LCOV - code coverage report
Current view: top level - src/regexp - jsregexp.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 2293 2401 95.5 %
Date: 2019-02-19 Functions: 197 228 86.4 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include "src/regexp/jsregexp.h"
       6             : 
       7             : #include <memory>
       8             : #include <vector>
       9             : 
      10             : #include "src/base/platform/platform.h"
      11             : #include "src/code-tracer.h"
      12             : #include "src/compilation-cache.h"
      13             : #include "src/elements.h"
      14             : #include "src/execution.h"
      15             : #include "src/heap/factory.h"
      16             : #include "src/heap/heap-inl.h"
      17             : #include "src/isolate-inl.h"
      18             : #include "src/message-template.h"
      19             : #include "src/ostreams.h"
      20             : #include "src/regexp/interpreter-irregexp.h"
      21             : #include "src/regexp/jsregexp-inl.h"
      22             : #include "src/regexp/regexp-macro-assembler-irregexp.h"
      23             : #include "src/regexp/regexp-macro-assembler-tracer.h"
      24             : #include "src/regexp/regexp-macro-assembler.h"
      25             : #include "src/regexp/regexp-parser.h"
      26             : #include "src/regexp/regexp-stack.h"
      27             : #include "src/runtime/runtime.h"
      28             : #include "src/splay-tree-inl.h"
      29             : #include "src/string-search.h"
      30             : #include "src/unicode-decoder.h"
      31             : #include "src/unicode-inl.h"
      32             : #include "src/zone/zone-list-inl.h"
      33             : 
      34             : #ifdef V8_INTL_SUPPORT
      35             : #include "unicode/uniset.h"
      36             : #include "unicode/utypes.h"
      37             : #endif  // V8_INTL_SUPPORT
      38             : 
      39             : #if V8_TARGET_ARCH_IA32
      40             : #include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
      41             : #elif V8_TARGET_ARCH_X64
      42             : #include "src/regexp/x64/regexp-macro-assembler-x64.h"
      43             : #elif V8_TARGET_ARCH_ARM64
      44             : #include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
      45             : #elif V8_TARGET_ARCH_ARM
      46             : #include "src/regexp/arm/regexp-macro-assembler-arm.h"
      47             : #elif V8_TARGET_ARCH_PPC
      48             : #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
      49             : #elif V8_TARGET_ARCH_S390
      50             : #include "src/regexp/s390/regexp-macro-assembler-s390.h"
      51             : #elif V8_TARGET_ARCH_MIPS
      52             : #include "src/regexp/mips/regexp-macro-assembler-mips.h"
      53             : #elif V8_TARGET_ARCH_MIPS64
      54             : #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
      55             : #else
      56             : #error Unsupported target architecture.
      57             : #endif
      58             : 
      59             : namespace v8 {
      60             : namespace internal {
      61             : 
      62             : V8_WARN_UNUSED_RESULT
      63        3167 : static inline MaybeHandle<Object> ThrowRegExpException(
      64             :     Isolate* isolate, Handle<JSRegExp> re, Handle<String> pattern,
      65             :     Handle<String> error_text) {
      66        3167 :   THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
      67             :                                           pattern, error_text),
      68             :                   Object);
      69             : }
      70             : 
      71         319 : inline void ThrowRegExpException(Isolate* isolate, Handle<JSRegExp> re,
      72             :                                  Handle<String> error_text) {
      73         638 :   USE(ThrowRegExpException(isolate, re, Handle<String>(re->Pattern(), isolate),
      74             :                            error_text));
      75         319 : }
      76             : 
      77             : 
      78      964900 : ContainedInLattice AddRange(ContainedInLattice containment,
      79             :                             const int* ranges,
      80             :                             int ranges_length,
      81             :                             Interval new_range) {
      82             :   DCHECK_EQ(1, ranges_length & 1);
      83             :   DCHECK_EQ(String::kMaxCodePoint + 1, ranges[ranges_length - 1]);
      84      964900 :   if (containment == kLatticeUnknown) return containment;
      85             :   bool inside = false;
      86             :   int last = 0;
      87     4569493 :   for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
      88             :     // Consider the range from last to ranges[i].
      89             :     // We haven't got to the new range yet.
      90     5424679 :     if (ranges[i] <= new_range.from()) continue;
      91             :     // New range is wholly inside last-ranges[i].  Note that new_range.to() is
      92             :     // inclusive, but the values in ranges are not.
      93      855186 :     if (last <= new_range.from() && new_range.to() < ranges[i]) {
      94     1676032 :       return Combine(containment, inside ? kLatticeIn : kLatticeOut);
      95             :     }
      96             :     return kLatticeUnknown;
      97             :   }
      98             :   return containment;
      99             : }
     100             : 
     101             : // More makes code generation slower, less makes V8 benchmark score lower.
     102             : const int kMaxLookaheadForBoyerMoore = 8;
     103             : // In a 3-character pattern you can maximally step forwards 3 characters
     104             : // at a time, which is not always enough to pay for the extra logic.
     105             : const int kPatternTooShortForBoyerMoore = 2;
     106             : 
     107             : // Identifies the sort of regexps where the regexp engine is faster
     108             : // than the code used for atom matches.
     109      177201 : static bool HasFewDifferentCharacters(Handle<String> pattern) {
     110             :   int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
     111      177201 :   if (length <= kPatternTooShortForBoyerMoore) return false;
     112             :   const int kMod = 128;
     113             :   bool character_found[kMod];
     114             :   int different = 0;
     115             :   memset(&character_found[0], 0, sizeof(character_found));
     116      515267 :   for (int i = 0; i < length; i++) {
     117     1030358 :     int ch = (pattern->Get(i) & (kMod - 1));
     118      515179 :     if (!character_found[ch]) {
     119      514759 :       character_found[ch] = true;
     120      514759 :       different++;
     121             :       // We declare a regexp low-alphabet if it has at least 3 times as many
     122             :       // characters as it has different characters.
     123      514759 :       if (different * 3 > length) return false;
     124             :     }
     125             :   }
     126             :   return true;
     127             : }
     128             : 
     129             : // Generic RegExp methods. Dispatches to implementation specific methods.
     130             : 
     131      919626 : MaybeHandle<Object> RegExpImpl::Compile(Isolate* isolate, Handle<JSRegExp> re,
     132             :                                         Handle<String> pattern,
     133             :                                         JSRegExp::Flags flags) {
     134             :   DCHECK(pattern->IsFlat());
     135             : 
     136      459813 :   Zone zone(isolate->allocator(), ZONE_NAME);
     137             :   CompilationCache* compilation_cache = isolate->compilation_cache();
     138             :   MaybeHandle<FixedArray> maybe_cached =
     139      459813 :       compilation_cache->LookupRegExp(pattern, flags);
     140             :   Handle<FixedArray> cached;
     141      459813 :   if (maybe_cached.ToHandle(&cached)) {
     142      389038 :     re->set_data(*cached);
     143      194519 :     return re;
     144             :   }
     145             : 
     146             :   PostponeInterruptsScope postpone(isolate);
     147             :   RegExpCompileData parse_result;
     148      265294 :   FlatStringReader reader(isolate, pattern);
     149             :   DCHECK(!isolate->has_pending_exception());
     150      265294 :   if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
     151      265294 :                                  &parse_result)) {
     152             :     // Throw an exception if we fail to parse the pattern.
     153        2798 :     return ThrowRegExpException(isolate, re, pattern, parse_result.error);
     154             :   }
     155             : 
     156             :   bool has_been_compiled = false;
     157             : 
     158      774665 :   if (parse_result.simple && !IgnoreCase(flags) && !IsSticky(flags) &&
     159      170538 :       !HasFewDifferentCharacters(pattern)) {
     160             :     // Parse-tree is a single atom that is equal to the pattern.
     161             :     AtomCompile(isolate, re, pattern, flags, pattern);
     162             :     has_been_compiled = true;
     163      106425 :   } else if (parse_result.tree->IsAtom() && !IsSticky(flags) &&
     164        7187 :              parse_result.capture_count == 0) {
     165        7177 :     RegExpAtom* atom = parse_result.tree->AsAtom();
     166        7177 :     Vector<const uc16> atom_pattern = atom->data();
     167             :     Handle<String> atom_string;
     168       14354 :     ASSIGN_RETURN_ON_EXCEPTION(
     169             :         isolate, atom_string,
     170             :         isolate->factory()->NewStringFromTwoByte(atom_pattern), Object);
     171        7177 :     if (!IgnoreCase(atom->flags()) && !HasFewDifferentCharacters(atom_string)) {
     172             :       AtomCompile(isolate, re, pattern, flags, atom_string);
     173             :       has_been_compiled = true;
     174             :     }
     175             :   }
     176      262496 :   if (!has_been_compiled) {
     177       85383 :     IrregexpInitialize(isolate, re, pattern, flags, parse_result.capture_count);
     178             :   }
     179             :   DCHECK(re->data()->IsFixedArray());
     180             :   // Compilation succeeded so the data is set on the regexp
     181             :   // and we can store it in the cache.
     182             :   Handle<FixedArray> data(FixedArray::cast(re->data()), isolate);
     183      262496 :   compilation_cache->PutRegExp(pattern, flags, data);
     184             : 
     185      722309 :   return re;
     186             : }
     187             : 
     188     4353070 : MaybeHandle<Object> RegExpImpl::Exec(Isolate* isolate, Handle<JSRegExp> regexp,
     189             :                                      Handle<String> subject, int index,
     190             :                                      Handle<RegExpMatchInfo> last_match_info) {
     191     4353070 :   switch (regexp->TypeTag()) {
     192             :     case JSRegExp::ATOM:
     193         286 :       return AtomExec(isolate, regexp, subject, index, last_match_info);
     194             :     case JSRegExp::IRREGEXP: {
     195     4352784 :       return IrregexpExec(isolate, regexp, subject, index, last_match_info);
     196             :     }
     197             :     default:
     198           0 :       UNREACHABLE();
     199             :   }
     200             : }
     201             : 
     202             : 
     203             : // RegExp Atom implementation: Simple string search using indexOf.
     204             : 
     205           0 : void RegExpImpl::AtomCompile(Isolate* isolate, Handle<JSRegExp> re,
     206             :                              Handle<String> pattern, JSRegExp::Flags flags,
     207             :                              Handle<String> match_pattern) {
     208             :   isolate->factory()->SetRegExpAtomData(re, JSRegExp::ATOM, pattern, flags,
     209      177113 :                                         match_pattern);
     210           0 : }
     211             : 
     212         273 : static void SetAtomLastCapture(Isolate* isolate,
     213             :                                Handle<RegExpMatchInfo> last_match_info,
     214             :                                String subject, int from, int to) {
     215             :   SealHandleScope shs(isolate);
     216             :   last_match_info->SetNumberOfCaptureRegisters(2);
     217         546 :   last_match_info->SetLastSubject(subject);
     218         546 :   last_match_info->SetLastInput(subject);
     219         273 :   last_match_info->SetCapture(0, from);
     220         273 :   last_match_info->SetCapture(1, to);
     221         273 : }
     222             : 
     223       90541 : int RegExpImpl::AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
     224             :                             Handle<String> subject, int index, int32_t* output,
     225             :                             int output_size) {
     226             :   DCHECK_LE(0, index);
     227             :   DCHECK_LE(index, subject->length());
     228             : 
     229       90541 :   subject = String::Flatten(isolate, subject);
     230             :   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
     231             : 
     232      181082 :   String needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
     233             :   int needle_len = needle->length();
     234             :   DCHECK(needle->IsFlat());
     235             :   DCHECK_LT(0, needle_len);
     236             : 
     237      181082 :   if (index + needle_len > subject->length()) {
     238             :     return RegExpImpl::RE_FAILURE;
     239             :   }
     240             : 
     241       91470 :   for (int i = 0; i < output_size; i += 2) {
     242      181736 :     String::FlatContent needle_content = needle->GetFlatContent(no_gc);
     243      181736 :     String::FlatContent subject_content = subject->GetFlatContent(no_gc);
     244             :     DCHECK(needle_content.IsFlat());
     245             :     DCHECK(subject_content.IsFlat());
     246             :     // dispatch on type of strings
     247             :     index =
     248      181736 :         (needle_content.IsOneByte()
     249             :              ? (subject_content.IsOneByte()
     250             :                     ? SearchString(isolate, subject_content.ToOneByteVector(),
     251             :                                    needle_content.ToOneByteVector(), index)
     252             :                     : SearchString(isolate, subject_content.ToUC16Vector(),
     253             :                                    needle_content.ToOneByteVector(), index))
     254             :              : (subject_content.IsOneByte()
     255             :                     ? SearchString(isolate, subject_content.ToOneByteVector(),
     256             :                                    needle_content.ToUC16Vector(), index)
     257             :                     : SearchString(isolate, subject_content.ToUC16Vector(),
     258      363472 :                                    needle_content.ToUC16Vector(), index)));
     259      181736 :     if (index == -1) {
     260       90266 :       return i / 2;  // Return number of matches.
     261             :     } else {
     262       91470 :       output[i] = index;
     263       91470 :       output[i+1] = index + needle_len;
     264             :       index += needle_len;
     265             :     }
     266             :   }
     267         273 :   return output_size / 2;
     268             : }
     269             : 
     270         286 : Handle<Object> RegExpImpl::AtomExec(Isolate* isolate, Handle<JSRegExp> re,
     271             :                                     Handle<String> subject, int index,
     272             :                                     Handle<RegExpMatchInfo> last_match_info) {
     273             :   static const int kNumRegisters = 2;
     274             :   STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
     275         286 :   int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
     276             : 
     277             :   int res =
     278         286 :       AtomExecRaw(isolate, re, subject, index, output_registers, kNumRegisters);
     279             : 
     280         299 :   if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
     281             : 
     282             :   DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
     283             :   SealHandleScope shs(isolate);
     284             :   SetAtomLastCapture(isolate, last_match_info, *subject, output_registers[0],
     285         546 :                      output_registers[1]);
     286         273 :   return last_match_info;
     287             : }
     288             : 
     289             : 
     290             : // Irregexp implementation.
     291             : 
     292             : // Ensures that the regexp object contains a compiled version of the
     293             : // source for either one-byte or two-byte subject strings.
     294             : // If the compiled version doesn't already exist, it is compiled
     295             : // from the source pattern.
     296             : // If compilation fails, an exception is thrown and this function
     297             : // returns false.
     298     4471338 : bool RegExpImpl::EnsureCompiledIrregexp(Isolate* isolate, Handle<JSRegExp> re,
     299             :                                         Handle<String> sample_subject,
     300             :                                         bool is_one_byte) {
     301     4471338 :   Object compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
     302     4471338 :   if (compiled_code != Smi::FromInt(JSRegExp::kUninitializedValue)) {
     303             :     DCHECK(FLAG_regexp_interpret_all ? compiled_code->IsByteArray()
     304             :                                      : compiled_code->IsCode());
     305             :     return true;
     306             :   }
     307       85591 :   return CompileIrregexp(isolate, re, sample_subject, is_one_byte);
     308             : }
     309             : 
     310       85591 : bool RegExpImpl::CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re,
     311             :                                  Handle<String> sample_subject,
     312             :                                  bool is_one_byte) {
     313             :   // Compile the RegExp.
     314       85591 :   Zone zone(isolate->allocator(), ZONE_NAME);
     315             :   PostponeInterruptsScope postpone(isolate);
     316             : #ifdef DEBUG
     317             :   Object entry = re->DataAt(JSRegExp::code_index(is_one_byte));
     318             :   // When arriving here entry can only be a smi representing an uncompiled
     319             :   // regexp.
     320             :   DCHECK(entry->IsSmi());
     321             :   int entry_value = Smi::ToInt(entry);
     322             :   DCHECK_EQ(JSRegExp::kUninitializedValue, entry_value);
     323             : #endif
     324             : 
     325       85591 :   JSRegExp::Flags flags = re->GetFlags();
     326             : 
     327      171182 :   Handle<String> pattern(re->Pattern(), isolate);
     328       85591 :   pattern = String::Flatten(isolate, pattern);
     329             :   RegExpCompileData compile_data;
     330       85591 :   FlatStringReader reader(isolate, pattern);
     331       85591 :   if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
     332       85591 :                                  &compile_data)) {
     333             :     // Throw an exception if we fail to parse the pattern.
     334             :     // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
     335          50 :     USE(ThrowRegExpException(isolate, re, pattern, compile_data.error));
     336          50 :     return false;
     337             :   }
     338             :   RegExpEngine::CompilationResult result =
     339             :       RegExpEngine::Compile(isolate, &zone, &compile_data, flags, pattern,
     340       85541 :                             sample_subject, is_one_byte);
     341       85541 :   if (result.error_message != nullptr) {
     342             :     // Unable to compile regexp.
     343         319 :     if (FLAG_abort_on_stack_or_string_length_overflow &&
     344           0 :         strncmp(result.error_message, "Stack overflow", 15) == 0) {
     345           0 :       FATAL("Aborting on stack overflow");
     346             :     }
     347             :     Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
     348         638 :         CStrVector(result.error_message)).ToHandleChecked();
     349         319 :     ThrowRegExpException(isolate, re, error_message);
     350             :     return false;
     351             :   }
     352             : 
     353             :   Handle<FixedArray> data =
     354             :       Handle<FixedArray>(FixedArray::cast(re->data()), isolate);
     355       85222 :   data->set(JSRegExp::code_index(is_one_byte), result.code);
     356       85222 :   SetIrregexpCaptureNameMap(*data, compile_data.capture_name_map);
     357       85222 :   int register_max = IrregexpMaxRegisterCount(*data);
     358       85222 :   if (result.num_registers > register_max) {
     359             :     SetIrregexpMaxRegisterCount(*data, result.num_registers);
     360             :   }
     361             : 
     362       85591 :   return true;
     363             : }
     364             : 
     365       85222 : int RegExpImpl::IrregexpMaxRegisterCount(FixedArray re) {
     366             :   return Smi::cast(
     367       85222 :       re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
     368             : }
     369             : 
     370           0 : void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray re, int value) {
     371             :   re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
     372           0 : }
     373             : 
     374       85222 : void RegExpImpl::SetIrregexpCaptureNameMap(FixedArray re,
     375             :                                            Handle<FixedArray> value) {
     376       85222 :   if (value.is_null()) {
     377       84862 :     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, Smi::kZero);
     378             :   } else {
     379         360 :     re->set(JSRegExp::kIrregexpCaptureNameMapIndex, *value);
     380             :   }
     381       85222 : }
     382             : 
     383    12805375 : int RegExpImpl::IrregexpNumberOfCaptures(FixedArray re) {
     384    12805375 :   return Smi::ToInt(re->get(JSRegExp::kIrregexpCaptureCountIndex));
     385             : }
     386             : 
     387     4254530 : int RegExpImpl::IrregexpNumberOfRegisters(FixedArray re) {
     388     4254530 :   return Smi::ToInt(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex));
     389             : }
     390             : 
     391     4284682 : ByteArray RegExpImpl::IrregexpByteCode(FixedArray re, bool is_one_byte) {
     392     4284682 :   return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
     393             : }
     394             : 
     395      111152 : Code RegExpImpl::IrregexpNativeCode(FixedArray re, bool is_one_byte) {
     396      111152 :   return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
     397             : }
     398             : 
     399           0 : void RegExpImpl::IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re,
     400             :                                     Handle<String> pattern,
     401             :                                     JSRegExp::Flags flags, int capture_count) {
     402             :   // Initialize compiled code entries to null.
     403             :   isolate->factory()->SetRegExpIrregexpData(re, JSRegExp::IRREGEXP, pattern,
     404       85383 :                                             flags, capture_count);
     405           0 : }
     406             : 
     407     4360186 : int RegExpImpl::IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp,
     408             :                                 Handle<String> subject) {
     409             :   DCHECK(subject->IsFlat());
     410             : 
     411             :   // Check representation of the underlying storage.
     412     4360186 :   bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject);
     413     4360186 :   if (!EnsureCompiledIrregexp(isolate, regexp, subject, is_one_byte)) return -1;
     414             : 
     415     4359817 :   if (FLAG_regexp_interpret_all) {
     416             :     // Byte-code regexp needs space allocated for all its registers.
     417             :     // The result captures are copied to the start of the registers array
     418             :     // if the match succeeds.  This way those registers are not clobbered
     419             :     // when we set the last match info from last successful match.
     420     4254530 :     return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
     421     4254530 :            (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
     422             :   } else {
     423             :     // Native regexp only needs room to output captures. Registers are handled
     424             :     // internally.
     425      105287 :     return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
     426             :   }
     427             : }
     428             : 
     429     4395834 : int RegExpImpl::IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
     430             :                                 Handle<String> subject, int index,
     431             :                                 int32_t* output, int output_size) {
     432             :   Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
     433             : 
     434             :   DCHECK_LE(0, index);
     435             :   DCHECK_LE(index, subject->length());
     436             :   DCHECK(subject->IsFlat());
     437             : 
     438     4395834 :   bool is_one_byte = String::IsOneByteRepresentationUnderneath(*subject);
     439             : 
     440     4395834 :   if (!FLAG_regexp_interpret_all) {
     441             :     DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
     442             :     do {
     443      111152 :       EnsureCompiledIrregexp(isolate, regexp, subject, is_one_byte);
     444      111152 :       Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
     445             :       // The stack is used to allocate registers for the compiled regexp code.
     446             :       // This means that in case of failure, the output registers array is left
     447             :       // untouched and contains the capture results from the previous successful
     448             :       // match.  We can use that to set the last match info lazily.
     449             :       int res = NativeRegExpMacroAssembler::Match(code, subject, output,
     450      111152 :                                                   output_size, index, isolate);
     451      111152 :       if (res != NativeRegExpMacroAssembler::RETRY) {
     452             :         DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
     453             :                isolate->has_pending_exception());
     454             :         STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) ==
     455             :                       RE_SUCCESS);
     456             :         STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::FAILURE) ==
     457             :                       RE_FAILURE);
     458             :         STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION) ==
     459             :                       RE_EXCEPTION);
     460      111152 :         return res;
     461             :       }
     462             :       // If result is RETRY, the string has changed representation, and we
     463             :       // must restart from scratch.
     464             :       // In this case, it means we must make sure we are prepared to handle
     465             :       // the, potentially, different subject (the string can switch between
     466             :       // being internal and external, and even between being Latin1 and UC16,
     467             :       // but the characters are always the same).
     468           0 :       IrregexpPrepare(isolate, regexp, subject);
     469           0 :       is_one_byte = String::IsOneByteRepresentationUnderneath(*subject);
     470             :     } while (true);
     471           0 :     UNREACHABLE();
     472             :   } else {
     473             :     DCHECK(FLAG_regexp_interpret_all);
     474             :     DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
     475             :     // We must have done EnsureCompiledIrregexp, so we can get the number of
     476             :     // registers.
     477             :     int number_of_capture_registers =
     478     4284682 :         (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
     479     4284682 :     int32_t* raw_output = &output[number_of_capture_registers];
     480             :     // We do not touch the actual capture result registers until we know there
     481             :     // has been a match so that we can use those capture results to set the
     482             :     // last match info.
     483    13154376 :     for (int i = number_of_capture_registers - 1; i >= 0; i--) {
     484     8869694 :       raw_output[i] = -1;
     485             :     }
     486             :     Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
     487     8569364 :                                  isolate);
     488             : 
     489             :     IrregexpResult result = IrregexpInterpreter::Match(
     490     4284682 :         isolate, byte_codes, subject, raw_output, index);
     491     4284682 :     if (result == RE_SUCCESS) {
     492             :       // Copy capture results to the start of the registers array.
     493             :       MemCopy(output, raw_output,
     494             :               number_of_capture_registers * sizeof(int32_t));
     495             :     }
     496     4284682 :     if (result == RE_EXCEPTION) {
     497             :       DCHECK(!isolate->has_pending_exception());
     498           1 :       isolate->StackOverflow();
     499             :     }
     500             :     return result;
     501             :   }
     502             : }
     503             : 
     504     4352784 : MaybeHandle<Object> RegExpImpl::IrregexpExec(
     505             :     Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
     506             :     int previous_index, Handle<RegExpMatchInfo> last_match_info) {
     507             :   DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
     508             : 
     509     4352784 :   subject = String::Flatten(isolate, subject);
     510             : 
     511             :   // Prepare space for the return values.
     512             : #ifdef DEBUG
     513             :   if (FLAG_regexp_interpret_all && FLAG_trace_regexp_bytecodes) {
     514             :     String pattern = regexp->Pattern();
     515             :     PrintF("\n\nRegexp match:   /%s/\n\n", pattern->ToCString().get());
     516             :     PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
     517             :   }
     518             : #endif
     519             :   int required_registers =
     520     4352784 :       RegExpImpl::IrregexpPrepare(isolate, regexp, subject);
     521     4352784 :   if (required_registers < 0) {
     522             :     // Compiling failed with an exception.
     523             :     DCHECK(isolate->has_pending_exception());
     524         279 :     return MaybeHandle<Object>();
     525             :   }
     526             : 
     527             :   int32_t* output_registers = nullptr;
     528     4352505 :   if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
     529        2844 :     output_registers = NewArray<int32_t>(required_registers);
     530             :   }
     531             :   std::unique_ptr<int32_t[]> auto_release(output_registers);
     532     4352505 :   if (output_registers == nullptr) {
     533     4349661 :     output_registers = isolate->jsregexp_static_offsets_vector();
     534             :   }
     535             : 
     536             :   int res =
     537             :       RegExpImpl::IrregexpExecRaw(isolate, regexp, subject, previous_index,
     538     4352505 :                                   output_registers, required_registers);
     539     4352505 :   if (res == RE_SUCCESS) {
     540             :     int capture_count =
     541     4160876 :         IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
     542             :     return SetLastMatchInfo(isolate, last_match_info, subject, capture_count,
     543     4160876 :                             output_registers);
     544             :   }
     545      191629 :   if (res == RE_EXCEPTION) {
     546             :     DCHECK(isolate->has_pending_exception());
     547          49 :     return MaybeHandle<Object>();
     548             :   }
     549             :   DCHECK(res == RE_FAILURE);
     550      191580 :   return isolate->factory()->null_value();
     551             : }
     552             : 
     553     4255636 : Handle<RegExpMatchInfo> RegExpImpl::SetLastMatchInfo(
     554             :     Isolate* isolate, Handle<RegExpMatchInfo> last_match_info,
     555             :     Handle<String> subject, int capture_count, int32_t* match) {
     556             :   // This is the only place where match infos can grow. If, after executing the
     557             :   // regexp, RegExpExecStub finds that the match info is too small, it restarts
     558             :   // execution in RegExpImpl::Exec, which finally grows the match info right
     559             :   // here.
     560             : 
     561     4255636 :   int capture_register_count = (capture_count + 1) * 2;
     562             :   Handle<RegExpMatchInfo> result = RegExpMatchInfo::ReserveCaptures(
     563     4255636 :       isolate, last_match_info, capture_register_count);
     564             :   result->SetNumberOfCaptureRegisters(capture_register_count);
     565             : 
     566     4255636 :   if (*result != *last_match_info) {
     567             :     DCHECK_EQ(*last_match_info, *isolate->regexp_last_match_info());
     568        4174 :     isolate->native_context()->set_regexp_last_match_info(*result);
     569             :   }
     570             : 
     571             :   DisallowHeapAllocation no_allocation;
     572     4255636 :   if (match != nullptr) {
     573     5458387 :     for (int i = 0; i < capture_register_count; i += 2) {
     574    10916774 :       result->SetCapture(i, match[i]);
     575    10916774 :       result->SetCapture(i + 1, match[i + 1]);
     576             :     }
     577             :   }
     578     8511272 :   result->SetLastSubject(*subject);
     579     8511272 :   result->SetLastInput(*subject);
     580     4255636 :   return result;
     581             : }
     582             : 
     583       95497 : RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
     584             :                                      Handle<String> subject, Isolate* isolate)
     585             :     : register_array_(nullptr),
     586             :       register_array_size_(0),
     587             :       regexp_(regexp),
     588             :       subject_(subject),
     589       95497 :       isolate_(isolate) {
     590       95497 :   bool interpreted = FLAG_regexp_interpret_all;
     591             : 
     592       95497 :   if (regexp_->TypeTag() == JSRegExp::ATOM) {
     593             :     static const int kAtomRegistersPerMatch = 2;
     594       90255 :     registers_per_match_ = kAtomRegistersPerMatch;
     595             :     // There is no distinction between interpreted and native for atom regexps.
     596             :     interpreted = false;
     597             :   } else {
     598             :     registers_per_match_ =
     599        5242 :         RegExpImpl::IrregexpPrepare(isolate_, regexp_, subject_);
     600        5242 :     if (registers_per_match_ < 0) {
     601          90 :       num_matches_ = -1;  // Signal exception.
     602       95587 :       return;
     603             :     }
     604             :   }
     605             : 
     606             :   DCHECK(IsGlobal(regexp->GetFlags()));
     607       95407 :   if (!interpreted) {
     608             :     register_array_size_ =
     609      189500 :         Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
     610       94750 :     max_matches_ = register_array_size_ / registers_per_match_;
     611             :   } else {
     612             :     // Global loop in interpreted regexp is not implemented.  We choose
     613             :     // the size of the offsets vector so that it can only store one match.
     614         657 :     register_array_size_ = registers_per_match_;
     615         657 :     max_matches_ = 1;
     616             :   }
     617             : 
     618       95407 :   if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
     619        1072 :     register_array_ = NewArray<int32_t>(register_array_size_);
     620             :   } else {
     621       94335 :     register_array_ = isolate->jsregexp_static_offsets_vector();
     622             :   }
     623             : 
     624             :   // Set state so that fetching the results the first time triggers a call
     625             :   // to the compiled regexp.
     626       95407 :   current_match_index_ = max_matches_ - 1;
     627       95407 :   num_matches_ = max_matches_;
     628             :   DCHECK_LE(2, registers_per_match_);  // Each match has at least one capture.
     629             :   DCHECK_GE(register_array_size_, registers_per_match_);
     630             :   int32_t* last_match =
     631       95407 :       &register_array_[current_match_index_ * registers_per_match_];
     632       95407 :   last_match[0] = -1;
     633       95407 :   last_match[1] = 0;
     634             : }
     635             : 
     636           7 : int RegExpImpl::GlobalCache::AdvanceZeroLength(int last_index) {
     637          14 :   if (IsUnicode(regexp_->GetFlags()) && last_index + 1 < subject_->length() &&
     638          14 :       unibrow::Utf16::IsLeadSurrogate(subject_->Get(last_index)) &&
     639           7 :       unibrow::Utf16::IsTrailSurrogate(subject_->Get(last_index + 1))) {
     640             :     // Advance over the surrogate pair.
     641           0 :     return last_index + 2;
     642             :   }
     643           7 :   return last_index + 1;
     644             : }
     645             : 
     646             : // -------------------------------------------------------------------
     647             : // Implementation of the Irregexp regular expression engine.
     648             : //
     649             : // The Irregexp regular expression engine is intended to be a complete
     650             : // implementation of ECMAScript regular expressions.  It generates either
     651             : // bytecodes or native code.
     652             : 
     653             : //   The Irregexp regexp engine is structured in three steps.
     654             : //   1) The parser generates an abstract syntax tree.  See ast.cc.
     655             : //   2) From the AST a node network is created.  The nodes are all
     656             : //      subclasses of RegExpNode.  The nodes represent states when
     657             : //      executing a regular expression.  Several optimizations are
     658             : //      performed on the node network.
     659             : //   3) From the nodes we generate either byte codes or native code
     660             : //      that can actually execute the regular expression (perform
     661             : //      the search).  The code generation step is described in more
     662             : //      detail below.
     663             : 
     664             : // Code generation.
     665             : //
     666             : //   The nodes are divided into four main categories.
     667             : //   * Choice nodes
     668             : //        These represent places where the regular expression can
     669             : //        match in more than one way.  For example on entry to an
     670             : //        alternation (foo|bar) or a repetition (*, +, ? or {}).
     671             : //   * Action nodes
     672             : //        These represent places where some action should be
     673             : //        performed.  Examples include recording the current position
     674             : //        in the input string to a register (in order to implement
     675             : //        captures) or other actions on register for example in order
     676             : //        to implement the counters needed for {} repetitions.
     677             : //   * Matching nodes
     678             : //        These attempt to match some element part of the input string.
     679             : //        Examples of elements include character classes, plain strings
     680             : //        or back references.
     681             : //   * End nodes
     682             : //        These are used to implement the actions required on finding
     683             : //        a successful match or failing to find a match.
     684             : //
     685             : //   The code generated (whether as byte codes or native code) maintains
     686             : //   some state as it runs.  This consists of the following elements:
     687             : //
     688             : //   * The capture registers.  Used for string captures.
     689             : //   * Other registers.  Used for counters etc.
     690             : //   * The current position.
     691             : //   * The stack of backtracking information.  Used when a matching node
     692             : //     fails to find a match and needs to try an alternative.
     693             : //
     694             : // Conceptual regular expression execution model:
     695             : //
     696             : //   There is a simple conceptual model of regular expression execution
     697             : //   which will be presented first.  The actual code generated is a more
     698             : //   efficient simulation of the simple conceptual model:
     699             : //
     700             : //   * Choice nodes are implemented as follows:
     701             : //     For each choice except the last {
     702             : //       push current position
     703             : //       push backtrack code location
     704             : //       <generate code to test for choice>
     705             : //       backtrack code location:
     706             : //       pop current position
     707             : //     }
     708             : //     <generate code to test for last choice>
     709             : //
     710             : //   * Actions nodes are generated as follows
     711             : //     <push affected registers on backtrack stack>
     712             : //     <generate code to perform action>
     713             : //     push backtrack code location
     714             : //     <generate code to test for following nodes>
     715             : //     backtrack code location:
     716             : //     <pop affected registers to restore their state>
     717             : //     <pop backtrack location from stack and go to it>
     718             : //
     719             : //   * Matching nodes are generated as follows:
     720             : //     if input string matches at current position
     721             : //       update current position
     722             : //       <generate code to test for following nodes>
     723             : //     else
     724             : //       <pop backtrack location from stack and go to it>
     725             : //
     726             : //   Thus it can be seen that the current position is saved and restored
     727             : //   by the choice nodes, whereas the registers are saved and restored by
     728             : //   by the action nodes that manipulate them.
     729             : //
     730             : //   The other interesting aspect of this model is that nodes are generated
     731             : //   at the point where they are needed by a recursive call to Emit().  If
     732             : //   the node has already been code generated then the Emit() call will
     733             : //   generate a jump to the previously generated code instead.  In order to
     734             : //   limit recursion it is possible for the Emit() function to put the node
     735             : //   on a work list for later generation and instead generate a jump.  The
     736             : //   destination of the jump is resolved later when the code is generated.
     737             : //
     738             : // Actual regular expression code generation.
     739             : //
     740             : //   Code generation is actually more complicated than the above.  In order
     741             : //   to improve the efficiency of the generated code some optimizations are
     742             : //   performed
     743             : //
     744             : //   * Choice nodes have 1-character lookahead.
     745             : //     A choice node looks at the following character and eliminates some of
     746             : //     the choices immediately based on that character.  This is not yet
     747             : //     implemented.
     748             : //   * Simple greedy loops store reduced backtracking information.
     749             : //     A quantifier like /.*foo/m will greedily match the whole input.  It will
     750             : //     then need to backtrack to a point where it can match "foo".  The naive
     751             : //     implementation of this would push each character position onto the
     752             : //     backtracking stack, then pop them off one by one.  This would use space
     753             : //     proportional to the length of the input string.  However since the "."
     754             : //     can only match in one way and always has a constant length (in this case
     755             : //     of 1) it suffices to store the current position on the top of the stack
     756             : //     once.  Matching now becomes merely incrementing the current position and
     757             : //     backtracking becomes decrementing the current position and checking the
     758             : //     result against the stored current position.  This is faster and saves
     759             : //     space.
     760             : //   * The current state is virtualized.
     761             : //     This is used to defer expensive operations until it is clear that they
     762             : //     are needed and to generate code for a node more than once, allowing
     763             : //     specialized an efficient versions of the code to be created. This is
     764             : //     explained in the section below.
     765             : //
     766             : // Execution state virtualization.
     767             : //
     768             : //   Instead of emitting code, nodes that manipulate the state can record their
     769             : //   manipulation in an object called the Trace.  The Trace object can record a
     770             : //   current position offset, an optional backtrack code location on the top of
     771             : //   the virtualized backtrack stack and some register changes.  When a node is
     772             : //   to be emitted it can flush the Trace or update it.  Flushing the Trace
     773             : //   will emit code to bring the actual state into line with the virtual state.
     774             : //   Avoiding flushing the state can postpone some work (e.g. updates of capture
     775             : //   registers).  Postponing work can save time when executing the regular
     776             : //   expression since it may be found that the work never has to be done as a
     777             : //   failure to match can occur.  In addition it is much faster to jump to a
     778             : //   known backtrack code location than it is to pop an unknown backtrack
     779             : //   location from the stack and jump there.
     780             : //
     781             : //   The virtual state found in the Trace affects code generation.  For example
     782             : //   the virtual state contains the difference between the actual current
     783             : //   position and the virtual current position, and matching code needs to use
     784             : //   this offset to attempt a match in the correct location of the input
     785             : //   string.  Therefore code generated for a non-trivial trace is specialized
     786             : //   to that trace.  The code generator therefore has the ability to generate
     787             : //   code for each node several times.  In order to limit the size of the
     788             : //   generated code there is an arbitrary limit on how many specialized sets of
     789             : //   code may be generated for a given node.  If the limit is reached, the
     790             : //   trace is flushed and a generic version of the code for a node is emitted.
     791             : //   This is subsequently used for that node.  The code emitted for non-generic
     792             : //   trace is not recorded in the node and so it cannot currently be reused in
     793             : //   the event that code generation is requested for an identical trace.
     794             : 
     795             : 
     796           0 : void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
     797           0 :   UNREACHABLE();
     798             : }
     799             : 
     800             : 
     801       86555 : void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
     802       86555 :   text->AddElement(TextElement::Atom(this), zone);
     803       86555 : }
     804             : 
     805             : 
     806        7557 : void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
     807        7557 :   text->AddElement(TextElement::CharClass(this), zone);
     808        7557 : }
     809             : 
     810             : 
     811           0 : void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
     812           0 :   for (int i = 0; i < elements()->length(); i++)
     813           0 :     text->AddElement(elements()->at(i), zone);
     814           0 : }
     815             : 
     816             : 
     817           0 : TextElement TextElement::Atom(RegExpAtom* atom) {
     818           0 :   return TextElement(ATOM, atom);
     819             : }
     820             : 
     821             : 
     822           0 : TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
     823           0 :   return TextElement(CHAR_CLASS, char_class);
     824             : }
     825             : 
     826             : 
     827     7411807 : int TextElement::length() const {
     828     7411807 :   switch (text_type()) {
     829             :     case ATOM:
     830     6578216 :       return atom()->length();
     831             : 
     832             :     case CHAR_CLASS:
     833             :       return 1;
     834             :   }
     835           0 :   UNREACHABLE();
     836             : }
     837             : 
     838             : 
     839           0 : DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
     840           0 :   if (table_ == nullptr) {
     841           0 :     table_ = new(zone()) DispatchTable(zone());
     842             :     DispatchTableConstructor cons(table_, ignore_case, zone());
     843           0 :     cons.BuildTable(this);
     844             :   }
     845           0 :   return table_;
     846             : }
     847             : 
     848             : 
     849             : class FrequencyCollator {
     850             :  public:
     851    11034273 :   FrequencyCollator() : total_samples_(0) {
     852    10948736 :     for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
     853    10948736 :       frequencies_[i] = CharacterFrequency(i);
     854             :     }
     855             :   }
     856             : 
     857             :   void CountCharacter(int character) {
     858      453565 :     int index = (character & RegExpMacroAssembler::kTableMask);
     859      453565 :     frequencies_[index].Increment();
     860      453565 :     total_samples_++;
     861             :   }
     862             : 
     863             :   // Does not measure in percent, but rather per-128 (the table size from the
     864             :   // regexp macro assembler).
