LCOV - code coverage report
Current view: top level - src/regexp - jsregexp.h (source / functions) Hit Total Coverage
Test: app.info Lines: 144 169 85.2 %
Date: 2019-02-19 Functions: 25 59 42.4 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_REGEXP_JSREGEXP_H_
       6             : #define V8_REGEXP_JSREGEXP_H_
       7             : 
       8             : #include "src/allocation.h"
       9             : #include "src/isolate.h"
      10             : #include "src/objects/js-regexp.h"
      11             : #include "src/regexp/regexp-ast.h"
      12             : #include "src/regexp/regexp-macro-assembler.h"
      13             : 
      14             : namespace v8 {
      15             : namespace internal {
      16             : 
      17             : class NodeVisitor;
      18             : class RegExpCompiler;
      19             : class RegExpMacroAssembler;
      20             : class RegExpNode;
      21             : class RegExpTree;
      22             : class BoyerMooreLookahead;
      23             : 
      24             : inline bool IgnoreCase(JSRegExp::Flags flags) {
      25             :   return (flags & JSRegExp::kIgnoreCase) != 0;
      26             : }
      27             : 
      28             : inline bool IsUnicode(JSRegExp::Flags flags) {
      29       87218 :   return (flags & JSRegExp::kUnicode) != 0;
      30             : }
      31             : 
      32             : inline bool IsSticky(JSRegExp::Flags flags) {
      33       85537 :   return (flags & JSRegExp::kSticky) != 0;
      34             : }
      35             : 
      36             : inline bool IsGlobal(JSRegExp::Flags flags) {
      37       85537 :   return (flags & JSRegExp::kGlobal) != 0;
      38             : }
      39             : 
      40             : inline bool DotAll(JSRegExp::Flags flags) {
      41             :   return (flags & JSRegExp::kDotAll) != 0;
      42             : }
      43             : 
      44             : inline bool Multiline(JSRegExp::Flags flags) {
      45             :   return (flags & JSRegExp::kMultiline) != 0;
      46             : }
      47             : 
      48             : inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) {
      49             :   // Both unicode and ignore_case flags are set. We need to use ICU to find
      50             :   // the closure over case equivalents.
      51      419701 :   return IsUnicode(flags) && IgnoreCase(flags);
      52             : }
      53             : 
      54             : class RegExpImpl {
      55             :  public:
      56             :   // Whether the irregexp engine generates native code or interpreter bytecode.
      57             :   static bool UsesNativeRegExp() { return !FLAG_regexp_interpret_all; }
      58             : 
      59             :   // Returns a string representation of a regular expression.
      60             :   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
      61             :   // This function calls the garbage collector if necessary.
      62             :   static Handle<String> ToString(Handle<Object> value);
      63             : 
      64             :   // Parses the RegExp pattern and prepares the JSRegExp object with
      65             :   // generic data and choice of implementation - as well as what
      66             :   // the implementation wants to store in the data field.
      67             :   // Returns false if compilation fails.
      68             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Compile(
      69             :       Isolate* isolate, Handle<JSRegExp> re, Handle<String> pattern,
      70             :       JSRegExp::Flags flags);
      71             : 
      72             :   // See ECMA-262 section 15.10.6.2.
      73             :   // This function calls the garbage collector if necessary.
      74             :   V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Exec(
      75             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
      76             :       int index, Handle<RegExpMatchInfo> last_match_info);
      77             : 
      78             :   // Prepares a JSRegExp object with Irregexp-specific data.
      79             :   static void IrregexpInitialize(Isolate* isolate, Handle<JSRegExp> re,
      80             :                                  Handle<String> pattern, JSRegExp::Flags flags,
      81             :                                  int capture_register_count);
      82             : 
      83             :   static void AtomCompile(Isolate* isolate, Handle<JSRegExp> re,
      84             :                           Handle<String> pattern, JSRegExp::Flags flags,
      85             :                           Handle<String> match_pattern);
      86             : 
      87             :   static int AtomExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
      88             :                          Handle<String> subject, int index, int32_t* output,
      89             :                          int output_size);
      90             : 
      91             :   static Handle<Object> AtomExec(Isolate* isolate, Handle<JSRegExp> regexp,
      92             :                                  Handle<String> subject, int index,
      93             :                                  Handle<RegExpMatchInfo> last_match_info);
      94             : 
      95             :   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
      96             : 
      97             :   // Prepare a RegExp for being executed one or more times (using
      98             :   // IrregexpExecOnce) on the subject.
      99             :   // This ensures that the regexp is compiled for the subject, and that
     100             :   // the subject is flat.
