ASSERT(static_cast<int>(RootIndex::kUndefinedValue) ==
     256             :                 Internals::kUndefinedValueRootIndex);
     257             :   STATIC_ASSERT(static_cast<int>(RootIndex::kTheHoleValue) ==
     258             :                 Internals::kTheHoleValueRootIndex);
     259             :   STATIC_ASSERT(static_cast<int>(RootIndex::kNullValue) ==
     260             :                 Internals::kNullValueRootIndex);
     261             :   STATIC_ASSERT(static_cast<int>(RootIndex::kTrueValue) ==
     262             :                 Internals::kTrueValueRootIndex);
     263             :   STATIC_ASSERT(static_cast<int>(RootIndex::kFalseValue) ==
     264             :                 Internals::kFalseValueRootIndex);
     265             :   STATIC_ASSERT(static_cast<int>(RootIndex::kempty_string) ==
     266             :                 Internals::kEmptyStringRootIndex);
     267             : 
     268             :   // Calculates the maximum amount of filler that could be required by the
     269             :   // given alignment.
     270             :   static int GetMaximumFillToAlign(AllocationAlignment alignment);
     271             :   // Calculates the actual amount of filler required for a given address at the
     272             :   // given alignment.
     273             :   static int GetFillToAlign(Address address, AllocationAlignment alignment);
     274             : 
     275             :   void FatalProcessOutOfMemory(const char* location);
     276             : 
     277             :   // Checks whether the space is valid.
     278             :   static bool IsValidAllocationSpace(AllocationSpace space);
     279             : 
     280             :   // Zapping is needed for verify heap, and always done in debug builds.
     281             :   static inline bool ShouldZapGarbage() {
     282             : #ifdef DEBUG
     283             :     return true;
     284             : #else
     285             : #ifdef VERIFY_HEAP
     286             :     return FLAG_verify_heap;
     287             : #else
     288             :     return false;
     289             : #endif
     290             : #endif
     291             :   }
     292             : 
     293             :   static uintptr_t ZapValue() {
     294           0 :     return FLAG_clear_free_memory ? kClearedFreeMemoryValue : kZapValue;
     295             :   }
     296             : 
     297             :   static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
     298      587980 :     return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR;
     299             :   }
     300             : 
     301             :   static inline GarbageCollector YoungGenerationCollector() {
     302             : #if ENABLE_MINOR_MC
     303       23490 :     return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER;
     304             : #else
     305             :     return SCAVENGER;
     306             : #endif  // ENABLE_MINOR_MC
     307             :   }
     308             : 
     309             :   static inline const char* CollectorName(GarbageCollector collector) {
     310           0 :     switch (collector) {
     311             :       case SCAVENGER:
     312             :         return "Scavenger";
     313             :       case MARK_COMPACTOR:
     314             :         return "Mark-Compact";
     315             :       case MINOR_MARK_COMPACTOR:
     316             :         return "Minor Mark-Compact";
     317             :     }
     318             :     return "Unknown collector";
     319             :   }
     320             : 
     321             :   // Copy block of memory from src to dst. Size of block should be aligned
     322             :   // by pointer size.
     323             :   static inline void CopyBlock(Address dst, Address src, int byte_size);
     324             : 
     325             :   V8_EXPORT_PRIVATE static void WriteBarrierForCodeSlow(Code host);
     326             :   V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(HeapObject object,
     327             :                                                         Address slot,
     328             :                                                         HeapObject value);
     329             :   V8_EXPORT_PRIVATE static void GenerationalBarrierForElementsSlow(
     330             :       Heap* heap, FixedArray array, int offset, int length);
     331             :   V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow(
     332             :       Code host, RelocInfo* rinfo, HeapObject value);
     333             :   V8_EXPORT_PRIVATE static void MarkingBarrierSlow(HeapObject object,
     334             :                                                    Address slot,
     335             :                                                    HeapObject value);
     336             :   V8_EXPORT_PRIVATE static void MarkingBarrierForElementsSlow(
     337             :       Heap* heap, HeapObject object);
     338             :   V8_EXPORT_PRIVATE static void MarkingBarrierForCodeSlow(Code host,
     339             :                                                           RelocInfo* rinfo,
     340             :                                                           HeapObject value);
     341             :   V8_EXPORT_PRIVATE static void MarkingBarrierForDescriptorArraySlow(
     342             :       Heap* heap, HeapObject host, HeapObject descriptor_array,
     343             :       int number_of_own_descriptors);
     344             :   V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent(HeapObject object);
     345             : 
     346             :   // Notifies the heap that is ok to start marking or other activities that
     347             :   // should not happen during deserialization.
     348             :   void NotifyDeserializationComplete();
     349             : 
     350             :   void NotifyBootstrapComplete();
     351             : 
     352             :   void NotifyOldGenerationExpansion();
     353             : 
     354             :   inline Address* NewSpaceAllocationTopAddress();
     355             :   inline Address* NewSpaceAllocationLimitAddress();
     356             :   inline Address* OldSpaceAllocationTopAddress();
     357             :   inline Address* OldSpaceAllocationLimitAddress();
     358             : 
     359             :   // Move len elements within a given array from src_index index to dst_index
     360             :   // index.
     361             :   void MoveElements(FixedArray array, int dst_index, int src_index, int len,
     362             :                     WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
     363             : 
     364             :   // Initialize a filler object to keep the ability to iterate over the heap
     365             :   // when introducing gaps within pages. If slots could have been recorded in
     366             :   // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
     367             :   // pass ClearRecordedSlots::kNo. If the memory after the object header of
     368             :   // the filler should be cleared, pass in kClearFreedMemory. The default is
     369             :   // kDontClearFreedMemory.
     370             :   V8_EXPORT_PRIVATE HeapObject CreateFillerObjectAt(
     371             :       Address addr, int size, ClearRecordedSlots clear_slots_mode,
     372             :       ClearFreedMemoryMode clear_memory_mode =
     373             :           ClearFreedMemoryMode::kDontClearFreedMemory);
     374             : 
     375             :   template <typename T>
     376             :   void CreateFillerForArray(T object, int elements_to_trim, int bytes_to_trim);
     377             : 
     378             :   bool CanMoveObjectStart(HeapObject object);
     379             : 
     380             :   bool IsImmovable(HeapObject object);
     381             : 
     382             :   static bool IsLargeObject(HeapObject object);
     383             : 
     384             :   // Trim the given array from the left. Note that this relocates the object
     385             :   // start and hence is only valid if there is only a single reference to it.
     386             :   FixedArrayBase LeftTrimFixedArray(FixedArrayBase obj, int elements_to_trim);
     387             : 
     388             :   // Trim the given array from the right.
     389             :   void RightTrimFixedArray(FixedArrayBase obj, int elements_to_trim);
     390             :   void RightTrimWeakFixedArray(WeakFixedArray obj, int elements_to_trim);
     391             : 
     392             :   // Converts the given boolean condition to JavaScript boolean value.
     393             :   inline Oddball ToBoolean(bool condition);
     394             : 
     395             :   // Notify the heap that a context has been disposed.
     396             :   int NotifyContextDisposed(bool dependant_context);
     397             : 
     398          56 :   void set_native_contexts_list(Object object) {
     399      384409 :     native_contexts_list_ = object;
     400          56 :   }
     401             :   Object native_contexts_list() const { return native_contexts_list_; }
     402             : 
     403          56 :   void set_allocation_sites_list(Object object) {
     404      363830 :     allocation_sites_list_ = object;
     405          56 :   }
     406             :   Object allocation_sites_list() { return allocation_sites_list_; }
     407             : 
     408             :   // Used in CreateAllocationSiteStub and the (de)serializer.
     409             :   Address allocation_sites_list_address() {
     410       61441 :     return reinterpret_cast<Address>(&allocation_sites_list_);
     411             :   }
     412             : 
     413             :   // Traverse all the allocaions_sites [nested_site and weak_next] in the list
     414             :   // and foreach call the visitor
     415             :   void ForeachAllocationSite(
     416             :       Object list, const std::function<void(AllocationSite)>& visitor);
     417             : 
     418             :   // Number of mark-sweeps.
     419          20 :   int ms_count() const { return ms_count_; }
     420             : 
     421             :   // Checks whether the given object is allowed to be migrated from it's
     422             :   // current space into the given destination space. Used for debugging.
     423             :   bool AllowedToBeMigrated(HeapObject object, AllocationSpace dest);
     424             : 
     425             :   void CheckHandleCount();
     426             : 
     427             :   // Number of "runtime allocations" done so far.
     428             :   uint32_t allocations_count() { return allocations_count_; }
     429             : 
     430             :   // Print short heap statistics.
     431             :   void PrintShortHeapStatistics();
     432             : 
     433       20991 :   bool write_protect_code_memory() const { return write_protect_code_memory_; }
     434             : 
     435             :   uintptr_t code_space_memory_modification_scope_depth() {
     436             :     return code_space_memory_modification_scope_depth_;
     437             :   }
     438             : 
     439          56 :   void increment_code_space_memory_modification_scope_depth() {
     440      420617 :     code_space_memory_modification_scope_depth_++;
     441          56 :   }
     442             : 
     443       20935 :   void decrement_code_space_memory_modification_scope_depth() {
     444      420617 :     code_space_memory_modification_scope_depth_--;
     445       20935 :   }
     446             : 
     447             :   void UnprotectAndRegisterMemoryChunk(MemoryChunk* chunk);
     448             :   void UnprotectAndRegisterMemoryChunk(HeapObject object);
     449             :   void UnregisterUnprotectedMemoryChunk(MemoryChunk* chunk);
     450             :   V8_EXPORT_PRIVATE void ProtectUnprotectedMemoryChunks();
     451             : 
     452             :   void EnableUnprotectedMemoryChunksRegistry() {
     453     1758360 :     unprotected_memory_chunks_registry_enabled_ = true;
     454             :   }
     455             : 
     456             :   void DisableUnprotectedMemoryChunksRegistry() {
     457     1758363 :     unprotected_memory_chunks_registry_enabled_ = false;
     458             :   }
     459             : 
     460             :   bool unprotected_memory_chunks_registry_enabled() {
     461             :     return unprotected_memory_chunks_registry_enabled_;
     462             :   }
     463             : 
     464             :   inline HeapState gc_state() { return gc_state_; }
     465             :   void SetGCState(HeapState state);
     466             :   bool IsTearingDown() const { return gc_state_ == TEAR_DOWN; }
     467             : 
     468             :   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
     469             : 
     470             :   // If an object has an AllocationMemento trailing it, return it, otherwise
     471             :   // return a null AllocationMemento.
     472             :   template <FindMementoMode mode>
     473             :   inline AllocationMemento FindAllocationMemento(Map map, HeapObject object);
     474             : 
     475             :   // Returns false if not able to reserve.
     476             :   bool ReserveSpace(Reservation* reservations, std::vector<Address>* maps);
     477             : 
     478             :   //
     479             :   // Support for the API.
     480             :   //
     481             : 
     482             :   void CreateApiObjects();
     483             : 
     484             :   // Implements the corresponding V8 API function.
     485             :   bool IdleNotification(double deadline_in_seconds);
     486             :   bool IdleNotification(int idle_time_in_ms);
     487             : 
     488             :   void MemoryPressureNotification(MemoryPressureLevel level,
     489             :                                   bool is_isolate_locked);
     490             :   void CheckMemoryPressure();
     491             : 
     492             :   void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data);
     493             :   void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
     494             :                                    size_t heap_limit);
     495             :   void AutomaticallyRestoreInitialHeapLimit(double threshold_percent);
     496             : 
     497             :   double MonotonicallyIncreasingTimeInMs();
     498             : 
     499             :   void RecordStats(HeapStats* stats, bool take_snapshot = false);
     500             : 
     501             :   // Check new space expansion criteria and expand semispaces if it was hit.
     502             :   void CheckNewSpaceExpansionCriteria();
     503             : 
     504             :   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
     505             : 
     506             :   // An object should be promoted if the object has survived a
     507             :   // scavenge operation.