     865             :   int Frequency(int in_character) {
     866             :     DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
     867      486722 :     if (total_samples_ < 1) return 1;  // Division by zero.
     868             :     int freq_in_per128 =
     869      486457 :         (frequencies_[in_character].counter() * 128) / total_samples_;
     870             :     return freq_in_per128;
     871             :   }
     872             : 
     873             :  private:
     874             :   class CharacterFrequency {
     875             :    public:
     876    10948736 :     CharacterFrequency() : counter_(0), character_(-1) { }
     877             :     explicit CharacterFrequency(int character)
     878             :         : counter_(0), character_(character) { }
     879             : 
     880      453565 :     void Increment() { counter_++; }
     881             :     int counter() { return counter_; }
     882             :     int character() { return character_; }
     883             : 
     884             :    private:
     885             :     int counter_;
     886             :     int character_;
     887             :   };
     888             : 
     889             : 
     890             :  private:
     891             :   CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
     892             :   int total_samples_;
     893             : };
     894             : 
     895             : 
     896             : class RegExpCompiler {
     897             :  public:
     898             :   RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
     899             :                  bool is_one_byte);
     900             : 
     901             :   int AllocateRegister() {
     902      909433 :     if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
     903      310203 :       reg_exp_too_big_ = true;
     904             :       return next_register_;
     905             :     }
     906      599230 :     return next_register_++;
     907             :   }
     908             : 
     909             :   // Lookarounds to match lone surrogates for unicode character class matches
     910             :   // are never nested. We can therefore reuse registers.
     911             :   int UnicodeLookaroundStackRegister() {
     912        2460 :     if (unicode_lookaround_stack_register_ == kNoRegister) {
     913        1040 :       unicode_lookaround_stack_register_ = AllocateRegister();
     914             :     }
     915        2460 :     return unicode_lookaround_stack_register_;
     916             :   }
     917             : 
     918             :   int UnicodeLookaroundPositionRegister() {
     919        2460 :     if (unicode_lookaround_position_register_ == kNoRegister) {
     920        1040 :       unicode_lookaround_position_register_ = AllocateRegister();
     921             :     }
     922        2460 :     return unicode_lookaround_position_register_;
     923             :   }
     924             : 
     925             :   RegExpEngine::CompilationResult Assemble(Isolate* isolate,
     926             :                                            RegExpMacroAssembler* assembler,
     927             :                                            RegExpNode* start, int capture_count,
     928             :                                            Handle<String> pattern);
     929             : 
     930      592179 :   inline void AddWork(RegExpNode* node) {
     931      592179 :     if (!node->on_work_list() && !node->label()->is_bound()) {
     932             :       node->set_on_work_list(true);
     933      211392 :       work_list_->push_back(node);
     934             :     }
     935      592179 :   }
     936             : 
     937             :   static const int kImplementationOffset = 0;
     938             :   static const int kNumberOfRegistersOffset = 0;
     939             :   static const int kCodeOffset = 1;
     940             : 
     941             :   RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
     942             :   EndNode* accept() { return accept_; }
     943             : 
     944             :   static const int kMaxRecursion = 100;
     945             :   inline int recursion_depth() { return recursion_depth_; }
     946      996073 :   inline void IncrementRecursionDepth() { recursion_depth_++; }
     947      996073 :   inline void DecrementRecursionDepth() { recursion_depth_--; }
     948             : 
     949           0 :   void SetRegExpTooBig() { reg_exp_too_big_ = true; }
     950             : 
     951             :   inline bool one_byte() { return one_byte_; }
     952             :   inline bool optimize() { return optimize_; }
     953       84372 :   inline void set_optimize(bool value) { optimize_ = value; }
     954             :   inline bool limiting_recursion() { return limiting_recursion_; }
     955             :   inline void set_limiting_recursion(bool value) {
     956      954610 :     limiting_recursion_ = value;
     957             :   }
     958             :   bool read_backward() { return read_backward_; }
     959        3336 :   void set_read_backward(bool value) { read_backward_ = value; }
     960             :   FrequencyCollator* frequency_collator() { return &frequency_collator_; }
     961             : 
     962             :   int current_expansion_factor() { return current_expansion_factor_; }
     963             :   void set_current_expansion_factor(int value) {
     964       85120 :     current_expansion_factor_ = value;
     965             :   }
     966             : 
     967             :   Isolate* isolate() const { return isolate_; }
     968             :   Zone* zone() const { return zone_; }
     969             : 
     970             :   static const int kNoRegister = -1;
     971             : 
     972             :  private:
     973             :   EndNode* accept_;
     974             :   int next_register_;
     975             :   int unicode_lookaround_stack_register_;
     976             :   int unicode_lookaround_position_register_;
     977             :   std::vector<RegExpNode*>* work_list_;
     978             :   int recursion_depth_;
     979             :   RegExpMacroAssembler* macro_assembler_;
     980             :   bool one_byte_;
     981             :   bool reg_exp_too_big_;
     982             :   bool limiting_recursion_;
     983             :   bool optimize_;
     984             :   bool read_backward_;
     985             :   int current_expansion_factor_;
     986             :   FrequencyCollator frequency_collator_;
     987             :   Isolate* isolate_;
     988             :   Zone* zone_;
     989             : };
     990             : 
     991             : 
     992             : class RecursionCheck {
     993             :  public:
     994             :   explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
     995             :     compiler->IncrementRecursionDepth();
     996             :   }
     997             :   ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
     998             :  private:
     999             :   RegExpCompiler* compiler_;
    1000             : };
    1001             : 
    1002             : 
    1003             : static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
    1004           9 :   return RegExpEngine::CompilationResult(isolate, "RegExp too big");
    1005             : }
    1006             : 
    1007             : 
    1008             : // Attempts to compile the regexp using an Irregexp code generator.  Returns
    1009             : // a fixed array or a null handle depending on whether it succeeded.
    1010       85537 : RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
    1011             :                                bool one_byte)
    1012       85537 :     : next_register_(2 * (capture_count + 1)),
    1013             :       unicode_lookaround_stack_register_(kNoRegister),
    1014             :       unicode_lookaround_position_register_(kNoRegister),
    1015             :       work_list_(nullptr),
    1016             :       recursion_depth_(0),
    1017             :       one_byte_(one_byte),
    1018             :       reg_exp_too_big_(false),
    1019             :       limiting_recursion_(false),
    1020             :       optimize_(FLAG_regexp_optimization),
    1021             :       read_backward_(false),
    1022             :       current_expansion_factor_(1),
    1023             :       frequency_collator_(),
    1024             :       isolate_(isolate),
    1025      171074 :       zone_(zone) {
    1026       85537 :   accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
    1027             :   DCHECK_GE(RegExpMacroAssembler::kMaxRegister, next_register_ - 1);
    1028       85537 : }
    1029             : 
    1030       85227 : RegExpEngine::CompilationResult RegExpCompiler::Assemble(
    1031             :     Isolate* isolate, RegExpMacroAssembler* macro_assembler, RegExpNode* start,
    1032             :     int capture_count, Handle<String> pattern) {
    1033             : #ifdef DEBUG
    1034             :   if (FLAG_trace_regexp_assembler)
    1035             :     macro_assembler_ = new RegExpMacroAssemblerTracer(isolate, macro_assembler);
    1036             :   else
    1037             : #endif
    1038       85227 :     macro_assembler_ = macro_assembler;
    1039             : 
    1040             :   std::vector<RegExpNode*> work_list;
    1041       85227 :   work_list_ = &work_list;
    1042       85227 :   Label fail;
    1043       85227 :   macro_assembler_->PushBacktrack(&fail);
    1044       85227 :   Trace new_trace;
    1045       85227 :   start->Emit(this, &new_trace);
    1046       85227 :   macro_assembler_->Bind(&fail);
    1047       85227 :   macro_assembler_->Fail();
    1048      381846 :   while (!work_list.empty()) {
    1049      211392 :     RegExpNode* node = work_list.back();
    1050             :     work_list.pop_back();
    1051             :     node->set_on_work_list(false);
    1052      211392 :     if (!node->label()->is_bound()) node->Emit(this, &new_trace);
    1053             :   }
    1054       85227 :   if (reg_exp_too_big_) {
    1055           0 :     macro_assembler_->AbortedCodeGeneration();
    1056           0 :     return IrregexpRegExpTooBig(isolate_);
    1057             :   }
    1058             : 
    1059       85227 :   Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
    1060      170454 :   isolate->IncreaseTotalRegexpCodeGenerated(code->Size());
    1061       85227 :   work_list_ = nullptr;
    1062             : #ifdef ENABLE_DISASSEMBLER
    1063             :   if (FLAG_print_code && !FLAG_regexp_interpret_all) {
    1064             :     CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
    1065             :     OFStream os(trace_scope.file());
    1066             :     Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
    1067             :   }
    1068             : #endif
    1069             : #ifdef DEBUG
    1070             :   if (FLAG_trace_regexp_assembler) {
    1071             :     delete macro_assembler_;
    1072             :   }
    1073             : #endif
    1074       85227 :   return RegExpEngine::CompilationResult(*code, next_register_);
    1075             : }
    1076             : 
    1077             : 
    1078     4874172 : bool Trace::DeferredAction::Mentions(int that) {
    1079     2460691 :   if (action_type() == ActionNode::CLEAR_CAPTURES) {
    1080             :     Interval range = static_cast<DeferredClearCaptures*>(this)->range();
    1081             :     return range.Contains(that);
    1082             :   } else {
    1083     2413481 :     return reg() == that;
    1084             :   }
    1085             : }
    1086             : 
    1087             : 
    1088           0 : bool Trace::mentions_reg(int reg) {
    1089           0 :   for (DeferredAction* action = actions_; action != nullptr;
    1090             :        action = action->next()) {
    1091           0 :     if (action->Mentions(reg))
    1092             :       return true;
    1093             :   }
    1094             :   return false;
    1095             : }
    1096             : 
    1097             : 
    1098         909 : bool Trace::GetStoredPosition(int reg, int* cp_offset) {
    1099             :   DCHECK_EQ(0, *cp_offset);
    1100        1830 :   for (DeferredAction* action = actions_; action != nullptr;
    1101             :        action = action->next()) {
    1102         921 :     if (action->Mentions(reg)) {
    1103         410 :       if (action->action_type() == ActionNode::STORE_POSITION) {
    1104         410 :         *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
    1105         410 :         return true;
    1106             :       } else {
    1107             :         return false;
    1108             :       }
    1109             :     }
    1110             :   }
    1111             :   return false;
    1112             : }
    1113             : 
    1114             : 
    1115      509763 : int Trace::FindAffectedRegisters(OutSet* affected_registers,
    1116             :                                  Zone* zone) {
    1117             :   int max_register = RegExpCompiler::kNoRegister;
    1118     1756943 :   for (DeferredAction* action = actions_; action != nullptr;
    1119             :        action = action->next()) {
    1120      417646 :     if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
    1121             :       Interval range = static_cast<DeferredClearCaptures*>(action)->range();
    1122       47765 :       for (int i = range.from(); i <= range.to(); i++)
    1123       44886 :         affected_registers->Set(i, zone);
    1124        2879 :       if (range.to() > max_register) max_register = range.to();
    1125             :     } else {
    1126      414767 :       affected_registers->Set(action->reg(), zone);
    1127      414767 :       if (action->reg() > max_register) max_register = action->reg();
    1128             :     }
    1129             :   }
    1130      509763 :   return max_register;
    1131             : }
    1132             : 
    1133             : 
    1134      509763 : void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
    1135             :                                      int max_register,
    1136             :                                      const OutSet& registers_to_pop,
    1137             :                                      const OutSet& registers_to_clear) {
    1138    10462520 :   for (int reg = max_register; reg >= 0; reg--) {
    1139     9952757 :     if (registers_to_pop.Get(reg)) {
    1140       52596 :       assembler->PopRegister(reg);
    1141     9900161 :     } else if (registers_to_clear.Get(reg)) {
    1142             :       int clear_to = reg;
    1143      182945 :       while (reg > 0 && registers_to_clear.Get(reg - 1)) {
    1144      105435 :         reg--;
    1145             :       }
    1146       77510 :       assembler->ClearRegisters(reg, clear_to);
    1147             :     }
    1148             :   }
    1149      509763 : }
    1150             : 
    1151             : 
    1152      509763 : void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
    1153             :                                    int max_register,
    1154             :                                    const OutSet& affected_registers,
    1155             :                                    OutSet* registers_to_pop,
    1156             :                                    OutSet* registers_to_clear,
    1157             :                                    Zone* zone) {
    1158             :   // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
    1159      509763 :   const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
    1160             : 
    1161             :   // Count pushes performed to force a stack limit check occasionally.
    1162             :   int pushes = 0;
    1163             : 
    1164    10567955 :   for (int reg = 0; reg <= max_register; reg++) {
    1165    10058192 :     if (!affected_registers.Get(reg)) {
    1166             :       continue;
    1167             :     }
    1168             : 
    1169             :     // The chronologically first deferred action in the trace
    1170             :     // is used to infer the action needed to restore a register
    1171             :     // to its previous state (or not, if it's safe to ignore it).
    1172             :     enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
    1173             :     DeferredActionUndoType undo_action = IGNORE;
    1174             : 
    1175             :     int value = 0;
    1176             :     bool absolute = false;
    1177             :     bool clear = false;
    1178             :     static const int kNoStore = kMinInt;
    1179             :     int store_position = kNoStore;
    1180             :     // This is a little tricky because we are scanning the actions in reverse
    1181             :     // historical order (newest first).
    1182     2912985 :     for (DeferredAction* action = actions_; action != nullptr;
    1183             :          action = action->next()) {
    1184     2459770 :       if (action->Mentions(reg)) {
    1185      459653 :         switch (action->action_type()) {
    1186             :           case ActionNode::SET_REGISTER: {
    1187        3430 :             Trace::DeferredSetRegister* psr =
    1188             :                 static_cast<Trace::DeferredSetRegister*>(action);
    1189        3430 :             if (!absolute) {
    1190        3430 :               value += psr->value();
    1191             :               absolute = true;
    1192             :             }
    1193             :             // SET_REGISTER is currently only used for newly introduced loop
    1194             :             // counters. They can have a significant previous value if they
    1195             :             // occur in a loop. TODO(lrn): Propagate this information, so
    1196             :             // we can set undo_action to IGNORE if we know there is no value to
    1197             :             // restore.
    1198             :             undo_action = RESTORE;
    1199             :             DCHECK_EQ(store_position, kNoStore);
    1200             :             DCHECK(!clear);
    1201             :             break;
    1202             :           }
    1203             :           case ActionNode::INCREMENT_REGISTER:
    1204        3709 :             if (!absolute) {
    1205        3709 :               value++;
    1206             :             }
    1207             :             DCHECK_EQ(store_position, kNoStore);
    1208             :             DCHECK(!clear);
    1209             :             undo_action = RESTORE;
    1210             :             break;
    1211             :           case ActionNode::STORE_POSITION: {
    1212      597582 :             Trace::DeferredCapture* pc =
    1213             :                 static_cast<Trace::DeferredCapture*>(action);
    1214      407628 :             if (!clear && store_position == kNoStore) {
    1215             :               store_position = pc->cp_offset();
    1216             :             }
    1217             : 
    1218             :             // For captures we know that stores and clears alternate.
    1219             :             // Other register, are never cleared, and if the occur
    1220             :             // inside a loop, they might be assigned more than once.
    1221      407628 :             if (reg <= 1) {
    1222             :               // Registers zero and one, aka "capture zero", is
    1223             :               // always set correctly if we succeed. There is no
    1224             :               // need to undo a setting on backtrack, because we
    1225             :               // will set it again or fail.
    1226             :               undo_action = IGNORE;
    1227             :             } else {
    1228      189954 :               undo_action = pc->is_capture() ? CLEAR : RESTORE;
    1229             :             }
    1230             :             DCHECK(!absolute);
    1231             :             DCHECK_EQ(value, 0);
    1232             :             break;
    1233             :           }
    1234             :           case ActionNode::CLEAR_CAPTURES: {
    1235             :             // Since we're scanning in reverse order, if we've already
    1236             :             // set the position we have to ignore historically earlier
    1237             :             // clearing operations.
    1238       44886 :             if (store_position == kNoStore) {
    1239             :               clear = true;
    1240             :             }
    1241             :             undo_action = RESTORE;
    1242             :             DCHECK(!absolute);
    1243             :             DCHECK_EQ(value, 0);
    1244             :             break;
    1245             :           }
    1246             :           default:
    1247           0 :             UNREACHABLE();
    1248             :             break;
    1249             :         }
    1250             :       }
    1251             :     }
    1252             :     // Prepare for the undo-action (e.g., push if it's going to be popped).
    1253      453215 :     if (undo_action == RESTORE) {
    1254       52596 :       pushes++;
    1255             :       RegExpMacroAssembler::StackCheckFlag stack_check =
    1256             :           RegExpMacroAssembler::kNoStackLimitCheck;
    1257       52596 :       if (pushes == push_limit) {
    1258             :         stack_check = RegExpMacroAssembler::kCheckStackLimit;
    1259             :         pushes = 0;
    1260             :       }
    1261             : 
    1262       52596 :       assembler->PushRegister(reg, stack_check);
    1263       52596 :       registers_to_pop->Set(reg, zone);
    1264      400619 :     } else if (undo_action == CLEAR) {
    1265      182945 :       registers_to_clear->Set(reg, zone);
    1266             :     }
    1267             :     // Perform the chronologically last action (or accumulated increment)
    1268             :     // for the register.
    1269      453215 :     if (store_position != kNoStore) {
    1270      407628 :       assembler->WriteCurrentPositionToRegister(reg, store_position);
    1271       45587 :     } else if (clear) {
    1272       38448 :       assembler->ClearRegisters(reg, reg);
    1273        7139 :     } else if (absolute) {
    1274        3430 :       assembler->SetRegister(reg, value);
    1275        3709 :     } else if (value != 0) {
    1276        3709 :       assembler->AdvanceRegister(reg, value);
    1277             :     }
    1278             :   }
    1279      509763 : }
    1280             : 
    1281             : 
    1282             : // This is called as we come into a loop choice node and some other tricky
    1283             : // nodes.  It normalizes the state of the code generator to ensure we can
    1284             : // generate generic code.
    1285     3595576 : void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
    1286             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    1287             : 
    1288             :   DCHECK(!is_trivial());
    1289             : 
    1290     1157478 :   if (actions_ == nullptr && backtrack() == nullptr) {
    1291             :     // Here we just have some deferred cp advances to fix and we are back to
    1292             :     // a normal situation.  We may also have to forget some information gained
    1293             :     // through a quick check that was already performed.
    1294      189615 :     if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
    1295             :     // Create a new trivial state and generate the node with that.
    1296      189615 :     Trace new_state;
    1297      189615 :     successor->Emit(compiler, &new_state);
    1298      699378 :     return;
    1299             :   }
    1300             : 
    1301             :   // Generate deferred actions here along with code to undo them again.
    1302             :   OutSet affected_registers;
    1303             : 
    1304      509763 :   if (backtrack() != nullptr) {
    1305             :     // Here we have a concrete backtrack location.  These are set up by choice
    1306             :     // nodes and so they indicate that we have a deferred save of the current
    1307             :     // position which we may need to emit here.
    1308      399046 :     assembler->PushCurrentPosition();
    1309             :   }
    1310             : 
    1311             :   int max_register = FindAffectedRegisters(&affected_registers,
    1312      509763 :                                            compiler->zone());
    1313             :   OutSet registers_to_pop;
    1314             :   OutSet registers_to_clear;
    1315             :   PerformDeferredActions(assembler,
    1316             :                          max_register,
    1317             :                          affected_registers,
    1318             :                          &registers_to_pop,
    1319             :                          &registers_to_clear,
    1320      509763 :                          compiler->zone());
    1321      509763 :   if (cp_offset_ != 0) {
    1322      293179 :     assembler->AdvanceCurrentPosition(cp_offset_);
    1323             :   }
    1324             : 
    1325             :   // Create a new trivial state and generate the node with that.
    1326      509763 :   Label undo;
    1327      509763 :   assembler->PushBacktrack(&undo);
    1328      509763 :   if (successor->KeepRecursing(compiler)) {
    1329      137417 :     Trace new_state;
    1330      137417 :     successor->Emit(compiler, &new_state);
    1331             :   } else {
    1332      372346 :     compiler->AddWork(successor);
    1333      372346 :     assembler->GoTo(successor->label());
    1334             :   }
    1335             : 
    1336             :   // On backtrack we need to restore state.
    1337      509763 :   assembler->Bind(&undo);
    1338             :   RestoreAffectedRegisters(assembler,
    1339             :                            max_register,
    1340             :                            registers_to_pop,
    1341      509763 :                            registers_to_clear);
    1342      509763 :   if (backtrack() == nullptr) {
    1343      110717 :     assembler->Backtrack();
    1344             :   } else {
    1345      399046 :     assembler->PopCurrentPosition();
    1346      798092 :     assembler->GoTo(backtrack());
    1347             :   }
    1348             : }
    1349             : 
    1350             : 
    1351        2843 : void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
    1352             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    1353             : 
    1354             :   // Omit flushing the trace. We discard the entire stack frame anyway.
    1355             : 
    1356        2843 :   if (!label()->is_bound()) {
    1357             :     // We are completely independent of the trace, since we ignore it,
    1358             :     // so this code can be used as the generic version.
    1359        2802 :     assembler->Bind(label());
    1360             :   }
    1361             : 
    1362             :   // Throw away everything on the backtrack stack since the start
    1363             :   // of the negative submatch and restore the character position.
    1364        2843 :   assembler->ReadCurrentPositionFromRegister(current_position_register_);
    1365        2843 :   assembler->ReadStackPointerFromRegister(stack_pointer_register_);
    1366        2843 :   if (clear_capture_count_ > 0) {
    1367             :     // Clear any captures that might have been performed during the success
    1368             :     // of the body of the negative look-ahead.
    1369         107 :     int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
    1370         107 :     assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
    1371             :   }
    1372             :   // Now that we have unwound the stack we find at the top of the stack the
    1373             :   // backtrack that the BeginSubmatch node got.
    1374        2843 :   assembler->Backtrack();
    1375        2843 : }
    1376             : 
    1377             : 
    1378      274053 : void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    1379      182402 :   if (!trace->is_trivial()) {
    1380       91051 :     trace->Flush(compiler, this);
    1381       91051 :     return;
    1382             :   }
    1383             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    1384       91351 :   if (!label()->is_bound()) {
    1385       85216 :     assembler->Bind(label());
    1386             :   }
    1387       91351 :   switch (action_) {
    1388             :     case ACCEPT:
    1389       91051 :       assembler->Succeed();
    1390       91051 :       return;
    1391             :     case BACKTRACK:
    1392         600 :       assembler->GoTo(trace->backtrack());
    1393         300 :       return;
    1394             :     case NEGATIVE_SUBMATCH_SUCCESS:
    1395             :       // This case is handled in a different virtual method.
    1396           0 :       UNREACHABLE();
    1397             :   }
    1398           0 :   UNIMPLEMENTED();
    1399             : }
    1400             : 
    1401             : 
    1402      903901 : void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
    1403     1807802 :   if (guards_ == nullptr) guards_ = new (zone) ZoneList<Guard*>(1, zone);
    1404      903901 :   guards_->Add(guard, zone);
    1405      903901 : }
    1406             : 
    1407             : 
    1408      903324 : ActionNode* ActionNode::SetRegister(int reg,
    1409             :                                     int val,
    1410      903324 :                                     RegExpNode* on_success) {
    1411             :   ActionNode* result =
    1412             :       new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
    1413      903324 :   result->data_.u_store_register.reg = reg;
    1414      903324 :   result->data_.u_store_register.value = val;
    1415      903324 :   return result;
    1416             : }
    1417             : 
    1418             : 
    1419      903324 : ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
    1420             :   ActionNode* result =
    1421             :       new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
    1422      903324 :   result->data_.u_increment_register.reg = reg;
    1423      903324 :   return result;
    1424             : }
    1425             : 
    1426             : 
    1427      225603 : ActionNode* ActionNode::StorePosition(int reg,
    1428             :                                       bool is_capture,
    1429      225603 :                                       RegExpNode* on_success) {
    1430             :   ActionNode* result =
    1431             :       new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
    1432      225603 :   result->data_.u_position_register.reg = reg;
    1433      225603 :   result->data_.u_position_register.is_capture = is_capture;
    1434      225603 :   return result;
    1435             : }
    1436             : 
    1437             : 
    1438        2304 : ActionNode* ActionNode::ClearCaptures(Interval range,
    1439        2304 :                                       RegExpNode* on_success) {
    1440             :   ActionNode* result =
    1441             :       new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
    1442        2304 :   result->data_.u_clear_captures.range_from = range.from();
    1443        2304 :   result->data_.u_clear_captures.range_to = range.to();
    1444        2304 :   return result;
    1445             : }
    1446             : 
    1447             : 
    1448        4462 : ActionNode* ActionNode::BeginSubmatch(int stack_reg,
    1449             :                                       int position_reg,
    1450        4462 :                                       RegExpNode* on_success) {
    1451             :   ActionNode* result =
    1452             :       new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
    1453        4462 :   result->data_.u_submatch.stack_pointer_register = stack_reg;
    1454        4462 :   result->data_.u_submatch.current_position_register = position_reg;
    1455        4462 :   return result;
    1456             : }
    1457             : 
    1458             : 
    1459        1650 : ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
    1460             :                                                 int position_reg,
    1461             :                                                 int clear_register_count,
    1462             :                                                 int clear_register_from,
    1463        1650 :                                                 RegExpNode* on_success) {
    1464             :   ActionNode* result =
    1465             :       new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
    1466        1650 :   result->data_.u_submatch.stack_pointer_register = stack_reg;
    1467        1650 :   result->data_.u_submatch.current_position_register = position_reg;
    1468        1650 :   result->data_.u_submatch.clear_register_count = clear_register_count;
    1469        1650 :   result->data_.u_submatch.clear_register_from = clear_register_from;
    1470        1650 :   return result;
    1471             : }
    1472             : 
    1473             : 
    1474         505 : ActionNode* ActionNode::EmptyMatchCheck(int start_register,
    1475             :                                         int repetition_register,
    1476             :                                         int repetition_limit,
    1477         505 :                                         RegExpNode* on_success) {
    1478             :   ActionNode* result =
    1479             :       new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
    1480         505 :   result->data_.u_empty_match_check.start_register = start_register;
    1481         505 :   result->data_.u_empty_match_check.repetition_register = repetition_register;
    1482         505 :   result->data_.u_empty_match_check.repetition_limit = repetition_limit;
    1483         505 :   return result;
    1484             : }
    1485             : 
    1486             : 
    1487             : #define DEFINE_ACCEPT(Type)                                          \
    1488             :   void Type##Node::Accept(NodeVisitor* visitor) {                    \
    1489             :     visitor->Visit##Type(this);                                      \
    1490             :   }
    1491      727360 : FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
    1492             : #undef DEFINE_ACCEPT
    1493             : 
    1494             : 
    1495      149820 : void LoopChoiceNode::Accept(NodeVisitor* visitor) {
    1496      149820 :   visitor->VisitLoopChoice(this);
    1497      149820 : }
    1498             : 
    1499             : 
    1500             : // -------------------------------------------------------------------
    1501             : // Emit code.
    1502             : 
    1503             : 
    1504        3901 : void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
    1505        7802 :                                Guard* guard,
    1506        3901 :                                Trace* trace) {
    1507        3901 :   switch (guard->op()) {
    1508             :     case Guard::LT:
    1509             :       DCHECK(!trace->mentions_reg(guard->reg()));
    1510             :       macro_assembler->IfRegisterGE(guard->reg(),
    1511             :                                     guard->value(),
    1512        5160 :                                     trace->backtrack());
    1513        2580 :       break;
    1514             :     case Guard::GEQ:
    1515             :       DCHECK(!trace->mentions_reg(guard->reg()));
    1516             :       macro_assembler->IfRegisterLT(guard->reg(),
    1517             :                                     guard->value(),
    1518        2642 :                                     trace->backtrack());
    1519        1321 :       break;
    1520             :   }
    1521        3901 : }
    1522             : 
    1523             : 
    1524             : // Returns the number of characters in the equivalence class, omitting those
    1525             : // that cannot occur in the source string because it is Latin1.
    1526       21870 : static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
    1527             :                                      bool one_byte_subject,
    1528             :                                      unibrow::uchar* letters) {
    1529             :   int length =
    1530       21870 :       isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
    1531             :   // Unibrow returns 0 or 1 for characters where case independence is
    1532             :   // trivial.
    1533       21870 :   if (length == 0) {
    1534        2773 :     letters[0] = character;
    1535             :     length = 1;
    1536             :   }
    1537             : 
    1538       21870 :   if (one_byte_subject) {
    1539             :     int new_length = 0;
    1540       31770 :     for (int i = 0; i < length; i++) {
    1541       31770 :       if (letters[i] <= String::kMaxOneByteCharCode) {
    1542       31360 :         letters[new_length++] = letters[i];
    1543             :       }
    1544             :     }
    1545             :     length = new_length;
    1546             :   }
    1547             : 
    1548       21870 :   return length;
    1549             : }
    1550             : 
    1551             : 
    1552      574876 : static inline bool EmitSimpleCharacter(Isolate* isolate,
    1553      574876 :                                        RegExpCompiler* compiler,
    1554             :                                        uc16 c,
    1555             :                                        Label* on_failure,
    1556             :                                        int cp_offset,
    1557             :                                        bool check,
    1558             :                                        bool preloaded) {
    1559             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    1560             :   bool bound_checked = false;
    1561      574876 :   if (!preloaded) {
    1562             :     assembler->LoadCurrentCharacter(
    1563             :         cp_offset,
    1564             :         on_failure,
    1565      574876 :         check);
    1566             :     bound_checked = true;
    1567             :   }
    1568      574876 :   assembler->CheckNotCharacter(c, on_failure);
    1569      574876 :   return bound_checked;
    1570             : }
    1571             : 
    1572             : 
    1573             : // Only emits non-letters (things that don't have case).  Only used for case
    1574             : // independent matches.
    1575        5503 : static inline bool EmitAtomNonLetter(Isolate* isolate,
    1576        5503 :                                      RegExpCompiler* compiler,
    1577             :                                      uc16 c,
    1578             :                                      Label* on_failure,
    1579             :                                      int cp_offset,
    1580             :                                      bool check,
    1581             :                                      bool preloaded) {
    1582             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    1583             :   bool one_byte = compiler->one_byte();
    1584             :   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    1585        5503 :   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
    1586        5503 :   if (length < 1) {
    1587             :     // This can't match.  Must be an one-byte subject and a non-one-byte
    1588             :     // character.  We do not need to do anything since the one-byte pass
    1589             :     // already handled this.
    1590             :     return false;  // Bounds not checked.
    1591             :   }
    1592             :   bool checked = false;
    1593             :   // We handle the length > 1 case in a later pass.
    1594        5498 :   if (length == 1) {
    1595         371 :     if (one_byte && c > String::kMaxOneByteCharCodeU) {
    1596             :       // Can't match - see above.
    1597             :       return false;  // Bounds not checked.
    1598             :     }
    1599         371 :     if (!preloaded) {
    1600         371 :       macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
    1601             :       checked = check;
    1602             :     }
    1603         371 :     macro_assembler->CheckNotCharacter(c, on_failure);
    1604             :   }
    1605        5498 :   return checked;
    1606             : }
    1607             : 
    1608             : 
    1609        4785 : static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
    1610             :                                       bool one_byte, uc16 c1, uc16 c2,
    1611             :                                       Label* on_failure) {
    1612             :   uc16 char_mask;
    1613        4785 :   if (one_byte) {
    1614             :     char_mask = String::kMaxOneByteCharCode;
    1615             :   } else {
    1616             :     char_mask = String::kMaxUtf16CodeUnit;
    1617             :   }
    1618        4785 :   uc16 exor = c1 ^ c2;
    1619             :   // Check whether exor has only one bit set.
    1620        4785 :   if (((exor - 1) & exor) == 0) {
    1621             :     // If c1 and c2 differ only by one bit.
    1622             :     // Ecma262UnCanonicalize always gives the highest number last.
    1623             :     DCHECK(c2 > c1);
    1624        4690 :     uc16 mask = char_mask ^ exor;
    1625        4690 :     macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
    1626        4690 :     return true;
    1627             :   }
    1628             :   DCHECK(c2 > c1);
    1629          95 :   uc16 diff = c2 - c1;
    1630          95 :   if (((diff - 1) & diff) == 0 && c1 >= diff) {
    1631             :     // If the characters differ by 2^n but don't differ by one bit then
    1632             :     // subtract the difference from the found character, then do the or
    1633             :     // trick.  We avoid the theoretical case where negative numbers are
    1634             :     // involved in order to simplify code generation.
    1635          85 :     uc16 mask = char_mask ^ diff;
    1636             :     macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
    1637             :                                                     diff,
    1638             :                                                     mask,
    1639          85 :                                                     on_failure);
    1640          85 :     return true;
    1641             :   }
    1642             :   return false;
    1643             : }
    1644             : 
    1645             : 
    1646             : typedef bool EmitCharacterFunction(Isolate* isolate,
    1647             :                                    RegExpCompiler* compiler,
    1648             :                                    uc16 c,
    1649             :                                    Label* on_failure,
    1650             :                                    int cp_offset,
    1651             :                                    bool check,
    1652             :                                    bool preloaded);
    1653             : 
    1654             : // Only emits letters (things that have case).  Only used for case independent
    1655             : // matches.
    1656        5503 : static inline bool EmitAtomLetter(Isolate* isolate,
    1657        5503 :                                   RegExpCompiler* compiler,
    1658             :                                   uc16 c,
    1659             :                                   Label* on_failure,
    1660             :                                   int cp_offset,
    1661             :                                   bool check,
    1662             :                                   bool preloaded) {
    1663             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    1664             :   bool one_byte = compiler->one_byte();
    1665             :   unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    1666        5503 :   int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
    1667        5503 :   if (length <= 1) return false;
    1668             :   // We may not need to check against the end of the input string
    1669             :   // if this character lies before a character that matched.
    1670        5127 :   if (!preloaded) {
    1671        4792 :     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
    1672             :   }
    1673        5127 :   Label ok;
    1674             :   DCHECK_EQ(4, unibrow::Ecma262UnCanonicalize::kMaxWidth);
    1675        5127 :   switch (length) {
    1676             :     case 2: {
    1677        9570 :       if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
    1678        9570 :                                     chars[1], on_failure)) {
    1679             :       } else {
    1680          10 :         macro_assembler->CheckCharacter(chars[0], &ok);
    1681          10 :         macro_assembler->CheckNotCharacter(chars[1], on_failure);
    1682          10 :         macro_assembler->Bind(&ok);
    1683             :       }
    1684             :       break;
    1685             :     }
    1686             :     case 4:
    1687          25 :       macro_assembler->CheckCharacter(chars[3], &ok);
    1688             :       V8_FALLTHROUGH;
    1689             :     case 3:
    1690         342 :       macro_assembler->CheckCharacter(chars[0], &ok);
    1691         342 :       macro_assembler->CheckCharacter(chars[1], &ok);
    1692         342 :       macro_assembler->CheckNotCharacter(chars[2], on_failure);
    1693         342 :       macro_assembler->Bind(&ok);
    1694         342 :       break;
    1695             :     default:
    1696           0 :       UNREACHABLE();
    1697             :       break;
    1698             :   }
    1699             :   return true;
    1700             : }
    1701             : 
    1702             : 
    1703        8607 : static void EmitBoundaryTest(RegExpMacroAssembler* masm,
    1704             :                              int border,
    1705             :                              Label* fall_through,
    1706             :                              Label* above_or_equal,
    1707             :                              Label* below) {
    1708        8607 :   if (below != fall_through) {
    1709        8243 :     masm->CheckCharacterLT(border, below);
    1710        8243 :     if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
    1711             :   } else {
    1712         364 :     masm->CheckCharacterGT(border - 1, above_or_equal);
    1713             :   }
    1714        8607 : }
    1715             : 
    1716             : 
    1717      158857 : static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
    1718             :                                    int first,
    1719             :                                    int last,
    1720             :                                    Label* fall_through,
    1721             :                                    Label* in_range,
    1722             :                                    Label* out_of_range) {
    1723      158857 :   if (in_range == fall_through) {
    1724      107322 :     if (first == last) {
    1725       14494 :       masm->CheckNotCharacter(first, out_of_range);
    1726             :     } else {
    1727       92828 :       masm->CheckCharacterNotInRange(first, last, out_of_range);
    1728             :     }
    1729             :   } else {
    1730       51535 :     if (first == last) {
    1731       28361 :       masm->CheckCharacter(first, in_range);
    1732             :     } else {
    1733       23174 :       masm->CheckCharacterInRange(first, last, in_range);
    1734             :     }
    1735       51535 :     if (out_of_range != fall_through) masm->GoTo(out_of_range);
    1736             :   }
    1737      158857 : }
    1738             : 
    1739             : 
    1740             : // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
    1741             : // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
    1742        5861 : static void EmitUseLookupTable(
    1743        5861 :     RegExpMacroAssembler* masm,
    1744             :     ZoneList<int>* ranges,
    1745             :     int start_index,
    1746             :     int end_index,
    1747             :     int min_char,
    1748             :     Label* fall_through,
    1749             :     Label* even_label,
    1750             :     Label* odd_label) {
    1751             :   static const int kSize = RegExpMacroAssembler::kTableSize;
    1752             :   static const int kMask = RegExpMacroAssembler::kTableMask;
    1753             : 
    1754             :   int base = (min_char & ~kMask);
    1755             :   USE(base);
    1756             : 
    1757             :   // Assert that everything is on one kTableSize page.
    1758             :   for (int i = start_index; i <= end_index; i++) {
    1759             :     DCHECK_EQ(ranges->at(i) & ~kMask, base);
    1760             :   }
    1761             :   DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
    1762             : 
    1763             :   char templ[kSize];
    1764             :   Label* on_bit_set;
    1765             :   Label* on_bit_clear;
    1766             :   int bit;
    1767        5861 :   if (even_label == fall_through) {
    1768             :     on_bit_set = odd_label;
    1769             :     on_bit_clear = even_label;
    1770             :     bit = 1;
    1771             :   } else {
    1772             :     on_bit_set = even_label;
    1773             :     on_bit_clear = odd_label;
    1774             :     bit = 0;
    1775             :   }
    1776      252413 :   for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
    1777      123276 :     templ[i] = bit;
    1778             :   }
    1779             :   int j = 0;
    1780        5861 :   bit ^= 1;
    1781       95816 :   for (int i = start_index; i < end_index; i++) {
    1782     1204670 :     for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
    1783      512380 :       templ[j] = bit;
    1784             :     }
    1785       89955 :     bit ^= 1;
    1786             :   }
    1787      114552 :   for (int i = j; i < kSize; i++) {
    1788      114552 :     templ[i] = bit;
    1789             :   }
    1790             :   Factory* factory = masm->isolate()->factory();
    1791             :   // TODO(erikcorry): Cache these.