     101             :   // Returns the number of integer spaces required by IrregexpExecOnce
     102             :   // as its "registers" argument.  If the regexp cannot be compiled,
     103             :   // an exception is set as pending, and this function returns negative.
     104             :   static int IrregexpPrepare(Isolate* isolate, Handle<JSRegExp> regexp,
     105             :                              Handle<String> subject);
     106             : 
     107             :   // Execute a regular expression on the subject, starting from index.
     108             :   // If matching succeeds, return the number of matches.  This can be larger
     109             :   // than one in the case of global regular expressions.
     110             :   // The captures and subcaptures are stored into the registers vector.
     111             :   // If matching fails, returns RE_FAILURE.
     112             :   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
     113             :   static int IrregexpExecRaw(Isolate* isolate, Handle<JSRegExp> regexp,
     114             :                              Handle<String> subject, int index, int32_t* output,
     115             :                              int output_size);
     116             : 
     117             :   // Execute an Irregexp bytecode pattern.
     118             :   // On a successful match, the result is a JSArray containing
     119             :   // captured positions.  On a failure, the result is the null value.
     120             :   // Returns an empty handle in case of an exception.
     121             :   V8_WARN_UNUSED_RESULT static MaybeHandle<Object> IrregexpExec(
     122             :       Isolate* isolate, Handle<JSRegExp> regexp, Handle<String> subject,
     123             :       int index, Handle<RegExpMatchInfo> last_match_info);
     124             : 
     125             :   // Set last match info.  If match is nullptr, then setting captures is
     126             :   // omitted.
     127             :   static Handle<RegExpMatchInfo> SetLastMatchInfo(
     128             :       Isolate* isolate, Handle<RegExpMatchInfo> last_match_info,
     129             :       Handle<String> subject, int capture_count, int32_t* match);
     130             : 
     131             :   class GlobalCache {
     132             :    public:
     133             :     GlobalCache(Handle<JSRegExp> regexp,
     134             :                 Handle<String> subject,
     135             :                 Isolate* isolate);
     136             : 
     137             :     V8_INLINE ~GlobalCache();
     138             : 
     139             :     // Fetch the next entry in the cache for global regexp match results.
     140             :     // This does not set the last match info.  Upon failure, nullptr is
     141             :     // returned. The cause can be checked with Result().  The previous result is
     142             :     // still in available in memory when a failure happens.
     143             :     V8_INLINE int32_t* FetchNext();
     144             : 
     145             :     V8_INLINE int32_t* LastSuccessfulMatch();
     146             : 
     147             :     V8_INLINE bool HasException() { return num_matches_ < 0; }
     148             : 
     149             :    private:
     150             :     int AdvanceZeroLength(int last_index);
     151             : 
     152             :     int num_matches_;
     153             :     int max_matches_;
     154             :     int current_match_index_;
     155             :     int registers_per_match_;
     156             :     // Pointer to the last set of captures.
     157             :     int32_t* register_array_;
     158             :     int register_array_size_;
     159             :     Handle<JSRegExp> regexp_;
     160             :     Handle<String> subject_;
     161             :     Isolate* isolate_;
     162             :   };
     163             : 
     164             :   // For acting on the JSRegExp data FixedArray.
     165             :   static int IrregexpMaxRegisterCount(FixedArray re);
     166             :   static void SetIrregexpMaxRegisterCount(FixedArray re, int value);
     167             :   static void SetIrregexpCaptureNameMap(FixedArray re,
     168             :                                         Handle<FixedArray> value);
     169             :   static int IrregexpNumberOfCaptures(FixedArray re);
     170             :   static int IrregexpNumberOfRegisters(FixedArray re);
     171             :   static ByteArray IrregexpByteCode(FixedArray re, bool is_one_byte);
     172             :   static Code IrregexpNativeCode(FixedArray re, bool is_one_byte);
     173             : 
     174             :   // Limit the space regexps take up on the heap.  In order to limit this we
     175             :   // would like to keep track of the amount of regexp code on the heap.  This
     176             :   // is not tracked, however.  As a conservative approximation we track the
     177             :   // total regexp code compiled including code that has subsequently been freed
     178             :   // and the total executable memory at any point.