     508             :   inline bool ShouldBePromoted(Address old_address);
     509             : 
     510             :   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
     511             : 
     512             :   inline int NextScriptId();
     513             :   inline int NextDebuggingId();
     514             :   inline int GetNextTemplateSerialNumber();
     515             : 
     516             :   void SetSerializedObjects(FixedArray objects);
     517             :   void SetSerializedGlobalProxySizes(FixedArray sizes);
     518             : 
     519             :   // For post mortem debugging.
     520             :   void RememberUnmappedPage(Address page, bool compacted);
     521             : 
     522      970604 :   int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; }
     523             : 
     524             :   V8_INLINE int64_t external_memory();
     525             :   V8_INLINE void update_external_memory(int64_t delta);
     526             :   V8_INLINE void update_external_memory_concurrently_freed(intptr_t freed);
     527             :   V8_INLINE void account_external_memory_concurrently_freed();
     528             : 
     529             :   size_t backing_store_bytes() const { return backing_store_bytes_; }
     530             : 
     531             :   void CompactWeakArrayLists(PretenureFlag pretenure);
     532             : 
     533             :   void AddRetainedMap(Handle<Map> map);
     534             : 
     535             :   // This event is triggered after successful allocation of a new object made
     536             :   // by runtime. Allocations of target space for object evacuation do not
     537             :   // trigger the event. In order to track ALL allocations one must turn off
     538             :   // FLAG_inline_new.
     539             :   inline void OnAllocationEvent(HeapObject object, int size_in_bytes);
     540             : 
     541             :   // This event is triggered after object is moved to a new place.
     542             :   void OnMoveEvent(HeapObject target, HeapObject source, int size_in_bytes);
     543             : 
     544             :   inline bool CanAllocateInReadOnlySpace();
     545             :   bool deserialization_complete() const { return deserialization_complete_; }
     546             : 
     547             :   bool HasLowAllocationRate();
     548             :   bool HasHighFragmentation();
     549             :   bool HasHighFragmentation(size_t used, size_t committed);
     550             : 
     551             :   void ActivateMemoryReducerIfNeeded();
     552             : 
     553             :   bool ShouldOptimizeForMemoryUsage();
     554             : 
     555             :   bool HighMemoryPressure() {
     556             :     return memory_pressure_level_ != MemoryPressureLevel::kNone;
     557             :   }
     558             : 
     559           5 :   void RestoreHeapLimit(size_t heap_limit) {
     560             :     // Do not set the limit lower than the live size + some slack.
     561           5 :     size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4;
     562             :     max_old_generation_size_ =
     563          10 :         Min(max_old_generation_size_, Max(heap_limit, min_limit));
     564           5 :   }
     565             : 
     566             :   // ===========================================================================
     567             :   // Initialization. ===========================================================
     568             :   // ===========================================================================
     569             : 
     570             :   // Configure heap sizes
     571             :   // max_semi_space_size_in_kb: maximum semi-space size in KB
     572             :   // max_old_generation_size_in_mb: maximum old generation size in MB
     573             :   // code_range_size_in_mb: code range size in MB
     574             :   void ConfigureHeap(size_t max_semi_space_size_in_kb,
     575             :                      size_t max_old_generation_size_in_mb,
     576             :                      size_t code_range_size_in_mb);
     577             :   void ConfigureHeapDefault();
     578             : 
     579             :   // Prepares the heap, setting up memory areas that are needed in the isolate
     580             :   // without actually creating any objects.
     581             :   void SetUp();
     582             : 
     583             :   // (Re-)Initialize hash seed from flag or RNG.
     584             :   void InitializeHashSeed();
     585             : 
     586             :   // Bootstraps the object heap with the core set of objects required to run.
     587             :   // Returns whether it succeeded.
     588             :   bool CreateHeapObjects();
     589             : 
     590             :   // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
     591             :   void CreateObjectStats();
     592             : 
     593             :   // Sets the TearDown state, so no new GC tasks get posted.
     594             :   void StartTearDown();
     595             : 
     596             :   // Destroys all memory allocated by the heap.
     597             :   void TearDown();
     598             : 
     599             :   // Returns whether SetUp has been called.
     600             :   bool HasBeenSetUp();
     601             : 
     602             :   // ===========================================================================
     603             :   // Getters for spaces. =======================================================
     604             :   // ===========================================================================
     605             : 
     606             :   inline Address NewSpaceTop();
     607             : 
     608             :   NewSpace* new_space() { return new_space_; }
     609             :   OldSpace* old_space() { return old_space_; }
     610       20991 :   CodeSpace* code_space() { return code_space_; }
     611             :   MapSpace* map_space() { return map_space_; }
     612             :   LargeObjectSpace* lo_space() { return lo_space_; }
     613       20991 :   CodeLargeObjectSpace* code_lo_space() { return code_lo_space_; }
     614             :   NewLargeObjectSpace* new_lo_space() { return new_lo_space_; }
     615             :   ReadOnlySpace* read_only_space() { return read_only_space_; }
     616             : 
     617             :   inline PagedSpace* paged_space(int idx);
     618             :   inline Space* space(int idx);
     619             : 
     620             :   // Returns name of the space.
     621             :   const char* GetSpaceName(int idx);
     622             : 
     623             :   // ===========================================================================
     624             :   // Getters to other components. ==============================================
     625             :   // ===========================================================================
     626             : 
     627             :   GCTracer* tracer() { return tracer_.get(); }
     628             : 
     629       90902 :   MemoryAllocator* memory_allocator() { return memory_allocator_.get(); }
     630             : 
     631             :   inline Isolate* isolate();
     632             : 
     633    51747140 :   MarkCompactCollector* mark_compact_collector() {
     634    51747140 :     return mark_compact_collector_.get();
     635             :   }
     636             : 
     637             :   MinorMarkCompactCollector* minor_mark_compact_collector() {
     638             :     return minor_mark_compact_collector_;
     639             :   }
     640             : 
     641             :   ArrayBufferCollector* array_buffer_collector() {
     642             :     return array_buffer_collector_.get();
     643             :   }
     644             : 
     645             :   // ===========================================================================
     646             :   // Root set access. ==========================================================
     647             :   // ===========================================================================
     648             : 
     649             :   // Shortcut to the roots table stored in the Isolate.
     650             :   V8_INLINE RootsTable& roots_table();
     651             : 
     652             : // Heap root getters.
     653             : #define ROOT_ACCESSOR(type, name, CamelName) inline type name();
     654             :   MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
     655             : #undef ROOT_ACCESSOR
     656             : 
     657             :   V8_INLINE void SetRootMaterializedObjects(FixedArray objects);
     658             :   V8_INLINE void SetRootScriptList(Object value);
     659             :   V8_INLINE void SetRootStringTable(StringTable value);
     660             :   V8_INLINE void SetRootNoScriptSharedFunctionInfos(Object value);
     661             :   V8_INLINE void SetMessageListeners(TemplateList value);
     662             : 
     663             :   // Set the stack limit in the roots table.  Some architectures generate
     664             :   // code that looks here, because it is faster than loading from the static
     665             :   // jslimit_/real_jslimit_ variable in the StackGuard.
     666             :   void SetStackLimits();
     667             : 
     668             :   // The stack limit is thread-dependent. To be able to reproduce the same
     669             :   // snapshot blob, we need to reset it before serializing.
     670             :   void ClearStackLimits();
     671             : 
     672             :   void RegisterStrongRoots(FullObjectSlot start, FullObjectSlot end);
     673             :   void UnregisterStrongRoots(FullObjectSlot start);
     674             : 
     675             :   void SetBuiltinsConstantsTable(FixedArray cache);
     676             : 
     677             :   // A full copy of the interpreter entry trampoline, used as a template to
     678             :   // create copies of the builtin at runtime. The copies are used to create
     679             :   // better profiling information for ticks in bytecode execution. Note that
     680             :   // this is always a copy of the full builtin, i.e. not the off-heap
     681             :   // trampoline.
     682             :   // See also: FLAG_interpreted_frames_native_stack.
     683             :   void SetInterpreterEntryTrampolineForProfiling(Code code);
     684             : 
     685             :   // Add finalization_group into the dirty_js_finalization_groups list.
     686             :   void AddDirtyJSFinalizationGroup(
     687             :       JSFinalizationGroup finalization_group,
     688             :       std::function<void(HeapObject object, ObjectSlot slot, Object target)>
     689             :           gc_notify_updated_slot);
     690             : 
     691             :   void AddKeepDuringJobTarget(Handle<JSReceiver> target);
     692             :   void ClearKeepDuringJobSet();
     693             : 
     694             :   // ===========================================================================
     695             :   // Inline allocation. ========================================================
     696             :   // ===========================================================================
     697             : 
     698             :   // Indicates whether inline bump-pointer allocation has been disabled.
     699             :   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
     700             : 
     701             :   // Switch whether inline bump-pointer allocation should be used.
     702             :   void EnableInlineAllocation();
     703             :   void DisableInlineAllocation();
     704             : 
     705             :   // ===========================================================================
     706             :   // Methods triggering GCs. ===================================================
     707             :   // ===========================================================================
     708             : 
     709             :   // Performs garbage collection operation.
     710             :   // Returns whether there is a chance that another major GC could
     711             :   // collect more garbage.
     712             :   V8_EXPORT_PRIVATE bool CollectGarbage(
     713             :       AllocationSpace space, GarbageCollectionReason gc_reason,
     714             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     715             : 
     716             :   // Performs a full garbage collection.
     717             :   V8_EXPORT_PRIVATE void CollectAllGarbage(
     718             :       int flags, GarbageCollectionReason gc_reason,
     719             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     720             : 
     721             :   // Last hope GC, should try to squeeze as much as possible.
     722             :   void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason);
     723             : 
     724             :   // Precise garbage collection that potentially finalizes already running
     725             :   // incremental marking before performing an atomic garbage collection.
     726             :   // Only use if absolutely necessary or in tests to avoid floating garbage!
     727             :   void PreciseCollectAllGarbage(
     728             :       int flags, GarbageCollectionReason gc_reason,
     729             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
     730             : 
     731             :   // Reports and external memory pressure event, either performs a major GC or
     732             :   // completes incremental marking in order to free external resources.
     733             :   void ReportExternalMemoryPressure();
     734             : 
     735             :   typedef v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback
     736             :       GetExternallyAllocatedMemoryInBytesCallback;
     737             : 
     738             :   void SetGetExternallyAllocatedMemoryInBytesCallback(
     739             :       GetExternallyAllocatedMemoryInBytesCallback callback) {
     740       61049 :     external_memory_callback_ = callback;
     741             :   }
     742             : 
     743             :   // Invoked when GC was requested via the stack guard.
     744             :   void HandleGCRequest();
     745             : 
     746             :   // ===========================================================================
     747             :   // Builtins. =================================================================
     748             :   // ===========================================================================
     749             : 
     750             :   Code builtin(int index);
     751             :   Address builtin_address(int index);
     752             :   void set_builtin(int index, Code builtin);
     753             : 
     754             :   // ===========================================================================
     755             :   // Iterators. ================================================================
     756             :   // ===========================================================================
     757             : 
     758             :   // None of these methods iterate over the read-only roots. To do this use
     759             :   // ReadOnlyRoots::Iterate. Read-only root iteration is not necessary for
     760             :   // garbage collection and is usually only performed as part of
     761             :   // (de)serialization or heap verification.
     762             : 
     763             :   // Iterates over the strong roots and the weak roots.
     764             :   void IterateRoots(RootVisitor* v, VisitMode mode);
     765             :   // Iterates over the strong roots.
     766             :   void IterateStrongRoots(RootVisitor* v, VisitMode mode);
     767             :   // Iterates over entries in the smi roots list.  Only interesting to the
     768             :   // serializer/deserializer, since GC does not care about smis.
     769             :   void IterateSmiRoots(RootVisitor* v);
     770             :   // Iterates over weak string tables.
     771             :   void IterateWeakRoots(RootVisitor* v, VisitMode mode);
     772             :   // Iterates over weak global handles.
     773             :   void IterateWeakGlobalHandles(RootVisitor* v);
     774             :   // Iterates over builtins.
     775             :   void IterateBuiltins(RootVisitor* v);
     776             : 
     777             :   // ===========================================================================
     778             :   // Store buffer API. =========================================================
     779             :   // ===========================================================================
     780             : 
     781             :   // Used for query incremental marking status in generated code.