    1792        5861 :   Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
    1793      750208 :   for (int i = 0; i < kSize; i++) {
    1794      750208 :     ba->set(i, templ[i]);
    1795             :   }
    1796        5861 :   masm->CheckBitInTable(ba, on_bit_set);
    1797        5861 :   if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
    1798        5861 : }
    1799             : 
    1800             : 
    1801       35651 : static void CutOutRange(RegExpMacroAssembler* masm,
    1802             :                         ZoneList<int>* ranges,
    1803             :                         int start_index,
    1804             :                         int end_index,
    1805             :                         int cut_index,
    1806             :                         Label* even_label,
    1807             :                         Label* odd_label) {
    1808       35651 :   bool odd = (((cut_index - start_index) & 1) == 1);
    1809       35651 :   Label* in_range_label = odd ? odd_label : even_label;
    1810       35651 :   Label dummy;
    1811             :   EmitDoubleBoundaryTest(masm,
    1812             :                          ranges->at(cut_index),
    1813       35651 :                          ranges->at(cut_index + 1) - 1,
    1814             :                          &dummy,
    1815             :                          in_range_label,
    1816       71302 :                          &dummy);
    1817             :   DCHECK(!dummy.is_linked());
    1818             :   // Cut out the single range by rewriting the array.  This creates a new
    1819             :   // range that is a merger of the two ranges on either side of the one we
    1820             :   // are cutting out.  The oddity of the labels is preserved.
    1821       90888 :   for (int j = cut_index; j > start_index; j--) {
    1822       39172 :     ranges->at(j) = ranges->at(j - 1);
    1823             :   }
    1824      108156 :   for (int j = cut_index + 1; j < end_index; j++) {
    1825      145010 :     ranges->at(j) = ranges->at(j + 1);
    1826             :   }
    1827       35651 : }
    1828             : 
    1829             : 
    1830             : // Unicode case.  Split the search space into kSize spaces that are handled
    1831             : // with recursion.
    1832       19767 : static void SplitSearchSpace(ZoneList<int>* ranges,
    1833             :                              int start_index,
    1834             :                              int end_index,
    1835             :                              int* new_start_index,
    1836             :                              int* new_end_index,
    1837             :                              int* border) {
    1838             :   static const int kSize = RegExpMacroAssembler::kTableSize;
    1839             :   static const int kMask = RegExpMacroAssembler::kTableMask;
    1840             : 
    1841       19767 :   int first = ranges->at(start_index);
    1842       19767 :   int last = ranges->at(end_index) - 1;
    1843             : 
    1844       19767 :   *new_start_index = start_index;
    1845       19767 :   *border = (ranges->at(start_index) & ~kMask) + kSize;
    1846      168854 :   while (*new_start_index < end_index) {
    1847      147860 :     if (ranges->at(*new_start_index) > *border) break;
    1848      129320 :     (*new_start_index)++;
    1849             :   }
    1850             :   // new_start_index is the index of the first edge that is beyond the
    1851             :   // current kSize space.
    1852             : 
    1853             :   // For very large search spaces we do a binary chop search of the non-Latin1
    1854             :   // space instead of just going to the end of the current kSize space.  The
    1855             :   // heuristics are complicated a little by the fact that any 128-character
    1856             :   // encoding space can be quickly tested with a table lookup, so we don't
    1857             :   // wish to do binary chop search at a smaller granularity than that.  A
    1858             :   // 128-character space can take up a lot of space in the ranges array if,
    1859             :   // for example, we only want to match every second character (eg. the lower
    1860             :   // case characters on some Unicode pages).
    1861       19767 :   int binary_chop_index = (end_index + start_index) / 2;
    1862             :   // The first test ensures that we get to the code that handles the Latin1
    1863             :   // range with a single not-taken branch, speeding up this important
    1864             :   // character range (even non-Latin1 charset-based text has spaces and
    1865             :   // punctuation).
    1866       54426 :   if (*border - 1 > String::kMaxOneByteCharCode &&  // Latin1 case.
    1867       27629 :       end_index - start_index > (*new_start_index - start_index) * 2 &&
    1868       56007 :       last - first > kSize * 2 && binary_chop_index > *new_start_index &&
    1869       23248 :       ranges->at(binary_chop_index) >= first + 2 * kSize) {
    1870             :     int scan_forward_for_section_border = binary_chop_index;;
    1871        9782 :     int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
    1872             : 
    1873       76686 :     while (scan_forward_for_section_border < end_index) {
    1874       65012 :       if (ranges->at(scan_forward_for_section_border) > new_border) {
    1875        7890 :         *new_start_index = scan_forward_for_section_border;
    1876        7890 :         *border = new_border;
    1877        7890 :         break;
    1878             :       }
    1879       57122 :       scan_forward_for_section_border++;
    1880             :     }
    1881             :   }
    1882             : 
    1883             :   DCHECK(*new_start_index > start_index);
    1884       19767 :   *new_end_index = *new_start_index - 1;
    1885       19767 :   if (ranges->at(*new_end_index) == *border) {
    1886        2958 :     (*new_end_index)--;
    1887             :   }
    1888       39534 :   if (*border >= ranges->at(end_index)) {
    1889        1225 :     *border = ranges->at(end_index);
    1890        1225 :     *new_start_index = end_index;  // Won't be used.
    1891        1225 :     *new_end_index = end_index - 1;
    1892             :   }
    1893       19767 : }
    1894             : 
    1895             : // Gets a series of segment boundaries representing a character class.  If the
    1896             : // character is in the range between an even and an odd boundary (counting from
    1897             : // start_index) then go to even_label, otherwise go to odd_label.  We already
    1898             : // know that the character is in the range of min_char to max_char inclusive.
    1899             : // Either label can be nullptr indicating backtracking.  Either label can also
    1900             : // be equal to the fall_through label.
    1901      201108 : static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges,
    1902             :                              int start_index, int end_index, uc32 min_char,
    1903             :                              uc32 max_char, Label* fall_through,
    1904             :                              Label* even_label, Label* odd_label) {
    1905             :   DCHECK_LE(min_char, String::kMaxUtf16CodeUnit);
    1906             :   DCHECK_LE(max_char, String::kMaxUtf16CodeUnit);
    1907             : 
    1908      201108 :   int first = ranges->at(start_index);
    1909      201108 :   int last = ranges->at(end_index) - 1;
    1910             : 
    1911             :   DCHECK_LT(min_char, first);
    1912             : 
    1913             :   // Just need to test if the character is before or on-or-after
    1914             :   // a particular character.
    1915      201108 :   if (start_index == end_index) {
    1916        8607 :     EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
    1917        8607 :     return;
    1918             :   }
    1919             : 
    1920             :   // Another almost trivial case:  There is one interval in the middle that is
    1921             :   // different from the end intervals.
    1922      192501 :   if (start_index + 1 == end_index) {
    1923             :     EmitDoubleBoundaryTest(
    1924      123206 :         masm, first, last, fall_through, even_label, odd_label);
    1925      123206 :     return;
    1926             :   }
    1927             : 
    1928             :   // It's not worth using table lookup if there are very few intervals in the
    1929             :   // character class.
    1930       69295 :   if (end_index - start_index <= 6) {
    1931             :     // It is faster to test for individual characters, so we look for those
    1932             :     // first, then try arbitrary ranges in the second round.
    1933             :     static int kNoCutIndex = -1;
    1934       35651 :     int cut = kNoCutIndex;
    1935      144754 :     for (int i = start_index; i < end_index; i++) {
    1936      184980 :       if (ranges->at(i) == ranges->at(i + 1) - 1) {
    1937             :         cut = i;
    1938             :         break;
    1939             :       }
    1940             :     }
    1941       35651 :     if (cut == kNoCutIndex) cut = start_index;
    1942             :     CutOutRange(
    1943       35651 :         masm, ranges, start_index, end_index, cut, even_label, odd_label);
    1944             :     DCHECK_GE(end_index - start_index, 2);
    1945             :     GenerateBranches(masm,
    1946             :                      ranges,
    1947             :                      start_index + 1,
    1948             :                      end_index - 1,
    1949             :                      min_char,
    1950             :                      max_char,
    1951             :                      fall_through,
    1952             :                      even_label,
    1953       35651 :                      odd_label);
    1954       35651 :     return;
    1955             :   }
    1956             : 
    1957             :   // If there are a lot of intervals in the regexp, then we will use tables to
    1958             :   // determine whether the character is inside or outside the character class.
    1959             :   static const int kBits = RegExpMacroAssembler::kTableSizeBits;
    1960             : 
    1961       33644 :   if ((max_char >> kBits) == (min_char >> kBits)) {
    1962             :     EmitUseLookupTable(masm,
    1963             :                        ranges,
    1964             :                        start_index,
    1965             :                        end_index,
    1966             :                        min_char,
    1967             :                        fall_through,
    1968             :                        even_label,
    1969        5861 :                        odd_label);
    1970        5861 :     return;
    1971             :   }
    1972             : 
    1973       27783 :   if ((min_char >> kBits) != (first >> kBits)) {
    1974        8016 :     masm->CheckCharacterLT(first, odd_label);
    1975             :     GenerateBranches(masm,
    1976             :                      ranges,
    1977             :                      start_index + 1,
    1978             :                      end_index,
    1979             :                      first,
    1980             :                      max_char,
    1981             :                      fall_through,
    1982             :                      odd_label,
    1983        8016 :                      even_label);
    1984        8016 :     return;
    1985             :   }
    1986             : 
    1987       19767 :   int new_start_index = 0;
    1988       19767 :   int new_end_index = 0;
    1989       19767 :   int border = 0;
    1990             : 
    1991             :   SplitSearchSpace(ranges,
    1992             :                    start_index,
    1993             :                    end_index,
    1994             :                    &new_start_index,
    1995             :                    &new_end_index,
    1996       19767 :                    &border);
    1997             : 
    1998       19767 :   Label handle_rest;
    1999             :   Label* above = &handle_rest;
    2000       19767 :   if (border == last + 1) {
    2001             :     // We didn't find any section that started after the limit, so everything
    2002             :     // above the border is one of the terminal labels.
    2003        1225 :     above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
    2004             :     DCHECK(new_end_index == end_index - 1);
    2005             :   }
    2006             : 
    2007             :   DCHECK_LE(start_index, new_end_index);
    2008             :   DCHECK_LE(new_start_index, end_index);
    2009             :   DCHECK_LT(start_index, new_start_index);
    2010             :   DCHECK_LT(new_end_index, end_index);
    2011             :   DCHECK(new_end_index + 1 == new_start_index ||
    2012             :          (new_end_index + 2 == new_start_index &&
    2013             :           border == ranges->at(new_end_index + 1)));
    2014             :   DCHECK_LT(min_char, border - 1);
    2015             :   DCHECK_LT(border, max_char);
    2016             :   DCHECK_LT(ranges->at(new_end_index), border);
    2017             :   DCHECK(border < ranges->at(new_start_index) ||
    2018             :          (border == ranges->at(new_start_index) &&
    2019             :           new_start_index == end_index &&
    2020             :           new_end_index == end_index - 1 &&
    2021             :           border == last + 1));
    2022             :   DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
    2023             : 
    2024       19767 :   masm->CheckCharacterGT(border - 1, above);
    2025       19767 :   Label dummy;
    2026             :   GenerateBranches(masm,
    2027             :                    ranges,
    2028             :                    start_index,
    2029             :                    new_end_index,
    2030             :                    min_char,
    2031             :                    border - 1,
    2032             :                    &dummy,
    2033             :                    even_label,
    2034       19767 :                    odd_label);
    2035       19767 :   if (handle_rest.is_linked()) {
    2036       18542 :     masm->Bind(&handle_rest);
    2037       18542 :     bool flip = (new_start_index & 1) != (start_index & 1);
    2038             :     GenerateBranches(masm,
    2039             :                      ranges,
    2040             :                      new_start_index,
    2041             :                      end_index,
    2042             :                      border,
    2043             :                      max_char,
    2044             :                      &dummy,
    2045             :                      flip ? odd_label : even_label,
    2046       18542 :                      flip ? even_label : odd_label);
    2047             :   }
    2048             : }
    2049             : 
    2050             : 
    2051      210399 : static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
    2052             :                           RegExpCharacterClass* cc, bool one_byte,
    2053             :                           Label* on_failure, int cp_offset, bool check_offset,
    2054             :                           bool preloaded, Zone* zone) {
    2055      210399 :   ZoneList<CharacterRange>* ranges = cc->ranges(zone);
    2056      210399 :   CharacterRange::Canonicalize(ranges);
    2057             : 
    2058             :   int max_char;
    2059      210399 :   if (one_byte) {
    2060             :     max_char = String::kMaxOneByteCharCode;
    2061             :   } else {
    2062             :     max_char = String::kMaxUtf16CodeUnit;
    2063             :   }
    2064             : 
    2065             :   int range_count = ranges->length();
    2066             : 
    2067      210399 :   int last_valid_range = range_count - 1;
    2068      601617 :   while (last_valid_range >= 0) {
    2069      391183 :     CharacterRange& range = ranges->at(last_valid_range);
    2070      391183 :     if (range.from() <= max_char) {
    2071             :       break;
    2072             :     }
    2073      180819 :     last_valid_range--;
    2074             :   }
    2075             : 
    2076      210399 :   if (last_valid_range < 0) {
    2077          35 :     if (!cc->is_negated()) {
    2078          10 :       macro_assembler->GoTo(on_failure);
    2079             :     }
    2080          35 :     if (check_offset) {
    2081          33 :       macro_assembler->CheckPosition(cp_offset, on_failure);
    2082             :     }
    2083       91267 :     return;
    2084             :   }
    2085             : 
    2086      398597 :   if (last_valid_range == 0 &&
    2087             :       ranges->at(0).IsEverything(max_char)) {
    2088       82499 :     if (cc->is_negated()) {
    2089          31 :       macro_assembler->GoTo(on_failure);
    2090             :     } else {
    2091             :       // This is a common case hit by non-anchored expressions.
    2092       82468 :       if (check_offset) {
    2093       53861 :         macro_assembler->CheckPosition(cp_offset, on_failure);
    2094             :       }
    2095             :     }
    2096             :     return;
    2097             :   }
    2098             : 
    2099      127865 :   if (!preloaded) {
    2100      115810 :     macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
    2101             :   }
    2102             : 
    2103      138711 :   if (cc->is_standard(zone) &&
    2104             :       macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
    2105       21692 :                                                   on_failure)) {
    2106             :       return;
    2107             :   }
    2108             : 
    2109             : 
    2110             :   // A new list with ascending entries.  Each entry is a code unit
    2111             :   // where there is a boundary between code units that are part of
    2112             :   // the class and code units that are not.  Normally we insert an
    2113             :   // entry at zero which goes to the failure label, but if there
    2114             :   // was already one there we fall through for success on that entry.
    2115             :   // Subsequent entries have alternating meaning (success/failure).
    2116      119132 :   ZoneList<int>* range_boundaries =
    2117      119132 :       new(zone) ZoneList<int>(last_valid_range, zone);
    2118             : 
    2119      119132 :   bool zeroth_entry_is_failure = !cc->is_negated();
    2120             : 
    2121      339979 :   for (int i = 0; i <= last_valid_range; i++) {
    2122      441694 :     CharacterRange& range = ranges->at(i);
    2123      220847 :     if (range.from() == 0) {
    2124             :       DCHECK_EQ(i, 0);
    2125        3380 :       zeroth_entry_is_failure = !zeroth_entry_is_failure;
    2126             :     } else {
    2127      217467 :       range_boundaries->Add(range.from(), zone);
    2128             :     }
    2129      220847 :     range_boundaries->Add(range.to() + 1, zone);
    2130             :   }
    2131      119132 :   int end_index = range_boundaries->length() - 1;
    2132      119132 :   if (range_boundaries->at(end_index) > max_char) {
    2133        3978 :     end_index--;
    2134             :   }
    2135             : 
    2136      119132 :   Label fall_through;
    2137             :   GenerateBranches(macro_assembler,
    2138             :                    range_boundaries,
    2139             :                    0,  // start_index.
    2140             :                    end_index,
    2141             :                    0,  // min_char.
    2142             :                    max_char,
    2143             :                    &fall_through,
    2144             :                    zeroth_entry_is_failure ? &fall_through : on_failure,
    2145      119132 :                    zeroth_entry_is_failure ? on_failure : &fall_through);
    2146      119132 :   macro_assembler->Bind(&fall_through);
    2147             : }
    2148             : 
    2149             : RegExpNode::~RegExpNode() = default;
    2150             : 
    2151     4443622 : RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
    2152     2172285 :                                                   Trace* trace) {
    2153             :   // If we are generating a greedy loop then don't stop and don't reuse code.
    2154     1694671 :   if (trace->stop_node() != nullptr) {
    2155             :     return CONTINUE;
    2156             :   }
    2157             : 
    2158             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    2159     1683064 :   if (trace->is_trivial()) {
    2160     1539203 :     if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
    2161             :       // If a generic version is already scheduled to be generated or we have
    2162             :       // recursed too deeply then just generate a jump to that code.
    2163      219833 :       macro_assembler->GoTo(&label_);
    2164             :       // This will queue it up for generation of a generic version if it hasn't
    2165             :       // already been queued.
    2166      219833 :       compiler->AddWork(this);
    2167      219833 :       return DONE;
    2168             :     }
    2169             :     // Generate generic version of the node and bind the label for later use.
    2170      392167 :     macro_assembler->Bind(&label_);
    2171      392167 :     return CONTINUE;
    2172             :   }
    2173             : 
    2174             :   // We are being asked to make a non-generic version.  Keep track of how many
    2175             :   // non-generic versions we generate so as not to overdo it.
    2176     1071064 :   trace_count_++;
    2177     2136951 :   if (KeepRecursing(compiler) && compiler->optimize() &&
    2178             :       trace_count_ < kMaxCopiesCodeGenerated) {
    2179             :     return CONTINUE;
    2180             :   }
    2181             : 
    2182             :   // If we get here code has been generated for this node too many times or
    2183             :   // recursion is too deep.  Time to switch to a generic version.  The code for
    2184             :   // generic versions above can handle deep recursion properly.
    2185             :   bool was_limiting = compiler->limiting_recursion();
    2186             :   compiler->set_limiting_recursion(true);
    2187      477305 :   trace->Flush(compiler, this);
    2188             :   compiler->set_limiting_recursion(was_limiting);
    2189      477305 :   return DONE;
    2190             : }
    2191             : 
    2192             : 
    2193     3631109 : bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
    2194     3631109 :   return !compiler->limiting_recursion() &&
    2195           0 :          compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
    2196             : }
    2197             : 
    2198             : 
    2199      583319 : int ActionNode::EatsAtLeast(int still_to_find,
    2200             :                             int budget,
    2201             :                             bool not_at_start) {
    2202      583319 :   if (budget <= 0) return 0;
    2203      570257 :   if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0;  // Rewinds input!
    2204      565129 :   return on_success()->EatsAtLeast(still_to_find,
    2205             :                                    budget - 1,
    2206      565129 :                                    not_at_start);
    2207             : }
    2208             : 
    2209             : 
    2210       90528 : void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
    2211             :                               BoyerMooreLookahead* bm, bool not_at_start) {
    2212       90528 :   if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
    2213       90528 :     on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
    2214             :   }
    2215             :   SaveBMInfo(bm, not_at_start, offset);
    2216       90528 : }
    2217             : 
    2218             : 
    2219       10241 : int AssertionNode::EatsAtLeast(int still_to_find,
    2220             :                                int budget,
    2221        9226 :                                bool not_at_start) {
    2222       10241 :   if (budget <= 0) return 0;
    2223             :   // If we know we are not at the start and we are asked "how many characters
    2224             :   // will you match if you succeed?" then we can answer anything since false
    2225             :   // implies false.  So lets just return the max answer (still_to_find) since
    2226             :   // that won't prevent us from preloading a lot of characters for the other
    2227             :   // branches in the node graph.
    2228        9226 :   if (assertion_type() == AT_START && not_at_start) return still_to_find;
    2229        9004 :   return on_success()->EatsAtLeast(still_to_find,
    2230             :                                    budget - 1,
    2231        9004 :                                    not_at_start);
    2232             : }
    2233             : 
    2234             : 
    2235         379 : void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
    2236         379 :                                  BoyerMooreLookahead* bm, bool not_at_start) {
    2237             :   // Match the behaviour of EatsAtLeast on this node.
    2238         758 :   if (assertion_type() == AT_START && not_at_start) return;
    2239         363 :   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
    2240             :   SaveBMInfo(bm, not_at_start, offset);
    2241             : }
    2242             : 
    2243             : 
    2244        3111 : int BackReferenceNode::EatsAtLeast(int still_to_find,
    2245             :                                    int budget,
    2246        3111 :                                    bool not_at_start) {
    2247        3111 :   if (read_backward()) return 0;
    2248        3001 :   if (budget <= 0) return 0;
    2249        3001 :   return on_success()->EatsAtLeast(still_to_find,
    2250             :                                    budget - 1,
    2251        3001 :                                    not_at_start);
    2252             : }
    2253             : 
    2254             : 
    2255     5761783 : int TextNode::EatsAtLeast(int still_to_find,
    2256             :                           int budget,
    2257     5761783 :                           bool not_at_start) {
    2258     5761783 :   if (read_backward()) return 0;
    2259     5759931 :   int answer = Length();
    2260     5759931 :   if (answer >= still_to_find) return answer;
    2261     3397867 :   if (budget <= 0) return answer;
    2262             :   // We are not at start after this node so we set the last argument to 'true'.
    2263     2373950 :   return answer + on_success()->EatsAtLeast(still_to_find - answer,
    2264             :                                             budget - 1,
    2265     2373950 :                                             true);
    2266             : }
    2267             : 
    2268             : 
    2269        9503 : int NegativeLookaroundChoiceNode::EatsAtLeast(int still_to_find, int budget,
    2270             :                                               bool not_at_start) {
    2271        9503 :   if (budget <= 0) return 0;
    2272             :   // Alternative 0 is the negative lookahead, alternative 1 is what comes
    2273             :   // afterwards.
    2274       18582 :   RegExpNode* node = alternatives_->at(1).node();
    2275        9291 :   return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
    2276             : }
    2277             : 
    2278             : 
    2279        3556 : void NegativeLookaroundChoiceNode::GetQuickCheckDetails(
    2280             :     QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in,
    2281             :     bool not_at_start) {
    2282             :   // Alternative 0 is the negative lookahead, alternative 1 is what comes
    2283             :   // afterwards.
    2284        7112 :   RegExpNode* node = alternatives_->at(1).node();
    2285        3556 :   return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
    2286             : }
    2287             : 
    2288             : 
    2289     6945162 : int ChoiceNode::EatsAtLeastHelper(int still_to_find,
    2290             :                                   int budget,
    2291             :                                   RegExpNode* ignore_this_node,
    2292             :                                   bool not_at_start) {
    2293     6945162 :   if (budget <= 0) return 0;
    2294             :   int min = 100;
    2295     4818856 :   int choice_count = alternatives_->length();
    2296     4818856 :   budget = (budget - 1) / choice_count;
    2297    10720050 :   for (int i = 0; i < choice_count; i++) {
    2298    20797614 :     RegExpNode* node = alternatives_->at(i).node();
    2299    10398807 :     if (node == ignore_this_node) continue;
    2300             :     int node_eats_at_least =
    2301    10254200 :         node->EatsAtLeast(still_to_find, budget, not_at_start);
    2302    10254200 :     if (node_eats_at_least < min) min = node_eats_at_least;
    2303    10254200 :     if (min == 0) return 0;
    2304             :   }
    2305             :   return min;
    2306             : }
    2307             : 
    2308             : 
    2309      153117 : int LoopChoiceNode::EatsAtLeast(int still_to_find,
    2310             :                                 int budget,
    2311             :                                 bool not_at_start) {
    2312             :   return EatsAtLeastHelper(still_to_find,
    2313             :                            budget - 1,
    2314             :                            loop_node_,
    2315      153117 :                            not_at_start);
    2316             : }
    2317             : 
    2318             : 
    2319     6792045 : int ChoiceNode::EatsAtLeast(int still_to_find,
    2320             :                             int budget,
    2321             :                             bool not_at_start) {
    2322     6792045 :   return EatsAtLeastHelper(still_to_find, budget, nullptr, not_at_start);
    2323             : }
    2324             : 
    2325             : 
    2326             : // Takes the left-most 1-bit and smears it out, setting all bits to its right.
    2327             : static inline uint32_t SmearBitsRight(uint32_t v) {
    2328      239412 :   v |= v >> 1;
    2329      239412 :   v |= v >> 2;
    2330      239412 :   v |= v >> 4;
    2331      239412 :   v |= v >> 8;
    2332      239412 :   v |= v >> 16;
    2333             :   return v;
    2334             : }
    2335             : 
    2336             : 
    2337      268936 : bool QuickCheckDetails::Rationalize(bool asc) {
    2338             :   bool found_useful_op = false;
    2339             :   uint32_t char_mask;
    2340      268936 :   if (asc) {
    2341             :     char_mask = String::kMaxOneByteCharCode;
    2342             :   } else {
    2343             :     char_mask = String::kMaxUtf16CodeUnit;
    2344             :   }
    2345      268936 :   mask_ = 0;
    2346      268936 :   value_ = 0;
    2347             :   int char_shift = 0;
    2348      697115 :   for (int i = 0; i < characters_; i++) {
    2349      428179 :     Position* pos = &positions_[i];
    2350      428179 :     if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
    2351             :       found_useful_op = true;
    2352             :     }
    2353      428179 :     mask_ |= (pos->mask & char_mask) << char_shift;
    2354      428179 :     value_ |= (pos->value & char_mask) << char_shift;
    2355      428179 :     char_shift += asc ? 8 : 16;
    2356             :   }
    2357      268936 :   return found_useful_op;
    2358             : }
    2359             : 
    2360             : 
    2361     1188603 : bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
    2362       62751 :                                 Trace* bounds_check_trace,
    2363      590739 :                                 Trace* trace,
    2364             :                                 bool preload_has_checked_bounds,
    2365             :                                 Label* on_possible_success,
    2366     1416393 :                                 QuickCheckDetails* details,
    2367             :                                 bool fall_through_on_failure) {
    2368      473502 :   if (details->characters() == 0) return false;
    2369             :   GetQuickCheckDetails(
    2370      538092 :       details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
    2371      269046 :   if (details->cannot_match()) return false;
    2372      268936 :   if (!details->Rationalize(compiler->one_byte())) return false;
    2373             :   DCHECK(details->characters() == 1 ||
    2374             :          compiler->macro_assembler()->CanReadUnaligned());
    2375             :   uint32_t mask = details->mask();
    2376             :   uint32_t value = details->value();
    2377             : 
    2378             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    2379             : 
    2380      224615 :   if (trace->characters_preloaded() != details->characters()) {
    2381             :     DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
    2382             :     // We are attempting to preload the minimum number of characters
    2383             :     // any choice would eat, so if the bounds check fails, then none of the
    2384             :     // choices can succeed, so we can just immediately backtrack, rather
    2385             :     // than go to the next choice.
    2386             :     assembler->LoadCurrentCharacter(trace->cp_offset(),
    2387             :                                     bounds_check_trace->backtrack(),
    2388       62751 :                                     !preload_has_checked_bounds,
    2389      188253 :                                     details->characters());
    2390             :   }
    2391             : 
    2392             : 
    2393             :   bool need_mask = true;
    2394             : 
    2395      224615 :   if (details->characters() == 1) {
    2396             :     // If number of characters preloaded is 1 then we used a byte or 16 bit
    2397             :     // load so the value is already masked down.
    2398             :     uint32_t char_mask;
    2399       81750 :     if (compiler->one_byte()) {
    2400             :       char_mask = String::kMaxOneByteCharCode;
    2401             :     } else {
    2402             :       char_mask = String::kMaxUtf16CodeUnit;
    2403             :     }
    2404       81750 :     if ((mask & char_mask) == char_mask) need_mask = false;
    2405             :     mask &= char_mask;
    2406             :   } else {
    2407             :     // For 2-character preloads in one-byte mode or 1-character preloads in
    2408             :     // two-byte mode we also use a 16 bit load with zero extend.
    2409             :     static const uint32_t kTwoByteMask = 0xFFFF;
    2410             :     static const uint32_t kFourByteMask = 0xFFFFFFFF;
    2411      282665 :     if (details->characters() == 2 && compiler->one_byte()) {
    2412      127814 :       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
    2413       15051 :     } else if (details->characters() == 1 && !compiler->one_byte()) {
    2414           0 :       if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false;
    2415             :     } else {
    2416       15051 :       if (mask == kFourByteMask) need_mask = false;
    2417             :     }
    2418             :   }
    2419             : 
    2420      224615 :   if (fall_through_on_failure) {
    2421      190288 :     if (need_mask) {
    2422       46215 :       assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
    2423             :     } else {
    2424      144073 :       assembler->CheckCharacter(value, on_possible_success);
    2425             :     }
    2426             :   } else {
    2427       34327 :     if (need_mask) {
    2428        7400 :       assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
    2429             :     } else {
    2430       61254 :       assembler->CheckNotCharacter(value, trace->backtrack());
    2431             :     }
    2432             :   }
    2433             :   return true;
    2434             : }
    2435             : 
    2436             : 
    2437             : // Here is the meat of GetQuickCheckDetails (see also the comment on the
    2438             : // super-class in the .h file).
    2439             : //
    2440             : // We iterate along the text object, building up for each character a
    2441             : // mask and value that can be used to test for a quick failure to match.
    2442             : // The masks and values for the positions will be combined into a single
    2443             : // machine word for the current character width in order to be used in
    2444             : // generating a quick check.
    2445     1545271 : void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
    2446      921326 :                                     RegExpCompiler* compiler,
    2447             :                                     int characters_filled_in,
    2448      957423 :                                     bool not_at_start) {
    2449             :   // Do not collect any quick check details if the text node reads backward,
    2450             :   // since it reads in the opposite direction than we use for quick checks.
    2451      457538 :   if (read_backward()) return;
    2452      457538 :   Isolate* isolate = compiler->macro_assembler()->isolate();
    2453             :   DCHECK(characters_filled_in < details->characters());
    2454             :   int characters = details->characters();
    2455             :   int char_mask;
    2456      457538 :   if (compiler->one_byte()) {
    2457             :     char_mask = String::kMaxOneByteCharCode;
    2458             :   } else {
    2459             :     char_mask = String::kMaxUtf16CodeUnit;
    2460             :   }
    2461      999770 :   for (int k = 0; k < elements()->length(); k++) {
    2462      462068 :     TextElement elm = elements()->at(k);
    2463      462068 :     if (elm.text_type() == TextElement::ATOM) {
    2464             :       Vector<const uc16> quarks = elm.atom()->data();
    2465      991436 :       for (int i = 0; i < characters && i < quarks.length(); i++) {
    2466             :         QuickCheckDetails::Position* pos =
    2467      468548 :             details->positions(characters_filled_in);
    2468      937096 :         uc16 c = quarks[i];
    2469      468548 :         if (elm.atom()->ignore_case()) {
    2470             :           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    2471             :           int length = GetCaseIndependentLetters(isolate, c,
    2472        6250 :                                                  compiler->one_byte(), chars);
    2473        6250 :           if (length == 0) {
    2474             :             // This can happen because all case variants are non-Latin1, but we
    2475             :             // know the input is Latin1.
    2476             :             details->set_cannot_match();
    2477          25 :             pos->determines_perfectly = false;
    2478          25 :             return;
    2479             :           }
    2480        6225 :           if (length == 1) {
    2481             :             // This letter has no case equivalents, so it's nice and simple
    2482             :             // and the mask-compare will determine definitely whether we have
    2483             :             // a match at this character position.
    2484        1227 :             pos->mask = char_mask;
    2485        1227 :             pos->value = c;
    2486        1227 :             pos->determines_perfectly = true;
    2487             :           } else {
    2488        4998 :             uint32_t common_bits = char_mask;
    2489        4998 :             uint32_t bits = chars[0];
    2490       10349 :             for (int j = 1; j < length; j++) {
    2491        5351 :               uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
    2492        5351 :               common_bits ^= differing_bits;
    2493        5351 :               bits &= common_bits;
    2494             :             }
    2495             :             // If length is 2 and common bits has only one zero in it then
    2496             :             // our mask and compare instruction will determine definitely
    2497             :             // whether we have a match at this character position.  Otherwise
    2498             :             // it can only be an approximate check.
    2499        4998 :             uint32_t one_zero = (common_bits | ~char_mask);
    2500        4998 :             if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
    2501        4595 :               pos->determines_perfectly = true;
    2502             :             }
    2503        4998 :             pos->mask = common_bits;
    2504        4998 :             pos->value = bits;
    2505             :           }
    2506             :         } else {
    2507             :           // Don't ignore case.  Nice simple case where the mask-compare will
    2508             :           // determine definitely whether we have a match at this character
    2509             :           // position.
    2510      462298 :           if (c > char_mask) {
    2511             :             details->set_cannot_match();
    2512          25 :             pos->determines_perfectly = false;
    2513          25 :             return;
    2514             :           }
    2515      462273 :           pos->mask = char_mask;
    2516      462273 :           pos->value = c;
    2517      462273 :           pos->determines_perfectly = true;
    2518             :         }
    2519      468498 :         characters_filled_in++;
    2520             :         DCHECK(characters_filled_in <= details->characters());
    2521      468498 :         if (characters_filled_in == details->characters()) {
    2522             :           return;
    2523             :         }
    2524             :       }
    2525             :     } else {
    2526             :       QuickCheckDetails::Position* pos =
    2527      123930 :           details->positions(characters_filled_in);
    2528             :       RegExpCharacterClass* tree = elm.char_class();
    2529      497748 :       ZoneList<CharacterRange>* ranges = tree->ranges(zone());
    2530             :       DCHECK(!ranges->is_empty());
    2531      123930 :       if (tree->is_negated()) {
    2532             :         // A quick check uses multi-character mask and compare.  There is no
    2533             :         // useful way to incorporate a negative char class into this scheme
    2534             :         // so we just conservatively create a mask and value that will always
    2535             :         // succeed.
    2536        3506 :         pos->mask = 0;
    2537        3506 :         pos->value = 0;
    2538             :       } else {
    2539             :         int first_range = 0;
    2540      120474 :         while (ranges->at(first_range).from() > char_mask) {
    2541         100 :           first_range++;
    2542         100 :           if (first_range == ranges->length()) {
    2543             :             details->set_cannot_match();
    2544          50 :             pos->determines_perfectly = false;
    2545             :             return;
    2546             :           }
    2547             :         }
    2548      120374 :         CharacterRange range = ranges->at(first_range);
    2549      120374 :         uc16 from = range.from();
    2550      120374 :         uc16 to = range.to();
    2551      120374 :         if (to > char_mask) {
    2552       14941 :           to = char_mask;
    2553             :         }
    2554      120374 :         uint32_t differing_bits = (from ^ to);
    2555             :         // A mask and compare is only perfect if the differing bits form a
    2556             :         // number like 00011111 with one single block of trailing 1s.
    2557      223703 :         if ((differing_bits & (differing_bits + 1)) == 0 &&
    2558      103329 :              from + differing_bits == to) {
    2559       93721 :           pos->determines_perfectly = true;
    2560             :         }
    2561      120374 :         uint32_t common_bits = ~SmearBitsRight(differing_bits);
    2562      120374 :         uint32_t bits = (from & common_bits);
    2563      747436 :         for (int i = first_range + 1; i < ranges->length(); i++) {
    2564      253344 :           CharacterRange range = ranges->at(i);
    2565      253344 :           uc16 from = range.from();
    2566      253344 :           uc16 to = range.to();
    2567      253344 :           if (from > char_mask) continue;
    2568      119038 :           if (to > char_mask) to = char_mask;
    2569             :           // Here we are combining more ranges into the mask and compare
    2570             :           // value.  With each new range the mask becomes more sparse and
    2571             :           // so the chances of a false positive rise.  A character class
    2572             :           // with multiple ranges is assumed never to be equivalent to a
    2573             :           // mask and compare operation.
    2574      119038 :           pos->determines_perfectly = false;
    2575      119038 :           uint32_t new_common_bits = (from ^ to);
    2576      119038 :           new_common_bits = ~SmearBitsRight(new_common_bits);
    2577      119038 :           common_bits &= new_common_bits;
    2578      119038 :           bits &= new_common_bits;
    2579      119038 :           uint32_t differing_bits = (from & common_bits) ^ bits;
    2580      119038 :           common_bits ^= differing_bits;
    2581      119038 :           bits &= common_bits;
    2582             :         }
    2583      120374 :         pos->mask = common_bits;
    2584      120374 :         pos->value = bits;
    2585             :       }
    2586      123880 :       characters_filled_in++;
    2587             :       DCHECK(characters_filled_in <= details->characters());
    2588      123880 :       if (characters_filled_in == details->characters()) {
    2589             :         return;
    2590             :       }
    2591             :     }
    2592             :   }
    2593             :   DCHECK(characters_filled_in != details->characters());
    2594       37817 :   if (!details->cannot_match()) {
    2595       37817 :     on_success()-> GetQuickCheckDetails(details,
    2596             :                                         compiler,
    2597             :                                         characters_filled_in,
    2598       37817 :                                         true);
    2599             :   }
    2600             : }
    2601             : 
    2602             : 
    2603           0 : void QuickCheckDetails::Clear() {
    2604      344277 :   for (int i = 0; i < characters_; i++) {
    2605      344277 :     positions_[i].mask = 0;
    2606      344277 :     positions_[i].value = 0;
    2607      344277 :     positions_[i].determines_perfectly = false;
    2608             :   }
    2609     1095252 :   characters_ = 0;
    2610           0 : }
    2611             : 
    2612             : 
    2613      515206 : void QuickCheckDetails::Advance(int by, bool one_byte) {
    2614      515206 :   if (by >= characters_ || by < 0) {
    2615             :     DCHECK_IMPLIES(by < 0, characters_ == 0);
    2616             :     Clear();
    2617      515206 :     return;
    2618             :   }
    2619             :   DCHECK_LE(characters_ - by, 4);
    2620             :   DCHECK_LE(characters_, 4);
    2621       24842 :   for (int i = 0; i < characters_ - by; i++) {
    2622       24842 :     positions_[i] = positions_[by + i];
    2623             :   }
    2624       24838 :   for (int i = characters_ - by; i < characters_; i++) {
    2625       24838 :     positions_[i].mask = 0;
    2626       24838 :     positions_[i].value = 0;
    2627       24838 :     positions_[i].determines_perfectly = false;
    2628             :   }
    2629       23141 :   characters_ -= by;
    2630             :   // We could change mask_ and value_ here but we would never advance unless
    2631             :   // they had already been used in a check and they won't be used again because
    2632             :   // it would gain us nothing.  So there's no point.
    2633             : }
    2634             : 
    2635             : 
    2636      154567 : void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
    2637             :   DCHECK(characters_ == other->characters_);
    2638      154567 :   if (other->cannot_match_) {
    2639             :     return;
    2640             :   }
    2641      154493 :   if (cannot_match_) {
    2642         247 :     *this = *other;
    2643         247 :     return;
    2644             :   }
    2645      170261 :   for (int i = from_index; i < characters_; i++) {
    2646      170261 :     QuickCheckDetails::Position* pos = positions(i);
    2647      170261 :     QuickCheckDetails::Position* other_pos = other->positions(i);
    2648      201790 :     if (pos->mask != other_pos->mask ||
    2649       40559 :         pos->value != other_pos->value ||
    2650        9030 :         !other_pos->determines_perfectly) {
    2651             :       // Our mask-compare operation will be approximate unless we have the
    2652             :       // exact same operation on both sides of the alternation.