     179             :   static const size_t kRegExpExecutableMemoryLimit = 16 * MB;
     180             :   static const size_t kRegExpCompiledLimit = 1 * MB;
     181             :   static const int kRegExpTooLargeToOptimize = 20 * KB;
     182             : 
     183             :  private:
     184             :   static bool CompileIrregexp(Isolate* isolate, Handle<JSRegExp> re,
     185             :                               Handle<String> sample_subject, bool is_one_byte);
     186             :   static inline bool EnsureCompiledIrregexp(Isolate* isolate,
     187             :                                             Handle<JSRegExp> re,
     188             :                                             Handle<String> sample_subject,
     189             :                                             bool is_one_byte);
     190             : };
     191             : 
     192             : 
     193             : // Represents the location of one element relative to the intersection of
     194             : // two sets. Corresponds to the four areas of a Venn diagram.
     195             : enum ElementInSetsRelation {
     196             :   kInsideNone = 0,
     197             :   kInsideFirst = 1,
     198             :   kInsideSecond = 2,
     199             :   kInsideBoth = 3
     200             : };
     201             : 
     202             : 
     203             : // A set of unsigned integers that behaves especially well on small
     204             : // integers (< 32).  May do zone-allocation.
     205             : class OutSet: public ZoneObject {
     206             :  public:
     207     1022173 :   OutSet() : first_(0), remaining_(nullptr), successors_(nullptr) {}
     208             :   OutSet* Extend(unsigned value, Zone* zone);
     209             :   bool Get(unsigned value) const;
     210             :   static const unsigned kFirstLimit = 32;
     211             : 
     212             :  private:
     213             :   // Destructively set a value in this set.  In most cases you want
     214             :   // to use Extend instead to ensure that only one instance exists
     215             :   // that contains the same values.
     216             :   void Set(unsigned value, Zone* zone);
     217             : 
     218             :   // The successors are a list of sets that contain the same values
     219             :   // as this set and the one more value that is not present in this
     220             :   // set.
     221             :   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
     222             : 
     223             :   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
     224       16992 :       : first_(first), remaining_(remaining), successors_(nullptr) {}
     225             :   uint32_t first_;
     226             :   ZoneList<unsigned>* remaining_;
     227             :   ZoneList<OutSet*>* successors_;
     228             :   friend class Trace;
     229             : };
     230             : 
     231             : 
     232             : // A mapping from integers, specified as ranges, to a set of integers.
     233             : // Used for mapping character ranges to choices.
     234             : class DispatchTable : public ZoneObject {
     235             :  public:
     236             :   explicit DispatchTable(Zone* zone) : tree_(zone) { }
     237             : 
     238             :   class Entry {
     239             :    public:
     240             :     Entry() : from_(0), to_(0), out_set_(nullptr) {}
     241             :     Entry(uc32 from, uc32 to, OutSet* out_set)
     242             :         : from_(from), to_(to), out_set_(out_set) {
     243             :       DCHECK(from <= to);
     244             :     }
     245             :     uc32 from() { return from_; }
     246             :     uc32 to() { return to_; }
     247        4830 :     void set_to(uc32 value) { to_ = value; }
     248             :     void AddValue(int value, Zone* zone) {
     249       80888 :       out_set_ = out_set_->Extend(value, zone);
     250             :     }
     251             :     OutSet* out_set() { return out_set_; }
     252             :    private:
     253             :     uc32 from_;
     254             :     uc32 to_;
     255             :     OutSet* out_set_;
     256             :   };
     257             : 
     258             :   class Config {
     259             :    public:
     260             :     typedef uc32 Key;
     261             :     typedef Entry Value;
     262             :     static const uc32 kNoKey;
     263             :     static const Entry NoValue() { return Value(); }
     264             :     static inline int Compare(uc32 a, uc32 b) {
     265     1570410 :       if (a == b)
     266             :         return 0;
     267     1537620 :       else if (a < b)
     268             :         return -1;
     269             :       else
     270             :         return 1;
     271             :     }
     272             :   };
     273             : 
     274             :   void AddRange(CharacterRange range, int value, Zone* zone);
     275             :   OutSet* Get(uc32 value);
     276             :   void Dump();
     277             : 
     278             :   template <typename Callback>
     279             :   void ForEach(Callback* callback) {
     280        2587 :     return tree()->ForEach(callback);
     281             :   }
     282             : 
     283             :  private:
     284             :   // There can't be a static empty set since it allocates its
     285             :   // successors in a zone and caches them.