     782             :   Address* IsMarkingFlagAddress() {
     783             :     return reinterpret_cast<Address*>(&is_marking_flag_);
     784             :   }
     785             : 
     786      159037 :   void SetIsMarkingFlag(uint8_t flag) { is_marking_flag_ = flag; }
     787             : 
     788             :   Address* store_buffer_top_address();
     789             :   static intptr_t store_buffer_mask_constant();
     790             :   static Address store_buffer_overflow_function_address();
     791             : 
     792             :   void ClearRecordedSlot(HeapObject object, ObjectSlot slot);
     793             :   void ClearRecordedSlotRange(Address start, Address end);
     794             : 
     795             : #ifdef DEBUG
     796             :   void VerifyClearedSlot(HeapObject object, ObjectSlot slot);
     797             : #endif
     798             : 
     799             :   // ===========================================================================
     800             :   // Incremental marking API. ==================================================
     801             :   // ===========================================================================
     802             : 
     803             :   int GCFlagsForIncrementalMarking() {
     804     1595173 :     return ShouldOptimizeForMemoryUsage() ? kReduceMemoryFootprintMask
     805     1595172 :                                           : kNoGCFlags;
     806             :   }
     807             : 
     808             :   // Start incremental marking and ensure that idle time handler can perform
     809             :   // incremental steps.
     810             :   void StartIdleIncrementalMarking(
     811             :       GarbageCollectionReason gc_reason,
     812             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     813             : 
     814             :   // Starts incremental marking assuming incremental marking is currently
     815             :   // stopped.
     816             :   void StartIncrementalMarking(
     817             :       int gc_flags, GarbageCollectionReason gc_reason,
     818             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     819             : 
     820             :   void StartIncrementalMarkingIfAllocationLimitIsReached(
     821             :       int gc_flags,
     822             :       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
     823             : 
     824             :   void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason);
     825             :   // Synchronously finalizes incremental marking.
     826             :   void FinalizeIncrementalMarkingAtomically(GarbageCollectionReason gc_reason);
     827             : 
     828             :   void RegisterDeserializedObjectsForBlackAllocation(
     829             :       Reservation* reservations, const std::vector<HeapObject>& large_objects,
     830             :       const std::vector<Address>& maps);
     831             : 
     832      239498 :   IncrementalMarking* incremental_marking() {
     833      239498 :     return incremental_marking_.get();
     834             :   }
     835             : 
     836             :   // ===========================================================================
     837             :   // Concurrent marking API. ===================================================
     838             :   // ===========================================================================
     839             : 
     840             :   ConcurrentMarking* concurrent_marking() { return concurrent_marking_.get(); }
     841             : 
     842             :   // The runtime uses this function to notify potentially unsafe object layout
     843             :   // changes that require special synchronization with the concurrent marker.
     844             :   // The old size is the size of the object before layout change.
     845             :   void NotifyObjectLayoutChange(HeapObject object, int old_size,
     846             :                                 const DisallowHeapAllocation&);
     847             : 
     848             : #ifdef VERIFY_HEAP
     849             :   // This function checks that either
     850             :   // - the map transition is safe,
     851             :   // - or it was communicated to GC using NotifyObjectLayoutChange.
     852             :   void VerifyObjectLayoutChange(HeapObject object, Map new_map);
     853             : #endif
     854             : 
     855             :   // ===========================================================================
     856             :   // Deoptimization support API. ===============================================
     857             :   // ===========================================================================
     858             : 
     859             :   // Setters for code offsets of well-known deoptimization targets.
     860             :   void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
     861             :   void SetConstructStubCreateDeoptPCOffset(int pc_offset);
     862             :   void SetConstructStubInvokeDeoptPCOffset(int pc_offset);
     863             :   void SetInterpreterEntryReturnPCOffset(int pc_offset);
     864             : 
     865             :   // Invalidates references in the given {code} object that are referenced
     866             :   // transitively from the deoptimization data. Mutates write-protected code.
     867             :   void InvalidateCodeDeoptimizationData(Code code);
     868             : 
     869             :   void DeoptMarkedAllocationSites();
     870             : 
     871             :   bool DeoptMaybeTenuredAllocationSites();
     872             : 
     873             :   // ===========================================================================
     874             :   // Embedder heap tracer support. =============================================
     875             :   // ===========================================================================
     876             : 
     877      221360 :   LocalEmbedderHeapTracer* local_embedder_heap_tracer() const {
     878      221360 :     return local_embedder_heap_tracer_.get();
     879             :   }
     880             : 
     881             :   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
     882             :   EmbedderHeapTracer* GetEmbedderHeapTracer() const;
     883             : 
     884             :   void RegisterExternallyReferencedObject(Address* location);
     885             :   void SetEmbedderStackStateForNextFinalizaton(
     886             :       EmbedderHeapTracer::EmbedderStackState stack_state);
     887             : 
     888             :   // ===========================================================================
     889             :   // External string table API. ================================================
     890             :   // ===========================================================================
     891             : 
     892             :   // Registers an external string.
     893             :   inline void RegisterExternalString(String string);
     894             : 
     895             :   // Called when a string's resource is changed. The size of the payload is sent
     896             :   // as argument of the method.
     897             :   void UpdateExternalString(String string, size_t old_payload,
     898             :                             size_t new_payload);
     899             : 
     900             :   // Finalizes an external string by deleting the associated external
     901             :   // data and clearing the resource pointer.
     902             :   inline void FinalizeExternalString(String string);
     903             : 
     904             :   static String UpdateYoungReferenceInExternalStringTableEntry(
     905             :       Heap* heap, FullObjectSlot pointer);
     906             : 
     907             :   // ===========================================================================
     908             :   // Methods checking/returning the space of a given object/address. ===========
     909             :   // ===========================================================================
     910             : 
     911             :   // Returns whether the object resides in new space.
     912             :   static inline bool InYoungGeneration(Object object);
     913             :   static inline bool InYoungGeneration(MaybeObject object);
     914             :   static inline bool InYoungGeneration(HeapObject heap_object);
     915             :   static inline bool InFromPage(Object object);
     916             :   static inline bool InFromPage(MaybeObject object);
     917             :   static inline bool InFromPage(HeapObject heap_object);
     918             :   static inline bool InToPage(Object object);
     919             :   static inline bool InToPage(MaybeObject object);
     920             :   static inline bool InToPage(HeapObject heap_object);
     921             : 
     922             :   // Returns whether the object resides in old space.
     923             :   inline bool InOldSpace(Object object);
     924             : 
     925             :   // Returns whether the object resides in read-only space.
     926             :   inline bool InReadOnlySpace(Object object);
     927             : 
     928             :   // Checks whether an address/object in the heap (including auxiliary
     929             :   // area and unused area).
     930             :   bool Contains(HeapObject value);
     931             : 
     932             :   // Checks whether an address/object in a space.
     933             :   // Currently used by tests, serialization and heap verification only.
     934             :   bool InSpace(HeapObject value, AllocationSpace space);
     935             : 
     936             :   // Slow methods that can be used for verification as they can also be used
     937             :   // with off-heap Addresses.
     938             :   bool InSpaceSlow(Address addr, AllocationSpace space);
     939             : 
     940             :   static inline Heap* FromWritableHeapObject(const HeapObject obj);
     941             : 
     942             :   // ===========================================================================
     943             :   // Object statistics tracking. ===============================================
     944             :   // ===========================================================================
     945             : 
     946             :   // Returns the number of buckets used by object statistics tracking during a
     947             :   // major GC. Note that the following methods fail gracefully when the bounds
     948             :   // are exceeded though.
     949             :   size_t NumberOfTrackedHeapObjectTypes();
     950             : 
     951             :   // Returns object statistics about count and size at the last major GC.
     952             :   // Objects are being grouped into buckets that roughly resemble existing
     953             :   // instance types.
     954             :   size_t ObjectCountAtLastGC(size_t index);
     955             :   size_t ObjectSizeAtLastGC(size_t index);
     956             : 
     957             :   // Retrieves names of buckets used by object statistics tracking.
     958             :   bool GetObjectTypeName(size_t index, const char** object_type,
     959             :                          const char** object_sub_type);
     960             : 
     961             :   // The total number of native contexts object on the heap.
     962             :   size_t NumberOfNativeContexts();
     963             :   // The total number of native contexts that were detached but were not
     964             :   // garbage collected yet.
     965             :   size_t NumberOfDetachedContexts();
     966             : 
     967             :   // ===========================================================================
     968             :   // Code statistics. ==========================================================
     969             :   // ===========================================================================
     970             : 
     971             :   // Collect code (Code and BytecodeArray objects) statistics.
     972             :   void CollectCodeStatistics();
     973             : 
     974             :   // ===========================================================================
     975             :   // GC statistics. ============================================================
     976             :   // ===========================================================================
     977             : 
     978             :   // Returns the maximum amount of memory reserved for the heap.
     979             :   size_t MaxReserved();
     980             :   size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
     981             :   size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
     982             :   size_t MaxOldGenerationSize() { return max_old_generation_size_; }
     983             : 
     984             :   V8_EXPORT_PRIVATE static size_t ComputeMaxOldGenerationSize(
     985             :       uint64_t physical_memory);
     986             : 
     987             :   static size_t ComputeMaxSemiSpaceSize(uint64_t physical_memory) {
     988             :     const uint64_t min_physical_memory = 512 * MB;
     989             :     const uint64_t max_physical_memory = 3 * static_cast<uint64_t>(GB);
     990             : 
     991             :     uint64_t capped_physical_memory =
     992             :         Max(Min(physical_memory, max_physical_memory), min_physical_memory);
     993             :     // linearly scale max semi-space size: (X-A)/(B-A)*(D-C)+C
     994             :     size_t semi_space_size_in_kb =
     995       29546 :         static_cast<size_t>(((capped_physical_memory - min_physical_memory) *
     996       29546 :                              (kMaxSemiSpaceSizeInKB - kMinSemiSpaceSizeInKB)) /
     997             :                                 (max_physical_memory - min_physical_memory) +
     998             :                             kMinSemiSpaceSizeInKB);
     999             :     return RoundUp(semi_space_size_in_kb, (1 << kPageSizeBits) / KB);
    1000             :   }
    1001             : 
    1002             :   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
    1003             :   // more spaces are needed until it reaches the limit.
    1004             :   size_t Capacity();
    1005             : 
    1006             :   // Returns the capacity of the old generation.
    1007             :   size_t OldGenerationCapacity();
    1008             : 
    1009             :   // Returns the amount of memory currently held alive by the unmapper.
    1010             :   size_t CommittedMemoryOfUnmapper();
    1011             : 
    1012             :   // Returns the amount of memory currently committed for the heap.
    1013             :   size_t CommittedMemory();
    1014             : 
    1015             :   // Returns the amount of memory currently committed for the old space.
    1016             :   size_t CommittedOldGenerationMemory();
    1017             : 
    1018             :   // Returns the amount of executable memory currently committed for the heap.
    1019             :   size_t CommittedMemoryExecutable();
    1020             : 
    1021             :   // Returns the amount of phyical memory currently committed for the heap.
    1022             :   size_t CommittedPhysicalMemory();
    1023             : 
    1024             :   // Returns the maximum amount of memory ever committed for the heap.
    1025             :   size_t MaximumCommittedMemory() { return maximum_committed_; }
    1026             : 
    1027             :   // Updates the maximum committed memory for the heap. Should be called
    1028             :   // whenever a space grows.
    1029             :   void UpdateMaximumCommitted();
    1030             : 
    1031             :   // Returns the available bytes in space w/o growing.
    1032             :   // Heap doesn't guarantee that it can allocate an object that requires
    1033             :   // all available bytes. Check MaxHeapObjectSize() instead.
    1034             :   size_t Available();
    1035             : 
    1036             :   // Returns of size of all objects residing in the heap.