    2653      164011 :       pos->determines_perfectly = false;
    2654             :     }
    2655      170261 :     pos->mask &= other_pos->mask;
    2656      170261 :     pos->value &= pos->mask;
    2657      170261 :     other_pos->value &= pos->mask;
    2658      170261 :     uc16 differing_bits = (pos->value ^ other_pos->value);
    2659      170261 :     pos->mask &= ~differing_bits;
    2660      170261 :     pos->value &= pos->mask;
    2661             :   }
    2662             : }
    2663             : 
    2664             : 
    2665             : class VisitMarker {
    2666             :  public:
    2667             :   explicit VisitMarker(NodeInfo* info) : info_(info) {
    2668             :     DCHECK(!info->visited);
    2669      195230 :     info->visited = true;
    2670             :   }
    2671             :   ~VisitMarker() {
    2672      171515 :     info_->visited = false;
    2673             :   }
    2674             :  private:
    2675             :   NodeInfo* info_;
    2676             : };
    2677             : 
    2678       98071 : RegExpNode* SeqRegExpNode::FilterOneByte(int depth) {
    2679       98071 :   if (info()->replacement_calculated) return replacement();
    2680       71627 :   if (depth < 0) return this;
    2681             :   DCHECK(!info()->visited);
    2682       71462 :   VisitMarker marker(info());
    2683             :   return FilterSuccessor(depth - 1);
    2684             : }
    2685             : 
    2686           0 : RegExpNode* SeqRegExpNode::FilterSuccessor(int depth) {
    2687      131361 :   RegExpNode* next = on_success_->FilterOneByte(depth - 1);
    2688      131361 :   if (next == nullptr) return set_replacement(nullptr);
    2689      130879 :   on_success_ = next;
    2690      130879 :   return set_replacement(this);
    2691             : }
    2692             : 
    2693             : // We need to check for the following characters: 0x39C 0x3BC 0x178.
    2694        1451 : static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
    2695             :   // TODO(dcarney): this could be a lot more efficient.
    2696        4227 :   return range.Contains(0x039C) || range.Contains(0x03BC) ||
    2697        1451 :          range.Contains(0x0178);
    2698             : }
    2699             : 
    2700             : 
    2701         102 : static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
    2702         122 :   for (int i = 0; i < ranges->length(); i++) {
    2703             :     // TODO(dcarney): this could be a lot more efficient.
    2704          46 :     if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
    2705             :   }
    2706             :   return false;
    2707             : }
    2708             : 
    2709      189705 : RegExpNode* TextNode::FilterOneByte(int depth) {
    2710       99041 :   if (info()->replacement_calculated) return replacement();
    2711       60379 :   if (depth < 0) return this;
    2712             :   DCHECK(!info()->visited);
    2713       60334 :   VisitMarker marker(info());
    2714       60334 :   int element_count = elements()->length();
    2715      124687 :   for (int i = 0; i < element_count; i++) {
    2716       64788 :     TextElement elm = elements()->at(i);
    2717       64788 :     if (elm.text_type() == TextElement::ATOM) {
    2718             :       Vector<const uc16> quarks = elm.atom()->data();
    2719      173528 :       for (int j = 0; j < quarks.length(); j++) {
    2720      113200 :         uint16_t c = quarks[j];
    2721       56600 :         if (elm.atom()->ignore_case()) {
    2722             :           c = unibrow::Latin1::TryConvertToLatin1(c);
    2723             :         }
    2724       56600 :         if (c > unibrow::Latin1::kMaxChar) return set_replacement(nullptr);
    2725             :         // Replace quark in case we converted to Latin-1.
    2726             :         uint16_t* writable_quarks = const_cast<uint16_t*>(quarks.start());
    2727       56434 :         writable_quarks[j] = c;
    2728             :       }
    2729             :     } else {
    2730             :       DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
    2731             :       RegExpCharacterClass* cc = elm.char_class();
    2732       34458 :       ZoneList<CharacterRange>* ranges = cc->ranges(zone());
    2733       34458 :       CharacterRange::Canonicalize(ranges);
    2734             :       // Now they are in order so we only need to look at the first.
    2735             :       int range_count = ranges->length();
    2736       34458 :       if (cc->is_negated()) {
    2737        8410 :         if (range_count != 0 &&
    2738        8588 :             ranges->at(0).from() == 0 &&
    2739         178 :             ranges->at(0).to() >= String::kMaxOneByteCharCode) {
    2740             :           // This will be handled in a later filter.
    2741          40 :           if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges))
    2742             :             continue;
    2743          39 :           return set_replacement(nullptr);
    2744             :         }
    2745             :       } else {
    2746       60506 :         if (range_count == 0 ||
    2747       30253 :             ranges->at(0).from() > String::kMaxOneByteCharCode) {
    2748             :           // This will be handled in a later filter.
    2749         255 :           if (IgnoreCase(cc->flags()) && RangesContainLatin1Equivalents(ranges))
    2750             :             continue;
    2751         230 :           return set_replacement(nullptr);
    2752             :         }
    2753             :       }
    2754             :     }
    2755             :   }
    2756       59899 :   return FilterSuccessor(depth - 1);
    2757             : }
    2758             : 
    2759       59218 : RegExpNode* LoopChoiceNode::FilterOneByte(int depth) {
    2760       59218 :   if (info()->replacement_calculated) return replacement();
    2761       45679 :   if (depth < 0) return this;
    2762       45589 :   if (info()->visited) return this;
    2763             :   {
    2764       24063 :     VisitMarker marker(info());
    2765             : 
    2766       24063 :     RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1);
    2767             :     // If we can't continue after the loop then there is no sense in doing the
    2768             :     // loop.
    2769       24063 :     if (continue_replacement == nullptr) return set_replacement(nullptr);
    2770             :   }
    2771             : 
    2772       23715 :   return ChoiceNode::FilterOneByte(depth - 1);
    2773             : }
    2774             : 
    2775       29515 : RegExpNode* ChoiceNode::FilterOneByte(int depth) {
    2776       29665 :   if (info()->replacement_calculated) return replacement();
    2777       27472 :   if (depth < 0) return this;
    2778       27377 :   if (info()->visited) return this;
    2779       27377 :   VisitMarker marker(info());
    2780       27377 :   int choice_count = alternatives_->length();
    2781             : 
    2782       85117 :   for (int i = 0; i < choice_count; i++) {
    2783       60077 :     GuardedAlternative alternative = alternatives_->at(i);
    2784       62414 :     if (alternative.guards() != nullptr &&
    2785        2337 :         alternative.guards()->length() != 0) {
    2786        2337 :       set_replacement(this);
    2787             :       return this;
    2788             :     }
    2789             :   }
    2790             : 
    2791             :   int surviving = 0;
    2792             :   RegExpNode* survivor = nullptr;
    2793       57389 :   for (int i = 0; i < choice_count; i++) {
    2794      114778 :     GuardedAlternative alternative = alternatives_->at(i);
    2795       57389 :     RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1);
    2796             :     DCHECK(replacement != this);  // No missing EMPTY_MATCH_CHECK.
    2797       57389 :     if (replacement != nullptr) {
    2798       57243 :       alternatives_->at(i).set_node(replacement);
    2799       57243 :       surviving++;
    2800             :       survivor = replacement;
    2801             :     }
    2802             :   }
    2803       25106 :   if (surviving < 2) return set_replacement(survivor);
    2804             : 
    2805       24974 :   set_replacement(this);
    2806       24974 :   if (surviving == choice_count) {
    2807             :     return this;
    2808             :   }
    2809             :   // Only some of the nodes survived the filtering.  We need to rebuild the
    2810             :   // alternatives list.
    2811             :   ZoneList<GuardedAlternative>* new_alternatives =
    2812          20 :       new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
    2813         200 :   for (int i = 0; i < choice_count; i++) {
    2814             :     RegExpNode* replacement =
    2815         360 :         alternatives_->at(i).node()->FilterOneByte(depth - 1);
    2816         180 :     if (replacement != nullptr) {
    2817         130 :       alternatives_->at(i).set_node(replacement);
    2818         260 :       new_alternatives->Add(alternatives_->at(i), zone());
    2819             :     }
    2820             :   }
    2821          20 :   alternatives_ = new_alternatives;
    2822          20 :   return this;
    2823             : }
    2824             : 
    2825         357 : RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth) {
    2826         357 :   if (info()->replacement_calculated) return replacement();
    2827         357 :   if (depth < 0) return this;
    2828         357 :   if (info()->visited) return this;
    2829         357 :   VisitMarker marker(info());
    2830             :   // Alternative 0 is the negative lookahead, alternative 1 is what comes
    2831             :   // afterwards.
    2832         714 :   RegExpNode* node = alternatives_->at(1).node();
    2833         357 :   RegExpNode* replacement = node->FilterOneByte(depth - 1);
    2834         362 :   if (replacement == nullptr) return set_replacement(nullptr);
    2835         352 :   alternatives_->at(1).set_node(replacement);
    2836             : 
    2837         704 :   RegExpNode* neg_node = alternatives_->at(0).node();
    2838         352 :   RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1);
    2839             :   // If the negative lookahead is always going to fail then
    2840             :   // we don't need to check it.
    2841         357 :   if (neg_replacement == nullptr) return set_replacement(replacement);
    2842         347 :   alternatives_->at(0).set_node(neg_replacement);
    2843         694 :   return set_replacement(this);
    2844             : }
    2845             : 
    2846             : 
    2847       14676 : void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
    2848             :                                           RegExpCompiler* compiler,
    2849             :                                           int characters_filled_in,
    2850             :                                           bool not_at_start) {
    2851       14676 :   if (body_can_be_zero_length_ || info()->visited) return;
    2852       11637 :   VisitMarker marker(info());
    2853             :   return ChoiceNode::GetQuickCheckDetails(details,
    2854             :                                           compiler,
    2855             :                                           characters_filled_in,
    2856       11637 :                                           not_at_start);
    2857             : }
    2858             : 
    2859             : 
    2860        5001 : void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
    2861             :                                   BoyerMooreLookahead* bm, bool not_at_start) {
    2862        5001 :   if (body_can_be_zero_length_ || budget <= 0) {
    2863             :     bm->SetRest(offset);
    2864             :     SaveBMInfo(bm, not_at_start, offset);
    2865        5001 :     return;
    2866             :   }
    2867        4815 :   ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
    2868             :   SaveBMInfo(bm, not_at_start, offset);
    2869             : }
    2870             : 
    2871             : 
    2872      193231 : void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
    2873             :                                       RegExpCompiler* compiler,
    2874             :                                       int characters_filled_in,
    2875             :                                       bool not_at_start) {
    2876       38664 :   not_at_start = (not_at_start || not_at_start_);
    2877       38664 :   int choice_count = alternatives_->length();
    2878             :   DCHECK_LT(0, choice_count);
    2879       38664 :   alternatives_->at(0).node()->GetQuickCheckDetails(details,
    2880             :                                                     compiler,
    2881             :                                                     characters_filled_in,
    2882       38664 :                                                     not_at_start);
    2883      193231 :   for (int i = 1; i < choice_count; i++) {
    2884             :     QuickCheckDetails new_details(details->characters());
    2885      309134 :     RegExpNode* node = alternatives_->at(i).node();
    2886             :     node->GetQuickCheckDetails(&new_details, compiler,
    2887             :                                characters_filled_in,
    2888      154567 :                                not_at_start);
    2889             :     // Here we merge the quick match details of the two branches.
    2890      154567 :     details->Merge(&new_details, characters_filled_in);
    2891             :   }
    2892       38664 : }
    2893             : 
    2894             : 
    2895             : // Check for [0-9A-Z_a-z].
    2896         557 : static void EmitWordCheck(RegExpMacroAssembler* assembler,
    2897             :                           Label* word,
    2898             :                           Label* non_word,
    2899             :                           bool fall_through_on_word) {
    2900         557 :   if (assembler->CheckSpecialCharacterClass(
    2901             :           fall_through_on_word ? 'w' : 'W',
    2902         557 :           fall_through_on_word ? non_word : word)) {
    2903             :     // Optimized implementation available.
    2904         557 :     return;
    2905             :   }
    2906          99 :   assembler->CheckCharacterGT('z', non_word);
    2907          99 :   assembler->CheckCharacterLT('0', non_word);
    2908          99 :   assembler->CheckCharacterGT('a' - 1, word);
    2909          99 :   assembler->CheckCharacterLT('9' + 1, word);
    2910          99 :   assembler->CheckCharacterLT('A', non_word);
    2911          99 :   assembler->CheckCharacterLT('Z' + 1, word);
    2912          99 :   if (fall_through_on_word) {
    2913          34 :     assembler->CheckNotCharacter('_', non_word);
    2914             :   } else {
    2915          65 :     assembler->CheckCharacter('_', word);
    2916             :   }
    2917             : }
    2918             : 
    2919             : 
    2920             : // Emit the code to check for a ^ in multiline mode (1-character lookbehind
    2921             : // that matches newline or the start of input).
    2922         153 : static void EmitHat(RegExpCompiler* compiler,
    2923             :                     RegExpNode* on_success,
    2924             :                     Trace* trace) {
    2925             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    2926             :   // We will be loading the previous character into the current character
    2927             :   // register.
    2928         129 :   Trace new_trace(*trace);
    2929             :   new_trace.InvalidateCurrentCharacter();
    2930             : 
    2931         129 :   Label ok;
    2932         129 :   if (new_trace.cp_offset() == 0) {
    2933             :     // The start of input counts as a newline in this context, so skip to
    2934             :     // ok if we are at the start.
    2935         119 :     assembler->CheckAtStart(&ok);
    2936             :   }
    2937             :   // We already checked that we are not at the start of input so it must be
    2938             :   // OK to load the previous character.
    2939         129 :   assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
    2940             :                                   new_trace.backtrack(),
    2941         258 :                                   false);
    2942         129 :   if (!assembler->CheckSpecialCharacterClass('n',
    2943         129 :                                              new_trace.backtrack())) {
    2944             :     // Newline means \n, \r, 0x2028 or 0x2029.
    2945          24 :     if (!compiler->one_byte()) {
    2946           2 :       assembler->CheckCharacterAfterAnd(0x2028, 0xFFFE, &ok);
    2947             :     }
    2948          24 :     assembler->CheckCharacter('\n', &ok);
    2949          24 :     assembler->CheckNotCharacter('\r', new_trace.backtrack());
    2950             :   }
    2951         129 :   assembler->Bind(&ok);
    2952         129 :   on_success->Emit(compiler, &new_trace);
    2953         129 : }
    2954             : 
    2955             : 
    2956             : // Emit the code to handle \b and \B (word-boundary or non-word-boundary).
    2957         811 : void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
    2958         255 :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    2959             :   Isolate* isolate = assembler->isolate();
    2960             :   Trace::TriBool next_is_word_character = Trace::UNKNOWN;
    2961         255 :   bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
    2962         150 :   BoyerMooreLookahead* lookahead = bm_info(not_at_start);
    2963         255 :   if (lookahead == nullptr) {
    2964             :     int eats_at_least =
    2965             :         Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
    2966             :                                                     kRecursionBudget,
    2967         202 :                                                     not_at_start));
    2968         202 :     if (eats_at_least >= 1) {
    2969          97 :       BoyerMooreLookahead* bm =
    2970          97 :           new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
    2971          97 :       FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
    2972          97 :       if (bm->at(0)->is_non_word())
    2973             :         next_is_word_character = Trace::FALSE_VALUE;
    2974          97 :       if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
    2975             :     }
    2976             :   } else {
    2977          53 :     if (lookahead->at(0)->is_non_word())
    2978             :       next_is_word_character = Trace::FALSE_VALUE;
    2979          53 :     if (lookahead->at(0)->is_word())
    2980             :       next_is_word_character = Trace::TRUE_VALUE;
    2981             :   }
    2982         255 :   bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
    2983         255 :   if (next_is_word_character == Trace::UNKNOWN) {
    2984         151 :     Label before_non_word;
    2985         151 :     Label before_word;
    2986         151 :     if (trace->characters_preloaded() != 1) {
    2987         300 :       assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
    2988             :     }
    2989             :     // Fall through on non-word.
    2990         151 :     EmitWordCheck(assembler, &before_word, &before_non_word, false);
    2991             :     // Next character is not a word character.
    2992         151 :     assembler->Bind(&before_non_word);
    2993         151 :     Label ok;
    2994         151 :     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
    2995         151 :     assembler->GoTo(&ok);
    2996             : 
    2997         151 :     assembler->Bind(&before_word);
    2998         151 :     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
    2999         151 :     assembler->Bind(&ok);
    3000         104 :   } else if (next_is_word_character == Trace::TRUE_VALUE) {
    3001          79 :     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
    3002             :   } else {
    3003             :     DCHECK(next_is_word_character == Trace::FALSE_VALUE);
    3004          25 :     BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
    3005             :   }
    3006         255 : }
    3007             : 
    3008             : 
    3009         406 : void AssertionNode::BacktrackIfPrevious(
    3010         406 :     RegExpCompiler* compiler,
    3011             :     Trace* trace,
    3012             :     AssertionNode::IfPrevious backtrack_if_previous) {
    3013             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    3014         406 :   Trace new_trace(*trace);
    3015             :   new_trace.InvalidateCurrentCharacter();
    3016             : 
    3017         406 :   Label fall_through, dummy;
    3018             : 
    3019             :   Label* non_word = backtrack_if_previous == kIsNonWord ?
    3020         194 :                     new_trace.backtrack() :
    3021         406 :                     &fall_through;
    3022             :   Label* word = backtrack_if_previous == kIsNonWord ?
    3023             :                 &fall_through :
    3024         406 :                 new_trace.backtrack();
    3025             : 
    3026         406 :   if (new_trace.cp_offset() == 0) {
    3027             :     // The start of input counts as a non-word character, so the question is
    3028             :     // decided if we are at the start.
    3029         169 :     assembler->CheckAtStart(non_word);
    3030             :   }
    3031             :   // We already checked that we are not at the start of input so it must be
    3032             :   // OK to load the previous character.
    3033         406 :   assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
    3034         406 :   EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
    3035             : 
    3036         406 :   assembler->Bind(&fall_through);
    3037         406 :   on_success()->Emit(compiler, &new_trace);
    3038         406 : }
    3039             : 
    3040             : 
    3041        1935 : void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
    3042             :                                          RegExpCompiler* compiler,
    3043             :                                          int filled_in,
    3044             :                                          bool not_at_start) {
    3045        1935 :   if (assertion_type_ == AT_START && not_at_start) {
    3046             :     details->set_cannot_match();
    3047             :     return;
    3048             :   }
    3049        1604 :   return on_success()->GetQuickCheckDetails(details,
    3050             :                                             compiler,
    3051             :                                             filled_in,
    3052        1604 :                                             not_at_start);
    3053             : }
    3054             : 
    3055             : 
    3056       16374 : void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    3057             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    3058        5714 :   switch (assertion_type_) {
    3059             :     case AT_END: {
    3060        2322 :       Label ok;
    3061        4644 :       assembler->CheckPosition(trace->cp_offset(), &ok);
    3062        4644 :       assembler->GoTo(trace->backtrack());
    3063        2322 :       assembler->Bind(&ok);
    3064             :       break;
    3065             :     }
    3066             :     case AT_START: {
    3067        3008 :       if (trace->at_start() == Trace::FALSE_VALUE) {
    3068          18 :         assembler->GoTo(trace->backtrack());
    3069           9 :         return;
    3070             :       }
    3071        2999 :       if (trace->at_start() == Trace::UNKNOWN) {
    3072        5998 :         assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack());
    3073        2999 :         Trace at_start_trace = *trace;
    3074             :         at_start_trace.set_at_start(Trace::TRUE_VALUE);
    3075        5321 :         on_success()->Emit(compiler, &at_start_trace);
    3076             :         return;
    3077             :       }
    3078             :     }
    3079             :     break;
    3080             :     case AFTER_NEWLINE:
    3081         129 :       EmitHat(compiler, on_success(), trace);
    3082         129 :       return;
    3083             :     case AT_BOUNDARY:
    3084             :     case AT_NON_BOUNDARY: {
    3085         255 :       EmitBoundaryCheck(compiler, trace);
    3086         255 :       return;
    3087             :     }
    3088             :   }
    3089        2322 :   on_success()->Emit(compiler, trace);
    3090             : }
    3091             : 
    3092             : 
    3093     2723814 : static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
    3094     2723814 :   if (quick_check == nullptr) return false;
    3095     2723814 :   if (offset >= quick_check->characters()) return false;
    3096      847971 :   return quick_check->positions(offset)->determines_perfectly;
    3097             : }
    3098             : 
    3099             : 
    3100             : static void UpdateBoundsCheck(int index, int* checked_up_to) {
    3101      790721 :   if (index > *checked_up_to) {
    3102      413536 :     *checked_up_to = index;
    3103             :   }
    3104             : }
    3105             : 
    3106             : 
    3107             : // We call this repeatedly to generate code for each pass over the text node.
    3108             : // The passes are in increasing order of difficulty because we hope one
    3109             : // of the first passes will fail in which case we are saved the work of the
    3110             : // later passes.  for example for the case independent regexp /%[asdfghjkl]a/
    3111             : // we will check the '%' in the first pass, the case independent 'a' in the
    3112             : // second pass and the character class in the last pass.
    3113             : //
    3114             : // The passes are done from right to left, so for example to test for /bar/
    3115             : // we will first test for an 'r' with offset 2, then an 'a' with offset 1
    3116             : // and then a 'b' with offset 0.  This means we can avoid the end-of-input
    3117             : // bounds check most of the time.  In the example we only need to check for
    3118             : // end-of-input when loading the putative 'r'.
    3119             : //
    3120             : // A slight complication involves the fact that the first character may already
    3121             : // be fetched into a register by the previous node.  In this case we want to
    3122             : // do the test for that character first.  We do this in separate passes.  The
    3123             : // 'preloaded' argument indicates that we are doing such a 'pass'.  If such a
    3124             : // pass has been performed then subsequent passes will have true in
    3125             : // first_element_checked to indicate that that character does not need to be
    3126             : // checked again.
    3127             : //
    3128             : // In addition to all this we are passed a Trace, which can
    3129             : // contain an AlternativeGeneration object.  In this AlternativeGeneration
    3130             : // object we can see details of any quick check that was already passed in
    3131             : // order to get to the code we are now generating.  The quick check can involve
    3132             : // loading characters, which means we do not need to recheck the bounds
    3133             : // up to the limit the quick check already checked.  In addition the quick
    3134             : // check can have involved a mask and compare operation which may simplify
    3135             : // or obviate the need for further checks at some character positions.
    3136     5385758 : void TextNode::TextEmitPass(RegExpCompiler* compiler,
    3137             :                             TextEmitPassType pass,
    3138             :                             bool preloaded,
    3139     5620616 :                             Trace* trace,
    3140             :                             bool first_element_checked,
    3141     8691354 :                             int* checked_up_to) {
    3142     2692879 :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    3143             :   Isolate* isolate = assembler->isolate();
    3144             :   bool one_byte = compiler->one_byte();
    3145             :   Label* backtrack = trace->backtrack();
    3146     2692879 :   QuickCheckDetails* quick_check = trace->quick_check_performed();
    3147     2692879 :   int element_count = elements()->length();
    3148     2692879 :   int backward_offset = read_backward() ? -Length() : 0;
    3149     5620591 :   for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
    3150     2927737 :     TextElement elm = elements()->at(i);
    3151     2927737 :     int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
    3152     2927737 :     if (elm.text_type() == TextElement::ATOM) {
    3153     1785180 :       if (SkipPass(pass, elm.atom()->ignore_case())) continue;
    3154             :       Vector<const uc16> quarks = elm.atom()->data();
    3155     4582104 :       for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
    3156     2565673 :         if (first_element_checked && i == 0 && j == 0) continue;
    3157     4971326 :         if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
    3158             :         EmitCharacterFunction* emit_function = nullptr;
    3159     3368552 :         uc16 quark = quarks[j];
    3160     1684276 :         if (elm.atom()->ignore_case()) {
    3161             :           // Everywhere else we assume that a non-Latin-1 character cannot match
    3162             :           // a Latin-1 character. Avoid the cases where this is assumption is
    3163             :           // invalid by using the Latin1 equivalent instead.
    3164             :           quark = unibrow::Latin1::TryConvertToLatin1(quark);
    3165             :         }
    3166     1684276 :         switch (pass) {
    3167             :           case NON_LATIN1_MATCH:
    3168             :             DCHECK(one_byte);
    3169      518015 :             if (quark > String::kMaxOneByteCharCode) {
    3170          25 :               assembler->GoTo(backtrack);
    3171     2692879 :               return;
    3172             :             }
    3173             :             break;
    3174             :           case NON_LETTER_CHARACTER_MATCH:
    3175             :             emit_function = &EmitAtomNonLetter;
    3176        5503 :             break;
    3177             :           case SIMPLE_CHARACTER_MATCH:
    3178             :             emit_function = &EmitSimpleCharacter;
    3179      574876 :             break;
    3180             :           case CASE_CHARACTER_MATCH:
    3181             :             emit_function = &EmitAtomLetter;
    3182        5503 :             break;
    3183             :           default:
    3184             :             break;
    3185             :         }
    3186     1684251 :         if (emit_function != nullptr) {
    3187      917148 :           bool bounds_check = *checked_up_to < cp_offset + j || read_backward();
    3188             :           bool bound_checked =
    3189             :               emit_function(isolate, compiler, quark, backtrack, cp_offset + j,
    3190      585882 :                             bounds_check, preloaded);
    3191      585882 :           if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
    3192             :         }
    3193             :       }
    3194             :     } else {
    3195             :       DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
    3196     1142557 :       if (pass == CHARACTER_CLASS_MATCH) {
    3197      276705 :         if (first_element_checked && i == 0) continue;
    3198      238151 :         if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
    3199             :         RegExpCharacterClass* cc = elm.char_class();
    3200      256992 :         bool bounds_check = *checked_up_to < cp_offset || read_backward();
    3201             :         EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
    3202      210399 :                       bounds_check, preloaded, zone());
    3203             :         UpdateBoundsCheck(cp_offset, checked_up_to);
    3204             :       }
    3205             :     }
    3206             :   }
    3207             : }
    3208             : 
    3209             : 
    3210     6946989 : int TextNode::Length() {
    3211     6946989 :   TextElement elm = elements()->last();
    3212             :   DCHECK_LE(0, elm.cp_offset());
    3213     6946989 :   return elm.cp_offset() + elm.length();
    3214             : }
    3215             : 
    3216           0 : bool TextNode::SkipPass(TextEmitPassType pass, bool ignore_case) {
    3217     1785180 :   if (ignore_case) {
    3218       44755 :     return pass == SIMPLE_CHARACTER_MATCH;
    3219             :   } else {
    3220     1740425 :     return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
    3221             :   }
    3222             : }
    3223             : 
    3224        7207 : TextNode* TextNode::CreateForCharacterRanges(Zone* zone,
    3225             :                                              ZoneList<CharacterRange>* ranges,
    3226             :                                              bool read_backward,
    3227             :                                              RegExpNode* on_success,
    3228             :                                              JSRegExp::Flags flags) {
    3229             :   DCHECK_NOT_NULL(ranges);
    3230        7207 :   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone);
    3231             :   elms->Add(TextElement::CharClass(
    3232       21621 :                 new (zone) RegExpCharacterClass(zone, ranges, flags)),
    3233        7207 :             zone);
    3234        7207 :   return new (zone) TextNode(elms, read_backward, on_success);
    3235             : }
    3236             : 
    3237       27070 : TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead,
    3238             :                                            CharacterRange trail,
    3239             :                                            bool read_backward,
    3240             :                                            RegExpNode* on_success,
    3241             :                                            JSRegExp::Flags flags) {
    3242       27070 :   ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead);
    3243       27070 :   ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail);
    3244       27070 :   ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone);
    3245             :   elms->Add(TextElement::CharClass(
    3246       81210 :                 new (zone) RegExpCharacterClass(zone, lead_ranges, flags)),
    3247       27070 :             zone);
    3248             :   elms->Add(TextElement::CharClass(
    3249       81210 :                 new (zone) RegExpCharacterClass(zone, trail_ranges, flags)),
    3250       27070 :             zone);
    3251       27070 :   return new (zone) TextNode(elms, read_backward, on_success);
    3252             : }
    3253             : 
    3254             : 
    3255             : // This generates the code to match a text node.  A text node can contain
    3256             : // straight character sequences (possibly to be matched in a case-independent
    3257             : // way) and character classes.  For efficiency we do not do this in a single
    3258             : // pass from left to right.  Instead we pass over the text node several times,
    3259             : // emitting code for some character positions every time.  See the comment on
    3260             : // TextEmitPass for details.
    3261     4223669 : void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    3262      617227 :   LimitResult limit_result = LimitVersions(compiler, trace);
    3263      719248 :   if (limit_result == DONE) return;
    3264             :   DCHECK(limit_result == CONTINUE);
    3265             : 
    3266      515206 :   if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
    3267             :     compiler->SetRegExpTooBig();
    3268             :     return;
    3269             :   }
    3270             : 
    3271      515206 :   if (compiler->one_byte()) {
    3272      322615 :     int dummy = 0;
    3273      322615 :     TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
    3274             :   }
    3275             : 
    3276             :   bool first_elt_done = false;
    3277      515206 :   int bound_checked_to = trace->cp_offset() - 1;
    3278      515206 :   bound_checked_to += trace->bound_checked_up_to();
    3279             : 
    3280             :   // If a character is preloaded into the current character register then
    3281             :   // check that now.
    3282      515206 :   if (trace->characters_preloaded() == 1) {
    3283      309440 :     for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
    3284             :       TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace,
    3285      309440 :                    false, &bound_checked_to);
    3286             :     }
    3287             :     first_elt_done = true;
    3288             :   }
    3289             : 
    3290     2576030 :   for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
    3291             :     TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace,
    3292     2060824 :                  first_elt_done, &bound_checked_to);
    3293             :   }
    3294             : 
    3295      515206 :   Trace successor_trace(*trace);
    3296             :   // If we advance backward, we may end up at the start.
    3297             :   successor_trace.AdvanceCurrentPositionInTrace(
    3298      515206 :       read_backward() ? -Length() : Length(), compiler);
    3299             :   successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN
    3300      515206 :                                                : Trace::FALSE_VALUE);
    3301             :   RecursionCheck rc(compiler);
    3302      515206 :   on_success()->Emit(compiler, &successor_trace);
    3303             : }
    3304             : 
    3305             : 
    3306           0 : void Trace::InvalidateCurrentCharacter() {
    3307      227872 :   characters_preloaded_ = 0;
    3308           0 : }
    3309             : 
    3310             : 
    3311     1030412 : void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
    3312             :   // We don't have an instruction for shifting the current character register
    3313             :   // down or for using a shifted value for anything so lets just forget that
    3314             :   // we preloaded any characters into it.
    3315      515206 :   characters_preloaded_ = 0;
    3316             :   // Adjust the offsets of the quick check performed information.  This
    3317             :   // information is used to find out what we already determined about the
    3318             :   // characters by means of mask and compare.
    3319      515206 :   quick_check_performed_.Advance(by, compiler->one_byte());
    3320      515206 :   cp_offset_ += by;
    3321      515206 :   if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
    3322             :     compiler->SetRegExpTooBig();
    3323           0 :     cp_offset_ = 0;
    3324             :   }
    3325     1030412 :   bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
    3326      515206 : }
    3327             : 
    3328             : 
    3329      688601 : void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
    3330      316020 :   int element_count = elements()->length();
    3331      688601 :   for (int i = 0; i < element_count; i++) {
    3332      372581 :     TextElement elm = elements()->at(i);
    3333      372581 :     if (elm.text_type() == TextElement::CHAR_CLASS) {
    3334             :       RegExpCharacterClass* cc = elm.char_class();
    3335             : #ifdef V8_INTL_SUPPORT
    3336             :       bool case_equivalents_already_added =
    3337             :           NeedsUnicodeCaseEquivalents(cc->flags());
    3338             : #else
    3339             :       bool case_equivalents_already_added = false;
    3340             : #endif
    3341      237485 :       if (IgnoreCase(cc->flags()) && !case_equivalents_already_added) {
    3342             :         // None of the standard character classes is different in the case
    3343             :         // independent case and it slows us down if we don't know that.
    3344      135881 :         if (cc->is_standard(zone())) continue;
    3345             :         ZoneList<CharacterRange>* ranges = cc->ranges(zone());
    3346             :         CharacterRange::AddCaseEquivalents(isolate, zone(), ranges,
    3347      133800 :                                            is_one_byte);
    3348             :       }
    3349             :     }
    3350             :   }
    3351      316020 : }
    3352             : 
    3353             : 
    3354      135037 : int TextNode::GreedyLoopTextLength() { return Length(); }
    3355             : 
    3356             : 
    3357       85789 : RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
    3358      254856 :     RegExpCompiler* compiler) {
    3359       85789 :   if (read_backward()) return nullptr;
    3360       85664 :   if (elements()->length() != 1) return nullptr;
    3361       85302 :   TextElement elm = elements()->at(0);
    3362       85302 :   if (elm.text_type() != TextElement::CHAR_CLASS) return nullptr;
    3363             :   RegExpCharacterClass* node = elm.char_class();
    3364      167954 :   ZoneList<CharacterRange>* ranges = node->ranges(zone());
    3365       83977 :   CharacterRange::Canonicalize(ranges);
    3366       83977 :   if (node->is_negated()) {
    3367       82361 :     return ranges->length() == 0 ? on_success() : nullptr;
    3368             :   }
    3369       83863 :   if (ranges->length() != 1) return nullptr;
    3370             :   uint32_t max_char;
    3371       83403 :   if (compiler->one_byte()) {
    3372             :     max_char = String::kMaxOneByteCharCode;
    3373             :   } else {
    3374             :     max_char = String::kMaxUtf16CodeUnit;
    3375             :   }
    3376      250209 :   return ranges->at(0).IsEverything(max_char) ? on_success() : nullptr;
    3377             : }
    3378             : 
    3379             : 
    3380             : // Finds the fixed match length of a sequence of nodes that goes from
    3381             : // this alternative and back to this choice node.  If there are variable
    3382             : // length nodes or other complications in the way then return a sentinel
    3383             : // value indicating that a greedy loop cannot be constructed.
    3384      224986 : int ChoiceNode::GreedyLoopTextLengthForAlternative(
    3385      224986 :     GuardedAlternative* alternative) {
    3386             :   int length = 0;
    3387             :   RegExpNode* node = alternative->node();
    3388             :   // Later we will generate code for all these text nodes using recursion
    3389             :   // so we have to limit the max number.
    3390             :   int recursion_depth = 0;
    3391      585009 :   while (node != this) {
    3392      336829 :     if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
    3393             :       return kNodeIsTooComplexForGreedyLoops;
    3394             :     }
    3395      336829 :     int node_length = node->GreedyLoopTextLength();
    3396      336829 :     if (node_length == kNodeIsTooComplexForGreedyLoops) {
    3397             :       return kNodeIsTooComplexForGreedyLoops;
    3398             :     }
    3399      135037 :     length += node_length;
    3400      135037 :     SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
    3401             :     node = seq_node->on_success();
    3402             :   }
    3403       23194 :   return read_backward() ? -length : length;
    3404             : }
    3405             : 
    3406             : 
    3407           0 : void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
    3408             :   DCHECK_NULL(loop_node_);
    3409             :   AddAlternative(alt);
    3410      999129 :   loop_node_ = alt.node();
    3411           0 : }
    3412             : 
    3413             : 
    3414           0 : void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
    3415             :   DCHECK_NULL(continue_node_);
    3416             :   AddAlternative(alt);
    3417      999129 :   continue_node_ = alt.node();
    3418           0 : }
    3419             : 
    3420             : 
    3421      343454 : void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    3422             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    3423      331857 :   if (trace->stop_node() == this) {
    3424             :     // Back edge of greedy optimized loop node graph.
    3425             :     int text_length =
    3426       23194 :         GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
    3427             :     DCHECK_NE(kNodeIsTooComplexForGreedyLoops, text_length);
    3428             :     // Update the counter-based backtracking info on the stack.  This is an
    3429             :     // optimization for greedy loops (see below).
    3430             :     DCHECK(trace->cp_offset() == text_length);
    3431       11597 :     macro_assembler->AdvanceCurrentPosition(text_length);
    3432       23194 :     macro_assembler->GoTo(trace->loop_label());
    3433       11597 :     return;
    3434             :   }
    3435             :   DCHECK_NULL(trace->stop_node());
    3436      320260 :   if (!trace->is_trivial()) {
    3437      119035 :     trace->Flush(compiler, this);
    3438      119035 :     return;
    3439             :   }
    3440      201225 :   ChoiceNode::Emit(compiler, trace);
    3441             : }
    3442             : 
    3443             : 
    3444      560792 : int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
    3445             :                                            int eats_at_least) {
    3446             :   int preload_characters = Min(4, eats_at_least);
    3447             :   DCHECK_LE(preload_characters, 4);
    3448      213389 :   if (compiler->macro_assembler()->CanReadUnaligned()) {
    3449             :     bool one_byte = compiler->one_byte();
    3450      134014 :     if (one_byte) {
    3451             :       // We can't preload 3 characters because there is no machine instruction
    3452             :       // to do that.  We can't just load 4 because we could be reading
    3453             :       // beyond the end of the string, which could cause a memory fault.
    3454      106609 :       if (preload_characters == 3) preload_characters = 2;
    3455             :     } else {
    3456       27405 :       if (preload_characters > 2) preload_characters = 2;
    3457             :     }
    3458             :   } else {
    3459       79375 :     if (preload_characters > 1) preload_characters = 1;
    3460             :   }
    3461      213389 :   return preload_characters;
    3462             : }
    3463             : 
    3464             : 
    3465             : // This class is used when generating the alternatives in a choice node.  It
    3466             : // records the way the alternative is being code generated.
    3467             : class AlternativeGeneration: public Malloced {
    3468             :  public:
    3469             :   AlternativeGeneration()
    3470             :       : possible_success(),
    3471             :         expects_preload(false),
    3472             :         after(),
    3473     2175817 :         quick_check_details() { }
    3474             :   Label possible_success;
    3475             :   bool expects_preload;
    3476             :   Label after;
    3477             :   QuickCheckDetails quick_check_details;
    3478             : };
    3479             : 
    3480             : 
    3481             : // Creates a list of AlternativeGenerations.  If the list has a reasonable
    3482             : // size then it is on the stack, otherwise the excess is on the heap.