     286             :   OutSet* empty() { return &empty_; }
     287             :   OutSet empty_;
     288             :   ZoneSplayTree<Config>* tree() { return &tree_; }
     289             :   ZoneSplayTree<Config> tree_;
     290             : };
     291             : 
     292             : 
     293             : // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
     294             : class UnicodeRangeSplitter {
     295             :  public:
     296             :   UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
     297             :   void Call(uc32 from, DispatchTable::Entry entry);
     298             : 
     299             :   ZoneList<CharacterRange>* bmp() { return bmp_; }
     300             :   ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
     301             :   ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
     302             :   ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
     303             : 
     304             :  private:
     305             :   static const int kBase = 0;
     306             :   // Separate ranges into
     307             :   static const int kBmpCodePoints = 1;
     308             :   static const int kLeadSurrogates = 2;
     309             :   static const int kTrailSurrogates = 3;
     310             :   static const int kNonBmpCodePoints = 4;
     311             : 
     312             :   Zone* zone_;
     313             :   DispatchTable table_;
     314             :   ZoneList<CharacterRange>* bmp_;
     315             :   ZoneList<CharacterRange>* lead_surrogates_;
     316             :   ZoneList<CharacterRange>* trail_surrogates_;
     317             :   ZoneList<CharacterRange>* non_bmp_;
     318             : };
     319             : 
     320             : 
     321             : #define FOR_EACH_NODE_TYPE(VISIT)                                    \
     322             :   VISIT(End)                                                         \
     323             :   VISIT(Action)                                                      \
     324             :   VISIT(Choice)                                                      \
     325             :   VISIT(BackReference)                                               \
     326             :   VISIT(Assertion)                                                   \
     327             :   VISIT(Text)
     328             : 
     329             : 
     330             : class Trace;
     331             : struct PreloadState;
     332             : class GreedyLoopState;
     333             : class AlternativeGenerationList;
     334             : 
     335             : struct NodeInfo {
     336             :   NodeInfo()
     337             :       : being_analyzed(false),
     338             :         been_analyzed(false),
     339             :         follows_word_interest(false),
     340             :         follows_newline_interest(false),
     341             :         follows_start_interest(false),
     342             :         at_end(false),
     343             :         visited(false),
     344     4380146 :         replacement_calculated(false) { }
     345             : 
     346             :   // Returns true if the interests and assumptions of this node
     347             :   // matches the given one.
     348             :   bool Matches(NodeInfo* that) {
     349             :     return (at_end == that->at_end) &&
     350             :            (follows_word_interest == that->follows_word_interest) &&
     351             :            (follows_newline_interest == that->follows_newline_interest) &&
     352             :            (follows_start_interest == that->follows_start_interest);
     353             :   }
     354             : 
     355             :   // Updates the interests of this node given the interests of the
     356             :   // node preceding it.
     357             :   void AddFromPreceding(NodeInfo* that) {
     358             :     at_end |= that->at_end;
     359             :     follows_word_interest |= that->follows_word_interest;
     360             :     follows_newline_interest |= that->follows_newline_interest;
     361             :     follows_start_interest |= that->follows_start_interest;
     362             :   }
     363             : 
     364             :   bool HasLookbehind() {
     365             :     return follows_word_interest ||
     366             :            follows_newline_interest ||
     367             :            follows_start_interest;
     368             :   }
     369             : 
     370             :   // Sets the interests of this node to include the interests of the
     371             :   // following node.
     372             :   void AddFromFollowing(NodeInfo* that) {
     373      565793 :     follows_word_interest |= that->follows_word_interest;
     374      565793 :     follows_newline_interest |= that->follows_newline_interest;
     375      565793 :     follows_start_interest |= that->follows_start_interest;
     376             :   }
     377             : 
     378             :   void ResetCompilationState() {
     379             :     being_analyzed = false;
     380             :     been_analyzed = false;
     381             :   }
     382             : 
     383             :   bool being_analyzed: 1;
     384             :   bool been_analyzed: 1;
     385             : 
     386             :   // These bits are set of this node has to know what the preceding
     387             :   // character was.
     388             :   bool follows_word_interest: 1;
     389             :   bool follows_newline_interest: 1;
     390             :   bool follows_start_interest: 1;
     391             : 
     392             :   bool at_end: 1;
     393             :   bool visited: 1;
     394             :   bool replacement_calculated: 1;
     395             : };
     396             : 
     397             : 
     398             : // Details of a quick mask-compare check that can look ahead in the
     399             : // input stream.
     400             : class QuickCheckDetails {
     401             :  public:
     402             :   QuickCheckDetails()
     403             :       : characters_(0),
     404             :         mask_(0),
     405             :         value_(0),
     406    14065310 :         cannot_match_(false) { }
     407             :   explicit QuickCheckDetails(int characters)
     408             :       : characters_(characters),
     409             :         mask_(0),
     410             :         value_(0),
     411      772835 :         cannot_match_(false) { }
     412             :   bool Rationalize(bool one_byte);
     413             :   // Merge in the information from another branch of an alternation.