    1037             :   size_t SizeOfObjects();
    1038             : 
    1039             :   void UpdateSurvivalStatistics(int start_new_space_size);
    1040             : 
    1041             :   inline void IncrementPromotedObjectsSize(size_t object_size) {
    1042      115104 :     promoted_objects_size_ += object_size;
    1043             :   }
    1044             :   inline size_t promoted_objects_size() { return promoted_objects_size_; }
    1045             : 
    1046             :   inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) {
    1047      115104 :     semi_space_copied_object_size_ += object_size;
    1048             :   }
    1049             :   inline size_t semi_space_copied_object_size() {
    1050             :     return semi_space_copied_object_size_;
    1051             :   }
    1052             : 
    1053             :   inline size_t SurvivedYoungObjectSize() {
    1054      144960 :     return promoted_objects_size_ + semi_space_copied_object_size_;
    1055             :   }
    1056             : 
    1057     2579305 :   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
    1058             : 
    1059     1557350 :   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
    1060             : 
    1061      309924 :   inline void IncrementNodesPromoted() { nodes_promoted_++; }
    1062             : 
    1063             :   inline void IncrementYoungSurvivorsCounter(size_t survived) {
    1064      100744 :     survived_last_scavenge_ = survived;
    1065      100744 :     survived_since_last_expansion_ += survived;
    1066             :   }
    1067             : 
    1068      476235 :   inline uint64_t OldGenerationObjectsAndPromotedExternalMemorySize() {
    1069      952300 :     return OldGenerationSizeOfObjects() + PromotedExternalMemorySize();
    1070             :   }
    1071             : 
    1072             :   inline void UpdateNewSpaceAllocationCounter();
    1073             : 
    1074             :   inline size_t NewSpaceAllocationCounter();
    1075             : 
    1076             :   // This should be used only for testing.
    1077             :   void set_new_space_allocation_counter(size_t new_value) {
    1078           5 :     new_space_allocation_counter_ = new_value;
    1079             :   }
    1080             : 
    1081             :   void UpdateOldGenerationAllocationCounter() {
    1082             :     old_generation_allocation_counter_at_last_gc_ =
    1083       74510 :         OldGenerationAllocationCounter();
    1084       74510 :     old_generation_size_at_last_gc_ = 0;
    1085             :   }
    1086             : 
    1087             :   size_t OldGenerationAllocationCounter() {
    1088      274648 :     return old_generation_allocation_counter_at_last_gc_ +
    1089      274653 :            PromotedSinceLastGC();
    1090             :   }
    1091             : 
    1092             :   // This should be used only for testing.
    1093             :   void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
    1094           5 :     old_generation_allocation_counter_at_last_gc_ = new_value;
    1095             :   }
    1096             : 
    1097             :   size_t PromotedSinceLastGC() {
    1098      274653 :     size_t old_generation_size = OldGenerationSizeOfObjects();
    1099             :     DCHECK_GE(old_generation_size, old_generation_size_at_last_gc_);
    1100      274653 :     return old_generation_size - old_generation_size_at_last_gc_;
    1101             :   }
    1102             : 
    1103             :   // This is called by the sweeper when it discovers more free space
    1104             :   // than expected at the end of the preceding GC.
    1105             :   void NotifyRefinedOldGenerationSize(size_t decreased_bytes) {
    1106       11845 :     if (old_generation_size_at_last_gc_ != 0) {
    1107             :       // OldGenerationSizeOfObjects() is now smaller by |decreased_bytes|.
    1108             :       // Adjust old_generation_size_at_last_gc_ too, so that PromotedSinceLastGC
    1109             :       // continues to increase monotonically, rather than decreasing here.
    1110             :       DCHECK_GE(old_generation_size_at_last_gc_, decreased_bytes);
    1111        6855 :       old_generation_size_at_last_gc_ -= decreased_bytes;
    1112             :     }
    1113             :   }
    1114             : 
    1115    67204111 :   int gc_count() const { return gc_count_; }
    1116             : 
    1117      500208 :   bool is_current_gc_forced() const { return is_current_gc_forced_; }
    1118             : 
    1119             :   // Returns the size of objects residing in non-new spaces.
    1120             :   // Excludes external memory held by those objects.
    1121             :   size_t OldGenerationSizeOfObjects();
    1122             : 
    1123             :   // ===========================================================================
    1124             :   // Prologue/epilogue callback methods.========================================
    1125             :   // ===========================================================================
    1126             : 
    1127             :   void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
    1128             :                              GCType gc_type_filter, void* data);
    1129             :   void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback,
    1130             :                                 void* data);
    1131             : 
    1132             :   void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
    1133             :                              GCType gc_type_filter, void* data);
    1134             :   void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback,
    1135             :                                 void* data);
    1136             : 
    1137             :   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
    1138             :   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
    1139             : 
    1140             :   // ===========================================================================
    1141             :   // Allocation methods. =======================================================
    1142             :   // ===========================================================================
    1143             : 
    1144             :   // Creates a filler object and returns a heap object immediately after it.
    1145             :   V8_WARN_UNUSED_RESULT HeapObject PrecedeWithFiller(HeapObject object,
    1146             :                                                      int filler_size);
    1147             : 
    1148             :   // Creates a filler object if needed for alignment and returns a heap object
    1149             :   // immediately after it. If any space is left after the returned object,
    1150             :   // another filler object is created so the over allocated memory is iterable.
    1151             :   V8_WARN_UNUSED_RESULT HeapObject
    1152             :   AlignWithFiller(HeapObject object, int object_size, int allocation_size,
    1153             :                   AllocationAlignment alignment);
    1154             : 
    1155             :   // ===========================================================================
    1156             :   // ArrayBuffer tracking. =====================================================
    1157             :   // ===========================================================================
    1158             : 
    1159             :   // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external
    1160             :   // in the registration/unregistration APIs. Consider dropping the "New" from
    1161             :   // "RegisterNewArrayBuffer" because one can re-register a previously
    1162             :   // unregistered buffer, too, and the name is confusing.
    1163             :   void RegisterNewArrayBuffer(JSArrayBuffer buffer);
    1164             :   void UnregisterArrayBuffer(JSArrayBuffer buffer);
    1165             : 
    1166             :   // ===========================================================================
    1167             :   // Allocation site tracking. =================================================
    1168             :   // ===========================================================================
    1169             : 
    1170             :   // Updates the AllocationSite of a given {object}. The entry (including the
    1171             :   // count) is cached on the local pretenuring feedback.
    1172             :   inline void UpdateAllocationSite(
    1173             :       Map map, HeapObject object, PretenuringFeedbackMap* pretenuring_feedback);
    1174             : 
    1175             :   // Merges local pretenuring feedback into the global one. Note that this
    1176             :   // method needs to be called after evacuation, as allocation sites may be
    1177             :   // evacuated and this method resolves forward pointers accordingly.
    1178             :   void MergeAllocationSitePretenuringFeedback(
    1179             :       const PretenuringFeedbackMap& local_pretenuring_feedback);
    1180             : 
    1181             :   // ===========================================================================
    1182             :   // Allocation tracking. ======================================================
    1183             :   // ===========================================================================
    1184             : 
    1185             :   // Adds {new_space_observer} to new space and {observer} to any other space.
    1186             :   void AddAllocationObserversToAllSpaces(
    1187             :       AllocationObserver* observer, AllocationObserver* new_space_observer);
    1188             : 
    1189             :   // Removes {new_space_observer} from new space and {observer} from any other
    1190             :   // space.
    1191             :   void RemoveAllocationObserversFromAllSpaces(
    1192             :       AllocationObserver* observer, AllocationObserver* new_space_observer);
    1193             : 
    1194             :   bool allocation_step_in_progress() { return allocation_step_in_progress_; }
    1195             :   void set_allocation_step_in_progress(bool val) {
    1196    44286996 :     allocation_step_in_progress_ = val;
    1197             :   }
    1198             : 
    1199             :   // ===========================================================================
    1200             :   // Heap object allocation tracking. ==========================================
    1201             :   // ===========================================================================
    1202             : 
    1203             :   void AddHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
    1204             :   void RemoveHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker);
    1205             :   bool has_heap_object_allocation_tracker() const {
    1206             :     return !allocation_trackers_.empty();
    1207             :   }
    1208             : 
    1209             :   // ===========================================================================
    1210             :   // Retaining path tracking. ==================================================
    1211             :   // ===========================================================================
    1212             : 
    1213             :   // Adds the given object to the weak table of retaining path targets.
    1214             :   // On each GC if the marker discovers the object, it will print the retaining
    1215             :   // path. This requires --track-retaining-path flag.
    1216             :   void AddRetainingPathTarget(Handle<HeapObject> object,
    1217             :                               RetainingPathOption option);
    1218             : 
    1219             :   // ===========================================================================
    1220             :   // Stack frame support. ======================================================
    1221             :   // ===========================================================================
    1222             : 
    1223             :   // Returns the Code object for a given interior pointer.
    1224             :   Code GcSafeFindCodeForInnerPointer(Address inner_pointer);
    1225             : 
    1226             :   // Returns true if {addr} is contained within {code} and false otherwise.
    1227             :   // Mostly useful for debugging.
    1228             :   bool GcSafeCodeContains(Code code, Address addr);
    1229             : 
    1230             : // =============================================================================
    1231             : #ifdef VERIFY_HEAP
    1232             :   // Verify the heap is in its normal state before or after a GC.
    1233             :   void Verify();
    1234             :   void VerifyRememberedSetFor(HeapObject object);
    1235             : #endif
    1236             : 
    1237             : #ifdef V8_ENABLE_ALLOCATION_TIMEOUT
    1238             :   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
    1239             : #endif
    1240             : 
    1241             : #ifdef DEBUG
    1242             :   void VerifyCountersAfterSweeping();
    1243             :   void VerifyCountersBeforeConcurrentSweeping();
    1244             : 
    1245             :   void Print();
    1246             :   void PrintHandles();
    1247             : 
    1248             :   // Report code statistics.
    1249             :   void ReportCodeStatistics(const char* title);
    1250             : #endif
    1251             :   void* GetRandomMmapAddr() {
    1252      740113 :     void* result = v8::internal::GetRandomMmapAddr();
    1253             : #if V8_TARGET_ARCH_X64
    1254             : #if V8_OS_MACOSX
    1255             :     // The Darwin kernel [as of macOS 10.12.5] does not clean up page
    1256             :     // directory entries [PDE] created from mmap or mach_vm_allocate, even
    1257             :     // after the region is destroyed. Using a virtual address space that is
    1258             :     // too large causes a leak of about 1 wired [can never be paged out] page
    1259             :     // per call to mmap(). The page is only reclaimed when the process is
    1260             :     // killed. Confine the hint to a 32-bit section of the virtual address
    1261             :     // space. See crbug.com/700928.
    1262             :     uintptr_t offset =
    1263             :         reinterpret_cast<uintptr_t>(v8::internal::GetRandomMmapAddr()) &
    1264             :         kMmapRegionMask;
    1265             :     result = reinterpret_cast<void*>(mmap_region_base_ + offset);
    1266             : #endif  // V8_OS_MACOSX
    1267             : #endif  // V8_TARGET_ARCH_X64
    1268             :     return result;
    1269             :   }
    1270             : 
    1271             :   static const char* GarbageCollectionReasonToString(
    1272             :       GarbageCollectionReason gc_reason);
    1273             : 
    1274             :   // Calculates the nof entries for the full sized number to string cache.
    1275             :   inline int MaxNumberToStringCacheSize() const;
    1276             : 
    1277             :  private:
    1278             :   class SkipStoreBufferScope;
    1279             : 
    1280             :   typedef String (*ExternalStringTableUpdaterCallback)(Heap* heap,
    1281             :                                                        FullObjectSlot pointer);
    1282             : 
    1283             :   // External strings table is a place where all external strings are
    1284             :   // registered.  We need to keep track of such strings to properly
    1285             :   // finalize them.
    1286      122068 :   class ExternalStringTable {
    1287             :    public:
    1288       61049 :     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
    1289             : 
    1290             :     // Registers an external string.
    1291             :     inline void AddString(String string);
    1292             :     bool Contains(String string);
    1293             : 
    1294             :     void IterateAll(RootVisitor* v);
    1295             :     void IterateYoung(RootVisitor* v);
    1296             :     void PromoteYoung();
    1297             : 
    1298             :     // Restores internal invariant and gets rid of collected strings. Must be
    1299             :     // called after each Iterate*() that modified the strings.
    1300             :     void CleanUpAll();
    1301             :     void CleanUpYoung();
    1302             : 
    1303             :     // Finalize all registered external strings and clear tables.