    3483             : class AlternativeGenerationList {
    3484             :  public:
    3485      213389 :   AlternativeGenerationList(int count, Zone* zone)
    3486     2347279 :       : alt_gens_(count, zone) {
    3487      572857 :     for (int i = 0; i < count && i < kAFew; i++) {
    3488      572857 :       alt_gens_.Add(a_few_alt_gens_ + i, zone);
    3489             :     }
    3490       41927 :     for (int i = kAFew; i < count; i++) {
    3491       41927 :       alt_gens_.Add(new AlternativeGeneration(), zone);
    3492             :     }
    3493      213389 :   }
    3494      213389 :   ~AlternativeGenerationList() {
    3495      510632 :     for (int i = kAFew; i < alt_gens_.length(); i++) {
    3496      381097 :       delete alt_gens_[i];
    3497       41927 :       alt_gens_[i] = nullptr;
    3498             :     }
    3499      213389 :   }
    3500             : 
    3501             :   AlternativeGeneration* at(int i) {
    3502     2837337 :     return alt_gens_[i];
    3503             :   }
    3504             : 
    3505             :  private:
    3506             :   static const int kAFew = 10;
    3507             :   ZoneList<AlternativeGeneration*> alt_gens_;
    3508             :   AlternativeGeneration a_few_alt_gens_[kAFew];
    3509             : };
    3510             : 
    3511             : 
    3512             : static const uc32 kRangeEndMarker = 0x110000;
    3513             : 
    3514             : // The '2' variant is has inclusive from and exclusive to.
    3515             : // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
    3516             : // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
    3517             : static const int kSpaceRanges[] = {
    3518             :     '\t',   '\r' + 1, ' ',    ' ' + 1, 0x00A0, 0x00A1, 0x1680,
    3519             :     0x1681, 0x2000,   0x200B, 0x2028,  0x202A, 0x202F, 0x2030,
    3520             :     0x205F, 0x2060,   0x3000, 0x3001,  0xFEFF, 0xFF00, kRangeEndMarker};
    3521             : static const int kSpaceRangeCount = arraysize(kSpaceRanges);
    3522             : 
    3523             : static const int kWordRanges[] = {
    3524             :     '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker};
    3525             : static const int kWordRangeCount = arraysize(kWordRanges);
    3526             : static const int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
    3527             : static const int kDigitRangeCount = arraysize(kDigitRanges);
    3528             : static const int kSurrogateRanges[] = {
    3529             :     kLeadSurrogateStart, kLeadSurrogateStart + 1, kRangeEndMarker};
    3530             : static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
    3531             : static const int kLineTerminatorRanges[] = {
    3532             :     0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker};
    3533             : static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
    3534             : 
    3535           0 : void BoyerMoorePositionInfo::Set(int character) {
    3536       79581 :   SetInterval(Interval(character, character));
    3537           0 : }
    3538             : 
    3539             : 
    3540     1202668 : void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
    3541      241225 :   s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
    3542      241225 :   w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
    3543      241225 :   d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
    3544             :   surrogate_ =
    3545      241225 :       AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
    3546      241225 :   if (interval.to() - interval.from() >= kMapSize - 1) {
    3547       13515 :     if (map_count_ != kMapSize) {
    3548        6264 :       map_count_ = kMapSize;
    3549      808056 :       for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
    3550             :     }
    3551             :     return;
    3552             :   }
    3553     1212726 :   for (int i = interval.from(); i <= interval.to(); i++) {
    3554      536676 :     int mod_character = (i & kMask);
    3555     1073352 :     if (!map_->at(mod_character)) {
    3556      371881 :       map_count_++;
    3557      371881 :       map_->at(mod_character) = true;
    3558             :     }
    3559      536676 :     if (map_count_ == kMapSize) return;
    3560             :   }
    3561             : }
    3562             : 
    3563             : 
    3564           0 : void BoyerMoorePositionInfo::SetAll() {
    3565        5457 :   s_ = w_ = d_ = kLatticeUnknown;
    3566        5457 :   if (map_count_ != kMapSize) {
    3567        5027 :     map_count_ = kMapSize;
    3568     1286912 :     for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
    3569             :   }
    3570           0 : }
    3571             : 
    3572             : 
    3573       80680 : BoyerMooreLookahead::BoyerMooreLookahead(
    3574       80680 :     int length, RegExpCompiler* compiler, Zone* zone)
    3575             :     : length_(length),
    3576       80680 :       compiler_(compiler) {
    3577       80680 :   if (compiler->one_byte()) {
    3578       10066 :     max_char_ = String::kMaxOneByteCharCode;
    3579             :   } else {
    3580       70614 :     max_char_ = String::kMaxUtf16CodeUnit;
    3581             :   }
    3582       80680 :   bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
    3583      179931 :   for (int i = 0; i < length; i++) {
    3584       99251 :     bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
    3585             :   }
    3586       80680 : }
    3587             : 
    3588             : 
    3589             : // Find the longest range of lookahead that has the fewest number of different
    3590             : // characters that can occur at a given position.  Since we are optimizing two
    3591             : // different parameters at once this is a tradeoff.
    3592       80583 : bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
    3593             :   int biggest_points = 0;
    3594             :   // If more than 32 characters out of 128 can occur it is unlikely that we can
    3595             :   // be lucky enough to step forwards much of the time.
    3596             :   const int kMaxMax = 32;
    3597      322332 :   for (int max_number_of_chars = 4;
    3598             :        max_number_of_chars < kMaxMax;
    3599             :        max_number_of_chars *= 2) {
    3600             :     biggest_points =
    3601      241749 :         FindBestInterval(max_number_of_chars, biggest_points, from, to);
    3602             :   }
    3603       80583 :   if (biggest_points == 0) return false;
    3604        5455 :   return true;
    3605             : }
    3606             : 
    3607             : 
    3608             : // Find the highest-points range between 0 and length_ where the character
    3609             : // information is not too vague.  'Too vague' means that there are more than
    3610             : // max_number_of_chars that can occur at this position.  Calculates the number
    3611             : // of points as the product of width-of-the-range and
    3612             : // probability-of-finding-one-of-the-characters, where the probability is
    3613             : // calculated using the frequency distribution of the sample subject string.
    3614      241749 : int BoyerMooreLookahead::FindBestInterval(
    3615      541035 :     int max_number_of_chars, int old_biggest_points, int* from, int* to) {
    3616             :   int biggest_points = old_biggest_points;
    3617             :   static const int kSize = RegExpMacroAssembler::kTableSize;
    3618      712482 :   for (int i = 0; i < length_; ) {
    3619      311098 :     while (i < length_ && Count(i) > max_number_of_chars) i++;
    3620      256584 :     if (i == length_) break;
    3621             :     int remembered_from = i;
    3622             :     bool union_map[kSize];
    3623    29309952 :     for (int j = 0; j < kSize; j++) union_map[j] = false;
    3624      756137 :     while (i < length_ && Count(i) <= max_number_of_chars) {
    3625    33300670 :       BoyerMoorePositionInfo* map = bitmaps_->at(i);
    3626    33044511 :       for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
    3627      256159 :       i++;
    3628             :     }
    3629             :     int frequency = 0;
    3630    29309952 :     for (int j = 0; j < kSize; j++) {
    3631    29309952 :       if (union_map[j]) {
    3632             :         // Add 1 to the frequency to give a small per-character boost for
    3633             :         // the cases where our sampling is not good enough and many
    3634             :         // characters have a frequency of zero.  This means the frequency
    3635             :         // can theoretically be up to 2*kSize though we treat it mostly as
    3636             :         // a fraction of kSize.
    3637      976200 :         frequency += compiler_->frequency_collator()->Frequency(j) + 1;
    3638             :       }
    3639             :     }
    3640             :     // We use the probability of skipping times the distance we are skipping to
    3641             :     // judge the effectiveness of this.  Actually we have a cut-off:  By
    3642             :     // dividing by 2 we switch off the skipping if the probability of skipping
    3643             :     // is less than 50%.  This is because the multibyte mask-and-compare
    3644             :     // skipping in quickcheck is more likely to do well on this case.
    3645             :     bool in_quickcheck_range =
    3646      231740 :         ((i - remembered_from < 4) ||
    3647        2756 :          (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
    3648             :     // Called 'probability' but it is only a rough estimate and can actually
    3649             :     // be outside the 0-kSize range.
    3650      228984 :     int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
    3651      228984 :     int points = (i - remembered_from) * probability;
    3652      228984 :     if (points > biggest_points) {
    3653        5848 :       *from = remembered_from;
    3654        5848 :       *to = i - 1;
    3655             :       biggest_points = points;
    3656             :     }
    3657             :   }
    3658      241749 :   return biggest_points;
    3659             : }
    3660             : 
    3661             : 
    3662             : // Take all the characters that will not prevent a successful match if they
    3663             : // occur in the subject string in the range between min_lookahead and
    3664             : // max_lookahead (inclusive) measured from the current position.  If the
    3665             : // character at max_lookahead offset is not one of these characters, then we
    3666             : // can safely skip forwards by the number of characters in the range.
    3667        4443 : int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
    3668             :                                       int max_lookahead,
    3669             :                                       Handle<ByteArray> boolean_skip_table) {
    3670             :   const int kSize = RegExpMacroAssembler::kTableSize;
    3671             : 
    3672             :   const int kSkipArrayEntry = 0;
    3673             :   const int kDontSkipArrayEntry = 1;
    3674             : 
    3675      573147 :   for (int i = 0; i < kSize; i++) {
    3676             :     boolean_skip_table->set(i, kSkipArrayEntry);
    3677             :   }
    3678        4443 :   int skip = max_lookahead + 1 - min_lookahead;
    3679             : 
    3680       13934 :   for (int i = max_lookahead; i >= min_lookahead; i--) {
    3681     1233830 :     BoyerMoorePositionInfo* map = bitmaps_->at(i);
    3682     1224339 :     for (int j = 0; j < kSize; j++) {
    3683     1214848 :       if (map->at(j)) {
    3684             :         boolean_skip_table->set(j, kDontSkipArrayEntry);
    3685             :       }
    3686             :     }
    3687             :   }
    3688             : 
    3689        4443 :   return skip;
    3690             : }
    3691             : 
    3692             : 
    3693             : // See comment above on the implementation of GetSkipTable.
    3694       85026 : void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
    3695             :   const int kSize = RegExpMacroAssembler::kTableSize;
    3696             : 
    3697       80583 :   int min_lookahead = 0;
    3698       80583 :   int max_lookahead = 0;
    3699             : 
    3700      156723 :   if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
    3701             : 
    3702             :   bool found_single_character = false;
    3703             :   int single_character = 0;
    3704        9805 :   for (int i = max_lookahead; i >= min_lookahead; i--) {
    3705      421510 :     BoyerMoorePositionInfo* map = bitmaps_->at(i);
    3706       17586 :     if (map->map_count() > 1 ||
    3707        3182 :         (found_single_character && map->map_count() != 0)) {
    3708             :       found_single_character = false;
    3709             :       break;
    3710             :     }
    3711      399650 :     for (int j = 0; j < kSize; j++) {
    3712      403924 :       if (map->at(j)) {
    3713             :         found_single_character = true;
    3714             :         single_character = j;
    3715             :         break;
    3716             :       }
    3717             :     }
    3718             :   }
    3719             : 
    3720        5455 :   int lookahead_width = max_lookahead + 1 - min_lookahead;
    3721             : 
    3722        5455 :   if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
    3723             :     // The mask-compare can probably handle this better.
    3724             :     return;
    3725             :   }
    3726             : 
    3727        4539 :   if (found_single_character) {
    3728          96 :     Label cont, again;
    3729          96 :     masm->Bind(&again);
    3730          96 :     masm->LoadCurrentCharacter(max_lookahead, &cont, true);
    3731          96 :     if (max_char_ > kSize) {
    3732             :       masm->CheckCharacterAfterAnd(single_character,
    3733             :                                    RegExpMacroAssembler::kTableMask,
    3734          96 :                                    &cont);
    3735             :     } else {
    3736           0 :       masm->CheckCharacter(single_character, &cont);
    3737             :     }
    3738          96 :     masm->AdvanceCurrentPosition(lookahead_width);
    3739          96 :     masm->GoTo(&again);
    3740          96 :     masm->Bind(&cont);
    3741             :     return;
    3742             :   }
    3743             : 
    3744             :   Factory* factory = masm->isolate()->factory();
    3745        4443 :   Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
    3746             :   int skip_distance = GetSkipTable(
    3747        4443 :       min_lookahead, max_lookahead, boolean_skip_table);
    3748             :   DCHECK_NE(0, skip_distance);
    3749             : 
    3750        4443 :   Label cont, again;
    3751        4443 :   masm->Bind(&again);
    3752        4443 :   masm->LoadCurrentCharacter(max_lookahead, &cont, true);
    3753        4443 :   masm->CheckBitInTable(boolean_skip_table, &cont);
    3754        4443 :   masm->AdvanceCurrentPosition(skip_distance);
    3755        4443 :   masm->GoTo(&again);
    3756        4443 :   masm->Bind(&cont);
    3757             : }
    3758             : 
    3759             : 
    3760             : /* Code generation for choice nodes.
    3761             :  *
    3762             :  * We generate quick checks that do a mask and compare to eliminate a
    3763             :  * choice.  If the quick check succeeds then it jumps to the continuation to
    3764             :  * do slow checks and check subsequent nodes.  If it fails (the common case)
    3765             :  * it falls through to the next choice.
    3766             :  *
    3767             :  * Here is the desired flow graph.  Nodes directly below each other imply
    3768             :  * fallthrough.  Alternatives 1 and 2 have quick checks.  Alternative
    3769             :  * 3 doesn't have a quick check so we have to call the slow check.
    3770             :  * Nodes are marked Qn for quick checks and Sn for slow checks.  The entire
    3771             :  * regexp continuation is generated directly after the Sn node, up to the
    3772             :  * next GoTo if we decide to reuse some already generated code.  Some
    3773             :  * nodes expect preload_characters to be preloaded into the current
    3774             :  * character register.  R nodes do this preloading.  Vertices are marked
    3775             :  * F for failures and S for success (possible success in the case of quick
    3776             :  * nodes).  L, V, < and > are used as arrow heads.
    3777             :  *
    3778             :  * ----------> R
    3779             :  *             |
    3780             :  *             V
    3781             :  *            Q1 -----> S1
    3782             :  *             |   S   /
    3783             :  *            F|      /
    3784             :  *             |    F/
    3785             :  *             |    /
    3786             :  *             |   R
    3787             :  *             |  /
    3788             :  *             V L
    3789             :  *            Q2 -----> S2
    3790             :  *             |   S   /
    3791             :  *            F|      /
    3792             :  *             |    F/
    3793             :  *             |    /
    3794             :  *             |   R
    3795             :  *             |  /
    3796             :  *             V L
    3797             :  *            S3
    3798             :  *             |
    3799             :  *            F|
    3800             :  *             |
    3801             :  *             R
    3802             :  *             |
    3803             :  * backtrack   V
    3804             :  * <----------Q4
    3805             :  *   \    F    |
    3806             :  *    \        |S
    3807             :  *     \   F   V
    3808             :  *      \-----S4
    3809             :  *
    3810             :  * For greedy loops we push the current position, then generate the code that
    3811             :  * eats the input specially in EmitGreedyLoop.  The other choice (the
    3812             :  * continuation) is generated by the normal code in EmitChoices, and steps back
    3813             :  * in the input to the starting position when it fails to match.  The loop code
    3814             :  * looks like this (U is the unwind code that steps back in the greedy loop).
    3815             :  *
    3816             :  *              _____
    3817             :  *             /     \
    3818             :  *             V     |
    3819             :  * ----------> S1    |
    3820             :  *            /|     |
    3821             :  *           / |S    |
    3822             :  *         F/  \_____/
    3823             :  *         /
    3824             :  *        |<-----
    3825             :  *        |      \
    3826             :  *        V       |S
    3827             :  *        Q2 ---> U----->backtrack
    3828             :  *        |  F   /
    3829             :  *       S|     /
    3830             :  *        V  F /
    3831             :  *        S2--/
    3832             :  */
    3833             : 
    3834      213389 : GreedyLoopState::GreedyLoopState(bool not_at_start) {
    3835           0 :   counter_backtrack_trace_.set_backtrack(&label_);
    3836      213389 :   if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE);
    3837           0 : }
    3838             : 
    3839             : 
    3840           0 : void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
    3841             : #ifdef DEBUG
    3842             :   int choice_count = alternatives_->length();
    3843             :   for (int i = 0; i < choice_count - 1; i++) {
    3844             :     GuardedAlternative alternative = alternatives_->at(i);
    3845             :     ZoneList<Guard*>* guards = alternative.guards();
    3846             :     int guard_count = (guards == nullptr) ? 0 : guards->length();
    3847             :     for (int j = 0; j < guard_count; j++) {
    3848             :       DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
    3849             :     }
    3850             :   }
    3851             : #endif
    3852           0 : }
    3853             : 
    3854             : 
    3855      344685 : void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
    3856      344685 :                               Trace* current_trace,
    3857             :                               PreloadState* state) {
    3858      213389 :     if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
    3859             :       // Save some time by looking at most one machine word ahead.
    3860             :       state->eats_at_least_ =
    3861             :           EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
    3862      393888 :                       current_trace->at_start() == Trace::FALSE_VALUE);
    3863             :     }
    3864             :     state->preload_characters_ =
    3865      213389 :         CalculatePreloadCharacters(compiler, state->eats_at_least_);
    3866             : 
    3867             :     state->preload_is_current_ =
    3868      213389 :         (current_trace->characters_preloaded() == state->preload_characters_);
    3869      213389 :     state->preload_has_checked_bounds_ = state->preload_is_current_;
    3870      213389 : }
    3871             : 
    3872             : 
    3873     1427817 : void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    3874      582938 :   int choice_count = alternatives_->length();
    3875             : 
    3876      584276 :   if (choice_count == 1 && alternatives_->at(0).guards() == nullptr) {
    3877        1338 :     alternatives_->at(0).node()->Emit(compiler, trace);
    3878        1338 :     return;
    3879             :   }
    3880             : 
    3881             :   AssertGuardsMentionRegisters(trace);
    3882             : 
    3883      794989 :   LimitResult limit_result = LimitVersions(compiler, trace);
    3884      581600 :   if (limit_result == DONE) return;
    3885             :   DCHECK(limit_result == CONTINUE);
    3886             : 
    3887             :   // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
    3888             :   // other choice nodes we only flush if we are out of code size budget.
    3889      216309 :   if (trace->flush_budget() == 0 && trace->actions() != nullptr) {
    3890        1460 :     trace->Flush(compiler, this);
    3891        1460 :     return;
    3892             :   }
    3893             : 
    3894             :   RecursionCheck rc(compiler);
    3895             : 
    3896             :   PreloadState preload;
    3897             :   preload.init();
    3898             :   GreedyLoopState greedy_loop_state(not_at_start());
    3899             : 
    3900      426778 :   int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
    3901      426778 :   AlternativeGenerationList alt_gens(choice_count, zone());
    3902             : 
    3903      213389 :   if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
    3904             :     trace = EmitGreedyLoop(compiler,
    3905             :                            trace,
    3906             :                            &alt_gens,
    3907             :                            &preload,
    3908             :                            &greedy_loop_state,
    3909       11597 :                            text_length);
    3910             :   } else {
    3911             :     // TODO(erikcorry): Delete this.  We don't need this label, but it makes us
    3912             :     // match the traces produced pre-cleanup.
    3913      201792 :     Label second_choice;
    3914      201792 :     compiler->macro_assembler()->Bind(&second_choice);
    3915             : 
    3916      201792 :     preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
    3917             : 
    3918             :     EmitChoices(compiler,
    3919             :                 &alt_gens,
    3920             :                 0,
    3921             :                 trace,
    3922      201792 :                 &preload);
    3923             :   }
    3924             : 
    3925             :   // At this point we need to generate slow checks for the alternatives where
    3926             :   // the quick check was inlined.  We can recognize these because the associated
    3927             :   // label was bound.
    3928      213389 :   int new_flush_budget = trace->flush_budget() / choice_count;
    3929      828173 :   for (int i = 0; i < choice_count; i++) {
    3930             :     AlternativeGeneration* alt_gen = alt_gens.at(i);
    3931      614784 :     Trace new_trace(*trace);
    3932             :     // If there are actions to be flushed we have to limit how many times
    3933             :     // they are flushed.  Take the budget of the parent trace and distribute
    3934             :     // it fairly amongst the children.
    3935      614784 :     if (new_trace.actions() != nullptr) {
    3936             :       new_trace.set_flush_budget(new_flush_budget);
    3937             :     }
    3938             :     bool next_expects_preload =
    3939     1016179 :         i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
    3940             :     EmitOutOfLineContinuation(compiler,
    3941             :                               &new_trace,
    3942      614784 :                               alternatives_->at(i),
    3943             :                               alt_gen,
    3944             :                               preload.preload_characters_,
    3945     1229568 :                               next_expects_preload);
    3946             :   }
    3947             : }
    3948             : 
    3949             : 
    3950       11597 : Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
    3951       11597 :                                   Trace* trace,
    3952             :                                   AlternativeGenerationList* alt_gens,
    3953             :                                   PreloadState* preload,
    3954             :                                   GreedyLoopState* greedy_loop_state,
    3955       11597 :                                   int text_length) {
    3956             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    3957             :   // Here we have special handling for greedy loops containing only text nodes
    3958             :   // and other simple nodes.  These are handled by pushing the current
    3959             :   // position on the stack and then incrementing the current position each
    3960             :   // time around the switch.  On backtrack we decrement the current position
    3961             :   // and check it against the pushed value.  This avoids pushing backtrack
    3962             :   // information for each iteration of the loop, which could take up a lot of
    3963             :   // space.
    3964             :   DCHECK(trace->stop_node() == nullptr);
    3965       11597 :   macro_assembler->PushCurrentPosition();
    3966       11597 :   Label greedy_match_failed;
    3967       11597 :   Trace greedy_match_trace;
    3968       11597 :   if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE);
    3969             :   greedy_match_trace.set_backtrack(&greedy_match_failed);
    3970       11597 :   Label loop_label;
    3971       11597 :   macro_assembler->Bind(&loop_label);
    3972       11597 :   greedy_match_trace.set_stop_node(this);
    3973             :   greedy_match_trace.set_loop_label(&loop_label);
    3974       23194 :   alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
    3975       11597 :   macro_assembler->Bind(&greedy_match_failed);
    3976             : 
    3977       11597 :   Label second_choice;  // For use in greedy matches.
    3978       11597 :   macro_assembler->Bind(&second_choice);
    3979             : 
    3980       11597 :   Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
    3981             : 
    3982             :   EmitChoices(compiler,
    3983             :               alt_gens,
    3984             :               1,
    3985             :               new_trace,
    3986       11597 :               preload);
    3987             : 
    3988       11597 :   macro_assembler->Bind(greedy_loop_state->label());
    3989             :   // If we have unwound to the bottom then backtrack.
    3990       23194 :   macro_assembler->CheckGreedyLoop(trace->backtrack());
    3991             :   // Otherwise try the second priority at an earlier position.
    3992       11597 :   macro_assembler->AdvanceCurrentPosition(-text_length);
    3993       11597 :   macro_assembler->GoTo(&second_choice);
    3994       11597 :   return new_trace;
    3995             : }
    3996             : 
    3997      283885 : int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
    3998             :                                               Trace* trace) {
    3999             :   int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
    4000      201792 :   if (alternatives_->length() != 2) return eats_at_least;
    4001             : 
    4002      165679 :   GuardedAlternative alt1 = alternatives_->at(1);
    4003      165679 :   if (alt1.guards() != nullptr && alt1.guards()->length() != 0) {
    4004             :     return eats_at_least;
    4005             :   }
    4006             :   RegExpNode* eats_anything_node = alt1.node();
    4007      244843 :   if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
    4008             :     return eats_at_least;
    4009             :   }
    4010             : 
    4011             :   // Really we should be creating a new trace when we execute this function,
    4012             :   // but there is no need, because the code it generates cannot backtrack, and
    4013             :   // we always arrive here with a trivial trace (since it's the entry to a
    4014             :   // loop.  That also implies that there are no preloaded characters, which is
    4015             :   // good, because it means we won't be violating any assumptions by
    4016             :   // overwriting those characters with new load instructions.
    4017             :   DCHECK(trace->is_trivial());
    4018             : 
    4019       82093 :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    4020             :   Isolate* isolate = macro_assembler->isolate();
    4021             :   // At this point we know that we are at a non-greedy loop that will eat
    4022             :   // any character one at a time.  Any non-anchored regexp has such a
    4023             :   // loop prepended to it in order to find where it starts.  We look for
    4024             :   // a pattern of the form ...abc... where we can look 6 characters ahead
    4025             :   // and step forwards 3 if the character is not one of abc.  Abc need
    4026             :   // not be atoms, they can be any reasonably limited character class or
    4027             :   // small alternation.
    4028             :   BoyerMooreLookahead* bm = bm_info(false);
    4029       82093 :   if (bm == nullptr) {
    4030             :     eats_at_least = Min(kMaxLookaheadForBoyerMoore,
    4031             :                         EatsAtLeast(kMaxLookaheadForBoyerMoore,
    4032             :                                     kRecursionBudget,
    4033       82093 :                                     false));
    4034       82093 :     if (eats_at_least >= 1) {
    4035             :       bm = new(zone()) BoyerMooreLookahead(eats_at_least,
    4036             :                                            compiler,
    4037       80583 :                                            zone());
    4038      161166 :       GuardedAlternative alt0 = alternatives_->at(0);
    4039       80583 :       alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
    4040             :     }
    4041             :   }
    4042       82093 :   if (bm != nullptr) {
    4043       80583 :     bm->EmitSkipInstructions(macro_assembler);
    4044             :   }
    4045       82093 :   return eats_at_least;
    4046             : }
    4047             : 
    4048             : 
    4049      816576 : void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
    4050             :                              AlternativeGenerationList* alt_gens,
    4051             :                              int first_choice,
    4052      213411 :                              Trace* trace,
    4053             :                              PreloadState* preload) {
    4054             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    4055      213389 :   SetUpPreLoad(compiler, trace, preload);
    4056             : 
    4057             :   // For now we just call all choices one after the other.  The idea ultimately
    4058             :   // is to use the Dispatch table to try only the relevant ones.
    4059      213389 :   int choice_count = alternatives_->length();
    4060             : 
    4061      213389 :   int new_flush_budget = trace->flush_budget() / choice_count;
    4062             : 
    4063      816576 :   for (int i = first_choice; i < choice_count; i++) {
    4064      603187 :     bool is_last = i == choice_count - 1;
    4065      603187 :     bool fall_through_on_failure = !is_last;
    4066     1206374 :     GuardedAlternative alternative = alternatives_->at(i);
    4067             :     AlternativeGeneration* alt_gen = alt_gens->at(i);
    4068      981759 :     alt_gen->quick_check_details.set_characters(preload->preload_characters_);
    4069        3901 :     ZoneList<Guard*>* guards = alternative.guards();
    4070      603187 :     int guard_count = (guards == nullptr) ? 0 : guards->length();
    4071      603187 :     Trace new_trace(*trace);
    4072             :     new_trace.set_characters_preloaded(preload->preload_is_current_ ?
    4073             :                                          preload->preload_characters_ :
    4074      603187 :                                          0);
    4075      603187 :     if (preload->preload_has_checked_bounds_) {
    4076      397875 :       new_trace.set_bound_checked_up_to(preload->preload_characters_);
    4077             :     }
    4078             :     new_trace.quick_check_performed()->Clear();
    4079      603187 :     if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
    4080      603187 :     if (!is_last) {
    4081      389798 :       new_trace.set_backtrack(&alt_gen->after);
    4082             :     }
    4083      603187 :     alt_gen->expects_preload = preload->preload_is_current_;
    4084             :     bool generate_full_check_inline = false;
    4085     1079491 :     if (compiler->optimize() &&
    4086     1076689 :         try_to_emit_quick_check_for_alternative(i == 0) &&
    4087             :         alternative.node()->EmitQuickCheck(
    4088             :             compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
    4089             :             &alt_gen->possible_success, &alt_gen->quick_check_details,
    4090      473502 :             fall_through_on_failure)) {
    4091             :       // Quick check was generated for this choice.
    4092      224615 :       preload->preload_is_current_ = true;
    4093      224615 :       preload->preload_has_checked_bounds_ = true;
    4094             :       // If we generated the quick check to fall through on possible success,
    4095             :       // we now need to generate the full check inline.
    4096      224615 :       if (!fall_through_on_failure) {
    4097       34327 :         macro_assembler->Bind(&alt_gen->possible_success);
    4098             :         new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
    4099       34327 :         new_trace.set_characters_preloaded(preload->preload_characters_);
    4100             :         new_trace.set_bound_checked_up_to(preload->preload_characters_);
    4101             :         generate_full_check_inline = true;
    4102             :       }
    4103      378572 :     } else if (alt_gen->quick_check_details.cannot_match()) {
    4104         110 :       if (!fall_through_on_failure) {
    4105          44 :         macro_assembler->GoTo(trace->backtrack());
    4106             :       }
    4107         110 :       continue;
    4108             :     } else {
    4109             :       // No quick check was generated.  Put the full code here.
    4110             :       // If this is not the first choice then there could be slow checks from
    4111             :       // previous cases that go here when they fail.  There's no reason to
    4112             :       // insist that they preload characters since the slow check we are about
    4113             :       // to generate probably can't use it.
    4114      378462 :       if (i != first_choice) {
    4115      227337 :         alt_gen->expects_preload = false;
    4116             :         new_trace.InvalidateCurrentCharacter();
    4117             :       }
    4118             :       generate_full_check_inline = true;
    4119             :     }
    4120      603077 :     if (generate_full_check_inline) {
    4121      412789 :       if (new_trace.actions() != nullptr) {
    4122             :         new_trace.set_flush_budget(new_flush_budget);
    4123             :       }
    4124        2475 :       for (int j = 0; j < guard_count; j++) {
    4125        2475 :         GenerateGuard(macro_assembler, guards->at(j), &new_trace);
    4126             :       }
    4127      412789 :       alternative.node()->Emit(compiler, &new_trace);
    4128      412789 :       preload->preload_is_current_ = false;
    4129             :     }
    4130      603077 :     macro_assembler->Bind(&alt_gen->after);
    4131             :   }
    4132      213389 : }
    4133             : 
    4134             : 
    4135      805072 : void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
    4136      160860 :                                            Trace* trace,
    4137             :                                            GuardedAlternative alternative,
    4138             :                                            AlternativeGeneration* alt_gen,
    4139             :                                            int preload_characters,
    4140             :                                            bool next_expects_preload) {
    4141     1039280 :   if (!alt_gen->possible_success.is_linked()) return;
    4142             : 
    4143             :   RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
    4144      190288 :   macro_assembler->Bind(&alt_gen->possible_success);
    4145      190288 :   Trace out_of_line_trace(*trace);
    4146             :   out_of_line_trace.set_characters_preloaded(preload_characters);
    4147             :   out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
    4148      190288 :   if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
    4149      191714 :   ZoneList<Guard*>* guards = alternative.guards();
    4150      190288 :   int guard_count = (guards == nullptr) ? 0 : guards->length();
    4151      190288 :   if (next_expects_preload) {
    4152      160860 :     Label reload_current_char;
    4153             :     out_of_line_trace.set_backtrack(&reload_current_char);
    4154      162210 :     for (int j = 0; j < guard_count; j++) {
    4155        1350 :       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
    4156             :     }
    4157      160860 :     alternative.node()->Emit(compiler, &out_of_line_trace);
    4158      160860 :     macro_assembler->Bind(&reload_current_char);
    4159             :     // Reload the current character, since the next quick check expects that.
    4160             :     // We don't need to check bounds here because we only get into this
    4161             :     // code through a quick check which already did the checked load.
    4162             :     macro_assembler->LoadCurrentCharacter(trace->cp_offset(), nullptr, false,
    4163      321720 :                                           preload_characters);
    4164      160860 :     macro_assembler->GoTo(&(alt_gen->after));
    4165             :   } else {
    4166       29428 :     out_of_line_trace.set_backtrack(&(alt_gen->after));
    4167       29504 :     for (int j = 0; j < guard_count; j++) {
    4168          76 :       GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
    4169             :     }
    4170       29428 :     alternative.node()->Emit(compiler, &out_of_line_trace);
    4171             :   }
    4172             : }
    4173             : 
    4174             : 
    4175      494222 : void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    4176             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    4177      493354 :   LimitResult limit_result = LimitVersions(compiler, trace);
    4178      493354 :   if (limit_result == DONE) return;
    4179             :   DCHECK(limit_result == CONTINUE);
    4180             : 
    4181             :   RecursionCheck rc(compiler);
    4182             : 
    4183      265188 :   switch (action_type_) {
    4184             :     case STORE_POSITION: {
    4185             :       Trace::DeferredCapture
    4186             :           new_capture(data_.u_position_register.reg,
    4187             :                       data_.u_position_register.is_capture,
    4188      240962 :                       trace);
    4189      240962 :       Trace new_trace = *trace;
    4190             :       new_trace.add_action(&new_capture);
    4191      256838 :       on_success()->Emit(compiler, &new_trace);
    4192             :       break;
    4193             :     }
    4194             :     case INCREMENT_REGISTER: {
    4195             :       Trace::DeferredIncrementRegister
    4196        3709 :           new_increment(data_.u_increment_register.reg);
    4197        3709 :       Trace new_trace = *trace;
    4198             :       new_trace.add_action(&new_increment);
    4199        3709 :       on_success()->Emit(compiler, &new_trace);
    4200             :       break;
    4201             :     }
    4202             :     case SET_REGISTER: {
    4203             :       Trace::DeferredSetRegister
    4204        3430 :           new_set(data_.u_store_register.reg, data_.u_store_register.value);
    4205        3430 :       Trace new_trace = *trace;
    4206             :       new_trace.add_action(&new_set);
    4207        3430 :       on_success()->Emit(compiler, &new_trace);
    4208             :       break;
    4209             :     }
    4210             :     case CLEAR_CAPTURES: {
    4211             :       Trace::DeferredClearCaptures
    4212             :         new_capture(Interval(data_.u_clear_captures.range_from,
    4213        2154 :                              data_.u_clear_captures.range_to));
    4214        2154 :       Trace new_trace = *trace;
    4215             :       new_trace.add_action(&new_capture);
    4216        2154 :       on_success()->Emit(compiler, &new_trace);
    4217             :       break;
    4218             :     }
    4219             :     case BEGIN_SUBMATCH:
    4220        9468 :       if (!trace->is_trivial()) {
    4221        5036 :         trace->Flush(compiler, this);
    4222             :       } else {
    4223             :         assembler->WriteCurrentPositionToRegister(
    4224        4432 :             data_.u_submatch.current_position_register, 0);
    4225             :         assembler->WriteStackPointerToRegister(
    4226        4432 :             data_.u_submatch.stack_pointer_register);
    4227        4432 :         on_success()->Emit(compiler, trace);
    4228             :       }
    4229             :       break;
    4230             :     case EMPTY_MATCH_CHECK: {
    4231         909 :       int start_pos_reg = data_.u_empty_match_check.start_register;
    4232         909 :       int stored_pos = 0;
    4233         909 :       int rep_reg = data_.u_empty_match_check.repetition_register;
    4234         909 :       bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
    4235         909 :       bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
    4236        1088 :       if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
    4237             :         // If we know we haven't advanced and there is no minimum we
    4238             :         // can just backtrack immediately.
    4239         152 :         assembler->GoTo(trace->backtrack());
    4240        1167 :       } else if (know_dist && stored_pos < trace->cp_offset()) {
    4241             :         // If we know we've advanced we can generate the continuation
    4242             :         // immediately.
    4243         247 :         on_success()->Emit(compiler, trace);
    4244         586 :       } else if (!trace->is_trivial()) {
    4245         307 :         trace->Flush(compiler, this);
    4246             :       } else {
    4247         279 :         Label skip_empty_check;
    4248             :         // If we have a minimum number of repetitions we check the current
    4249             :         // number first and skip the empty check if it's not enough.
    4250         279 :         if (has_minimum) {
    4251         206 :           int limit = data_.u_empty_match_check.repetition_limit;
    4252         206 :           assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
    4253             :         }
    4254             :         // If the match is empty we bail out, otherwise we fall through
    4255             :         // to the on-success continuation.
    4256             :         assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
    4257         558 :                                    trace->backtrack());
    4258         279 :         assembler->Bind(&skip_empty_check);
    4259         279 :         on_success()->Emit(compiler, trace);
    4260             :       }
    4261             :       break;
    4262             :     }
    4263             :     case POSITIVE_SUBMATCH_SUCCESS: {
    4264        4556 :       if (!trace->is_trivial()) {
    4265        2931 :         trace->Flush(compiler, this);
    4266        2931 :         return;
    4267             :       }
    4268             :       assembler->ReadCurrentPositionFromRegister(
    4269        1625 :           data_.u_submatch.current_position_register);
    4270             :       assembler->ReadStackPointerFromRegister(
    4271        1625 :           data_.u_submatch.stack_pointer_register);
    4272        1625 :       int clear_register_count = data_.u_submatch.clear_register_count;
    4273        1625 :       if (clear_register_count == 0) {
    4274        1142 :         on_success()->Emit(compiler, trace);
    4275        1142 :         return;
    4276             :       }
    4277         483 :       int clear_registers_from = data_.u_submatch.clear_register_from;
    4278         483 :       Label clear_registers_backtrack;
    4279         483 :       Trace new_trace = *trace;
    4280             :       new_trace.set_backtrack(&clear_registers_backtrack);
    4281         483 :       on_success()->Emit(compiler, &new_trace);
    4282             : 
    4283         483 :       assembler->Bind(&clear_registers_backtrack);
    4284         483 :       int clear_registers_to = clear_registers_from + clear_register_count - 1;
    4285         483 :       assembler->ClearRegisters(clear_registers_from, clear_registers_to);
    4286             : 
    4287             :       DCHECK(trace->backtrack() == nullptr);
    4288         483 :       assembler->Backtrack();
    4289         483 :       return;
    4290             :     }
    4291             :     default:
    4292           0 :       UNREACHABLE();
    4293             :   }
    4294             : }
    4295             : 
    4296             : 
    4297       11249 : void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
    4298             :   RegExpMacroAssembler* assembler = compiler->macro_assembler();
    4299        4743 :   if (!trace->is_trivial()) {
    4300        2253 :     trace->Flush(compiler, this);
    4301        2253 :     return;
    4302             :   }
    4303             : 
    4304        2490 :   LimitResult limit_result = LimitVersions(compiler, trace);
    4305        2490 :   if (limit_result == DONE) return;
    4306             :   DCHECK(limit_result == CONTINUE);
    4307             : 
    4308             :   RecursionCheck rc(compiler);
    4309             : 
    4310             :   DCHECK_EQ(start_reg_ + 1, end_reg_);
    4311        2290 :   if (IgnoreCase(flags_)) {
    4312             :     assembler->CheckNotBackReferenceIgnoreCase(
    4313        5043 :         start_reg_, read_backward(), IsUnicode(flags_), trace->backtrack());
    4314             :   } else {
    4315             :     assembler->CheckNotBackReference(start_reg_, read_backward(),
    4316        1218 :                                      trace->backtrack());
    4317             :   }
    4318             :   // We are going to advance backward, so we may end up at the start.
    4319        2290 :   if (read_backward()) trace->set_at_start(Trace::UNKNOWN);
    4320             : 
    4321             :   // Check that the back reference does not end inside a surrogate pair.