     414             :   void Merge(QuickCheckDetails* other, int from_index);
     415             :   // Advance the current position by some amount.
     416             :   void Advance(int by, bool one_byte);
     417             :   void Clear();
     418             :   bool cannot_match() { return cannot_match_; }
     419         431 :   void set_cannot_match() { cannot_match_ = true; }
     420             :   struct Position {
     421    11870516 :     Position() : mask(0), value(0), determines_perfectly(false) { }
     422             :     uc16 mask;
     423             :     uc16 value;
     424             :     bool determines_perfectly;
     425             :   };
     426             :   int characters() { return characters_; }
     427      603187 :   void set_characters(int characters) { characters_ = characters; }
     428             :   Position* positions(int index) {
     429             :     DCHECK_LE(0, index);
     430             :     DCHECK_GT(characters_, index);
     431     1610710 :     return positions_ + index;
     432             :   }
     433             :   uint32_t mask() { return mask_; }
     434             :   uint32_t value() { return value_; }
     435             : 
     436             :  private:
     437             :   // How many characters do we have quick check information from.  This is
     438             :   // the same for all branches of a choice node.
     439             :   int characters_;
     440             :   Position positions_[4];
     441             :   // These values are the condensate of the above array after Rationalize().
     442             :   uint32_t mask_;
     443             :   uint32_t value_;
     444             :   // If set to true, there is no way this quick check can match at all.
     445             :   // E.g., if it requires to be at the start of the input, and isn't.
     446             :   bool cannot_match_;
     447             : };
     448             : 
     449             : 
     450             : extern int kUninitializedRegExpNodePlaceHolder;
     451             : 
     452             : 
     453           0 : class RegExpNode: public ZoneObject {
     454             :  public:
     455             :   explicit RegExpNode(Zone* zone)
     456             :       : replacement_(nullptr),
     457             :         on_work_list_(false),
     458             :         trace_count_(0),
     459     8760292 :         zone_(zone) {
     460     4380146 :     bm_info_[0] = bm_info_[1] = nullptr;
     461             :   }
     462             :   virtual ~RegExpNode();
     463             :   virtual void Accept(NodeVisitor* visitor) = 0;
     464             :   // Generates a goto to this node or actually generates the code at this point.
     465             :   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
     466             :   // How many characters must this node consume at a minimum in order to
     467             :   // succeed.  If we have found at least 'still_to_find' characters that
     468             :   // must be consumed there is no need to ask any following nodes whether
     469             :   // they are sure to eat any more characters.  The not_at_start argument is
     470             :   // used to indicate that we know we are not at the start of the input.  In
     471             :   // this case anchored branches will always fail and can be ignored when
     472             :   // determining how many characters are consumed on success.
     473             :   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
     474             :   // Emits some quick code that checks whether the preloaded characters match.
     475             :   // Falls through on certain failure, jumps to the label on possible success.
     476             :   // If the node cannot make a quick check it does nothing and returns false.
     477             :   bool EmitQuickCheck(RegExpCompiler* compiler,
     478             :                       Trace* bounds_check_trace,
     479             :                       Trace* trace,
     480             :                       bool preload_has_checked_bounds,
     481             :                       Label* on_possible_success,
     482             :                       QuickCheckDetails* details_return,
     483             :                       bool fall_through_on_failure);
     484             :   // For a given number of characters this returns a mask and a value.  The
     485             :   // next n characters are anded with the mask and compared with the value.
     486             :   // A comparison failure indicates the node cannot match the next n characters.
     487             :   // A comparison success indicates the node may match.
     488             :   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
     489             :                                     RegExpCompiler* compiler,
     490             :                                     int characters_filled_in,
     491             :                                     bool not_at_start) = 0;
     492             :   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
     493       87111 :   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
     494             :   // Only returns the successor for a text node of length 1 that matches any
     495             :   // character and that has no guards on it.
     496       78471 :   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
     497             :       RegExpCompiler* compiler) {
     498       78471 :     return nullptr;
     499             :   }
     500             : 
     501             :   // Collects information on the possible code units (mod 128) that can match if
     502             :   // we look forward.  This is used for a Boyer-Moore-like string searching
     503             :   // implementation.  TODO(erikcorry):  This should share more code with
     504             :   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
     505             :   // the number of nodes we are willing to look at in order to create this data.