    1304             :     void TearDown();
    1305             : 
    1306             :     void UpdateYoungReferences(
    1307             :         Heap::ExternalStringTableUpdaterCallback updater_func);
    1308             :     void UpdateReferences(
    1309             :         Heap::ExternalStringTableUpdaterCallback updater_func);
    1310             : 
    1311             :    private:
    1312             :     void Verify();
    1313             :     void VerifyYoung();
    1314             : 
    1315             :     Heap* const heap_;
    1316             : 
    1317             :     // To speed up scavenge collections young string are kept separate from old
    1318             :     // strings.
    1319             :     std::vector<Object> young_strings_;
    1320             :     std::vector<Object> old_strings_;
    1321             : 
    1322             :     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
    1323             :   };
    1324             : 
    1325             :   struct StrongRootsList;
    1326             : 
    1327             :   struct StringTypeTable {
    1328             :     InstanceType type;
    1329             :     int size;
    1330             :     RootIndex index;
    1331             :   };
    1332             : 
    1333             :   struct ConstantStringTable {
    1334             :     const char* contents;
    1335             :     RootIndex index;
    1336             :   };
    1337             : 
    1338             :   struct StructTable {
    1339             :     InstanceType type;
    1340             :     int size;
    1341             :     RootIndex index;
    1342             :   };
    1343             : 
    1344        8230 :   struct GCCallbackTuple {
    1345             :     GCCallbackTuple(v8::Isolate::GCCallbackWithData callback, GCType gc_type,
    1346             :                     void* data)
    1347       69283 :         : callback(callback), gc_type(gc_type), data(data) {}
    1348             : 
    1349             :     bool operator==(const GCCallbackTuple& other) const;
    1350             :     GCCallbackTuple& operator=(const GCCallbackTuple& other) V8_NOEXCEPT;
    1351             : 
    1352             :     v8::Isolate::GCCallbackWithData callback;
    1353             :     GCType gc_type;
    1354             :     void* data;
    1355             :   };
    1356             : 
    1357             :   static const int kInitialStringTableSize = StringTable::kMinCapacity;
    1358             :   static const int kInitialEvalCacheSize = 64;
    1359             :   static const int kInitialNumberStringCacheSize = 256;
    1360             : 
    1361             :   static const int kRememberedUnmappedPages = 128;
    1362             : 
    1363             :   static const StringTypeTable string_type_table[];
    1364             :   static const ConstantStringTable constant_string_table[];
    1365             :   static const StructTable struct_table[];
    1366             : 
    1367             :   static const int kYoungSurvivalRateHighThreshold = 90;
    1368             :   static const int kYoungSurvivalRateAllowedDeviation = 15;
    1369             :   static const int kOldSurvivalRateLowThreshold = 10;
    1370             : 
    1371             :   static const int kMaxMarkCompactsInIdleRound = 7;
    1372             :   static const int kIdleScavengeThreshold = 5;
    1373             : 
    1374             :   static const int kInitialFeedbackCapacity = 256;
    1375             : 
    1376             :   Heap();
    1377             :   ~Heap();
    1378             : 
    1379             :   // Selects the proper allocation space based on the pretenuring decision.
    1380   277335329 :   static AllocationSpace SelectSpace(PretenureFlag pretenure) {
    1381   277335329 :     switch (pretenure) {
    1382             :       case TENURED_READ_ONLY:
    1383             :         return RO_SPACE;
    1384             :       case TENURED:
    1385   119276507 :         return OLD_SPACE;
    1386             :       case NOT_TENURED:
    1387   157858692 :         return NEW_SPACE;
    1388             :       default:
    1389           0 :         UNREACHABLE();
    1390             :     }
    1391             :   }
    1392             : 
    1393           0 :   static size_t DefaultGetExternallyAllocatedMemoryInBytesCallback() {
    1394           0 :     return 0;
    1395             :   }
    1396             : 
    1397             : #define ROOT_ACCESSOR(type, name, CamelName) inline void set_##name(type value);
    1398             :   ROOT_LIST(ROOT_ACCESSOR)
    1399             : #undef ROOT_ACCESSOR
    1400             : 
    1401             :   StoreBuffer* store_buffer() { return store_buffer_.get(); }
    1402             : 
    1403             :   void set_current_gc_flags(int flags) {
    1404      119096 :     current_gc_flags_ = flags;
    1405             :   }
    1406             : 
    1407             :   inline bool ShouldReduceMemory() const {
    1408     1072492 :     return (current_gc_flags_ & kReduceMemoryFootprintMask) != 0;
    1409             :   }
    1410             : 
    1411             :   int NumberOfScavengeTasks();
    1412             : 
    1413             :   // Checks whether a global GC is necessary
    1414             :   GarbageCollector SelectGarbageCollector(AllocationSpace space,
    1415             :                                           const char** reason);
    1416             : 
    1417             :   // Make sure there is a filler value behind the top of the new space
    1418             :   // so that the GC does not confuse some unintialized/stale memory
    1419             :   // with the allocation memento of the object at the top
    1420             :   void EnsureFillerObjectAtTop();
    1421             : 
    1422             :   // Ensure that we have swept all spaces in such a way that we can iterate
    1423             :   // over all objects.  May cause a GC.
    1424             :   void MakeHeapIterable();
    1425             : 
    1426             :   // Performs garbage collection
    1427             :   // Returns whether there is a chance another major GC could
    1428             :   // collect more garbage.
    1429             :   bool PerformGarbageCollection(
    1430             :       GarbageCollector collector,
    1431             :       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
    1432             : 
    1433             :   inline void UpdateOldSpaceLimits();
    1434             : 
    1435             :   bool CreateInitialMaps();
    1436             :   void CreateInternalAccessorInfoObjects();
    1437             :   void CreateInitialObjects();
    1438             : 
    1439             :   // Commits from space if it is uncommitted.
    1440             :   void EnsureFromSpaceIsCommitted();
    1441             : 
    1442             :   // Uncommit unused semi space.
    1443             :   bool UncommitFromSpace();
    1444             : 
    1445             :   // Fill in bogus values in from space
    1446             :   void ZapFromSpace();
    1447             : 
    1448             :   // Zaps the memory of a code object.
    1449             :   void ZapCodeObject(Address start_address, int size_in_bytes);
    1450             : 
    1451             :   // Deopts all code that contains allocation instruction which are tenured or
    1452             :   // not tenured. Moreover it clears the pretenuring allocation site statistics.
    1453             :   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
    1454             : 
    1455             :   // Evaluates local pretenuring for the old space and calls
    1456             :   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
    1457             :   // the old space.
    1458             :   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
    1459             : 
    1460             :   // Record statistics after garbage collection.
    1461             :   void ReportStatisticsAfterGC();
    1462             : 
    1463             :   // Flush the number to string cache.
    1464             :   void FlushNumberStringCache();
    1465             : 
    1466             :   void ConfigureInitialOldGenerationSize();
    1467             : 
    1468             :   bool HasLowYoungGenerationAllocationRate();
    1469             :   bool HasLowOldGenerationAllocationRate();
    1470             :   double YoungGenerationMutatorUtilization();
    1471             :   double OldGenerationMutatorUtilization();
    1472             : 
    1473             :   void ReduceNewSpaceSize();
    1474             : 
    1475             :   GCIdleTimeHeapState ComputeHeapState();
    1476             : 
    1477             :   bool PerformIdleTimeAction(GCIdleTimeAction action,
    1478             :                              GCIdleTimeHeapState heap_state,
    1479             :                              double deadline_in_ms);
    1480             : 
    1481             :   void IdleNotificationEpilogue(GCIdleTimeAction action,
    1482             :                                 GCIdleTimeHeapState heap_state, double start_ms,
    1483             :                                 double deadline_in_ms);
    1484             : 
    1485             :   int NextAllocationTimeout(int current_timeout = 0);
    1486             :   inline void UpdateAllocationsHash(HeapObject object);
    1487             :   inline void UpdateAllocationsHash(uint32_t value);
    1488             :   void PrintAllocationsHash();
    1489             : 
    1490             :   void PrintMaxMarkingLimitReached();
    1491             :   void PrintMaxNewSpaceSizeReached();
    1492             : 
    1493             :   int NextStressMarkingLimit();
    1494             : 
    1495             :   void AddToRingBuffer(const char* string);
    1496             :   void GetFromRingBuffer(char* buffer);
    1497             : 
    1498             :   void CompactRetainedMaps(WeakArrayList retained_maps);
    1499             : 
    1500             :   void CollectGarbageOnMemoryPressure();
    1501             : 
    1502             :   void EagerlyFreeExternalMemory();
    1503             : 
    1504             :   bool InvokeNearHeapLimitCallback();
    1505             : 
    1506             :   void ComputeFastPromotionMode();
    1507             : 
    1508             :   // Attempt to over-approximate the weak closure by marking object groups and
    1509             :   // implicit references from global handles, but don't atomically complete
    1510             :   // marking. If we continue to mark incrementally, we might have marked
    1511             :   // objects that die later.
    1512             :   void FinalizeIncrementalMarkingIncrementally(
    1513             :       GarbageCollectionReason gc_reason);
    1514             : 
    1515             :   // Returns the timer used for a given GC type.
    1516             :   // - GCScavenger: young generation GC
    1517             :   // - GCCompactor: full GC
    1518             :   // - GCFinalzeMC: finalization of incremental full GC
    1519             :   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
    1520             :   // memory reduction
    1521             :   TimedHistogram* GCTypeTimer(GarbageCollector collector);
    1522             :   TimedHistogram* GCTypePriorityTimer(GarbageCollector collector);
    1523             : 
    1524             :   // ===========================================================================
    1525             :   // Pretenuring. ==============================================================
    1526             :   // ===========================================================================
    1527             : 
    1528             :   // Pretenuring decisions are made based on feedback collected during new space
    1529             :   // evacuation. Note that between feedback collection and calling this method
    1530             :   // object in old space must not move.
    1531             :   void ProcessPretenuringFeedback();
    1532             : 
    1533             :   // Removes an entry from the global pretenuring storage.
    1534             :   void RemoveAllocationSitePretenuringFeedback(AllocationSite site);
    1535             : 
    1536             :   // ===========================================================================
    1537             :   // Actual GC. ================================================================
    1538             :   // ===========================================================================
    1539             : 
    1540             :   // Code that should be run before and after each GC.  Includes some
    1541             :   // reporting/verification activities when compiled with DEBUG set.
    1542             :   void GarbageCollectionPrologue();
    1543             :   void GarbageCollectionEpilogue();
    1544             : 
    1545             :   // Performs a major collection in the whole heap.
    1546             :   void MarkCompact();
    1547             :   // Performs a minor collection of just the young generation.
    1548             :   void MinorMarkCompact();
    1549             : 
    1550             :   // Code to be run before and after mark-compact.
    1551             :   void MarkCompactPrologue();
    1552             :   void MarkCompactEpilogue();
    1553             : 
    1554             :   // Performs a minor collection in new generation.
    1555             :   void Scavenge();
    1556             :   void EvacuateYoungGeneration();
    1557             : 
    1558             :   void UpdateYoungReferencesInExternalStringTable(
    1559             :       ExternalStringTableUpdaterCallback updater_func);
    1560             : 
    1561             :   void UpdateReferencesInExternalStringTable(
    1562             :       ExternalStringTableUpdaterCallback updater_func);
    1563             : 
    1564             :   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
    1565             :   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
    1566             :   void ProcessNativeContexts(WeakObjectRetainer* retainer);
    1567             :   void ProcessAllocationSites(WeakObjectRetainer* retainer);
    1568             :   void ProcessWeakListRoots(WeakObjectRetainer* retainer);
    1569             : 
    1570             :   // ===========================================================================
    1571             :   // GC statistics. ============================================================
    1572             :   // ===========================================================================
    1573             : 
    1574      237464 :   inline size_t OldGenerationSpaceAvailable() {
    1575      474928 :     if (old_generation_allocation_limit_ <=
    1576      237464 :         OldGenerationObjectsAndPromotedExternalMemorySize())
    1577             :       return 0;
    1578      235183 :     return old_generation_allocation_limit_ -
    1579             :            static_cast<size_t>(
    1580      235183 :                OldGenerationObjectsAndPromotedExternalMemorySize());
    1581             :   }
    1582             : 
    1583             :   // We allow incremental marking to overshoot the allocation limit for
    1584             :   // performace reasons. If the overshoot is too large then we are more
    1585             :   // eager to finalize incremental marking.