    4322        2455 :   if (IsUnicode(flags_) && !compiler->one_byte()) {
    4323          80 :     assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack());
    4324             :   }
    4325        2290 :   on_success()->Emit(compiler, trace);
    4326             : }
    4327             : 
    4328             : 
    4329             : // -------------------------------------------------------------------
    4330             : // Dot/dotty output
    4331             : 
    4332             : 
    4333             : #ifdef DEBUG
    4334             : 
    4335             : 
    4336             : class DotPrinter: public NodeVisitor {
    4337             :  public:
    4338             :   DotPrinter(std::ostream& os, bool ignore_case)  // NOLINT
    4339             :       : os_(os),
    4340             :         ignore_case_(ignore_case) {}
    4341             :   void PrintNode(const char* label, RegExpNode* node);
    4342             :   void Visit(RegExpNode* node);
    4343             :   void PrintAttributes(RegExpNode* from);
    4344             :   void PrintOnFailure(RegExpNode* from, RegExpNode* to);
    4345             : #define DECLARE_VISIT(Type)                                          \
    4346             :   virtual void Visit##Type(Type##Node* that);
    4347             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    4348             : #undef DECLARE_VISIT
    4349             :  private:
    4350             :   std::ostream& os_;
    4351             :   bool ignore_case_;
    4352             : };
    4353             : 
    4354             : 
    4355             : void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
    4356             :   os_ << "digraph G {\n  graph [label=\"";
    4357             :   for (int i = 0; label[i]; i++) {
    4358             :     switch (label[i]) {
    4359             :       case '\\':
    4360             :         os_ << "\\\\";
    4361             :         break;
    4362             :       case '"':
    4363             :         os_ << "\"";
    4364             :         break;
    4365             :       default:
    4366             :         os_ << label[i];
    4367             :         break;
    4368             :     }
    4369             :   }
    4370             :   os_ << "\"];\n";
    4371             :   Visit(node);
    4372             :   os_ << "}" << std::endl;
    4373             : }
    4374             : 
    4375             : 
    4376             : void DotPrinter::Visit(RegExpNode* node) {
    4377             :   if (node->info()->visited) return;
    4378             :   node->info()->visited = true;
    4379             :   node->Accept(this);
    4380             : }
    4381             : 
    4382             : 
    4383             : void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
    4384             :   os_ << "  n" << from << " -> n" << on_failure << " [style=dotted];\n";
    4385             :   Visit(on_failure);
    4386             : }
    4387             : 
    4388             : 
    4389             : class TableEntryBodyPrinter {
    4390             :  public:
    4391             :   TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice)  // NOLINT
    4392             :       : os_(os),
    4393             :         choice_(choice) {}
    4394             :   void Call(uc16 from, DispatchTable::Entry entry) {
    4395             :     OutSet* out_set = entry.out_set();
    4396             :     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
    4397             :       if (out_set->Get(i)) {
    4398             :         os_ << "    n" << choice() << ":s" << from << "o" << i << " -> n"
    4399             :             << choice()->alternatives()->at(i).node() << ";\n";
    4400             :       }
    4401             :     }
    4402             :   }
    4403             :  private:
    4404             :   ChoiceNode* choice() { return choice_; }
    4405             :   std::ostream& os_;
    4406             :   ChoiceNode* choice_;
    4407             : };
    4408             : 
    4409             : 
    4410             : class TableEntryHeaderPrinter {
    4411             :  public:
    4412             :   explicit TableEntryHeaderPrinter(std::ostream& os)  // NOLINT
    4413             :       : first_(true),
    4414             :         os_(os) {}
    4415             :   void Call(uc16 from, DispatchTable::Entry entry) {
    4416             :     if (first_) {
    4417             :       first_ = false;
    4418             :     } else {
    4419             :       os_ << "|";
    4420             :     }
    4421             :     os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
    4422             :     OutSet* out_set = entry.out_set();
    4423             :     int priority = 0;
    4424             :     for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
    4425             :       if (out_set->Get(i)) {
    4426             :         if (priority > 0) os_ << "|";
    4427             :         os_ << "<s" << from << "o" << i << "> " << priority;
    4428             :         priority++;
    4429             :       }
    4430             :     }
    4431             :     os_ << "}}";
    4432             :   }
    4433             : 
    4434             :  private:
    4435             :   bool first_;
    4436             :   std::ostream& os_;
    4437             : };
    4438             : 
    4439             : 
    4440             : class AttributePrinter {
    4441             :  public:
    4442             :   explicit AttributePrinter(std::ostream& os)  // NOLINT
    4443             :       : os_(os),
    4444             :         first_(true) {}
    4445             :   void PrintSeparator() {
    4446             :     if (first_) {
    4447             :       first_ = false;
    4448             :     } else {
    4449             :       os_ << "|";
    4450             :     }
    4451             :   }
    4452             :   void PrintBit(const char* name, bool value) {
    4453             :     if (!value) return;
    4454             :     PrintSeparator();
    4455             :     os_ << "{" << name << "}";
    4456             :   }
    4457             :   void PrintPositive(const char* name, int value) {
    4458             :     if (value < 0) return;
    4459             :     PrintSeparator();
    4460             :     os_ << "{" << name << "|" << value << "}";
    4461             :   }
    4462             : 
    4463             :  private:
    4464             :   std::ostream& os_;
    4465             :   bool first_;
    4466             : };
    4467             : 
    4468             : 
    4469             : void DotPrinter::PrintAttributes(RegExpNode* that) {
    4470             :   os_ << "  a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
    4471             :       << "margin=0.1, fontsize=10, label=\"{";
    4472             :   AttributePrinter printer(os_);
    4473             :   NodeInfo* info = that->info();
    4474             :   printer.PrintBit("NI", info->follows_newline_interest);
    4475             :   printer.PrintBit("WI", info->follows_word_interest);
    4476             :   printer.PrintBit("SI", info->follows_start_interest);
    4477             :   Label* label = that->label();
    4478             :   if (label->is_bound())
    4479             :     printer.PrintPositive("@", label->pos());
    4480             :   os_ << "}\"];\n"
    4481             :       << "  a" << that << " -> n" << that
    4482             :       << " [style=dashed, color=grey, arrowhead=none];\n";
    4483             : }
    4484             : 
    4485             : 
    4486             : static const bool kPrintDispatchTable = false;
    4487             : void DotPrinter::VisitChoice(ChoiceNode* that) {
    4488             :   if (kPrintDispatchTable) {
    4489             :     os_ << "  n" << that << " [shape=Mrecord, label=\"";
    4490             :     TableEntryHeaderPrinter header_printer(os_);
    4491             :     that->GetTable(ignore_case_)->ForEach(&header_printer);
    4492             :     os_ << "\"]\n";
    4493             :     PrintAttributes(that);
    4494             :     TableEntryBodyPrinter body_printer(os_, that);
    4495             :     that->GetTable(ignore_case_)->ForEach(&body_printer);
    4496             :   } else {
    4497             :     os_ << "  n" << that << " [shape=Mrecord, label=\"?\"];\n";
    4498             :     for (int i = 0; i < that->alternatives()->length(); i++) {
    4499             :       GuardedAlternative alt = that->alternatives()->at(i);
    4500             :       os_ << "  n" << that << " -> n" << alt.node();
    4501             :     }
    4502             :   }
    4503             :   for (int i = 0; i < that->alternatives()->length(); i++) {
    4504             :     GuardedAlternative alt = that->alternatives()->at(i);
    4505             :     alt.node()->Accept(this);
    4506             :   }
    4507             : }
    4508             : 
    4509             : 
    4510             : void DotPrinter::VisitText(TextNode* that) {
    4511             :   Zone* zone = that->zone();
    4512             :   os_ << "  n" << that << " [label=\"";
    4513             :   for (int i = 0; i < that->elements()->length(); i++) {
    4514             :     if (i > 0) os_ << " ";
    4515             :     TextElement elm = that->elements()->at(i);
    4516             :     switch (elm.text_type()) {
    4517             :       case TextElement::ATOM: {
    4518             :         Vector<const uc16> data = elm.atom()->data();
    4519             :         for (int i = 0; i < data.length(); i++) {
    4520             :           os_ << static_cast<char>(data[i]);
    4521             :         }
    4522             :         break;
    4523             :       }
    4524             :       case TextElement::CHAR_CLASS: {
    4525             :         RegExpCharacterClass* node = elm.char_class();
    4526             :         os_ << "[";
    4527             :         if (node->is_negated()) os_ << "^";
    4528             :         for (int j = 0; j < node->ranges(zone)->length(); j++) {
    4529             :           CharacterRange range = node->ranges(zone)->at(j);
    4530             :           os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
    4531             :         }
    4532             :         os_ << "]";
    4533             :         break;
    4534             :       }
    4535             :       default:
    4536             :         UNREACHABLE();
    4537             :     }
    4538             :   }
    4539             :   os_ << "\", shape=box, peripheries=2];\n";
    4540             :   PrintAttributes(that);
    4541             :   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
    4542             :   Visit(that->on_success());
    4543             : }
    4544             : 
    4545             : 
    4546             : void DotPrinter::VisitBackReference(BackReferenceNode* that) {
    4547             :   os_ << "  n" << that << " [label=\"$" << that->start_register() << "..$"
    4548             :       << that->end_register() << "\", shape=doubleoctagon];\n";
    4549             :   PrintAttributes(that);
    4550             :   os_ << "  n" << that << " -> n" << that->on_success() << ";\n";
    4551             :   Visit(that->on_success());
    4552             : }
    4553             : 
    4554             : 
    4555             : void DotPrinter::VisitEnd(EndNode* that) {
    4556             :   os_ << "  n" << that << " [style=bold, shape=point];\n";
    4557             :   PrintAttributes(that);
    4558             : }
    4559             : 
    4560             : 
    4561             : void DotPrinter::VisitAssertion(AssertionNode* that) {
    4562             :   os_ << "  n" << that << " [";
    4563             :   switch (that->assertion_type()) {
    4564             :     case AssertionNode::AT_END:
    4565             :       os_ << "label=\"$\", shape=septagon";
    4566             :       break;
    4567             :     case AssertionNode::AT_START:
    4568             :       os_ << "label=\"^\", shape=septagon";
    4569             :       break;
    4570             :     case AssertionNode::AT_BOUNDARY:
    4571             :       os_ << "label=\"\\b\", shape=septagon";
    4572             :       break;
    4573             :     case AssertionNode::AT_NON_BOUNDARY:
    4574             :       os_ << "label=\"\\B\", shape=septagon";
    4575             :       break;
    4576             :     case AssertionNode::AFTER_NEWLINE:
    4577             :       os_ << "label=\"(?<=\\n)\", shape=septagon";
    4578             :       break;
    4579             :   }
    4580             :   os_ << "];\n";
    4581             :   PrintAttributes(that);
    4582             :   RegExpNode* successor = that->on_success();
    4583             :   os_ << "  n" << that << " -> n" << successor << ";\n";
    4584             :   Visit(successor);
    4585             : }
    4586             : 
    4587             : 
    4588             : void DotPrinter::VisitAction(ActionNode* that) {
    4589             :   os_ << "  n" << that << " [";
    4590             :   switch (that->action_type_) {
    4591             :     case ActionNode::SET_REGISTER:
    4592             :       os_ << "label=\"$" << that->data_.u_store_register.reg
    4593             :           << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
    4594             :       break;
    4595             :     case ActionNode::INCREMENT_REGISTER:
    4596             :       os_ << "label=\"$" << that->data_.u_increment_register.reg
    4597             :           << "++\", shape=octagon";
    4598             :       break;
    4599             :     case ActionNode::STORE_POSITION:
    4600             :       os_ << "label=\"$" << that->data_.u_position_register.reg
    4601             :           << ":=$pos\", shape=octagon";
    4602             :       break;
    4603             :     case ActionNode::BEGIN_SUBMATCH:
    4604             :       os_ << "label=\"$" << that->data_.u_submatch.current_position_register
    4605             :           << ":=$pos,begin\", shape=septagon";
    4606             :       break;
    4607             :     case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
    4608             :       os_ << "label=\"escape\", shape=septagon";
    4609             :       break;
    4610             :     case ActionNode::EMPTY_MATCH_CHECK:
    4611             :       os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
    4612             :           << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
    4613             :           << "<" << that->data_.u_empty_match_check.repetition_limit
    4614             :           << "?\", shape=septagon";
    4615             :       break;
    4616             :     case ActionNode::CLEAR_CAPTURES: {
    4617             :       os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
    4618             :           << " to $" << that->data_.u_clear_captures.range_to
    4619             :           << "\", shape=septagon";
    4620             :       break;
    4621             :     }
    4622             :   }
    4623             :   os_ << "];\n";
    4624             :   PrintAttributes(that);
    4625             :   RegExpNode* successor = that->on_success();
    4626             :   os_ << "  n" << that << " -> n" << successor << ";\n";
    4627             :   Visit(successor);
    4628             : }
    4629             : 
    4630             : 
    4631             : class DispatchTableDumper {
    4632             :  public:
    4633             :   explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
    4634             :   void Call(uc16 key, DispatchTable::Entry entry);
    4635             :  private:
    4636             :   std::ostream& os_;
    4637             : };
    4638             : 
    4639             : 
    4640             : void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
    4641             :   os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
    4642             :   OutSet* set = entry.out_set();
    4643             :   bool first = true;
    4644             :   for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
    4645             :     if (set->Get(i)) {
    4646             :       if (first) {
    4647             :         first = false;
    4648             :       } else {
    4649             :         os_ << ", ";
    4650             :       }
    4651             :       os_ << i;
    4652             :     }
    4653             :   }
    4654             :   os_ << "}\n";
    4655             : }
    4656             : 
    4657             : 
    4658             : void DispatchTable::Dump() {
    4659             :   OFStream os(stderr);
    4660             :   DispatchTableDumper dumper(os);
    4661             :   tree()->ForEach(&dumper);
    4662             : }
    4663             : 
    4664             : 
    4665             : void RegExpEngine::DotPrint(const char* label,
    4666             :                             RegExpNode* node,
    4667             :                             bool ignore_case) {
    4668             :   StdoutStream os;
    4669             :   DotPrinter printer(os, ignore_case);
    4670             :   printer.PrintNode(label, node);
    4671             : }
    4672             : 
    4673             : 
    4674             : #endif  // DEBUG
    4675             : 
    4676             : 
    4677             : // -------------------------------------------------------------------
    4678             : // Tree to graph conversion
    4679             : 
    4680     2977278 : RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
    4681             :                                RegExpNode* on_success) {
    4682             :   ZoneList<TextElement>* elms =
    4683      992426 :       new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
    4684      992426 :   elms->Add(TextElement::Atom(this), compiler->zone());
    4685             :   return new (compiler->zone())
    4686      992426 :       TextNode(elms, compiler->read_backward(), on_success);
    4687             : }
    4688             : 
    4689             : 
    4690       34706 : RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
    4691             :                                RegExpNode* on_success) {
    4692             :   return new (compiler->zone())
    4693       34706 :       TextNode(elements(), compiler->read_backward(), on_success);
    4694             : }
    4695             : 
    4696             : 
    4697     1105534 : static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
    4698             :                                  const int* special_class,
    4699             :                                  int length) {
    4700      552767 :   length--;  // Remove final marker.
    4701             :   DCHECK_EQ(kRangeEndMarker, special_class[length]);
    4702             :   DCHECK_NE(0, ranges->length());
    4703             :   DCHECK_NE(0, length);
    4704             :   DCHECK_NE(0, special_class[0]);
    4705      552767 :   if (ranges->length() != (length >> 1) + 1) {
    4706             :     return false;
    4707             :   }
    4708       10160 :   CharacterRange range = ranges->at(0);
    4709       10160 :   if (range.from() != 0) {
    4710             :     return false;
    4711             :   }
    4712       24877 :   for (int i = 0; i < length; i += 2) {
    4713       25432 :     if (special_class[i] != (range.to() + 1)) {
    4714             :       return false;
    4715             :     }
    4716       49754 :     range = ranges->at((i >> 1) + 1);
    4717       24877 :     if (special_class[i+1] != range.from()) {
    4718             :       return false;
    4719             :     }
    4720             :   }
    4721        7772 :   if (range.to() != String::kMaxCodePoint) {
    4722             :     return false;
    4723             :   }
    4724        7772 :   return true;
    4725             : }
    4726             : 
    4727             : 
    4728     1094384 : static bool CompareRanges(ZoneList<CharacterRange>* ranges,
    4729             :                           const int* special_class,
    4730             :                           int length) {
    4731      547192 :   length--;  // Remove final marker.
    4732             :   DCHECK_EQ(kRangeEndMarker, special_class[length]);
    4733      547192 :   if (ranges->length() * 2 != length) {
    4734             :     return false;
    4735             :   }
    4736       11204 :   for (int i = 0; i < length; i += 2) {
    4737       29200 :     CharacterRange range = ranges->at(i >> 1);
    4738       25815 :     if (range.from() != special_class[i] ||
    4739       11215 :         range.to() != special_class[i + 1] - 1) {
    4740             :       return false;
    4741             :     }
    4742             :   }
    4743             :   return true;
    4744             : }
    4745             : 
    4746             : 
    4747      196846 : bool RegExpCharacterClass::is_standard(Zone* zone) {
    4748             :   // TODO(lrn): Remove need for this function, by not throwing away information
    4749             :   // along the way.
    4750      196846 :   if (is_negated()) {
    4751             :     return false;
    4752             :   }
    4753      191179 :   if (set_.is_standard()) {
    4754             :     return true;
    4755             :   }
    4756      187912 :   if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    4757             :     set_.set_standard_set_type('s');
    4758         607 :     return true;
    4759             :   }
    4760      187305 :   if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
    4761             :     set_.set_standard_set_type('S');
    4762         207 :     return true;
    4763             :   }
    4764      187098 :   if (CompareInverseRanges(set_.ranges(zone),
    4765             :                            kLineTerminatorRanges,
    4766      187098 :                            kLineTerminatorRangeCount)) {
    4767             :     set_.set_standard_set_type('.');
    4768        7453 :     return true;
    4769             :   }
    4770      179645 :   if (CompareRanges(set_.ranges(zone),
    4771             :                     kLineTerminatorRanges,
    4772      179645 :                     kLineTerminatorRangeCount)) {
    4773             :     set_.set_standard_set_type('n');
    4774          10 :     return true;
    4775             :   }
    4776      179635 :   if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    4777             :     set_.set_standard_set_type('w');
    4778        1271 :     return true;
    4779             :   }
    4780      178364 :   if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
    4781             :     set_.set_standard_set_type('W');
    4782         112 :     return true;
    4783             :   }
    4784             :   return false;
    4785             : }
    4786             : 
    4787             : 
    4788        2587 : UnicodeRangeSplitter::UnicodeRangeSplitter(Zone* zone,
    4789       76865 :                                            ZoneList<CharacterRange>* base)
    4790             :     : zone_(zone),
    4791             :       table_(zone),
    4792             :       bmp_(nullptr),
    4793             :       lead_surrogates_(nullptr),
    4794             :       trail_surrogates_(nullptr),
    4795        5174 :       non_bmp_(nullptr) {
    4796             :   // The unicode range splitter categorizes given character ranges into:
    4797             :   // - Code points from the BMP representable by one code unit.
    4798             :   // - Code points outside the BMP that need to be split into surrogate pairs.
    4799             :   // - Lone lead surrogates.
    4800             :   // - Lone trail surrogates.
    4801             :   // Lone surrogates are valid code points, even though no actual characters.
    4802             :   // They require special matching to make sure we do not split surrogate pairs.
    4803             :   // We use the dispatch table to accomplish this. The base range is split up
    4804             :   // by the table by the overlay ranges, and the Call callback is used to
    4805             :   // filter and collect ranges for each category.
    4806      153730 :   for (int i = 0; i < base->length(); i++) {
    4807      148556 :     table_.AddRange(base->at(i), kBase, zone_);
    4808             :   }
    4809             :   // Add overlay ranges.
    4810             :   table_.AddRange(CharacterRange::Range(0, kLeadSurrogateStart - 1),
    4811        2587 :                   kBmpCodePoints, zone_);
    4812             :   table_.AddRange(CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd),
    4813        2587 :                   kLeadSurrogates, zone_);
    4814             :   table_.AddRange(
    4815             :       CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
    4816        2587 :       kTrailSurrogates, zone_);
    4817             :   table_.AddRange(
    4818             :       CharacterRange::Range(kTrailSurrogateEnd + 1, kNonBmpStart - 1),
    4819        2587 :       kBmpCodePoints, zone_);
    4820             :   table_.AddRange(CharacterRange::Range(kNonBmpStart, kNonBmpEnd),
    4821        2587 :                   kNonBmpCodePoints, zone_);
    4822             :   table_.ForEach(this);
    4823        2587 : }
    4824             : 
    4825             : 
    4826      159101 : void UnicodeRangeSplitter::Call(uc32 from, DispatchTable::Entry entry) {
    4827      159101 :   OutSet* outset = entry.out_set();
    4828      318202 :   if (!outset->Get(kBase)) return;
    4829             :   ZoneList<CharacterRange>** target = nullptr;
    4830       78283 :   if (outset->Get(kBmpCodePoints)) {
    4831       50718 :     target = &bmp_;
    4832       27565 :   } else if (outset->Get(kLeadSurrogates)) {
    4833        1175 :     target = &lead_surrogates_;
    4834       26390 :   } else if (outset->Get(kTrailSurrogates)) {
    4835        1175 :     target = &trail_surrogates_;
    4836             :   } else {
    4837             :     DCHECK(outset->Get(kNonBmpCodePoints));
    4838       25215 :     target = &non_bmp_;
    4839             :   }
    4840       78283 :   if (*target == nullptr)
    4841       12134 :     *target = new (zone_) ZoneList<CharacterRange>(2, zone_);
    4842       78283 :   (*target)->Add(CharacterRange::Range(entry.from(), entry.to()), zone_);
    4843             : }
    4844             : 
    4845        6836 : void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
    4846        2582 :                       RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
    4847             :   ZoneList<CharacterRange>* bmp = splitter->bmp();
    4848        3037 :   if (bmp == nullptr) return;
    4849             :   JSRegExp::Flags default_flags = JSRegExp::Flags();
    4850             :   result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
    4851             :       compiler->zone(), bmp, compiler->read_backward(), on_success,
    4852        4254 :       default_flags)));
    4853             : }
    4854             : 
    4855       31232 : void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
    4856             :                              RegExpNode* on_success,
    4857        2582 :                              UnicodeRangeSplitter* splitter) {
    4858       26790 :   ZoneList<CharacterRange>* non_bmp = splitter->non_bmp();
    4859        3584 :   if (non_bmp == nullptr) return;
    4860             :   DCHECK(!compiler->one_byte());
    4861             :   Zone* zone = compiler->zone();
    4862             :   JSRegExp::Flags default_flags = JSRegExp::Flags();
    4863        1580 :   CharacterRange::Canonicalize(non_bmp);
    4864       53580 :   for (int i = 0; i < non_bmp->length(); i++) {
    4865             :     // Match surrogate pair.
    4866             :     // E.g. [\u10005-\u11005] becomes
    4867             :     //      \ud800[\udc05-\udfff]|
    4868             :     //      [\ud801-\ud803][\udc00-\udfff]|
    4869             :     //      \ud804[\udc00-\udc05]
    4870       25210 :     uc32 from = non_bmp->at(i).from();
    4871       25210 :     uc32 to = non_bmp->at(i).to();
    4872       25210 :     uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
    4873             :     uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
    4874       25210 :     uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
    4875             :     uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
    4876       25210 :     if (from_l == to_l) {
    4877             :       // The lead surrogate is the same.
    4878             :       result->AddAlternative(
    4879             :           GuardedAlternative(TextNode::CreateForSurrogatePair(
    4880             :               zone, CharacterRange::Singleton(from_l),
    4881             :               CharacterRange::Range(from_t, to_t), compiler->read_backward(),
    4882       22930 :               on_success, default_flags)));
    4883             :     } else {
    4884        2280 :       if (from_t != kTrailSurrogateStart) {
    4885             :         // Add [from_l][from_t-\udfff]
    4886             :         result->AddAlternative(
    4887             :             GuardedAlternative(TextNode::CreateForSurrogatePair(
    4888             :                 zone, CharacterRange::Singleton(from_l),
    4889             :                 CharacterRange::Range(from_t, kTrailSurrogateEnd),
    4890        1155 :                 compiler->read_backward(), on_success, default_flags)));
    4891        1155 :         from_l++;
    4892             :       }
    4893        2280 :       if (to_t != kTrailSurrogateEnd) {
    4894             :         // Add [to_l][\udc00-to_t]
    4895             :         result->AddAlternative(
    4896             :             GuardedAlternative(TextNode::CreateForSurrogatePair(
    4897             :                 zone, CharacterRange::Singleton(to_l),
    4898             :                 CharacterRange::Range(kTrailSurrogateStart, to_t),
    4899         895 :                 compiler->read_backward(), on_success, default_flags)));
    4900         895 :         to_l--;
    4901             :       }
    4902        2280 :       if (from_l <= to_l) {
    4903             :         // Add [from_l-to_l][\udc00-\udfff]
    4904             :         result->AddAlternative(
    4905             :             GuardedAlternative(TextNode::CreateForSurrogatePair(
    4906             :                 zone, CharacterRange::Range(from_l, to_l),
    4907             :                 CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
    4908        2090 :                 compiler->read_backward(), on_success, default_flags)));
    4909             :       }
    4910             :     }
    4911             :   }
    4912             : }
    4913             : 
    4914        1175 : RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
    4915        1175 :     RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
    4916             :     ZoneList<CharacterRange>* match, RegExpNode* on_success, bool read_backward,
    4917             :     JSRegExp::Flags flags) {
    4918             :   Zone* zone = compiler->zone();
    4919             :   RegExpNode* match_node = TextNode::CreateForCharacterRanges(
    4920        1175 :       zone, match, read_backward, on_success, flags);
    4921             :   int stack_register = compiler->UnicodeLookaroundStackRegister();
    4922             :   int position_register = compiler->UnicodeLookaroundPositionRegister();
    4923             :   RegExpLookaround::Builder lookaround(false, match_node, stack_register,
    4924        1175 :                                        position_register);
    4925             :   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
    4926        1175 :       zone, lookbehind, !read_backward, lookaround.on_match_success(), flags);
    4927        1175 :   return lookaround.ForMatch(negative_match);
    4928             : }
    4929             : 
    4930        1165 : RegExpNode* MatchAndNegativeLookaroundInReadDirection(
    4931        1165 :     RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
    4932             :     ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
    4933             :     bool read_backward, JSRegExp::Flags flags) {
    4934             :   Zone* zone = compiler->zone();
    4935             :   int stack_register = compiler->UnicodeLookaroundStackRegister();
    4936             :   int position_register = compiler->UnicodeLookaroundPositionRegister();
    4937             :   RegExpLookaround::Builder lookaround(false, on_success, stack_register,
    4938        1165 :                                        position_register);
    4939             :   RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
    4940        1165 :       zone, lookahead, read_backward, lookaround.on_match_success(), flags);
    4941             :   return TextNode::CreateForCharacterRanges(
    4942        1165 :       zone, match, read_backward, lookaround.ForMatch(negative_match), flags);
    4943             : }
    4944             : 
    4945        4922 : void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
    4946             :                            RegExpNode* on_success,
    4947        2582 :                            UnicodeRangeSplitter* splitter) {
    4948             :   JSRegExp::Flags default_flags = JSRegExp::Flags();
    4949             :   ZoneList<CharacterRange>* lead_surrogates = splitter->lead_surrogates();
    4950        3994 :   if (lead_surrogates == nullptr) return;
    4951             :   Zone* zone = compiler->zone();
    4952             :   // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
    4953             :   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
    4954        1170 :       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
    4955             : 
    4956             :   RegExpNode* match;
    4957        1170 :   if (compiler->read_backward()) {
    4958             :     // Reading backward. Assert that reading forward, there is no trail
    4959             :     // surrogate, and then backward match the lead surrogate.
    4960             :     match = NegativeLookaroundAgainstReadDirectionAndMatch(
    4961             :         compiler, trail_surrogates, lead_surrogates, on_success, true,
    4962          95 :         default_flags);
    4963             :   } else {
    4964             :     // Reading forward. Forward match the lead surrogate and assert that
    4965             :     // no trail surrogate follows.
    4966             :     match = MatchAndNegativeLookaroundInReadDirection(
    4967             :         compiler, lead_surrogates, trail_surrogates, on_success, false,
    4968        1075 :         default_flags);
    4969             :   }
    4970             :   result->AddAlternative(GuardedAlternative(match));
    4971             : }
    4972             : 
    4973        4922 : void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
    4974             :                             RegExpNode* on_success,
    4975        2582 :                             UnicodeRangeSplitter* splitter) {
    4976             :   JSRegExp::Flags default_flags = JSRegExp::Flags();
    4977             :   ZoneList<CharacterRange>* trail_surrogates = splitter->trail_surrogates();
    4978        3994 :   if (trail_surrogates == nullptr) return;
    4979             :   Zone* zone = compiler->zone();
    4980             :   // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
    4981             :   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
    4982        1170 :       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
    4983             : 
    4984             :   RegExpNode* match;
    4985        1170 :   if (compiler->read_backward()) {
    4986             :     // Reading backward. Backward match the trail surrogate and assert that no
    4987             :     // lead surrogate precedes it.
    4988             :     match = MatchAndNegativeLookaroundInReadDirection(
    4989             :         compiler, trail_surrogates, lead_surrogates, on_success, true,
    4990          90 :         default_flags);
    4991             :   } else {
    4992             :     // Reading forward. Assert that reading backward, there is no lead
    4993             :     // surrogate, and then forward match the trail surrogate.
    4994             :     match = NegativeLookaroundAgainstReadDirectionAndMatch(
    4995             :         compiler, lead_surrogates, trail_surrogates, on_success, false,
    4996        1080 :         default_flags);
    4997             :   }
    4998             :   result->AddAlternative(GuardedAlternative(match));
    4999             : }
    5000             : 
    5001           0 : RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler,
    5002             :                               RegExpNode* on_success) {
    5003             :   // This implements ES2015 21.2.5.2.3, AdvanceStringIndex.
    5004             :   DCHECK(!compiler->read_backward());
    5005             :   Zone* zone = compiler->zone();
    5006             :   // Advance any character. If the character happens to be a lead surrogate and
    5007             :   // we advanced into the middle of a surrogate pair, it will work out, as
    5008             :   // nothing will match from there. We will have to advance again, consuming
    5009             :   // the associated trail surrogate.
    5010             :   ZoneList<CharacterRange>* range = CharacterRange::List(
    5011           0 :       zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit));
    5012             :   JSRegExp::Flags default_flags = JSRegExp::Flags();
    5013             :   return TextNode::CreateForCharacterRanges(zone, range, false, on_success,
    5014           0 :                                             default_flags);
    5015             : }
    5016             : 
    5017      124987 : void AddUnicodeCaseEquivalents(ZoneList<CharacterRange>* ranges, Zone* zone) {
    5018             : #ifdef V8_INTL_SUPPORT
    5019             :   DCHECK(CharacterRange::IsCanonical(ranges));
    5020             : 
    5021             :   // Micro-optimization to avoid passing large ranges to UnicodeSet::closeOver.
    5022             :   // See also https://crbug.com/v8/6727.
    5023             :   // TODO(jgruber): This only covers the special case of the {0,0x10FFFF} range,
    5024             :   // which we use frequently internally. But large ranges can also easily be
    5025             :   // created by the user. We might want to have a more general caching mechanism
    5026             :   // for such ranges.
    5027        1728 :   if (ranges->length() == 1 && ranges->at(0).IsEverything(kNonBmpEnd)) return;
    5028             : 
    5029             :   // Use ICU to compute the case fold closure over the ranges.
    5030        1189 :   icu::UnicodeSet set;
    5031      247596 :   for (int i = 0; i < ranges->length(); i++) {
    5032      122609 :     set.add(ranges->at(i).from(), ranges->at(i).to());
    5033             :   }
    5034             :   ranges->Clear();
    5035        1189 :   set.closeOver(USET_CASE_INSENSITIVE);
    5036             :   // Full case mapping map single characters to multiple characters.
    5037             :   // Those are represented as strings in the set. Remove them so that
    5038             :   // we end up with only simple and common case mappings.
    5039        1189 :   set.removeAllStrings();
    5040       19360 :   for (int i = 0; i < set.getRangeCount(); i++) {
    5041       18171 :     ranges->Add(CharacterRange::Range(set.getRangeStart(i), set.getRangeEnd(i)),
    5042       18171 :                 zone);
    5043             :   }
    5044             :   // No errors and everything we collected have been ranges.
    5045        1189 :   CharacterRange::Canonicalize(ranges);
    5046             : #endif  // V8_INTL_SUPPORT
    5047             : }
    5048             : 
    5049             : 
    5050      529211 : RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
    5051             :                                          RegExpNode* on_success) {
    5052             :   set_.Canonicalize();
    5053             :   Zone* zone = compiler->zone();
    5054        2612 :   ZoneList<CharacterRange>* ranges = this->ranges(zone);
    5055      175908 :   if (NeedsUnicodeCaseEquivalents(flags_)) {
    5056         949 :     AddUnicodeCaseEquivalents(ranges, zone);
    5057             :   }
    5058      182599 :   if (IsUnicode(flags_) && !compiler->one_byte() &&
    5059             :       !contains_split_surrogate()) {
    5060        2612 :     if (is_negated()) {
    5061             :       ZoneList<CharacterRange>* negated =
    5062         140 :           new (zone) ZoneList<CharacterRange>(2, zone);
    5063         140 :       CharacterRange::Negate(ranges, negated, zone);
    5064             :       ranges = negated;
    5065             :     }
    5066        2612 :     if (ranges->length() == 0) {
    5067             :       JSRegExp::Flags default_flags;
    5068             :       RegExpCharacterClass* fail =
    5069          60 :           new (zone) RegExpCharacterClass(zone, ranges, default_flags);
    5070          60 :       return new (zone) TextNode(fail, compiler->read_backward(), on_success);
    5071             :     }
    5072        2582 :     if (standard_type() == '*') {
    5073           0 :       return UnanchoredAdvance(compiler, on_success);
    5074             :     } else {
    5075        2582 :       ChoiceNode* result = new (zone) ChoiceNode(2, zone);
    5076        2582 :       UnicodeRangeSplitter splitter(zone, ranges);
    5077        2582 :       AddBmpCharacters(compiler, result, on_success, &splitter);
    5078        2582 :       AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
    5079        2582 :       AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
    5080        2582 :       AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
    5081             :       return result;
    5082             :     }
    5083             :   } else {
    5084      346592 :     return new (zone) TextNode(this, compiler->read_backward(), on_success);
    5085             :   }
    5086             : }
    5087             : 
    5088             : 
    5089      146822 : int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
    5090      146822 :   RegExpAtom* atom1 = (*a)->AsAtom();
    5091      146822 :   RegExpAtom* atom2 = (*b)->AsAtom();
    5092      146822 :   uc16 character1 = atom1->data().at(0);
    5093      146822 :   uc16 character2 = atom2->data().at(0);
    5094      146822 :   if (character1 < character2) return -1;
    5095      129859 :   if (character1 > character2) return 1;
    5096       17383 :   return 0;
    5097             : }
    5098             : 
    5099             : 
    5100             : static unibrow::uchar Canonical(
    5101             :     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    5102             :     unibrow::uchar c) {
    5103             :   unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
    5104      101306 :   int length = canonicalize->get(c, '\0', chars);
    5105             :   DCHECK_LE(length, 1);
    5106             :   unibrow::uchar canonical = c;
    5107      101306 :   if (length == 1) canonical = chars[0];
    5108             :   return canonical;
    5109             : }
    5110             : 
    5111             : 
    5112       63973 : int CompareFirstCharCaseIndependent(
    5113             :     unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
    5114             :     RegExpTree* const* a, RegExpTree* const* b) {
    5115       63973 :   RegExpAtom* atom1 = (*a)->AsAtom();
    5116       63973 :   RegExpAtom* atom2 = (*b)->AsAtom();
    5117       63973 :   unibrow::uchar character1 = atom1->data().at(0);
    5118       63973 :   unibrow::uchar character2 = atom2->data().at(0);
    5119       63973 :   if (character1 == character2) return 0;
    5120       46025 :   if (character1 >= 'a' || character2 >= 'a') {
    5121             :     character1 = Canonical(canonicalize, character1);
    5122             :     character2 = Canonical(canonicalize, character2);
    5123             :   }
    5124       46025 :   return static_cast<int>(character1) - static_cast<int>(character2);
    5125             : }
    5126             : 
    5127             : 
    5128             : // We can stable sort runs of atoms, since the order does not matter if they
    5129             : // start with different characters.
    5130             : // Returns true if any consecutive atoms were found.
    5131        9774 : bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
    5132        9300 :   ZoneList<RegExpTree*>* alternatives = this->alternatives();
    5133             :   int length = alternatives->length();
    5134             :   bool found_consecutive_atoms = false;
    5135       17927 :   for (int i = 0; i < length; i++) {
    5136       34665 :     while (i < length) {
    5137       33846 :       RegExpTree* alternative = alternatives->at(i);
    5138       33846 :       if (alternative->IsAtom()) break;
    5139       25219 :       i++;
    5140             :     }
    5141             :     // i is length or it is the index of an atom.
    5142        9446 :     if (i == length) break;
    5143             :     int first_atom = i;
    5144        8627 :     JSRegExp::Flags flags = alternatives->at(i)->AsAtom()->flags();
    5145        8627 :     i++;
    5146       73375 :     while (i < length) {
    5147       56362 :       RegExpTree* alternative = alternatives->at(i);
    5148       56362 :       if (!alternative->IsAtom()) break;
    5149       56121 :       if (alternative->AsAtom()->flags() != flags) break;
    5150       56121 :       i++;
    5151             :     }
    5152             :     // Sort atoms to get ones with common prefixes together.
    5153             :     // This step is more tricky if we are in a case-independent regexp,
    5154             :     // because it would change /is|I/ to /I|is/, and order matters when
    5155             :     // the regexp parts don't match only disjoint starting points. To fix
    5156             :     // this we have a version of CompareFirstChar that uses case-
    5157             :     // independent character classes for comparison.
    5158             :     DCHECK_LT(first_atom, alternatives->length());
    5159             :     DCHECK_LE(i, alternatives->length());
    5160             :     DCHECK_LE(first_atom, i);
    5161        8627 :     if (IgnoreCase(flags)) {
    5162             :       unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
    5163         474 :           compiler->isolate()->regexp_macro_assembler_canonicalize();
    5164             :       auto compare_closure =
    5165             :           [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
    5166       63973 :             return CompareFirstCharCaseIndependent(canonicalize, a, b);
    5167       63973 :           };
    5168         474 :       alternatives->StableSort(compare_closure, first_atom, i - first_atom);
    5169             :     } else {
    5170        8153 :       alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
    5171             :     }
    5172        8627 :     if (i - first_atom > 1) found_consecutive_atoms = true;
    5173             :   }
    5174        9300 :   return found_consecutive_atoms;
    5175             : }
    5176             : 
    5177             : 
    5178             : // Optimizes ab|ac|az to a(?:b|c|d).