     506             :   static const int kRecursionBudget = 200;
     507             :   bool KeepRecursing(RegExpCompiler* compiler);
     508           0 :   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
     509             :                             BoyerMooreLookahead* bm, bool not_at_start) {
     510           0 :     UNREACHABLE();
     511             :   }
     512             : 
     513             :   // If we know that the input is one-byte then there are some nodes that can
     514             :   // never match.  This method returns a node that can be substituted for
     515             :   // itself, or nullptr if the node can never match.
     516       14357 :   virtual RegExpNode* FilterOneByte(int depth) { return this; }
     517             :   // Helper for FilterOneByte.
     518             :   RegExpNode* replacement() {
     519             :     DCHECK(info()->replacement_calculated);
     520             :     return replacement_;
     521             :   }
     522             :   RegExpNode* set_replacement(RegExpNode* replacement) {
     523      159878 :     info()->replacement_calculated = true;
     524      159878 :     replacement_ =  replacement;
     525             :     return replacement;  // For convenience.
     526             :   }
     527             : 
     528             :   // We want to avoid recalculating the lookahead info, so we store it on the
     529             :   // node.  Only info that is for this node is stored.  We can tell that the
     530             :   // info is for this node when offset == 0, so the information is calculated
     531             :   // relative to this node.
     532             :   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
     533      103785 :     if (offset == 0) set_bm_info(not_at_start, bm);
     534             :   }
     535             : 
     536             :   Label* label() { return &label_; }
     537             :   // If non-generic code is generated for a node (i.e. the node is not at the
     538             :   // start of the trace) then it cannot be reused.  This variable sets a limit
     539             :   // on how often we allow that to happen before we insist on starting a new
     540             :   // trace and generating generic code for a node that can be reused by flushing
     541             :   // the deferred actions in the current trace and generating a goto.
     542             :   static const int kMaxCopiesCodeGenerated = 10;
     543             : 
     544             :   bool on_work_list() { return on_work_list_; }
     545      422784 :   void set_on_work_list(bool value) { on_work_list_ = value; }
     546             : 
     547             :   NodeInfo* info() { return &info_; }
     548             : 
     549             :   BoyerMooreLookahead* bm_info(bool not_at_start) {
     550       82348 :     return bm_info_[not_at_start ? 1 : 0];
     551             :   }
     552             : 
     553             :   Zone* zone() const { return zone_; }
     554             : 
     555             :  protected:
     556             :   enum LimitResult { DONE, CONTINUE };
     557             :   RegExpNode* replacement_;
     558             : 
     559             :   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
     560             : 
     561             :   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
     562      196103 :     bm_info_[not_at_start ? 1 : 0] = bm;
     563             :   }
     564             : 
     565             :  private:
     566             :   static const int kFirstCharBudget = 10;
     567             :   Label label_;
     568             :   bool on_work_list_;
     569             :   NodeInfo info_;
     570             :   // This variable keeps track of how many times code has been generated for
     571             :   // this node (in different traces).  We don't keep track of where the
     572             :   // generated code is located unless the code is generated at the start of
     573             :   // a trace, in which case it is generic and can be reused by flushing the
     574             :   // deferred operations in the current trace and generating a goto.
     575             :   int trace_count_;
     576             :   BoyerMooreLookahead* bm_info_[2];
     577             : 
     578             :   Zone* zone_;
     579             : };
     580             : 
     581             : 
     582           0 : class SeqRegExpNode: public RegExpNode {
     583             :  public:
     584     3266560 :   explicit SeqRegExpNode(RegExpNode* on_success)
     585     3266560 :       : RegExpNode(on_success->zone()), on_success_(on_success) { }
     586             :   RegExpNode* on_success() { return on_success_; }
     587             :   void set_on_success(RegExpNode* node) { on_success_ = node; }
     588             :   RegExpNode* FilterOneByte(int depth) override;
     589           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     590             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     591           0 :     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
     592           0 :     if (offset == 0) set_bm_info(not_at_start, bm);
     593           0 :   }
     594             : 
     595             :  protected:
     596             :   RegExpNode* FilterSuccessor(int depth);
     597             : 
     598             :  private:
     599             :   RegExpNode* on_success_;
     600             : };
     601             : 
     602             : 
     603           0 : class ActionNode: public SeqRegExpNode {
     604             :  public:
     605             :   enum ActionType {
     606             :     SET_REGISTER,
     607             :     INCREMENT_REGISTER,
     608             :     STORE_POSITION,
     609             :     BEGIN_SUBMATCH,
     610             :     POSITIVE_SUBMATCH_SUCCESS,
     611             :     EMPTY_MATCH_CHECK,
     612             :     CLEAR_CAPTURES
     613             :   };
     614             :   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
     615             :   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
     616             :   static ActionNode* StorePosition(int reg,
     617             :                                    bool is_capture,
     618             :                                    RegExpNode* on_success);
     619             :   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
     620             :   static ActionNode* BeginSubmatch(int stack_pointer_reg,
     621             :                                    int position_reg,
     622             :                                    RegExpNode* on_success);
     623             :   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
     624             :                                              int restore_reg,
     625             :                                              int clear_capture_count,
     626             :                                              int clear_capture_from,
     627             :                                              RegExpNode* on_success);
     628             :   static ActionNode* EmptyMatchCheck(int start_register,
     629             :                                      int repetition_register,
     630             :                                      int repetition_limit,
     631             :                                      RegExpNode* on_success);
     632             :   void Accept(NodeVisitor* visitor) override;
     633             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     634             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     635       64286 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     636             :                             RegExpCompiler* compiler, int filled_in,
     637             :                             bool not_at_start) override {
     638       64286 :     return on_success()->GetQuickCheckDetails(
     639       64286 :         details, compiler, filled_in, not_at_start);
     640             :   }
     641             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     642             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     643             :   ActionType action_type() { return action_type_; }
     644             :   // TODO(erikcorry): We should allow some action nodes in greedy loops.