    1586        1927 :   inline bool AllocationLimitOvershotByLargeMargin() {
    1587             :     // This guards against too eager finalization in small heaps.
    1588             :     // The number is chosen based on v8.browsing_mobile on Nexus 7v2.
    1589             :     size_t kMarginForSmallHeaps = 32u * MB;
    1590        3854 :     if (old_generation_allocation_limit_ >=
    1591        1927 :         OldGenerationObjectsAndPromotedExternalMemorySize())
    1592             :       return false;
    1593        1661 :     uint64_t overshoot = OldGenerationObjectsAndPromotedExternalMemorySize() -
    1594        1661 :                          old_generation_allocation_limit_;
    1595             :     // Overshoot margin is 50% of allocation limit or half-way to the max heap
    1596             :     // with special handling of small heaps.
    1597             :     uint64_t margin =
    1598             :         Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps),
    1599        1661 :             (max_old_generation_size_ - old_generation_allocation_limit_) / 2);
    1600        1661 :     return overshoot >= margin;
    1601             :   }
    1602             : 
    1603             :   void UpdateTotalGCTime(double duration);
    1604             : 
    1605       98000 :   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
    1606             : 
    1607             :   bool IsIneffectiveMarkCompact(size_t old_generation_size,
    1608             :                                 double mutator_utilization);
    1609             :   void CheckIneffectiveMarkCompact(size_t old_generation_size,
    1610             :                                    double mutator_utilization);
    1611             : 
    1612             :   inline void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
    1613             :                                                  size_t amount);
    1614             : 
    1615             :   inline void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
    1616             :                                                  size_t amount);
    1617             : 
    1618             :   // ===========================================================================
    1619             :   // Growing strategy. =========================================================
    1620             :   // ===========================================================================
    1621             : 
    1622             :   HeapController* heap_controller() { return heap_controller_.get(); }
    1623             :   MemoryReducer* memory_reducer() { return memory_reducer_.get(); }
    1624             : 
    1625             :   // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD.
    1626             :   // This constant limits the effect of load RAIL mode on GC.
    1627             :   // The value is arbitrary and chosen as the largest load time observed in
    1628             :   // v8 browsing benchmarks.
    1629             :   static const int kMaxLoadTimeMs = 7000;
    1630             : 
    1631             :   bool ShouldOptimizeForLoadTime();
    1632             : 
    1633             :   size_t old_generation_allocation_limit() const {
    1634             :     return old_generation_allocation_limit_;
    1635             :   }
    1636             : 
    1637             :   bool always_allocate() { return always_allocate_scope_count_ != 0; }
    1638             : 
    1639             :   bool CanExpandOldGeneration(size_t size);
    1640             : 
    1641             :   bool ShouldExpandOldGenerationOnSlowAllocation();
    1642             : 
    1643             :   enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault };
    1644             : 
    1645             :   HeapGrowingMode CurrentHeapGrowingMode();
    1646             : 
    1647             :   enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit };
    1648             :   IncrementalMarkingLimit IncrementalMarkingLimitReached();
    1649             : 
    1650             :   // ===========================================================================
    1651             :   // Idle notification. ========================================================
    1652             :   // ===========================================================================
    1653             : 
    1654             :   bool RecentIdleNotificationHappened();
    1655             :   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
    1656             : 
    1657             :   // ===========================================================================
    1658             :   // HeapIterator helpers. =====================================================
    1659             :   // ===========================================================================
    1660             : 
    1661        7585 :   void heap_iterator_start() { heap_iterator_depth_++; }
    1662             : 
    1663        7585 :   void heap_iterator_end() { heap_iterator_depth_--; }
    1664             : 
    1665             :   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
    1666             : 
    1667             :   // ===========================================================================
    1668             :   // Allocation methods. =======================================================
    1669             :   // ===========================================================================
    1670             : 
    1671             :   // Allocates a JS Map in the heap.
    1672             :   V8_WARN_UNUSED_RESULT AllocationResult
    1673             :   AllocateMap(InstanceType instance_type, int instance_size,
    1674             :               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND,
    1675             :               int inobject_properties = 0);
    1676             : 
    1677             :   // Allocate an uninitialized object.  The memory is non-executable if the
    1678             :   // hardware and OS allow.  This is the single choke-point for allocations
    1679             :   // performed by the runtime and should not be bypassed (to extend this to
    1680             :   // inlined allocations, use the Heap::DisableInlineAllocation() support).
    1681             :   V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
    1682             :       int size_in_bytes, AllocationSpace space,
    1683             :       AllocationAlignment aligment = kWordAligned);
    1684             : 
    1685             :   // This method will try to perform an allocation of a given size in a given
    1686             :   // space. If the allocation fails, a regular full garbage collection is
    1687             :   // triggered and the allocation is retried. This is performed multiple times.
    1688             :   // If after that retry procedure the allocation still fails nullptr is
    1689             :   // returned.
    1690             :   HeapObject AllocateRawWithLightRetry(
    1691             :       int size, AllocationSpace space,
    1692             :       AllocationAlignment alignment = kWordAligned);
    1693             : 
    1694             :   // This method will try to perform an allocation of a given size in a given
    1695             :   // space. If the allocation fails, a regular full garbage collection is
    1696             :   // triggered and the allocation is retried. This is performed multiple times.
    1697             :   // If after that retry procedure the allocation still fails a "hammer"
    1698             :   // garbage collection is triggered which tries to significantly reduce memory.
    1699             :   // If the allocation still fails after that a fatal error is thrown.
    1700             :   HeapObject AllocateRawWithRetryOrFail(
    1701             :       int size, AllocationSpace space,
    1702             :       AllocationAlignment alignment = kWordAligned);
    1703             :   HeapObject AllocateRawCodeInLargeObjectSpace(int size);
    1704             : 
    1705             :   // Allocates a heap object based on the map.
    1706             :   V8_WARN_UNUSED_RESULT AllocationResult Allocate(Map map,
    1707             :                                                   AllocationSpace space);
    1708             : 
    1709             :   // Takes a code object and checks if it is on memory which is not subject to
    1710             :   // compaction. This method will return a new code object on an immovable
    1711             :   // memory location if the original code object was movable.
    1712             :   HeapObject EnsureImmovableCode(HeapObject heap_object, int object_size);
    1713             : 
    1714             :   // Allocates a partial map for bootstrapping.
    1715             :   V8_WARN_UNUSED_RESULT AllocationResult
    1716             :   AllocatePartialMap(InstanceType instance_type, int instance_size);
    1717             : 
    1718             :   void FinalizePartialMap(Map map);
    1719             : 
    1720             :   // Allocate empty fixed typed array of given type.
    1721             :   V8_WARN_UNUSED_RESULT AllocationResult
    1722             :   AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
    1723             : 
    1724          75 :   void set_force_oom(bool value) { force_oom_ = value; }
    1725             : 
    1726             :   // ===========================================================================
    1727             :   // Retaining path tracing ====================================================
    1728             :   // ===========================================================================
    1729             : 
    1730             :   void AddRetainer(HeapObject retainer, HeapObject object);
    1731             :   void AddEphemeronRetainer(HeapObject retainer, HeapObject object);
    1732             :   void AddRetainingRoot(Root root, HeapObject object);
    1733             :   // Returns true if the given object is a target of retaining path tracking.
    1734             :   // Stores the option corresponding to the object in the provided *option.
    1735             :   bool IsRetainingPathTarget(HeapObject object, RetainingPathOption* option);
    1736             :   void PrintRetainingPath(HeapObject object, RetainingPathOption option);
    1737             : 
    1738             : #ifdef DEBUG
    1739             :   void IncrementObjectCounters();
    1740             : #endif  // DEBUG
    1741             : 
    1742             :   // The amount of memory that has been freed concurrently.
    1743             :   std::atomic<intptr_t> external_memory_concurrently_freed_{0};
    1744             : 
    1745             :   // This can be calculated directly from a pointer to the heap; however, it is
    1746             :   // more expedient to get at the isolate directly from within Heap methods.
    1747             :   Isolate* isolate_ = nullptr;
    1748             : 
    1749             :   size_t code_range_size_ = 0;
    1750             :   size_t max_semi_space_size_ = 8 * (kSystemPointerSize / 4) * MB;
    1751             :   size_t initial_semispace_size_ = kMinSemiSpaceSizeInKB * KB;
    1752             :   size_t max_old_generation_size_ = 700ul * (kSystemPointerSize / 4) * MB;
    1753             :   size_t initial_max_old_generation_size_;
    1754             :   size_t initial_max_old_generation_size_threshold_;
    1755             :   size_t initial_old_generation_size_;
    1756             :   bool old_generation_size_configured_ = false;
    1757             :   size_t maximum_committed_ = 0;
    1758             :   size_t old_generation_capacity_after_bootstrap_ = 0;
    1759             : 
    1760             :   // Backing store bytes (array buffers and external strings).
    1761             :   std::atomic<size_t> backing_store_bytes_{0};
    1762             : 
    1763             :   // For keeping track of how much data has survived
    1764             :   // scavenge since last new space expansion.
    1765             :   size_t survived_since_last_expansion_ = 0;
    1766             : 
    1767             :   // ... and since the last scavenge.
    1768             :   size_t survived_last_scavenge_ = 0;
    1769             : 
    1770             :   // This is not the depth of nested AlwaysAllocateScope's but rather a single
    1771             :   // count, as scopes can be acquired from multiple tasks (read: threads).
    1772             :   std::atomic<size_t> always_allocate_scope_count_{0};
    1773             : 
    1774             :   // Stores the memory pressure level that set by MemoryPressureNotification
    1775             :   // and reset by a mark-compact garbage collection.
    1776             :   std::atomic<MemoryPressureLevel> memory_pressure_level_;
    1777             : 
    1778             :   std::vector<std::pair<v8::NearHeapLimitCallback, void*> >
    1779             :       near_heap_limit_callbacks_;
    1780             : 
    1781             :   // For keeping track of context disposals.
    1782             :   int contexts_disposed_ = 0;
    1783             : 
    1784             :   // The length of the retained_maps array at the time of context disposal.
    1785             :   // This separates maps in the retained_maps array that were created before
    1786             :   // and after context disposal.
    1787             :   int number_of_disposed_maps_ = 0;
    1788             : 
    1789             :   NewSpace* new_space_ = nullptr;
    1790             :   OldSpace* old_space_ = nullptr;
    1791             :   CodeSpace* code_space_ = nullptr;
    1792             :   MapSpace* map_space_ = nullptr;
    1793             :   LargeObjectSpace* lo_space_ = nullptr;
    1794             :   CodeLargeObjectSpace* code_lo_space_ = nullptr;
    1795             :   NewLargeObjectSpace* new_lo_space_ = nullptr;
    1796             :   ReadOnlySpace* read_only_space_ = nullptr;
    1797             :   // Map from the space id to the space.
    1798             :   Space* space_[LAST_SPACE + 1];
    1799             : 
    1800             :   // Determines whether code space is write-protected. This is essentially a
    1801             :   // race-free copy of the {FLAG_write_protect_code_memory} flag.
    1802             :   bool write_protect_code_memory_ = false;
    1803             : 
    1804             :   // Holds the number of open CodeSpaceMemoryModificationScopes.
    1805             :   uintptr_t code_space_memory_modification_scope_depth_ = 0;
    1806             : 
    1807             :   HeapState gc_state_ = NOT_IN_GC;
    1808             : 
    1809             :   int gc_post_processing_depth_ = 0;
    1810             : 
    1811             :   // Returns the amount of external memory registered since last global gc.
    1812             :   uint64_t PromotedExternalMemorySize();
    1813             : 
    1814             :   // How many "runtime allocations" happened.
    1815             :   uint32_t allocations_count_ = 0;
    1816             : 
    1817             :   // Running hash over allocations performed.
    1818             :   uint32_t raw_allocations_hash_ = 0;
    1819             : 
    1820             :   // Starts marking when stress_marking_percentage_% of the marking start limit
    1821             :   // is reached.