    5179       12998 : void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
    5180             :   Zone* zone = compiler->zone();
    5181        8370 :   ZoneList<RegExpTree*>* alternatives = this->alternatives();
    5182             :   int length = alternatives->length();
    5183             : 
    5184             :   int write_posn = 0;
    5185             :   int i = 0;
    5186       80602 :   while (i < length) {
    5187       63862 :     RegExpTree* alternative = alternatives->at(i);
    5188       63862 :     if (!alternative->IsAtom()) {
    5189       16002 :       alternatives->at(write_posn++) = alternatives->at(i);
    5190        8001 :       i++;
    5191             :       continue;
    5192             :     }
    5193       55861 :     RegExpAtom* const atom = alternative->AsAtom();
    5194             :     JSRegExp::Flags flags = atom->flags();
    5195       55861 :     unibrow::uchar common_prefix = atom->data().at(0);
    5196             :     int first_with_prefix = i;
    5197             :     int prefix_length = atom->length();
    5198       55861 :     i++;
    5199      120352 :     while (i < length) {
    5200       56221 :       alternative = alternatives->at(i);
    5201       56221 :       if (!alternative->IsAtom()) break;
    5202       56121 :       RegExpAtom* const atom = alternative->AsAtom();
    5203       56121 :       if (atom->flags() != flags) break;
    5204       56121 :       unibrow::uchar new_prefix = atom->data().at(0);
    5205       56121 :       if (new_prefix != common_prefix) {
    5206       47695 :         if (!IgnoreCase(flags)) break;
    5207             :         unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
    5208        4628 :             compiler->isolate()->regexp_macro_assembler_canonicalize();
    5209             :         new_prefix = Canonical(canonicalize, new_prefix);
    5210             :         common_prefix = Canonical(canonicalize, common_prefix);
    5211        4628 :         if (new_prefix != common_prefix) break;
    5212             :       }
    5213             :       prefix_length = Min(prefix_length, atom->length());
    5214        8630 :       i++;
    5215             :     }
    5216       55861 :     if (i > first_with_prefix + 2) {
    5217             :       // Found worthwhile run of alternatives with common prefix of at least one
    5218             :       // character.  The sorting function above did not sort on more than one
    5219             :       // character for reasons of correctness, but there may still be a longer
    5220             :       // common prefix if the terms were similar or presorted in the input.
    5221             :       // Find out how long the common prefix is.
    5222         268 :       int run_length = i - first_with_prefix;
    5223         268 :       RegExpAtom* const atom = alternatives->at(first_with_prefix)->AsAtom();
    5224         505 :       for (int j = 1; j < run_length && prefix_length > 1; j++) {
    5225             :         RegExpAtom* old_atom =
    5226         474 :             alternatives->at(j + first_with_prefix)->AsAtom();
    5227         357 :         for (int k = 1; k < prefix_length; k++) {
    5228         711 :           if (atom->data().at(k) != old_atom->data().at(k)) {
    5229             :             prefix_length = k;
    5230             :             break;
    5231             :           }
    5232             :         }
    5233             :       }
    5234             :       RegExpAtom* prefix = new (zone)
    5235         268 :           RegExpAtom(atom->data().SubVector(0, prefix_length), flags);
    5236         268 :       ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
    5237         268 :       pair->Add(prefix, zone);
    5238             :       ZoneList<RegExpTree*>* suffixes =
    5239         268 :           new (zone) ZoneList<RegExpTree*>(run_length, zone);
    5240        8934 :       for (int j = 0; j < run_length; j++) {
    5241             :         RegExpAtom* old_atom =
    5242       17332 :             alternatives->at(j + first_with_prefix)->AsAtom();
    5243             :         int len = old_atom->length();
    5244        8666 :         if (len == prefix_length) {
    5245         302 :           suffixes->Add(new (zone) RegExpEmpty(), zone);
    5246             :         } else {
    5247             :           RegExpTree* suffix = new (zone) RegExpAtom(
    5248        8515 :               old_atom->data().SubVector(prefix_length, old_atom->length()),
    5249        8515 :               flags);
    5250        8515 :           suffixes->Add(suffix, zone);
    5251             :         }
    5252             :       }
    5253         268 :       pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
    5254         536 :       alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
    5255             :     } else {
    5256             :       // Just copy any non-worthwhile alternatives.
    5257       55825 :       for (int j = first_with_prefix; j < i; j++) {
    5258      111650 :         alternatives->at(write_posn++) = alternatives->at(j);
    5259             :       }
    5260             :     }
    5261             :   }
    5262             :   alternatives->Rewind(write_posn);  // Trim end of array.
    5263        8370 : }
    5264             : 
    5265             : 
    5266             : // Optimizes b|c|z to [bcz].
    5267        9300 : void RegExpDisjunction::FixSingleCharacterDisjunctions(
    5268        9300 :     RegExpCompiler* compiler) {
    5269             :   Zone* zone = compiler->zone();
    5270        9300 :   ZoneList<RegExpTree*>* alternatives = this->alternatives();
    5271             :   int length = alternatives->length();
    5272             : 
    5273             :   int write_posn = 0;
    5274             :   int i = 0;
    5275       91973 :   while (i < length) {
    5276       73373 :     RegExpTree* alternative = alternatives->at(i);
    5277       73373 :     if (!alternative->IsAtom()) {
    5278       51456 :       alternatives->at(write_posn++) = alternatives->at(i);
    5279       25728 :       i++;
    5280       25728 :       continue;
    5281             :     }
    5282       47645 :     RegExpAtom* const atom = alternative->AsAtom();
    5283       47645 :     if (atom->length() != 1) {
    5284       78592 :       alternatives->at(write_posn++) = alternatives->at(i);
    5285       39296 :       i++;
    5286       39296 :       continue;
    5287             :     }
    5288             :     JSRegExp::Flags flags = atom->flags();
    5289             :     DCHECK_IMPLIES(IsUnicode(flags),
    5290             :                    !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
    5291             :     bool contains_trail_surrogate =
    5292        8349 :         unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
    5293             :     int first_in_run = i;
    5294        8349 :     i++;
    5295             :     // Find a run of single-character atom alternatives that have identical
    5296             :     // flags (case independence and unicode-ness).
    5297       25135 :     while (i < length) {
    5298       16454 :       alternative = alternatives->at(i);
    5299       16454 :       if (!alternative->IsAtom()) break;
    5300       16223 :       RegExpAtom* const atom = alternative->AsAtom();
    5301       16223 :       if (atom->length() != 1) break;
    5302        8437 :       if (atom->flags() != flags) break;
    5303             :       DCHECK_IMPLIES(IsUnicode(flags),
    5304             :                      !unibrow::Utf16::IsLeadSurrogate(atom->data().at(0)));
    5305             :       contains_trail_surrogate |=
    5306       16874 :           unibrow::Utf16::IsTrailSurrogate(atom->data().at(0));
    5307        8437 :       i++;
    5308             :     }
    5309        8349 :     if (i > first_in_run + 1) {
    5310             :       // Found non-trivial run of single-character alternatives.
    5311         271 :       int run_length = i - first_in_run;
    5312             :       ZoneList<CharacterRange>* ranges =
    5313         271 :           new (zone) ZoneList<CharacterRange>(2, zone);
    5314        8979 :       for (int j = 0; j < run_length; j++) {
    5315       17416 :         RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
    5316             :         DCHECK_EQ(old_atom->length(), 1);
    5317        8708 :         ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
    5318             :       }
    5319             :       RegExpCharacterClass::CharacterClassFlags character_class_flags;
    5320         271 :       if (IsUnicode(flags) && contains_trail_surrogate) {
    5321             :         character_class_flags = RegExpCharacterClass::CONTAINS_SPLIT_SURROGATE;
    5322             :       }
    5323         271 :       alternatives->at(write_posn++) = new (zone)
    5324         813 :           RegExpCharacterClass(zone, ranges, flags, character_class_flags);
    5325             :     } else {
    5326             :       // Just copy any trivial alternatives.
    5327        8078 :       for (int j = first_in_run; j < i; j++) {
    5328       16156 :         alternatives->at(write_posn++) = alternatives->at(j);
    5329             :       }
    5330             :     }
    5331             :   }
    5332             :   alternatives->Rewind(write_posn);  // Trim end of array.
    5333        9300 : }
    5334             : 
    5335             : 
    5336       21592 : RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
    5337       10917 :                                       RegExpNode* on_success) {
    5338       30892 :   ZoneList<RegExpTree*>* alternatives = this->alternatives();
    5339             : 
    5340       10917 :   if (alternatives->length() > 2) {
    5341        9300 :     bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
    5342        9300 :     if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
    5343        9300 :     FixSingleCharacterDisjunctions(compiler);
    5344        9300 :     if (alternatives->length() == 1) {
    5345         242 :       return alternatives->at(0)->ToNode(compiler, on_success);
    5346             :     }
    5347             :   }
    5348             : 
    5349             :   int length = alternatives->length();
    5350             : 
    5351             :   ChoiceNode* result =
    5352       10675 :       new(compiler->zone()) ChoiceNode(length, compiler->zone());
    5353       87037 :   for (int i = 0; i < length; i++) {
    5354             :     GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
    5355       76362 :                                                                on_success));
    5356             :     result->AddAlternative(alternative);
    5357             :   }
    5358             :   return result;
    5359             : }
    5360             : 
    5361             : 
    5362      926139 : RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
    5363     1852278 :                                      RegExpNode* on_success) {
    5364             :   return ToNode(min(),
    5365             :                 max(),
    5366             :                 is_greedy(),
    5367             :                 body(),
    5368             :                 compiler,
    5369     1852278 :                 on_success);
    5370             : }
    5371             : 
    5372             : 
    5373             : // Scoped object to keep track of how much we unroll quantifier loops in the
    5374             : // regexp graph generator.
    5375             : class RegExpExpansionLimiter {
    5376             :  public:
    5377             :   static const int kMaxExpansionFactor = 6;
    5378       62037 :   RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
    5379             :       : compiler_(compiler),
    5380             :         saved_expansion_factor_(compiler->current_expansion_factor()),
    5381       62037 :         ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
    5382             :     DCHECK_LT(0, factor);
    5383       71577 :     if (ok_to_expand_) {
    5384       71577 :       if (factor > kMaxExpansionFactor) {
    5385             :         // Avoid integer overflow of the current expansion factor.
    5386             :         ok_to_expand_ = false;
    5387             :         compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
    5388             :       } else {
    5389       71449 :         int new_factor = saved_expansion_factor_ * factor;
    5390       71449 :         ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
    5391             :         compiler->set_current_expansion_factor(new_factor);
    5392             :       }
    5393             :     }
    5394             :   }
    5395             : 
    5396             :   ~RegExpExpansionLimiter() {
    5397             :     compiler_->set_current_expansion_factor(saved_expansion_factor_);
    5398             :   }
    5399             : 
    5400             :   bool ok_to_expand() { return ok_to_expand_; }
    5401             : 
    5402             :  private:
    5403             :   RegExpCompiler* compiler_;
    5404             :   int saved_expansion_factor_;
    5405             :   bool ok_to_expand_;
    5406             : 
    5407             :   DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
    5408             : };
    5409             : 
    5410             : 
    5411     1013027 : RegExpNode* RegExpQuantifier::ToNode(int min,
    5412             :                                      int max,
    5413             :                                      bool is_greedy,
    5414             :                                      RegExpTree* body,
    5415     3029430 :                                      RegExpCompiler* compiler,
    5416             :                                      RegExpNode* on_success,
    5417             :                                      bool not_at_start) {
    5418             :   // x{f, t} becomes this:
    5419             :   //
    5420             :   //             (r++)<-.
    5421             :   //               |     `
    5422             :   //               |     (x)
    5423             :   //               v     ^
    5424             :   //      (r=0)-->(?)---/ [if r < t]
    5425             :   //               |
    5426             :   //   [if r >= f] \----> ...
    5427             :   //
    5428             : 
    5429             :   // 15.10.2.5 RepeatMatcher algorithm.
    5430             :   // The parser has already eliminated the case where max is 0.  In the case
    5431             :   // where max_match is zero the parser has removed the quantifier if min was
    5432             :   // > 0 and removed the atom if min was 0.  See AddQuantifierToAtom.
    5433             : 
    5434             :   // If we know that we cannot match zero length then things are a little
    5435             :   // simpler since we don't need to make the special zero length match check
    5436             :   // from step 2.1.  If the min and max are small we can unroll a little in
    5437             :   // this case.
    5438             :   static const int kMaxUnrolledMinMatches = 3;  // Unroll (foo)+ and (foo){3,}
    5439             :   static const int kMaxUnrolledMaxMatches = 3;  // Unroll (foo)? and (foo){x,3}
    5440     1013027 :   if (max == 0) return on_success;  // This can happen due to recursion.
    5441     1012672 :   bool body_can_be_empty = (body->min_match() == 0);
    5442             :   int body_start_reg = RegExpCompiler::kNoRegister;
    5443     1012672 :   Interval capture_registers = body->CaptureRegisters();
    5444     1012672 :   bool needs_capture_clearing = !capture_registers.is_empty();
    5445             :   Zone* zone = compiler->zone();
    5446             : 
    5447     1012672 :   if (body_can_be_empty) {
    5448             :     body_start_reg = compiler->AllocateRegister();
    5449     1012167 :   } else if (compiler->optimize() && !needs_capture_clearing) {
    5450             :     // Only unroll if there are no captures and the body can't be
    5451             :     // empty.
    5452             :     {
    5453             :       RegExpExpansionLimiter limiter(
    5454       62037 :           compiler, min + ((max != min) ? 1 : 0));
    5455       62037 :       if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
    5456        4264 :         int new_max = (max == kInfinity) ? max : max - min;
    5457             :         // Recurse once to get the loop or optional matches after the fixed
    5458             :         // ones.
    5459             :         RegExpNode* answer = ToNode(
    5460        4264 :             0, new_max, is_greedy, body, compiler, on_success, true);
    5461             :         // Unroll the forced matches from 0 to min.  This can cause chains of
    5462             :         // TextNodes (which the parser does not generate).  These should be
    5463             :         // combined if it turns out they hinder good code generation.
    5464        9228 :         for (int i = 0; i < min; i++) {
    5465        4964 :           answer = body->ToNode(compiler, answer);
    5466             :         }
    5467             :         return answer;
    5468             :       }
    5469             :     }
    5470       57773 :     if (max <= kMaxUnrolledMaxMatches && min == 0) {
    5471             :       DCHECK_LT(0, max);  // Due to the 'if' above.
    5472             :       RegExpExpansionLimiter limiter(compiler, max);
    5473        9540 :       if (limiter.ok_to_expand()) {
    5474             :         // Unroll the optional matches up to max.
    5475             :         RegExpNode* answer = on_success;
    5476        9376 :         for (int i = 0; i < max; i++) {
    5477        9376 :           ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
    5478        9376 :           if (is_greedy) {
    5479             :             alternation->AddAlternative(
    5480        9230 :                 GuardedAlternative(body->ToNode(compiler, answer)));
    5481             :             alternation->AddAlternative(GuardedAlternative(on_success));
    5482             :           } else {
    5483             :             alternation->AddAlternative(GuardedAlternative(on_success));
    5484             :             alternation->AddAlternative(
    5485         146 :                 GuardedAlternative(body->ToNode(compiler, answer)));
    5486             :           }
    5487             :           answer = alternation;
    5488        9688 :           if (not_at_start && !compiler->read_backward()) {
    5489             :             alternation->set_not_at_start();
    5490             :           }
    5491             :         }
    5492             :         return answer;
    5493             :       }
    5494             :     }
    5495             :   }
    5496      999129 :   bool has_min = min > 0;
    5497      999129 :   bool has_max = max < RegExpTree::kInfinity;
    5498      999129 :   bool needs_counter = has_min || has_max;
    5499             :   int reg_ctr = needs_counter
    5500             :       ? compiler->AllocateRegister()
    5501      999129 :       : RegExpCompiler::kNoRegister;
    5502             :   LoopChoiceNode* center = new (zone)
    5503      999129 :       LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone);
    5504     1002958 :   if (not_at_start && !compiler->read_backward()) center->set_not_at_start();
    5505             :   RegExpNode* loop_return = needs_counter
    5506             :       ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
    5507      999129 :       : static_cast<RegExpNode*>(center);
    5508      999129 :   if (body_can_be_empty) {
    5509             :     // If the body can be empty we need to check if it was and then
    5510             :     // backtrack.
    5511             :     loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
    5512             :                                               reg_ctr,
    5513             :                                               min,
    5514         505 :                                               loop_return);
    5515             :   }
    5516      999129 :   RegExpNode* body_node = body->ToNode(compiler, loop_return);
    5517      999129 :   if (body_can_be_empty) {
    5518             :     // If the body can be empty we need to store the start position
    5519             :     // so we can bail out if it was empty.
    5520         505 :     body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
    5521             :   }
    5522      999129 :   if (needs_capture_clearing) {
    5523             :     // Before entering the body of this loop we need to clear captures.
    5524        2304 :     body_node = ActionNode::ClearCaptures(capture_registers, body_node);
    5525             :   }
    5526             :   GuardedAlternative body_alt(body_node);
    5527      999129 :   if (has_max) {
    5528             :     Guard* body_guard =
    5529             :         new(zone) Guard(reg_ctr, Guard::LT, max);
    5530      902580 :     body_alt.AddGuard(body_guard, zone);
    5531             :   }
    5532             :   GuardedAlternative rest_alt(on_success);
    5533      999129 :   if (has_min) {
    5534             :     Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
    5535        1321 :     rest_alt.AddGuard(rest_guard, zone);
    5536             :   }
    5537      999129 :   if (is_greedy) {
    5538             :     center->AddLoopAlternative(body_alt);
    5539             :     center->AddContinueAlternative(rest_alt);
    5540             :   } else {
    5541             :     center->AddContinueAlternative(rest_alt);
    5542             :     center->AddLoopAlternative(body_alt);
    5543             :   }
    5544      999129 :   if (needs_counter) {
    5545      903324 :     return ActionNode::SetRegister(reg_ctr, 0, center);
    5546             :   } else {
    5547             :     return center;
    5548             :   }
    5549             : }
    5550             : 
    5551             : namespace {
    5552             : // Desugar \b to (?<=\w)(?=\W)|(?<=\W)(?=\w) and
    5553             : //         \B to (?<=\w)(?=\w)|(?<=\W)(?=\W)
    5554          80 : RegExpNode* BoundaryAssertionAsLookaround(RegExpCompiler* compiler,
    5555             :                                           RegExpNode* on_success,
    5556             :                                           RegExpAssertion::AssertionType type,
    5557             :                                           JSRegExp::Flags flags) {
    5558             :   DCHECK(NeedsUnicodeCaseEquivalents(flags));
    5559             :   Zone* zone = compiler->zone();
    5560             :   ZoneList<CharacterRange>* word_range =
    5561          80 :       new (zone) ZoneList<CharacterRange>(2, zone);
    5562          80 :   CharacterRange::AddClassEscape('w', word_range, true, zone);
    5563             :   int stack_register = compiler->UnicodeLookaroundStackRegister();
    5564             :   int position_register = compiler->UnicodeLookaroundPositionRegister();
    5565          80 :   ChoiceNode* result = new (zone) ChoiceNode(2, zone);
    5566             :   // Add two choices. The (non-)boundary could start with a word or
    5567             :   // a non-word-character.
    5568         240 :   for (int i = 0; i < 2; i++) {
    5569         160 :     bool lookbehind_for_word = i == 0;
    5570             :     bool lookahead_for_word =
    5571         160 :         (type == RegExpAssertion::BOUNDARY) ^ lookbehind_for_word;
    5572             :     // Look to the left.
    5573             :     RegExpLookaround::Builder lookbehind(lookbehind_for_word, on_success,
    5574         160 :                                          stack_register, position_register);
    5575             :     RegExpNode* backward = TextNode::CreateForCharacterRanges(
    5576         160 :         zone, word_range, true, lookbehind.on_match_success(), flags);
    5577             :     // Look to the right.
    5578             :     RegExpLookaround::Builder lookahead(lookahead_for_word,
    5579             :                                         lookbehind.ForMatch(backward),
    5580         160 :                                         stack_register, position_register);
    5581             :     RegExpNode* forward = TextNode::CreateForCharacterRanges(
    5582         160 :         zone, word_range, false, lookahead.on_match_success(), flags);
    5583         160 :     result->AddAlternative(GuardedAlternative(lookahead.ForMatch(forward)));
    5584             :   }
    5585          80 :   return result;
    5586             : }
    5587             : }  // anonymous namespace
    5588             : 
    5589        5473 : RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
    5590        5473 :                                     RegExpNode* on_success) {
    5591             :   NodeInfo info;
    5592             :   Zone* zone = compiler->zone();
    5593             : 
    5594        5473 :   switch (assertion_type()) {
    5595             :     case START_OF_LINE:
    5596         129 :       return AssertionNode::AfterNewline(on_success);
    5597             :     case START_OF_INPUT:
    5598        3011 :       return AssertionNode::AtStart(on_success);
    5599             :     case BOUNDARY:
    5600             :       return NeedsUnicodeCaseEquivalents(flags_)
    5601             :                  ? BoundaryAssertionAsLookaround(compiler, on_success, BOUNDARY,
    5602             :                                                  flags_)
    5603         176 :                  : AssertionNode::AtBoundary(on_success);
    5604             :     case NON_BOUNDARY:
    5605             :       return NeedsUnicodeCaseEquivalents(flags_)
    5606             :                  ? BoundaryAssertionAsLookaround(compiler, on_success,
    5607             :                                                  NON_BOUNDARY, flags_)
    5608         154 :                  : AssertionNode::AtNonBoundary(on_success);
    5609             :     case END_OF_INPUT:
    5610        1909 :       return AssertionNode::AtEnd(on_success);
    5611             :     case END_OF_LINE: {
    5612             :       // Compile $ in multiline regexps as an alternation with a positive
    5613             :       // lookahead in one side and an end-of-input on the other side.
    5614             :       // We need two registers for the lookahead.
    5615             :       int stack_pointer_register = compiler->AllocateRegister();
    5616             :       int position_register = compiler->AllocateRegister();
    5617             :       // The ChoiceNode to distinguish between a newline and end-of-input.
    5618          94 :       ChoiceNode* result = new(zone) ChoiceNode(2, zone);
    5619             :       // Create a newline atom.
    5620             :       ZoneList<CharacterRange>* newline_ranges =
    5621          94 :           new(zone) ZoneList<CharacterRange>(3, zone);
    5622          94 :       CharacterRange::AddClassEscape('n', newline_ranges, false, zone);
    5623             :       JSRegExp::Flags default_flags = JSRegExp::Flags();
    5624             :       RegExpCharacterClass* newline_atom =
    5625             :           new (zone) RegExpCharacterClass('n', default_flags);
    5626             :       TextNode* newline_matcher = new (zone) TextNode(
    5627             :           newline_atom, false, ActionNode::PositiveSubmatchSuccess(
    5628             :                                    stack_pointer_register, position_register,
    5629             :                                    0,   // No captures inside.
    5630             :                                    -1,  // Ignored if no captures.
    5631         188 :                                    on_success));
    5632             :       // Create an end-of-input matcher.
    5633             :       RegExpNode* end_of_line = ActionNode::BeginSubmatch(
    5634             :           stack_pointer_register,
    5635             :           position_register,
    5636          94 :           newline_matcher);
    5637             :       // Add the two alternatives to the ChoiceNode.
    5638             :       GuardedAlternative eol_alternative(end_of_line);
    5639             :       result->AddAlternative(eol_alternative);
    5640          94 :       GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
    5641             :       result->AddAlternative(end_alternative);
    5642             :       return result;
    5643             :     }
    5644             :     default:
    5645           0 :       UNREACHABLE();
    5646             :   }
    5647             :   return on_success;
    5648             : }
    5649             : 
    5650             : 
    5651        4740 : RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
    5652        2370 :                                         RegExpNode* on_success) {
    5653             :   return new (compiler->zone())
    5654             :       BackReferenceNode(RegExpCapture::StartRegister(index()),
    5655             :                         RegExpCapture::EndRegister(index()), flags_,
    5656        4740 :                         compiler->read_backward(), on_success);
    5657             : }
    5658             : 
    5659             : 
    5660        1036 : RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
    5661             :                                 RegExpNode* on_success) {
    5662        1036 :   return on_success;
    5663             : }
    5664             : 
    5665             : 
    5666        4368 : RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
    5667             :                                    int stack_pointer_register,
    5668             :                                    int position_register,
    5669             :                                    int capture_register_count,
    5670             :                                    int capture_register_start)
    5671             :     : is_positive_(is_positive),
    5672             :       on_success_(on_success),
    5673             :       stack_pointer_register_(stack_pointer_register),
    5674        4368 :       position_register_(position_register) {
    5675        4368 :   if (is_positive_) {
    5676             :     on_match_success_ = ActionNode::PositiveSubmatchSuccess(
    5677             :         stack_pointer_register, position_register, capture_register_count,
    5678        1556 :         capture_register_start, on_success_);
    5679             :   } else {
    5680             :     Zone* zone = on_success_->zone();
    5681             :     on_match_success_ = new (zone) NegativeSubmatchSuccess(
    5682             :         stack_pointer_register, position_register, capture_register_count,
    5683        2812 :         capture_register_start, zone);
    5684             :   }
    5685        4368 : }
    5686             : 
    5687             : 
    5688        4368 : RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
    5689        4368 :   if (is_positive_) {
    5690             :     return ActionNode::BeginSubmatch(stack_pointer_register_,
    5691        1556 :                                      position_register_, match);
    5692             :   } else {
    5693        2812 :     Zone* zone = on_success_->zone();
    5694             :     // We use a ChoiceNode to represent the negative lookaround. The first
    5695             :     // alternative is the negative match. On success, the end node backtracks.
    5696             :     // On failure, the second alternative is tried and leads to success.
    5697             :     // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
    5698             :     // first exit when calculating quick checks.
    5699             :     ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
    5700        2812 :         GuardedAlternative(match), GuardedAlternative(on_success_), zone);
    5701             :     return ActionNode::BeginSubmatch(stack_pointer_register_,
    5702        2812 :                                      position_register_, choice_node);
    5703             :   }
    5704             : }
    5705             : 
    5706             : 
    5707        3336 : RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
    5708        3336 :                                      RegExpNode* on_success) {
    5709             :   int stack_pointer_register = compiler->AllocateRegister();
    5710             :   int position_register = compiler->AllocateRegister();
    5711             : 
    5712             :   const int registers_per_capture = 2;
    5713             :   const int register_of_first_capture = 2;
    5714        1668 :   int register_count = capture_count_ * registers_per_capture;
    5715             :   int register_start =
    5716        1668 :     register_of_first_capture + capture_from_ * registers_per_capture;
    5717             : 
    5718             :   RegExpNode* result;
    5719             :   bool was_reading_backward = compiler->read_backward();
    5720        1668 :   compiler->set_read_backward(type() == LOOKBEHIND);
    5721             :   Builder builder(is_positive(), on_success, stack_pointer_register,
    5722        1668 :                   position_register, register_count, register_start);
    5723        1668 :   RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
    5724        1668 :   result = builder.ForMatch(match);
    5725             :   compiler->set_read_backward(was_reading_backward);
    5726        1668 :   return result;
    5727             : }
    5728             : 
    5729             : 
    5730       27012 : RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
    5731       27012 :                                   RegExpNode* on_success) {
    5732       27012 :   return ToNode(body(), index(), compiler, on_success);
    5733             : }
    5734             : 
    5735             : 
    5736      112549 : RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
    5737             :                                   int index,
    5738      112549 :                                   RegExpCompiler* compiler,
    5739             :                                   RegExpNode* on_success) {
    5740             :   DCHECK_NOT_NULL(body);
    5741             :   int start_reg = RegExpCapture::StartRegister(index);
    5742             :   int end_reg = RegExpCapture::EndRegister(index);
    5743      112549 :   if (compiler->read_backward()) std::swap(start_reg, end_reg);
    5744      112549 :   RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
    5745      112549 :   RegExpNode* body_node = body->ToNode(compiler, store_end);
    5746      112549 :   return ActionNode::StorePosition(start_reg, true, body_node);
    5747             : }
    5748             : 
    5749             : 
    5750       42404 : RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
    5751       21202 :                                       RegExpNode* on_success) {
    5752       21992 :   ZoneList<RegExpTree*>* children = nodes();
    5753             :   RegExpNode* current = on_success;
    5754       21202 :   if (compiler->read_backward()) {
    5755        1905 :     for (int i = 0; i < children->length(); i++) {
    5756         790 :       current = children->at(i)->ToNode(compiler, current);
    5757             :     }
    5758             :   } else {
    5759      997301 :     for (int i = children->length() - 1; i >= 0; i--) {
    5760      976424 :       current = children->at(i)->ToNode(compiler, current);
    5761             :     }
    5762             :   }
    5763       21202 :   return current;
    5764             : }
    5765             : 
    5766             : 
    5767        7397 : static void AddClass(const int* elmv,
    5768             :                      int elmc,
    5769             :                      ZoneList<CharacterRange>* ranges,
    5770             :                      Zone* zone) {
    5771        7397 :   elmc--;
    5772             :   DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
    5773       39575 :   for (int i = 0; i < elmc; i += 2) {
    5774             :     DCHECK(elmv[i] < elmv[i + 1]);
    5775       32178 :     ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone);
    5776             :   }
    5777        7397 : }
    5778             : 
    5779             : 
    5780       19915 : static void AddClassNegated(const int *elmv,
    5781             :                             int elmc,
    5782             :                             ZoneList<CharacterRange>* ranges,
    5783             :                             Zone* zone) {
    5784       19915 :   elmc--;
    5785             :   DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
    5786             :   DCHECK_NE(0x0000, elmv[0]);
    5787             :   DCHECK_NE(String::kMaxCodePoint, elmv[elmc - 1]);
    5788             :   uc16 last = 0x0000;
    5789       84877 :   for (int i = 0; i < elmc; i += 2) {
    5790             :     DCHECK(last <= elmv[i] - 1);
    5791             :     DCHECK(elmv[i] < elmv[i + 1]);
    5792       64962 :     ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone);
    5793       64962 :     last = elmv[i + 1];
    5794             :   }
    5795       19915 :   ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone);
    5796       19915 : }
    5797             : 
    5798      110260 : void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
    5799             :                                     bool add_unicode_case_equivalents,
    5800             :                                     Zone* zone) {
    5801      110260 :   if (add_unicode_case_equivalents && (type == 'w' || type == 'W')) {
    5802             :     // See #sec-runtime-semantics-wordcharacters-abstract-operation
    5803             :     // In case of unicode and ignore_case, we need to create the closure over
    5804             :     // case equivalent characters before negating.
    5805             :     ZoneList<CharacterRange>* new_ranges =
    5806         240 :         new (zone) ZoneList<CharacterRange>(2, zone);
    5807         240 :     AddClass(kWordRanges, kWordRangeCount, new_ranges, zone);
    5808         240 :     AddUnicodeCaseEquivalents(new_ranges, zone);
    5809         240 :     if (type == 'W') {
    5810             :       ZoneList<CharacterRange>* negated =
    5811          90 :           new (zone) ZoneList<CharacterRange>(2, zone);
    5812          90 :       CharacterRange::Negate(new_ranges, negated, zone);
    5813             :       new_ranges = negated;
    5814             :     }
    5815             :     ranges->AddAll(*new_ranges, zone);
    5816      110260 :     return;
    5817             :   }
    5818      110020 :   AddClassEscape(type, ranges, zone);
    5819             : }
    5820             : 
    5821      110055 : void CharacterRange::AddClassEscape(char type, ZoneList<CharacterRange>* ranges,
    5822             :                                     Zone* zone) {
    5823      110055 :   switch (type) {
    5824             :     case 's':
    5825        1703 :       AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
    5826        1703 :       break;
    5827             :     case 'S':
    5828         778 :       AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
    5829         778 :       break;
    5830             :     case 'w':
    5831        2786 :       AddClass(kWordRanges, kWordRangeCount, ranges, zone);
    5832        2786 :       break;
    5833             :     case 'W':
    5834         307 :       AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
    5835         307 :       break;
    5836             :     case 'd':
    5837        2480 :       AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
    5838        2480 :       break;
    5839             :     case 'D':
    5840         268 :       AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
    5841         268 :       break;
    5842             :     case '.':
    5843             :       AddClassNegated(kLineTerminatorRanges,
    5844             :                       kLineTerminatorRangeCount,
    5845             :                       ranges,
    5846       18562 :                       zone);
    5847       18562 :       break;
    5848             :     // This is not a character range as defined by the spec but a
    5849             :     // convenient shorthand for a character class that matches any
    5850             :     // character.
    5851             :     case '*':
    5852       82983 :       ranges->Add(CharacterRange::Everything(), zone);
    5853       82983 :       break;
    5854             :     // This is the set of characters matched by the $ and ^ symbols
    5855             :     // in multiline mode.
    5856             :     case 'n':
    5857             :       AddClass(kLineTerminatorRanges,
    5858             :                kLineTerminatorRangeCount,
    5859             :                ranges,
    5860         188 :                zone);
    5861         188 :       break;
    5862             :     default:
    5863           0 :       UNREACHABLE();
    5864             :   }
    5865      110055 : }
    5866             : 
    5867             : 
    5868           0 : Vector<const int> CharacterRange::GetWordBounds() {
    5869           0 :   return Vector<const int>(kWordRanges, kWordRangeCount - 1);
    5870             : }
    5871             : 
    5872             : // static
    5873       66955 : void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
    5874       66955 :                                         ZoneList<CharacterRange>* ranges,
    5875             :                                         bool is_one_byte) {
    5876       66955 :   CharacterRange::Canonicalize(ranges);
    5877             :   int range_count = ranges->length();
    5878      138908 :   for (int i = 0; i < range_count; i++) {
    5879       71953 :     CharacterRange range = ranges->at(i);
    5880             :     uc32 bottom = range.from();
    5881       74100 :     if (bottom > String::kMaxUtf16CodeUnit) continue;
    5882             :     uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit);
    5883             :     // Nothing to be done for surrogates.
    5884       71953 :     if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue;
    5885       69906 :     if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
    5886        1343 :       if (bottom > String::kMaxOneByteCharCode) continue;
    5887        1243 :       if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
    5888             :     }
    5889             :     unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    5890       69806 :     if (top == bottom) {
    5891             :       // If this is a singleton we just expand the one character.
    5892        4608 :       int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
    5893        7312 :       for (int i = 0; i < length; i++) {
    5894        2704 :         uc32 chr = chars[i];
    5895        2704 :         if (chr != bottom) {
    5896        1382 :           ranges->Add(CharacterRange::Singleton(chars[i]), zone);
    5897             :         }
    5898             :       }
    5899             :     } else {
    5900             :       // If this is a range we expand the characters block by block, expanding
    5901             :       // contiguous subranges (blocks) one at a time.  The approach is as
    5902             :       // follows.  For a given start character we look up the remainder of the
    5903             :       // block that contains it (represented by the end point), for instance we
    5904             :       // find 'z' if the character is 'c'.  A block is characterized by the
    5905             :       // property that all characters uncanonicalize in the same way, except
    5906             :       // that each entry in the result is incremented by the distance from the
    5907             :       // first element.  So a-z is a block because 'a' uncanonicalizes to ['a',
    5908             :       // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k].  Once
    5909             :       // we've found the end point we look up its uncanonicalization and
    5910             :       // produce a range for each element.  For instance for [c-f] we look up
    5911             :       // ['z', 'Z'] and produce [c-f] and [C-F].  We then only add a range if
    5912             :       // it is not already contained in the input, so [c-f] will be skipped but
    5913             :       // [C-F] will be added.  If this range is not completely contained in a
    5914             :       // block we do this for all the blocks covered by the range (handling
    5915             :       // characters that is not in a block as a "singleton block").
    5916             :       unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    5917             :       int pos = bottom;
    5918     7796607 :       while (pos <= top) {
    5919             :         int length =
    5920     7731409 :             isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
    5921             :         uc32 block_end;
    5922     7731409 :         if (length == 0) {
    5923             :           block_end = pos;
    5924             :         } else {
    5925             :           DCHECK_EQ(1, length);
    5926        6349 :           block_end = equivalents[0];
    5927             :         }
    5928     7731409 :         int end = (block_end > top) ? top : block_end;
    5929             :         length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
    5930     7731409 :                                                          equivalents);
    5931     8064891 :         for (int i = 0; i < length; i++) {
    5932      333482 :           uc32 c = equivalents[i];
    5933      333482 :           uc32 range_from = c - (block_end - pos);
    5934      333482 :           uc32 range_to = c - (block_end - end);
    5935      333482 :           if (!(bottom <= range_from && range_to <= top)) {
    5936        6669 :             ranges->Add(CharacterRange::Range(range_from, range_to), zone);
    5937             :           }
    5938             :         }
    5939     7731409 :         pos = end + 1;
    5940             :       }
    5941             :     }
    5942             :   }
    5943       66955 : }
    5944             : 
    5945             : 
    5946          10 : bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
    5947             :   DCHECK_NOT_NULL(ranges);
    5948             :   int n = ranges->length();
    5949          10 :   if (n <= 1) return true;
    5950          10 :   int max = ranges->at(0).to();
    5951         300 :   for (int i = 1; i < n; i++) {
    5952         290 :     CharacterRange next_range = ranges->at(i);
    5953         290 :     if (next_range.from() <= max + 1) return false;
    5954             :     max = next_range.to();
    5955             :   }
    5956             :   return true;
    5957             : }
    5958             : 
    5959             : 
    5960     1899986 : ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
    5961     1899986 :   if (ranges_ == nullptr) {
    5962       82867 :     ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
    5963       82867 :     CharacterRange::AddClassEscape(standard_set_type_, ranges_, false, zone);
    5964             :   }
    5965     1899986 :   return ranges_;
    5966             : }
    5967             : 
    5968             : 
    5969             : // Move a number of elements in a zonelist to another position
    5970             : // in the same list. Handles overlapping source and target areas.
    5971       92240 : static void MoveRanges(ZoneList<CharacterRange>* list,
    5972             :                        int from,
    5973             :                        int to,
    5974             :                        int count) {
    5975             :   // Ranges are potentially overlapping.
    5976       92240 :   if (from < to) {
    5977    10119743 :     for (int i = count - 1; i >= 0; i--) {
    5978    30117897 :       list->at(to + i) = list->at(from + i);
    5979             :     }
    5980             :   } else {
    5981     3599230 :     for (int i = 0; i < count; i++) {
    5982    10797690 :       list->at(to + i) = list->at(from + i);
    5983             :     }
    5984             :   }
    5985       92240 : }
    5986             : 
    5987             : 
    5988      173178 : static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
    5989             :                                       int count,
    5990             :                                       CharacterRange insert) {
    5991             :   // Inserts a range into list[0..count[, which must be sorted
    5992             :   // by from value and non-overlapping and non-adjacent, using at most
    5993             :   // list[0..count] for the result. Returns the number of resulting
    5994             :   // canonicalized ranges. Inserting a range may collapse existing ranges into
    5995             :   // fewer ranges, so the return value can be anything in the range 1..count+1.
    5996      173178 :   uc32 from = insert.from();
    5997      173178 :   uc32 to = insert.to();
    5998             :   int start_pos = 0;
    5999             :   int end_pos = count;
    6000    18092819 :   for (int i = count - 1; i >= 0; i--) {
    6001    18009272 :     CharacterRange current = list->at(i);
    6002    18009272 :     if (current.from() > to + 1) {
    6003             :       end_pos = i;
    6004      142257 :     } else if (current.to() + 1 < from) {
    6005       89631 :       start_pos = i + 1;
    6006             :       break;
    6007             :     }
    6008             :   }
    6009             : 
    6010             :   // Inserted range overlaps, or is adjacent to, ranges at positions
    6011             :   // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
    6012             :   // not affected by the insertion.
    6013             :   // If start_pos == end_pos, the range must be inserted before start_pos.
    6014             :   // if start_pos < end_pos, the entire range from start_pos to end_pos
    6015             :   // must be merged with the insert range.
    6016             : 
    6017      173178 :   if (start_pos == end_pos) {
    6018             :     // Insert between existing ranges at position start_pos.
    6019      132737 :     if (start_pos < count) {
    6020       80444 :       MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
    6021             :     }
    6022      132737 :     list->at(start_pos) = insert;
    6023      132737 :     return count + 1;
    6024             :   }
    6025       40441 :   if (start_pos + 1 == end_pos) {
    6026             :     // Replace single existing range at position start_pos.