     645      114681 :   int GreedyLoopTextLength() override {
     646      114681 :     return kNodeIsTooComplexForGreedyLoops;
     647             :   }
     648             : 
     649             :  private:
     650             :   union {
     651             :     struct {
     652             :       int reg;
     653             :       int value;
     654             :     } u_store_register;
     655             :     struct {
     656             :       int reg;
     657             :     } u_increment_register;
     658             :     struct {
     659             :       int reg;
     660             :       bool is_capture;
     661             :     } u_position_register;
     662             :     struct {
     663             :       int stack_pointer_register;
     664             :       int current_position_register;
     665             :       int clear_register_count;
     666             :       int clear_register_from;
     667             :     } u_submatch;
     668             :     struct {
     669             :       int start_register;
     670             :       int repetition_register;
     671             :       int repetition_limit;
     672             :     } u_empty_match_check;
     673             :     struct {
     674             :       int range_from;
     675             :       int range_to;
     676             :     } u_clear_captures;
     677             :   } data_;
     678             :   ActionNode(ActionType action_type, RegExpNode* on_success)
     679             :       : SeqRegExpNode(on_success),
     680     2041172 :         action_type_(action_type) { }
     681             :   ActionType action_type_;
     682             :   friend class DotPrinter;
     683             : };
     684             : 
     685             : 
     686           0 : class TextNode: public SeqRegExpNode {
     687             :  public:
     688             :   TextNode(ZoneList<TextElement>* elms, bool read_backward,
     689             :            RegExpNode* on_success)
     690     1044056 :       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
     691      173569 :   TextNode(RegExpCharacterClass* that, bool read_backward,
     692             :            RegExpNode* on_success)
     693             :       : SeqRegExpNode(on_success),
     694      347138 :         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
     695      347138 :         read_backward_(read_backward) {
     696      173569 :     elms_->Add(TextElement::CharClass(that), zone());
     697      173569 :   }
     698             :   // Create TextNode for a single character class for the given ranges.
     699             :   static TextNode* CreateForCharacterRanges(Zone* zone,
     700             :                                             ZoneList<CharacterRange>* ranges,
     701             :                                             bool read_backward,
     702             :                                             RegExpNode* on_success,
     703             :                                             JSRegExp::Flags flags);
     704             :   // Create TextNode for a surrogate pair with a range given for the
     705             :   // lead and the trail surrogate each.
     706             :   static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
     707             :                                           CharacterRange trail,
     708             :                                           bool read_backward,
     709             :                                           RegExpNode* on_success,
     710             :                                           JSRegExp::Flags flags);
     711             :   void Accept(NodeVisitor* visitor) override;
     712             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     713             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     714             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     715             :                             RegExpCompiler* compiler, int characters_filled_in,
     716             :                             bool not_at_start) override;
     717             :   ZoneList<TextElement>* elements() { return elms_; }
     718             :   bool read_backward() { return read_backward_; }
     719             :   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
     720             :   int GreedyLoopTextLength() override;
     721             :   RegExpNode* GetSuccessorOfOmnivorousTextNode(
     722             :       RegExpCompiler* compiler) override;
     723             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     724             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     725             :   void CalculateOffsets();
     726             :   RegExpNode* FilterOneByte(int depth) override;
     727             : 
     728             :  private:
     729             :   enum TextEmitPassType {
     730             :     NON_LATIN1_MATCH,            // Check for characters that can't match.