    1822             :   int stress_marking_percentage_ = 0;
    1823             : 
    1824             :   // Observer that causes more frequent checks for reached incremental marking
    1825             :   // limit.
    1826             :   AllocationObserver* stress_marking_observer_ = nullptr;
    1827             : 
    1828             :   // Observer that can cause early scavenge start.
    1829             :   StressScavengeObserver* stress_scavenge_observer_ = nullptr;
    1830             : 
    1831             :   bool allocation_step_in_progress_ = false;
    1832             : 
    1833             :   // The maximum percent of the marking limit reached wihout causing marking.
    1834             :   // This is tracked when specyfing --fuzzer-gc-analysis.
    1835             :   double max_marking_limit_reached_ = 0.0;
    1836             : 
    1837             :   // How many mark-sweep collections happened.
    1838             :   unsigned int ms_count_ = 0;
    1839             : 
    1840             :   // How many gc happened.
    1841             :   unsigned int gc_count_ = 0;
    1842             : 
    1843             :   // The number of Mark-Compact garbage collections that are considered as
    1844             :   // ineffective. See IsIneffectiveMarkCompact() predicate.
    1845             :   int consecutive_ineffective_mark_compacts_ = 0;
    1846             : 
    1847             :   static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu;
    1848             :   uintptr_t mmap_region_base_ = 0;
    1849             : 
    1850             :   // For post mortem debugging.
    1851             :   int remembered_unmapped_pages_index_ = 0;
    1852             :   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
    1853             : 
    1854             :   // Limit that triggers a global GC on the next (normally caused) GC.  This
    1855             :   // is checked when we have already decided to do a GC to help determine
    1856             :   // which collector to invoke, before expanding a paged space in the old
    1857             :   // generation and on every allocation in large object space.
    1858             :   size_t old_generation_allocation_limit_;
    1859             : 
    1860             :   // Indicates that inline bump-pointer allocation has been globally disabled
    1861             :   // for all spaces. This is used to disable allocations in generated code.
    1862             :   bool inline_allocation_disabled_ = false;
    1863             : 
    1864             :   // Weak list heads, threaded through the objects.
    1865             :   // List heads are initialized lazily and contain the undefined_value at start.
    1866             :   Object native_contexts_list_;
    1867             :   Object allocation_sites_list_;
    1868             : 
    1869             :   std::vector<GCCallbackTuple> gc_epilogue_callbacks_;
    1870             :   std::vector<GCCallbackTuple> gc_prologue_callbacks_;
    1871             : 
    1872             :   GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_;
    1873             : 
    1874             :   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
    1875             : 
    1876             :   size_t promoted_objects_size_ = 0;
    1877             :   double promotion_ratio_ = 0.0;
    1878             :   double promotion_rate_ = 0.0;
    1879             :   size_t semi_space_copied_object_size_ = 0;
    1880             :   size_t previous_semi_space_copied_object_size_ = 0;
    1881             :   double semi_space_copied_rate_ = 0.0;
    1882             :   int nodes_died_in_new_space_ = 0;
    1883             :   int nodes_copied_in_new_space_ = 0;
    1884             :   int nodes_promoted_ = 0;
    1885             : 
    1886             :   // This is the pretenuring trigger for allocation sites that are in maybe
    1887             :   // tenure state. When we switched to the maximum new space size we deoptimize
    1888             :   // the code that belongs to the allocation site and derive the lifetime
    1889             :   // of the allocation site.
    1890             :   unsigned int maximum_size_scavenges_ = 0;
    1891             : 
    1892             :   // Total time spent in GC.
    1893             :   double total_gc_time_ms_;
    1894             : 
    1895             :   // Last time an idle notification happened.
    1896             :   double last_idle_notification_time_ = 0.0;
    1897             : 
    1898             :   // Last time a garbage collection happened.
    1899             :   double last_gc_time_ = 0.0;
    1900             : 
    1901             :   std::unique_ptr<GCTracer> tracer_;
    1902             :   std::unique_ptr<MarkCompactCollector> mark_compact_collector_;
    1903             :   MinorMarkCompactCollector* minor_mark_compact_collector_ = nullptr;
    1904             :   std::unique_ptr<ScavengerCollector> scavenger_collector_;
    1905             :   std::unique_ptr<ArrayBufferCollector> array_buffer_collector_;
    1906             :   std::unique_ptr<MemoryAllocator> memory_allocator_;
    1907             :   std::unique_ptr<StoreBuffer> store_buffer_;
    1908             :   std::unique_ptr<HeapController> heap_controller_;
    1909             :   std::unique_ptr<IncrementalMarking> incremental_marking_;
    1910             :   std::unique_ptr<ConcurrentMarking> concurrent_marking_;
    1911             :   std::unique_ptr<GCIdleTimeHandler> gc_idle_time_handler_;
    1912             :   std::unique_ptr<MemoryReducer> memory_reducer_;
    1913             :   std::unique_ptr<ObjectStats> live_object_stats_;
    1914             :   std::unique_ptr<ObjectStats> dead_object_stats_;
    1915             :   std::unique_ptr<ScavengeJob> scavenge_job_;
    1916             :   std::unique_ptr<AllocationObserver> idle_scavenge_observer_;
    1917             :   std::unique_ptr<LocalEmbedderHeapTracer> local_embedder_heap_tracer_;
    1918             :   StrongRootsList* strong_roots_list_ = nullptr;
    1919             : 
    1920             :   // This counter is increased before each GC and never reset.
    1921             :   // To account for the bytes allocated since the last GC, use the
    1922             :   // NewSpaceAllocationCounter() function.
    1923             :   size_t new_space_allocation_counter_ = 0;
    1924             : 
    1925             :   // This counter is increased before each GC and never reset. To
    1926             :   // account for the bytes allocated since the last GC, use the
    1927             :   // OldGenerationAllocationCounter() function.
    1928             :   size_t old_generation_allocation_counter_at_last_gc_ = 0;
    1929             : 
    1930             :   // The size of objects in old generation after the last MarkCompact GC.
    1931             :   size_t old_generation_size_at_last_gc_ = 0;
    1932             : 
    1933             :   // The feedback storage is used to store allocation sites (keys) and how often
    1934             :   // they have been visited (values) by finding a memento behind an object. The
    1935             :   // storage is only alive temporary during a GC. The invariant is that all
    1936             :   // pointers in this map are already fixed, i.e., they do not point to
    1937             :   // forwarding pointers.
    1938             :   PretenuringFeedbackMap global_pretenuring_feedback_;
    1939             : 
    1940             :   char trace_ring_buffer_[kTraceRingBufferSize];
    1941             : 
    1942             :   // Used as boolean.
    1943             :   uint8_t is_marking_flag_ = 0;
    1944             : 
    1945             :   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
    1946             :   // full then the data is from ring_buffer_end_ to the end of the buffer and
    1947             :   // from 0 to ring_buffer_end_.
    1948             :   bool ring_buffer_full_ = false;
    1949             :   size_t ring_buffer_end_ = 0;
    1950             : 
    1951             :   // Flag is set when the heap has been configured.  The heap can be repeatedly
    1952             :   // configured through the API until it is set up.
    1953             :   bool configured_ = false;
    1954             : 
    1955             :   // Currently set GC flags that are respected by all GC components.
    1956             :   int current_gc_flags_ = Heap::kNoGCFlags;
    1957             : 
    1958             :   // Currently set GC callback flags that are used to pass information between
    1959             :   // the embedder and V8's GC.
    1960             :   GCCallbackFlags current_gc_callback_flags_;
    1961             : 
    1962             :   bool is_current_gc_forced_;
    1963             : 
    1964             :   ExternalStringTable external_string_table_;
    1965             : 
    1966             :   base::Mutex relocation_mutex_;
    1967             : 
    1968             :   int gc_callbacks_depth_ = 0;
    1969             : 
    1970             :   bool deserialization_complete_ = false;
    1971             : 
    1972             :   // The depth of HeapIterator nestings.
    1973             :   int heap_iterator_depth_ = 0;
    1974             : 
    1975             :   bool fast_promotion_mode_ = false;
    1976             : 
    1977             :   // Used for testing purposes.
    1978             :   bool force_oom_ = false;
    1979             :   bool delay_sweeper_tasks_for_testing_ = false;
    1980             : 
    1981             :   HeapObject pending_layout_change_object_;
    1982             : 
    1983             :   base::Mutex unprotected_memory_chunks_mutex_;
    1984             :   std::unordered_set<MemoryChunk*> unprotected_memory_chunks_;
    1985             :   bool unprotected_memory_chunks_registry_enabled_ = false;
    1986             : 
    1987             : #ifdef V8_ENABLE_ALLOCATION_TIMEOUT
    1988             :   // If the --gc-interval flag is set to a positive value, this
    1989             :   // variable holds the value indicating the number of allocations
    1990             :   // remain until the next failure and garbage collection.
    1991             :   int allocation_timeout_ = 0;
    1992             : #endif  // V8_ENABLE_ALLOCATION_TIMEOUT
    1993             : 
    1994             :   std::map<HeapObject, HeapObject, Object::Comparer> retainer_;
    1995             :   std::map<HeapObject, Root, Object::Comparer> retaining_root_;
    1996             :   // If an object is retained by an ephemeron, then the retaining key of the
    1997             :   // ephemeron is stored in this map.
    1998             :   std::map<HeapObject, HeapObject, Object::Comparer> ephemeron_retainer_;
    1999             :   // For each index inthe retaining_path_targets_ array this map
    2000             :   // stores the option of the corresponding target.
    2001             :   std::map<int, RetainingPathOption> retaining_path_target_option_;
    2002             : 
    2003             :   std::vector<HeapObjectAllocationTracker*> allocation_trackers_;
    2004             : 
    2005             :   // Classes in "heap" can be friends.
    2006             :   friend class AlwaysAllocateScope;
    2007             :   friend class ArrayBufferCollector;
    2008             :   friend class ConcurrentMarking;
    2009             :   friend class GCCallbacksScope;
    2010             :   friend class GCTracer;
    2011             :   friend class MemoryController;
    2012             :   friend class HeapIterator;
    2013             :   friend class IdleScavengeObserver;
    2014             :   friend class IncrementalMarking;
    2015             :   friend class IncrementalMarkingJob;
    2016             :   friend class LargeObjectSpace;
    2017             :   template <FixedArrayVisitationMode fixed_array_mode,
    2018             :             TraceRetainingPathMode retaining_path_mode, typename MarkingState>
    2019             :   friend class MarkingVisitor;
    2020             :   friend class MarkCompactCollector;
    2021             :   friend class MarkCompactCollectorBase;
    2022             :   friend class MinorMarkCompactCollector;
    2023             :   friend class NewLargeObjectSpace;
    2024             :   friend class NewSpace;
    2025             :   friend class ObjectStatsCollector;
    2026             :   friend class Page;
    2027             :   friend class PagedSpace;
    2028             :   friend class ReadOnlyRoots;
    2029             :   friend class Scavenger;
    2030             :   friend class ScavengerCollector;
    2031             :   friend class Space;
    2032             :   friend class StoreBuffer;
    2033             :   friend class Sweeper;
    2034             :   friend class heap::TestMemoryAllocatorScope;
    2035             : 
    2036             :   // The allocator interface.
    2037             :   friend class Factory;
    2038             : 
    2039             :   // The Isolate constructs us.
    2040             :   friend class Isolate;
    2041             : 
    2042             :   // Used in cctest.