    6027       28501 :     CharacterRange to_replace = list->at(start_pos);
    6028             :     int new_from = Min(to_replace.from(), from);
    6029             :     int new_to = Max(to_replace.to(), to);
    6030       28501 :     list->at(start_pos) = CharacterRange::Range(new_from, new_to);
    6031             :     return count;
    6032             :   }
    6033             :   // Replace a number of existing ranges from start_pos to end_pos - 1.
    6034             :   // Move the remaining ranges down.
    6035             : 
    6036       11940 :   int new_from = Min(list->at(start_pos).from(), from);
    6037       23880 :   int new_to = Max(list->at(end_pos - 1).to(), to);
    6038       11940 :   if (end_pos < count) {
    6039       11796 :     MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
    6040             :   }
    6041       11940 :   list->at(start_pos) = CharacterRange::Range(new_from, new_to);
    6042       11940 :   return count - (end_pos - start_pos) + 1;
    6043             : }
    6044             : 
    6045             : 
    6046          20 : void CharacterSet::Canonicalize() {
    6047             :   // Special/default classes are always considered canonical. The result
    6048             :   // of calling ranges() will be sorted.
    6049      175948 :   if (ranges_ == nullptr) return;
    6050       93304 :   CharacterRange::Canonicalize(ranges_);
    6051             : }
    6052             : 
    6053             : 
    6054      497118 : void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
    6055      497118 :   if (character_ranges->length() <= 1) return;
    6056             :   // Check whether ranges are already canonical (increasing, non-overlapping,
    6057             :   // non-adjacent).
    6058             :   int n = character_ranges->length();
    6059       63837 :   int max = character_ranges->at(0).to();
    6060             :   int i = 1;
    6061     1405638 :   while (i < n) {
    6062     1287050 :     CharacterRange current = character_ranges->at(i);
    6063     1287050 :     if (current.from() <= max + 1) {
    6064             :       break;
    6065             :     }
    6066             :     max = current.to();
    6067     1277964 :     i++;
    6068             :   }
    6069             :   // Canonical until the i'th range. If that's all of them, we are done.
    6070       63837 :   if (i == n) return;
    6071             : 
    6072             :   // The ranges at index i and forward are not canonicalized. Make them so by
    6073             :   // doing the equivalent of insertion sort (inserting each into the previous
    6074             :   // list, in order).
    6075             :   // Notice that inserting a range can reduce the number of ranges in the
    6076             :   // result due to combining of adjacent and overlapping ranges.
    6077             :   int read = i;  // Range to insert.
    6078             :   int num_canonical = i;  // Length of canonicalized part of list.
    6079      173178 :   do {
    6080             :     num_canonical = InsertRangeInCanonicalList(character_ranges,
    6081             :                                                num_canonical,
    6082      173178 :                                                character_ranges->at(read));
    6083      173178 :     read++;
    6084             :   } while (read < n);
    6085             :   character_ranges->Rewind(num_canonical);
    6086             : 
    6087             :   DCHECK(CharacterRange::IsCanonical(character_ranges));
    6088             : }
    6089             : 
    6090             : 
    6091         230 : void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
    6092             :                             ZoneList<CharacterRange>* negated_ranges,
    6093             :                             Zone* zone) {
    6094             :   DCHECK(CharacterRange::IsCanonical(ranges));
    6095             :   DCHECK_EQ(0, negated_ranges->length());
    6096             :   int range_count = ranges->length();
    6097             :   uc32 from = 0;
    6098             :   int i = 0;
    6099         460 :   if (range_count > 0 && ranges->at(0).from() == 0) {
    6100          40 :     from = ranges->at(0).to() + 1;
    6101             :     i = 1;
    6102             :   }
    6103        7480 :   while (i < range_count) {
    6104        7250 :     CharacterRange range = ranges->at(i);
    6105        7250 :     negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone);
    6106        7250 :     from = range.to() + 1;
    6107        7250 :     i++;
    6108             :   }
    6109         230 :   if (from < String::kMaxCodePoint) {
    6110             :     negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint),
    6111         180 :                         zone);
    6112             :   }
    6113         230 : }
    6114             : 
    6115             : 
    6116             : // -------------------------------------------------------------------
    6117             : // Splay tree
    6118             : 
    6119             : 
    6120      490705 : OutSet* OutSet::Extend(unsigned value, Zone* zone) {
    6121      236859 :   if (Get(value))
    6122             :     return this;
    6123      236854 :   if (successors(zone) != nullptr) {
    6124      194225 :     for (int i = 0; i < successors(zone)->length(); i++) {
    6125      414087 :       OutSet* successor = successors(zone)->at(i);
    6126      414087 :       if (successor->Get(value))
    6127             :         return successor;
    6128             :     }
    6129             :   } else {
    6130        5694 :     successors_ = new(zone) ZoneList<OutSet*>(2, zone);
    6131             :   }
    6132       33984 :   OutSet* result = new(zone) OutSet(first_, remaining_);
    6133       16992 :   result->Set(value, zone);
    6134       16992 :   successors(zone)->Add(result, zone);
    6135       16992 :   return result;
    6136             : }
    6137             : 
    6138             : 
    6139      712186 : void OutSet::Set(unsigned value, Zone *zone) {
    6140      712186 :   if (value < kFirstLimit) {
    6141      387552 :     first_ |= (1 << value);
    6142             :   } else {
    6143      889320 :     if (remaining_ == nullptr)
    6144       84582 :       remaining_ = new(zone) ZoneList<unsigned>(1, zone);
    6145      889320 :     if (remaining_->is_empty() || !remaining_->Contains(value))
    6146      323584 :       remaining_->Add(value, zone);
    6147             :   }
    6148      712186 : }
    6149             : 
    6150             : 
    6151    31126350 : bool OutSet::Get(unsigned value) const {
    6152    31126350 :   if (value < kFirstLimit) {
    6153     6624863 :     return (first_ & (1 << value)) != 0;
    6154    24501487 :   } else if (remaining_ == nullptr) {
    6155             :     return false;
    6156             :   } else {
    6157    16427384 :     return remaining_->Contains(value);
    6158             :   }
    6159             : }
    6160             : 
    6161             : 
    6162             : const uc32 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
    6163             : 
    6164             : 
    6165       88433 : void DispatchTable::AddRange(CharacterRange full_range, int value,
    6166             :                              Zone* zone) {
    6167       88433 :   CharacterRange current = full_range;
    6168       88433 :   if (tree()->is_empty()) {
    6169             :     // If this is the first range we just insert into the table.
    6170             :     ZoneSplayTree<Config>::Locator loc;
    6171        2647 :     bool inserted = tree()->Insert(current.from(), &loc);
    6172             :     DCHECK(inserted);
    6173             :     USE(inserted);
    6174             :     loc.set_value(Entry(current.from(), current.to(),
    6175        2647 :                         empty()->Extend(value, zone)));
    6176       88433 :     return;
    6177             :   }
    6178             :   // First see if there is a range to the left of this one that
    6179             :   // overlaps.
    6180             :   ZoneSplayTree<Config>::Locator loc;
    6181       85786 :   if (tree()->FindGreatestLessThan(current.from(), &loc)) {
    6182      163758 :     Entry* entry = &loc.value();
    6183             :     // If we've found a range that overlaps with this one, and it
    6184             :     // starts strictly to the left of this one, we have to fix it
    6185             :     // because the following code only handles ranges that start on
    6186             :     // or after the start point of the range we're adding.
    6187      162958 :     if (entry->from() < current.from() && entry->to() >= current.from()) {
    6188             :       // Snap the overlapping range in half around the start point of
    6189             :       // the range we're adding.
    6190             :       CharacterRange left =
    6191         400 :           CharacterRange::Range(entry->from(), current.from() - 1);
    6192             :       CharacterRange right = CharacterRange::Range(current.from(), entry->to());
    6193             :       // The left part of the overlapping range doesn't overlap.
    6194             :       // Truncate the whole entry to be just the left part.
    6195             :       entry->set_to(left.to());
    6196             :       // The right part is the one that overlaps.  We add this part
    6197             :       // to the map and let the next step deal with merging it with
    6198             :       // the range we're adding.
    6199             :       ZoneSplayTree<Config>::Locator loc;
    6200         400 :       bool inserted = tree()->Insert(right.from(), &loc);
    6201             :       DCHECK(inserted);
    6202             :       USE(inserted);
    6203             :       loc.set_value(Entry(right.from(),
    6204             :                           right.to(),
    6205             :                           entry->out_set()));
    6206             :     }
    6207             :   }
    6208      166674 :   while (current.is_valid()) {
    6209      406291 :     if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
    6210      326065 :         (loc.value().from() <= current.to()) &&
    6211       80888 :         (loc.value().to() >= current.from())) {
    6212      320192 :       Entry* entry = &loc.value();
    6213             :       // We have overlap.  If there is space between the start point of
    6214             :       // the range we're adding and where the overlapping range starts
    6215             :       // then we have to add a range covering just that space.
    6216       80888 :       if (current.from() < entry->from()) {
    6217             :         ZoneSplayTree<Config>::Locator ins;
    6218       73098 :         bool inserted = tree()->Insert(current.from(), &ins);
    6219             :         DCHECK(inserted);
    6220             :         USE(inserted);
    6221             :         ins.set_value(Entry(current.from(),
    6222             :                             entry->from() - 1,
    6223      146196 :                             empty()->Extend(value, zone)));
    6224             :         current.set_from(entry->from());
    6225             :       }
    6226             :       DCHECK_EQ(current.from(), entry->from());
    6227             :       // If the overlapping range extends beyond the one we want to add
    6228             :       // we have to snap the right part off and add it separately.
    6229       80888 :       if (entry->to() > current.to()) {
    6230             :         ZoneSplayTree<Config>::Locator ins;
    6231        4430 :         bool inserted = tree()->Insert(current.to() + 1, &ins);
    6232             :         DCHECK(inserted);
    6233             :         USE(inserted);
    6234             :         ins.set_value(Entry(current.to() + 1,
    6235             :                             entry->to(),
    6236             :                             entry->out_set()));
    6237             :         entry->set_to(current.to());
    6238             :       }
    6239             :       DCHECK(entry->to() <= current.to());
    6240             :       // The overlapping range is now completely contained by the range
    6241             :       // we're adding so we can just update it and move the start point
    6242             :       // of the range we're adding just past it.
    6243             :       entry->AddValue(value, zone);
    6244             :       DCHECK(entry->to() + 1 > current.from());
    6245       80888 :       current.set_from(entry->to() + 1);
    6246             :     } else {
    6247             :       // There is no overlap so we can just add the range
    6248             :       ZoneSplayTree<Config>::Locator ins;
    6249       80226 :       bool inserted = tree()->Insert(current.from(), &ins);
    6250             :       DCHECK(inserted);
    6251             :       USE(inserted);
    6252             :       ins.set_value(Entry(current.from(),
    6253             :                           current.to(),
    6254       80226 :                           empty()->Extend(value, zone)));
    6255             :       break;
    6256             :     }
    6257             :   }
    6258             : }
    6259             : 
    6260             : 
    6261       55010 : OutSet* DispatchTable::Get(uc32 value) {
    6262             :   ZoneSplayTree<Config>::Locator loc;
    6263       55010 :   if (!tree()->FindGreatestLessThan(value, &loc))
    6264           0 :     return empty();
    6265       93895 :   Entry* entry = &loc.value();
    6266       55010 :   if (value <= entry->to())
    6267       38885 :     return entry->out_set();
    6268             :   else
    6269       16125 :     return empty();
    6270             : }
    6271             : 
    6272             : 
    6273             : // -------------------------------------------------------------------
    6274             : // Analysis
    6275             : 
    6276             : 
    6277     1080011 : void Analysis::EnsureAnalyzed(RegExpNode* that) {
    6278             :   StackLimitCheck check(isolate());
    6279     1080011 :   if (check.HasOverflowed()) {
    6280             :     fail("Stack overflow");
    6281             :     return;
    6282             :   }
    6283     1079701 :   if (that->info()->been_analyzed || that->info()->being_analyzed)
    6284             :     return;
    6285      877180 :   that->info()->being_analyzed = true;
    6286      877180 :   that->Accept(this);
    6287      877180 :   that->info()->being_analyzed = false;
    6288      877180 :   that->info()->been_analyzed = true;
    6289             : }
    6290             : 
    6291             : 
    6292       88029 : void Analysis::VisitEnd(EndNode* that) {
    6293             :   // nothing to do
    6294       88029 : }
    6295             : 
    6296             : 
    6297      684851 : void TextNode::CalculateOffsets() {
    6298      314145 :   int element_count = elements()->length();
    6299             :   // Set up the offsets of the elements relative to the start.  This is a fixed
    6300             :   // quantity since a TextNode can only contain fixed-width things.
    6301             :   int cp_offset = 0;
    6302      684851 :   for (int i = 0; i < element_count; i++) {
    6303             :     TextElement& elm = elements()->at(i);
    6304             :     elm.set_cp_offset(cp_offset);
    6305      370706 :     cp_offset += elm.length();
    6306             :   }
    6307      314145 : }
    6308             : 
    6309             : 
    6310      948060 : void Analysis::VisitText(TextNode* that) {
    6311      632040 :   that->MakeCaseIndependent(isolate(), is_one_byte_);
    6312      316020 :   EnsureAnalyzed(that->on_success());
    6313      316020 :   if (!has_failed()) {
    6314      314145 :     that->CalculateOffsets();
    6315             :   }
    6316      316020 : }
    6317             : 
    6318             : 
    6319      579724 : void Analysis::VisitAction(ActionNode* that) {
    6320      289862 :   RegExpNode* target = that->on_success();
    6321      289862 :   EnsureAnalyzed(target);
    6322      289862 :   if (!has_failed()) {
    6323             :     // If the next node is interested in what it follows then this node
    6324             :     // has to be interested too so it can pass the information on.
    6325             :     that->info()->AddFromFollowing(target->info());
    6326             :   }
    6327      289862 : }
    6328             : 
    6329             : 
    6330      317114 : void Analysis::VisitChoice(ChoiceNode* that) {
    6331             :   NodeInfo* info = that->info();
    6332      317114 :   for (int i = 0; i < that->alternatives()->length(); i++) {
    6333      132810 :     RegExpNode* node = that->alternatives()->at(i).node();
    6334      132810 :     EnsureAnalyzed(node);
    6335      158557 :     if (has_failed()) return;
    6336             :     // Anything the following nodes need to know has to be known by
    6337             :     // this node also, so it can pass it on.
    6338             :     info->AddFromFollowing(node->info());
    6339             :   }
    6340             : }
    6341             : 
    6342             : 
    6343      893890 : void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
    6344             :   NodeInfo* info = that->info();
    6345      795460 :   for (int i = 0; i < that->alternatives()->length(); i++) {
    6346      697200 :     RegExpNode* node = that->alternatives()->at(i).node();
    6347      299470 :     if (node != that->loop_node()) {
    6348      149820 :       EnsureAnalyzed(node);
    6349      299640 :       if (has_failed()) return;
    6350             :       info->AddFromFollowing(node->info());
    6351             :     }
    6352             :   }
    6353             :   // Check the loop last since it may need the value of this node
    6354             :   // to get a correct result.
    6355       98260 :   EnsureAnalyzed(that->loop_node());
    6356       98260 :   if (!has_failed()) {
    6357             :     info->AddFromFollowing(that->loop_node()->info());
    6358             :   }
    6359             : }
    6360             : 
    6361             : 
    6362        2310 : void Analysis::VisitBackReference(BackReferenceNode* that) {
    6363        2310 :   EnsureAnalyzed(that->on_success());
    6364        2310 : }
    6365             : 
    6366             : 
    6367        5392 : void Analysis::VisitAssertion(AssertionNode* that) {
    6368        5392 :   EnsureAnalyzed(that->on_success());
    6369        5392 : }
    6370             : 
    6371             : 
    6372         188 : void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
    6373             :                                      BoyerMooreLookahead* bm,
    6374             :                                      bool not_at_start) {
    6375             :   // Working out the set of characters that a backreference can match is too
    6376             :   // hard, so we just say that any character can match.
    6377             :   bm->SetRest(offset);
    6378             :   SaveBMInfo(bm, not_at_start, offset);
    6379         188 : }
    6380             : 
    6381             : 
    6382             : STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
    6383             :               RegExpMacroAssembler::kTableSize);
    6384             : 
    6385             : 
    6386        7705 : void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
    6387        7705 :                               BoyerMooreLookahead* bm, bool not_at_start) {
    6388       55106 :   ZoneList<GuardedAlternative>* alts = alternatives();
    6389       15410 :   budget = (budget - 1) / alts->length();
    6390       94802 :   for (int i = 0; i < alts->length(); i++) {
    6391       79627 :     GuardedAlternative& alt = alts->at(i);
    6392       39931 :     if (alt.guards() != nullptr && alt.guards()->length() != 0) {
    6393             :       bm->SetRest(offset);  // Give up trying to fill in info.
    6394             :       SaveBMInfo(bm, not_at_start, offset);
    6395        7705 :       return;
    6396             :     }
    6397       39696 :     alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
    6398             :   }
    6399             :   SaveBMInfo(bm, not_at_start, offset);
    6400             : }
    6401             : 
    6402             : 
    6403      121520 : void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
    6404     1090963 :                             BoyerMooreLookahead* bm, bool not_at_start) {
    6405      121520 :   if (initial_offset >= bm->length()) return;
    6406             :   int offset = initial_offset;
    6407             :   int max_char = bm->max_char();
    6408      516116 :   for (int i = 0; i < elements()->length(); i++) {
    6409      158635 :     if (offset >= bm->length()) {
    6410      114306 :       if (initial_offset == 0) set_bm_info(not_at_start, bm);
    6411             :       return;
    6412             :     }
    6413      142518 :     TextElement text = elements()->at(i);
    6414      142518 :     if (text.text_type() == TextElement::ATOM) {
    6415             :       RegExpAtom* atom = text.atom();
    6416      195547 :       for (int j = 0; j < atom->length(); j++, offset++) {
    6417       81589 :         if (offset >= bm->length()) {
    6418        5980 :           if (initial_offset == 0) set_bm_info(not_at_start, bm);
    6419             :           return;
    6420             :         }
    6421      151218 :         uc16 character = atom->data()[j];
    6422       75609 :         if (IgnoreCase(atom->flags())) {
    6423             :           unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
    6424             :           int length = GetCaseIndependentLetters(
    6425             :               isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
    6426        4614 :               chars);
    6427       13200 :           for (int j = 0; j < length; j++) {
    6428       17172 :             bm->Set(offset, chars[j]);
    6429             :           }
    6430             :         } else {
    6431      141990 :           if (character <= max_char) bm->Set(offset, character);
    6432             :         }
    6433             :       }
    6434             :     } else {
    6435             :       DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
    6436             :       RegExpCharacterClass* char_class = text.char_class();
    6437      382501 :       ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
    6438       98189 :       if (char_class->is_negated()) {
    6439        4379 :         bm->SetAll(offset);
    6440             :       } else {
    6441      671192 :         for (int k = 0; k < ranges->length(); k++) {
    6442      450335 :           CharacterRange& range = ranges->at(k);
    6443      288691 :           if (range.from() > max_char) continue;
    6444             :           int to = Min(max_char, static_cast<int>(range.to()));
    6445      161644 :           bm->SetInterval(offset, Interval(range.from(), to));
    6446             :         }
    6447             :       }
    6448       98189 :       offset++;
    6449             :     }
    6450             :   }
    6451       99423 :   if (offset >= bm->length()) {
    6452       90184 :     if (initial_offset == 0) set_bm_info(not_at_start, bm);
    6453             :     return;
    6454             :   }
    6455        9239 :   on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
    6456        9239 :                              true);  // Not at start after a text node.
    6457        9239 :   if (initial_offset == 0) set_bm_info(not_at_start, bm);
    6458             : }
    6459             : 
    6460             : 
    6461             : // -------------------------------------------------------------------
    6462             : // Dispatch table construction
    6463             : 
    6464             : 
    6465           0 : void DispatchTableConstructor::VisitEnd(EndNode* that) {
    6466             :   AddRange(CharacterRange::Everything());
    6467           0 : }
    6468             : 
    6469             : 
    6470           0 : void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
    6471             :   node->set_being_calculated(true);
    6472           0 :   ZoneList<GuardedAlternative>* alternatives = node->alternatives();
    6473           0 :   for (int i = 0; i < alternatives->length(); i++) {
    6474             :     set_choice_index(i);
    6475           0 :     alternatives->at(i).node()->Accept(this);
    6476             :   }
    6477             :   node->set_being_calculated(false);
    6478           0 : }
    6479             : 
    6480             : 
    6481             : class AddDispatchRange {
    6482             :  public:
    6483             :   explicit AddDispatchRange(DispatchTableConstructor* constructor)
    6484           0 :     : constructor_(constructor) { }
    6485             :   void Call(uc32 from, DispatchTable::Entry entry);
    6486             :  private:
    6487             :   DispatchTableConstructor* constructor_;
    6488             : };
    6489             : 
    6490             : 
    6491           0 : void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
    6492           0 :   constructor_->AddRange(CharacterRange::Range(from, entry.to()));
    6493           0 : }
    6494             : 
    6495             : 
    6496           0 : void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
    6497           0 :   if (node->being_calculated())
    6498           0 :     return;
    6499           0 :   DispatchTable* table = node->GetTable(ignore_case_);
    6500             :   AddDispatchRange adder(this);
    6501             :   table->ForEach(&adder);
    6502             : }
    6503             : 
    6504             : 
    6505           0 : void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
    6506             :   // TODO(160): Find the node that we refer back to and propagate its start
    6507             :   // set back to here.  For now we just accept anything.
    6508             :   AddRange(CharacterRange::Everything());
    6509           0 : }
    6510             : 
    6511             : 
    6512           0 : void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
    6513           0 :   RegExpNode* target = that->on_success();
    6514           0 :   target->Accept(this);
    6515           0 : }
    6516             : 
    6517             : 
    6518        7870 : static int CompareRangeByFrom(const CharacterRange* a,
    6519        3935 :                               const CharacterRange* b) {
    6520       11805 :   return Compare<uc16>(a->from(), b->from());
    6521             : }
    6522             : 
    6523             : 
    6524         915 : void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
    6525             :   ranges->Sort(CompareRangeByFrom);
    6526             :   uc16 last = 0;
    6527        1720 :   for (int i = 0; i < ranges->length(); i++) {
    6528         805 :     CharacterRange range = ranges->at(i);
    6529         805 :     if (last < range.from())
    6530         525 :       AddRange(CharacterRange::Range(last, range.from() - 1));
    6531         805 :     if (range.to() >= last) {
    6532         715 :       if (range.to() == String::kMaxCodePoint) {
    6533          55 :         return;
    6534             :       } else {
    6535         715 :         last = range.to() + 1;
    6536             :       }
    6537             :     }
    6538             :   }
    6539          55 :   AddRange(CharacterRange::Range(last, String::kMaxCodePoint));
    6540             : }
    6541             : 
    6542             : 
    6543           0 : void DispatchTableConstructor::VisitText(TextNode* that) {
    6544           0 :   TextElement elm = that->elements()->at(0);
    6545           0 :   switch (elm.text_type()) {
    6546             :     case TextElement::ATOM: {
    6547           0 :       uc16 c = elm.atom()->data()[0];
    6548           0 :       AddRange(CharacterRange::Range(c, c));
    6549             :       break;
    6550             :     }
    6551             :     case TextElement::CHAR_CLASS: {
    6552             :       RegExpCharacterClass* tree = elm.char_class();
    6553           0 :       ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
    6554           0 :       if (tree->is_negated()) {
    6555           0 :         AddInverse(ranges);
    6556             :       } else {
    6557           0 :         for (int i = 0; i < ranges->length(); i++)
    6558             :           AddRange(ranges->at(i));
    6559             :       }
    6560             :       break;
    6561             :     }
    6562             :     default: {
    6563           0 :       UNIMPLEMENTED();
    6564             :     }
    6565             :   }
    6566           0 : }
    6567             : 
    6568             : 
    6569           0 : void DispatchTableConstructor::VisitAction(ActionNode* that) {
    6570           0 :   RegExpNode* target = that->on_success();
    6571           0 :   target->Accept(this);
    6572           0 : }
    6573             : 
    6574          40 : RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler,
    6575             :                                               RegExpNode* on_success,
    6576             :                                               JSRegExp::Flags flags) {
    6577             :   // If the regexp matching starts within a surrogate pair, step back
    6578             :   // to the lead surrogate and start matching from there.
    6579             :   DCHECK(!compiler->read_backward());
    6580             :   Zone* zone = compiler->zone();
    6581             :   ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List(
    6582          40 :       zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd));
    6583             :   ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List(
    6584          40 :       zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd));
    6585             : 
    6586          40 :   ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone);
    6587             : 
    6588             :   int stack_register = compiler->UnicodeLookaroundStackRegister();
    6589             :   int position_register = compiler->UnicodeLookaroundPositionRegister();
    6590             :   RegExpNode* step_back = TextNode::CreateForCharacterRanges(
    6591          40 :       zone, lead_surrogates, true, on_success, flags);
    6592             :   RegExpLookaround::Builder builder(true, step_back, stack_register,
    6593          40 :                                     position_register);
    6594             :   RegExpNode* match_trail = TextNode::CreateForCharacterRanges(
    6595          40 :       zone, trail_surrogates, false, builder.on_match_success(), flags);
    6596             : 
    6597             :   optional_step_back->AddAlternative(
    6598          40 :       GuardedAlternative(builder.ForMatch(match_trail)));
    6599             :   optional_step_back->AddAlternative(GuardedAlternative(on_success));
    6600             : 
    6601          40 :   return optional_step_back;
    6602             : }
    6603             : 
    6604             : 
    6605       85546 : RegExpEngine::CompilationResult RegExpEngine::Compile(
    6606             :     Isolate* isolate, Zone* zone, RegExpCompileData* data,
    6607             :     JSRegExp::Flags flags, Handle<String> pattern,
    6608             :     Handle<String> sample_subject, bool is_one_byte) {
    6609       85546 :   if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
    6610             :     return IrregexpRegExpTooBig(isolate);
    6611             :   }
    6612             :   bool is_sticky = IsSticky(flags);
    6613             :   bool is_global = IsGlobal(flags);
    6614             :   bool is_unicode = IsUnicode(flags);
    6615       85537 :   RegExpCompiler compiler(isolate, zone, data->capture_count, is_one_byte);
    6616             : 
    6617       85537 :   if (compiler.optimize())
    6618       84372 :     compiler.set_optimize(!TooMuchRegExpCode(isolate, pattern));
    6619             : 
    6620             :   // Sample some characters from the middle of the string.
    6621             :   static const int kSampleSize = 128;
    6622             : 
    6623       85537 :   sample_subject = String::Flatten(isolate, sample_subject);
    6624             :   int chars_sampled = 0;
    6625       85537 :   int half_way = (sample_subject->length() - kSampleSize) / 2;
    6626     1078204 :   for (int i = Max(0, half_way);
    6627      539102 :        i < sample_subject->length() && chars_sampled < kSampleSize;
    6628             :        i++, chars_sampled++) {
    6629      907130 :     compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
    6630             :   }
    6631             : 
    6632             :   // Wrap the body of the regexp in capture #0.
    6633             :   RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
    6634             :                                                     0,
    6635             :                                                     &compiler,
    6636       85537 :                                                     compiler.accept());
    6637             :   RegExpNode* node = captured_body;
    6638       85537 :   bool is_end_anchored = data->tree->IsAnchoredAtEnd();
    6639       85537 :   bool is_start_anchored = data->tree->IsAnchoredAtStart();
    6640       85537 :   int max_length = data->tree->max_match();
    6641       85537 :   if (!is_start_anchored && !is_sticky) {
    6642             :     // Add a .*? at the beginning, outside the body capture, unless
    6643             :     // this expression is anchored at the beginning or sticky.
    6644             :     JSRegExp::Flags default_flags = JSRegExp::Flags();
    6645             :     RegExpNode* loop_node = RegExpQuantifier::ToNode(
    6646             :         0, RegExpTree::kInfinity, false,
    6647             :         new (zone) RegExpCharacterClass('*', default_flags), &compiler,
    6648      165248 :         captured_body, data->contains_anchor);
    6649             : 
    6650       82624 :     if (data->contains_anchor) {
    6651             :       // Unroll loop once, to take care of the case that might start
    6652             :       // at the start of input.
    6653         149 :       ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
    6654             :       first_step_node->AddAlternative(GuardedAlternative(captured_body));
    6655             :       first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode(
    6656             :           new (zone) RegExpCharacterClass('*', default_flags), false,
    6657         149 :           loop_node)));
    6658             :       node = first_step_node;
    6659             :     } else {
    6660             :       node = loop_node;
    6661             :     }
    6662             :   }
    6663       85537 :   if (is_one_byte) {
    6664       14492 :     node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
    6665             :     // Do it again to propagate the new nodes to places where they were not
    6666             :     // put because they had not been calculated yet.
    6667       14492 :     if (node != nullptr) {
    6668       14192 :       node = node->FilterOneByte(RegExpCompiler::kMaxRecursion);
    6669             :     }
    6670       71045 :   } else if (is_unicode && (is_global || is_sticky)) {
    6671          40 :     node = OptionallyStepBackToLeadSurrogate(&compiler, node, flags);
    6672             :   }
    6673             : 
    6674       85537 :   if (node == nullptr) node = new (zone) EndNode(EndNode::BACKTRACK, zone);
    6675       85537 :   data->node = node;
    6676             :   Analysis analysis(isolate, is_one_byte);
    6677       85537 :   analysis.EnsureAnalyzed(node);
    6678       85537 :   if (analysis.has_failed()) {
    6679             :     const char* error_message = analysis.error_message();
    6680         310 :     return CompilationResult(isolate, error_message);
    6681             :   }
    6682             : 
    6683             :   // Create the correct assembler for the architecture.
    6684             :   std::unique_ptr<RegExpMacroAssembler> macro_assembler;
    6685       85227 :   if (!FLAG_regexp_interpret_all) {
    6686             :     // Native regexp implementation.
    6687             :     DCHECK(!FLAG_jitless);
    6688             : 
    6689             :     NativeRegExpMacroAssembler::Mode mode =
    6690             :         is_one_byte ? NativeRegExpMacroAssembler::LATIN1
    6691       81986 :                     : NativeRegExpMacroAssembler::UC16;
    6692             : 
    6693             : #if V8_TARGET_ARCH_IA32
    6694             :     macro_assembler.reset(new RegExpMacroAssemblerIA32(
    6695             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6696             : #elif V8_TARGET_ARCH_X64
    6697             :     macro_assembler.reset(new RegExpMacroAssemblerX64(
    6698       81986 :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6699             : #elif V8_TARGET_ARCH_ARM
    6700             :     macro_assembler.reset(new RegExpMacroAssemblerARM(
    6701             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6702             : #elif V8_TARGET_ARCH_ARM64
    6703             :     macro_assembler.reset(new RegExpMacroAssemblerARM64(
    6704             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6705             : #elif V8_TARGET_ARCH_S390
    6706             :     macro_assembler.reset(new RegExpMacroAssemblerS390(
    6707             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6708             : #elif V8_TARGET_ARCH_PPC
    6709             :     macro_assembler.reset(new RegExpMacroAssemblerPPC(
    6710             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6711             : #elif V8_TARGET_ARCH_MIPS
    6712             :     macro_assembler.reset(new RegExpMacroAssemblerMIPS(
    6713             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6714             : #elif V8_TARGET_ARCH_MIPS64
    6715             :     macro_assembler.reset(new RegExpMacroAssemblerMIPS(
    6716             :         isolate, zone, mode, (data->capture_count + 1) * 2));
    6717             : #else
    6718             : #error "Unsupported architecture"
    6719             : #endif
    6720             :   } else {
    6721             :     DCHECK(FLAG_regexp_interpret_all);
    6722             : 
    6723             :     // Interpreted regexp implementation.
    6724        3241 :     macro_assembler.reset(new RegExpMacroAssemblerIrregexp(isolate, zone));
    6725             :   }
    6726             : 
    6727       85227 :   macro_assembler->set_slow_safe(TooMuchRegExpCode(isolate, pattern));
    6728             : 
    6729             :   // Inserted here, instead of in Assembler, because it depends on information
    6730             :   // in the AST that isn't replicated in the Node structure.
    6731             :   static const int kMaxBacksearchLimit = 1024;
    6732       85769 :   if (is_end_anchored && !is_start_anchored && !is_sticky &&
    6733         542 :       max_length < kMaxBacksearchLimit) {
    6734         210 :     macro_assembler->SetCurrentPositionFromEnd(max_length);
    6735             :   }
    6736             : 
    6737       85227 :   if (is_global) {
    6738             :     RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL;
    6739        3819 :     if (data->tree->min_match() > 0) {
    6740             :       mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK;
    6741         138 :     } else if (is_unicode) {
    6742             :       mode = RegExpMacroAssembler::GLOBAL_UNICODE;
    6743             :     }
    6744             :     macro_assembler->set_global_mode(mode);
    6745             :   }
    6746             : 
    6747             :   return compiler.Assemble(isolate, macro_assembler.get(), node,
    6748       85227 :                            data->capture_count, pattern);
    6749             : }
    6750             : 
    6751      339198 : bool RegExpEngine::TooMuchRegExpCode(Isolate* isolate, Handle<String> pattern) {
    6752      169599 :   Heap* heap = isolate->heap();
    6753      169599 :   bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
    6754      169599 :   if (isolate->total_regexp_code_generated() >
    6755      298152 :           RegExpImpl::kRegExpCompiledLimit &&
    6756      128553 :       heap->CommittedMemoryExecutable() >
    6757             :           RegExpImpl::kRegExpExecutableMemoryLimit) {
    6758             :     too_much = true;
    6759             :   }
    6760      169599 :   return too_much;
    6761             : }
    6762             : 
    6763       36142 : Object RegExpResultsCache::Lookup(Heap* heap, String key_string,
    6764             :                                   Object key_pattern,
    6765             :                                   FixedArray* last_match_cache,
    6766             :                                   ResultsCacheType type) {
    6767             :   FixedArray cache;
    6768       36142 :   if (!key_string->IsInternalizedString()) return Smi::kZero;
    6769        5230 :   if (type == STRING_SPLIT_SUBSTRINGS) {
    6770             :     DCHECK(key_pattern->IsString());
    6771        5230 :     if (!key_pattern->IsInternalizedString()) return Smi::kZero;
    6772        5230 :     cache = heap->string_split_cache();
    6773             :   } else {
    6774             :     DCHECK(type == REGEXP_MULTIPLE_INDICES);
    6775             :     DCHECK(key_pattern->IsFixedArray());
    6776           0 :     cache = heap->regexp_multiple_cache();
    6777             :   }
    6778             : 
    6779        5230 :   uint32_t hash = key_string->Hash();
    6780             :   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
    6781        5230 :                     ~(kArrayEntriesPerCacheEntry - 1));
    6782       14339 :   if (cache->get(index + kStringOffset) != key_string ||
    6783        3879 :       cache->get(index + kPatternOffset) != key_pattern) {
    6784             :     index =
    6785        1382 :         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
    6786        2855 :     if (cache->get(index + kStringOffset) != key_string ||
    6787          91 :         cache->get(index + kPatternOffset) != key_pattern) {
    6788        1302 :       return Smi::kZero;
    6789             :     }
    6790             :   }
    6791             : 
    6792        7856 :   *last_match_cache = FixedArray::cast(cache->get(index + kLastMatchOffset));
    6793        3928 :   return cache->get(index + kArrayOffset);
    6794             : }
    6795             : 
    6796       32214 : void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string,
    6797             :                                Handle<Object> key_pattern,
    6798             :                                Handle<FixedArray> value_array,
    6799             :                                Handle<FixedArray> last_match_cache,
    6800             :                                ResultsCacheType type) {
    6801             :   Factory* factory = isolate->factory();
    6802             :   Handle<FixedArray> cache;
    6803       64428 :   if (!key_string->IsInternalizedString()) return;
    6804        1302 :   if (type == STRING_SPLIT_SUBSTRINGS) {
    6805             :     DCHECK(key_pattern->IsString());
    6806        2604 :     if (!key_pattern->IsInternalizedString()) return;
    6807             :     cache = factory->string_split_cache();
    6808             :   } else {
    6809             :     DCHECK(type == REGEXP_MULTIPLE_INDICES);
    6810             :     DCHECK(key_pattern->IsFixedArray());
    6811             :     cache = factory->regexp_multiple_cache();
    6812             :   }
    6813             : 
    6814        1302 :   uint32_t hash = key_string->Hash();
    6815             :   uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
    6816        1302 :                     ~(kArrayEntriesPerCacheEntry - 1));
    6817        2604 :   if (cache->get(index + kStringOffset) == Smi::kZero) {
    6818        2306 :     cache->set(index + kStringOffset, *key_string);
    6819        2306 :     cache->set(index + kPatternOffset, *key_pattern);
    6820        2306 :     cache->set(index + kArrayOffset, *value_array);
    6821        2306 :     cache->set(index + kLastMatchOffset, *last_match_cache);
    6822             :   } else {
    6823             :     uint32_t index2 =
    6824         149 :         ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
    6825         298 :     if (cache->get(index2 + kStringOffset) == Smi::kZero) {
    6826         194 :       cache->set(index2 + kStringOffset, *key_string);
    6827         194 :       cache->set(index2 + kPatternOffset, *key_pattern);
    6828         194 :       cache->set(index2 + kArrayOffset, *value_array);
    6829         194 :       cache->set(index2 + kLastMatchOffset, *last_match_cache);
    6830             :     } else {
    6831          52 :       cache->set(index2 + kStringOffset, Smi::kZero);
    6832         104 :       cache->set(index2 + kPatternOffset, Smi::kZero);
    6833         104 :       cache->set(index2 + kArrayOffset, Smi::kZero);
    6834         104 :       cache->set(index2 + kLastMatchOffset, Smi::kZero);
    6835         104 :       cache->set(index + kStringOffset, *key_string);
    6836         104 :       cache->set(index + kPatternOffset, *key_pattern);
    6837         104 :       cache->set(index + kArrayOffset, *value_array);
    6838         104 :       cache->set(index + kLastMatchOffset, *last_match_cache);
    6839             :     }
    6840             :   }
    6841             :   // If the array is a reasonably short list of substrings, convert it into a
    6842             :   // list of internalized strings.
    6843        2604 :   if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
    6844       13203 :     for (int i = 0; i < value_array->length(); i++) {
    6845             :       Handle<String> str(String::cast(value_array->get(i)), isolate);
    6846        5968 :       Handle<String> internalized_str = factory->InternalizeString(str);
    6847       11936 :       value_array->set(i, *internalized_str);
    6848             :     }
    6849             :   }
    6850             :   // Convert backing store to a copy-on-write array.
    6851             :   value_array->set_map_no_write_barrier(
    6852             :       ReadOnlyRoots(isolate).fixed_cow_array_map());
    6853             : }
    6854             : 
    6855      149020 : void RegExpResultsCache::Clear(FixedArray cache) {
    6856    38298140 :   for (int i = 0; i < kRegExpResultsCacheSize; i++) {
    6857    38149120 :     cache->set(i, Smi::kZero);
    6858             :   }
    6859      149020 : }
    6860             : 
    6861             : }  // namespace internal
    6862      178779 : }  // namespace v8

Generated by: LCOV version 1.10