    2043             :   friend class heap::HeapTester;
    2044             : 
    2045             :   FRIEND_TEST(HeapControllerTest, OldGenerationAllocationLimit);
    2046             :   FRIEND_TEST(HeapTest, ExternalLimitDefault);
    2047             :   FRIEND_TEST(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling);
    2048             :   DISALLOW_COPY_AND_ASSIGN(Heap);
    2049             : };
    2050             : 
    2051             : 
    2052             : class HeapStats {
    2053             :  public:
    2054             :   static const int kStartMarker = 0xDECADE00;
    2055             :   static const int kEndMarker = 0xDECADE01;
    2056             : 
    2057             :   intptr_t* start_marker;                  //  0
    2058             :   size_t* ro_space_size;                   //  1
    2059             :   size_t* ro_space_capacity;               //  2
    2060             :   size_t* new_space_size;                  //  3
    2061             :   size_t* new_space_capacity;              //  4
    2062             :   size_t* old_space_size;                  //  5
    2063             :   size_t* old_space_capacity;              //  6
    2064             :   size_t* code_space_size;                 //  7
    2065             :   size_t* code_space_capacity;             //  8
    2066             :   size_t* map_space_size;                  //  9
    2067             :   size_t* map_space_capacity;              // 10
    2068             :   size_t* lo_space_size;                   // 11
    2069             :   size_t* code_lo_space_size;              // 12
    2070             :   size_t* global_handle_count;             // 13
    2071             :   size_t* weak_global_handle_count;        // 14
    2072             :   size_t* pending_global_handle_count;     // 15
    2073             :   size_t* near_death_global_handle_count;  // 16
    2074             :   size_t* free_global_handle_count;        // 17
    2075             :   size_t* memory_allocator_size;           // 18
    2076             :   size_t* memory_allocator_capacity;       // 19
    2077             :   size_t* malloced_memory;                 // 20
    2078             :   size_t* malloced_peak_memory;            // 21
    2079             :   size_t* objects_per_type;                // 22
    2080             :   size_t* size_per_type;                   // 23
    2081             :   int* os_error;                           // 24
    2082             :   char* last_few_messages;                 // 25
    2083             :   char* js_stacktrace;                     // 26
    2084             :   intptr_t* end_marker;                    // 27
    2085             : };
    2086             : 
    2087             : 
    2088             : class AlwaysAllocateScope {
    2089             :  public:
    2090             :   explicit inline AlwaysAllocateScope(Isolate* isolate);
    2091             :   inline ~AlwaysAllocateScope();
    2092             : 
    2093             :  private:
    2094             :   Heap* heap_;
    2095             : };
    2096             : 
    2097             : // The CodeSpaceMemoryModificationScope can only be used by the main thread.
    2098             : class CodeSpaceMemoryModificationScope {
    2099             :  public:
    2100             :   explicit inline CodeSpaceMemoryModificationScope(Heap* heap);
    2101             :   inline ~CodeSpaceMemoryModificationScope();
    2102             : 
    2103             :  private:
    2104             :   Heap* heap_;
    2105             : };
    2106             : 
    2107             : // The CodePageCollectionMemoryModificationScope can only be used by the main
    2108             : // thread. It will not be enabled if a CodeSpaceMemoryModificationScope is
    2109             : // already active.
    2110             : class CodePageCollectionMemoryModificationScope {
    2111             :  public:
    2112             :   explicit inline CodePageCollectionMemoryModificationScope(Heap* heap);
    2113             :   inline ~CodePageCollectionMemoryModificationScope();
    2114             : 
    2115             :  private:
    2116             :   Heap* heap_;
    2117             : };
    2118             : 
    2119             : // The CodePageMemoryModificationScope does not check if tansitions to
    2120             : // writeable and back to executable are actually allowed, i.e. the MemoryChunk
    2121             : // was registered to be executable. It can be used by concurrent threads.
    2122             : class CodePageMemoryModificationScope {
    2123             :  public:
    2124             :   explicit inline CodePageMemoryModificationScope(MemoryChunk* chunk);
    2125             :   inline ~CodePageMemoryModificationScope();
    2126             : 
    2127             :  private:
    2128             :   MemoryChunk* chunk_;
    2129             :   bool scope_active_;
    2130             : 
    2131             :   // Disallow any GCs inside this scope, as a relocation of the underlying
    2132             :   // object would change the {MemoryChunk} that this scope targets.
    2133             :   DISALLOW_HEAP_ALLOCATION(no_heap_allocation_)
    2134             : };
    2135             : 
    2136             : // Visitor class to verify interior pointers in spaces that do not contain
    2137             : // or care about intergenerational references. All heap object pointers have to
    2138             : // point into the heap to a location that has a map pointer at its first word.
    2139             : // Caveat: Heap::Contains is an approximation because it can return true for
    2140             : // objects in a heap space but above the allocation pointer.
    2141           0 : class VerifyPointersVisitor : public ObjectVisitor, public RootVisitor {
    2142             :  public:
    2143             :   explicit VerifyPointersVisitor(Heap* heap) : heap_(heap) {}
    2144             :   void VisitPointers(HeapObject host, ObjectSlot start,
    2145             :                      ObjectSlot end) override;
    2146             :   void VisitPointers(HeapObject host, MaybeObjectSlot start,
    2147             :                      MaybeObjectSlot end) override;
    2148             :   void VisitCodeTarget(Code host, RelocInfo* rinfo) override;
    2149             :   void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) override;
    2150             : 
    2151             :   void VisitRootPointers(Root root, const char* description,
    2152             :                          FullObjectSlot start, FullObjectSlot end) override;
    2153             : 
    2154             :  protected:
    2155             :   V8_INLINE void VerifyHeapObjectImpl(HeapObject heap_object);
    2156             : 
    2157             :   template <typename TSlot>
    2158             :   V8_INLINE void VerifyPointersImpl(TSlot start, TSlot end);
    2159             : 
    2160             :   virtual void VerifyPointers(HeapObject host, MaybeObjectSlot start,
    2161             :                               MaybeObjectSlot end);
    2162             : 
    2163             :   Heap* heap_;
    2164             : };
    2165             : 
    2166             : 
    2167             : // Verify that all objects are Smis.
    2168           0 : class VerifySmisVisitor : public RootVisitor {
    2169             :  public:
    2170             :   void VisitRootPointers(Root root, const char* description,
    2171             :                          FullObjectSlot start, FullObjectSlot end) override;
    2172             : };
    2173             : 
    2174             : // Space iterator for iterating over all the paged spaces of the heap: Map
    2175             : // space, old space, code space and optionally read only space. Returns each
    2176             : // space in turn, and null when it is done.
    2177             : class V8_EXPORT_PRIVATE PagedSpaces {
    2178             :  public:
    2179             :   enum class SpacesSpecifier { kSweepablePagedSpaces, kAllPagedSpaces };
    2180             : 
    2181             :   explicit PagedSpaces(Heap* heap, SpacesSpecifier specifier =
    2182             :                                        SpacesSpecifier::kSweepablePagedSpaces)
    2183             :       : heap_(heap),
    2184             :         counter_(specifier == SpacesSpecifier::kAllPagedSpaces ? RO_SPACE
    2185     5597893 :                                                                : OLD_SPACE) {}
    2186             :   PagedSpace* next();
    2187             : 
    2188             :  private:
    2189             :   Heap* heap_;
    2190             :   int counter_;
    2191             : };
    2192             : 
    2193             : 
    2194      238138 : class SpaceIterator : public Malloced {
    2195             :  public:
    2196             :   explicit SpaceIterator(Heap* heap);
    2197             :   virtual ~SpaceIterator();
    2198             : 
    2199             :   bool has_next();
    2200             :   Space* next();
    2201             : 
    2202             :  private:
    2203             :   Heap* heap_;
    2204             :   int current_space_;         // from enum AllocationSpace.
    2205             : };
    2206             : 
    2207             : 
    2208             : // A HeapIterator provides iteration over the whole heap. It
    2209             : // aggregates the specific iterators for the different spaces as
    2210             : // these can only iterate over one space only.
    2211             : //
    2212             : // HeapIterator ensures there is no allocation during its lifetime
    2213             : // (using an embedded DisallowHeapAllocation instance).
    2214             : //
    2215             : // HeapIterator can skip free list nodes (that is, de-allocated heap
    2216             : // objects that still remain in the heap). As implementation of free
    2217             : // nodes filtering uses GC marks, it can't be used during MS/MC GC
    2218             : // phases. Also, it is forbidden to interrupt iteration in this mode,
    2219             : // as this will leave heap objects marked (and thus, unusable).
    2220             : class HeapIterator {
    2221             :  public:
    2222             :   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
    2223             : 
    2224             :   explicit HeapIterator(Heap* heap,
    2225             :                         HeapObjectsFiltering filtering = kNoFiltering);
    2226             :   ~HeapIterator();
    2227             : 
    2228             :   HeapObject next();
    2229             : 
    2230             :  private:
    2231             :   HeapObject NextObject();
    2232             : 
    2233             :   DISALLOW_HEAP_ALLOCATION(no_heap_allocation_)
    2234             : 
    2235             :   Heap* heap_;
    2236             :   HeapObjectsFiltering filtering_;
    2237             :   HeapObjectsFilter* filter_;
    2238             :   // Space iterator for iterating all the spaces.
    2239             :   SpaceIterator* space_iterator_;
    2240             :   // Object iterator for the space currently being iterated.
    2241             :   std::unique_ptr<ObjectIterator> object_iterator_;
    2242             : };
    2243             : 
    2244             : // Abstract base class for checking whether a weak object should be retained.
    2245       74510 : class WeakObjectRetainer {
    2246             :  public:
    2247      172510 :   virtual ~WeakObjectRetainer() = default;
    2248             : 
    2249             :   // Return whether this object should be retained. If nullptr is returned the
    2250             :   // object has no references. Otherwise the address of the retained object
    2251             :   // should be returned as in some GC situations the object has been moved.
    2252             :   virtual Object RetainAs(Object object) = 0;
    2253             : };
    2254             : 
    2255             : // -----------------------------------------------------------------------------
    2256             : // Allows observation of allocations.
    2257             : class AllocationObserver {
    2258             :  public:
    2259             :   explicit AllocationObserver(intptr_t step_size)
    2260      183314 :       : step_size_(step_size), bytes_to_next_step_(step_size) {
    2261             :     DCHECK_LE(kTaggedSize, step_size);
    2262             :   }
    2263      183239 :   virtual ~AllocationObserver() = default;
    2264             : 
    2265             :   // Called each time the observed space does an allocation step. This may be
    2266             :   // more frequently than the step_size we are monitoring (e.g. when there are
    2267             :   // multiple observers, or when page or space boundary is encountered.)
    2268             :   void AllocationStep(int bytes_allocated, Address soon_object, size_t size);
    2269             : 
    2270             :  protected:
    2271             :   intptr_t step_size() const { return step_size_; }
    2272             :   intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
    2273             : 
    2274             :   // Pure virtual method provided by the subclasses that gets called when at
    2275             :   // least step_size bytes have been allocated. soon_object is the address just
    2276             :   // allocated (but not yet initialized.) size is the size of the object as
    2277             :   // requested (i.e. w/o the alignment fillers). Some complexities to be aware
    2278             :   // of:
    2279             :   // 1) soon_object will be nullptr in cases where we end up observing an
    2280             :   //    allocation that happens to be a filler space (e.g. page boundaries.)
    2281             :   // 2) size is the requested size at the time of allocation. Right-trimming
    2282             :   //    may change the object size dynamically.
    2283             :   // 3) soon_object may actually be the first object in an allocation-folding
    2284             :   //    group. In such a case size is the size of the group rather than the
    2285             :   //    first object.
    2286             :   virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
    2287             : 
    2288             :   // Subclasses can override this method to make step size dynamic.
    2289      105307 :   virtual intptr_t GetNextStepSize() { return step_size_; }
    2290             : 
    2291             :   intptr_t step_size_;
    2292             :   intptr_t bytes_to_next_step_;
    2293             : 
    2294             :  private:
    2295             :   friend class Space;
    2296             :   DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
    2297             : };
    2298             : 
    2299             : V8_EXPORT_PRIVATE const char* AllocationSpaceName(AllocationSpace space);
    2300             : 
    2301             : // -----------------------------------------------------------------------------
    2302             : // Allows observation of heap object allocations.
    2303       69117 : class HeapObjectAllocationTracker {
    2304             :  public:
    2305             :   virtual void AllocationEvent(Address addr, int size) = 0;
    2306       35039 :   virtual void MoveEvent(Address from, Address to, int size) {}
    2307        2824 :   virtual void UpdateObjectSizeEvent(Address addr, int size) {}
    2308       69103 :   virtual ~HeapObjectAllocationTracker() = default;
    2309             : };
    2310             : 
    2311             : }  // namespace internal
    2312             : }  // namespace v8
    2313             : 
    2314             : #endif  // V8_HEAP_HEAP_H_

Generated by: LCOV version 1.10