     731             :     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
     732             :     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
     733             :     CASE_CHARACTER_MATCH,        // Case-independent single character check.
     734             :     CHARACTER_CLASS_MATCH        // Character class.
     735             :   };
     736             :   static bool SkipPass(TextEmitPassType pass, bool ignore_case);
     737             :   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
     738             :   static const int kLastPass = CHARACTER_CLASS_MATCH;
     739             :   void TextEmitPass(RegExpCompiler* compiler,
     740             :                     TextEmitPassType pass,
     741             :                     bool preloaded,
     742             :                     Trace* trace,
     743             :                     bool first_element_checked,
     744             :                     int* checked_up_to);
     745             :   int Length();
     746             :   ZoneList<TextElement>* elms_;
     747             :   bool read_backward_;
     748             : };
     749             : 
     750             : 
     751           0 : class AssertionNode: public SeqRegExpNode {
     752             :  public:
     753             :   enum AssertionType {
     754             :     AT_END,
     755             :     AT_START,
     756             :     AT_BOUNDARY,
     757             :     AT_NON_BOUNDARY,
     758             :     AFTER_NEWLINE
     759             :   };
     760        2003 :   static AssertionNode* AtEnd(RegExpNode* on_success) {
     761        2003 :     return new(on_success->zone()) AssertionNode(AT_END, on_success);
     762             :   }
     763        3011 :   static AssertionNode* AtStart(RegExpNode* on_success) {
     764        3011 :     return new(on_success->zone()) AssertionNode(AT_START, on_success);
     765             :   }
     766         136 :   static AssertionNode* AtBoundary(RegExpNode* on_success) {
     767         136 :     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
     768             :   }
     769         114 :   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
     770         114 :     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
     771             :   }
     772         129 :   static AssertionNode* AfterNewline(RegExpNode* on_success) {
     773         129 :     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
     774             :   }
     775             :   void Accept(NodeVisitor* visitor) override;
     776             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     777             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     778             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     779             :                             RegExpCompiler* compiler, int filled_in,
     780             :                             bool not_at_start) override;
     781             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     782             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     783             :   AssertionType assertion_type() { return assertion_type_; }
     784             : 
     785             :  private:
     786             :   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
     787             :   enum IfPrevious { kIsNonWord, kIsWord };
     788             :   void BacktrackIfPrevious(RegExpCompiler* compiler,
     789             :                            Trace* trace,
     790             :                            IfPrevious backtrack_if_previous);
     791             :   AssertionNode(AssertionType t, RegExpNode* on_success)
     792        5393 :       : SeqRegExpNode(on_success), assertion_type_(t) { }
     793             :   AssertionType assertion_type_;
     794             : };
     795             : 
     796             : 
     797           0 : class BackReferenceNode: public SeqRegExpNode {
     798             :  public:
     799             :   BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags,
     800             :                     bool read_backward, RegExpNode* on_success)
     801             :       : SeqRegExpNode(on_success),
     802             :         start_reg_(start_reg),
     803             :         end_reg_(end_reg),
     804             :         flags_(flags),
     805        2370 :         read_backward_(read_backward) {}
     806             :   void Accept(NodeVisitor* visitor) override;
     807             :   int start_register() { return start_reg_; }
     808             :   int end_register() { return end_reg_; }
     809             :   bool read_backward() { return read_backward_; }
     810             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     811             :   int EatsAtLeast(int still_to_find, int recursion_depth,
     812             :                   bool not_at_start) override;
     813         522 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     814             :                             RegExpCompiler* compiler, int characters_filled_in,
     815             :                             bool not_at_start) override {
     816         522 :     return;
     817             :   }
     818             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     819             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     820             : 
     821             :  private:
     822             :   int start_reg_;
     823             :   int end_reg_;
     824             :   JSRegExp::Flags flags_;
     825             :   bool read_backward_;
     826             : };
     827             : 
     828             : 
     829           0 : class EndNode: public RegExpNode {
     830             :  public:
     831             :   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
     832       88649 :   EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
     833             :   void Accept(NodeVisitor* visitor) override;
     834             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     835      115047 :   int EatsAtLeast(int still_to_find, int recursion_depth,
     836             :                   bool not_at_start) override {
     837      115047 :     return 0;
     838             :   }
     839           0 :   void GetQuickCheckDetails(QuickCheckDetails* details,
     840             :                             RegExpCompiler* compiler, int characters_filled_in,
     841             :                             bool not_at_start) override {
     842             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     843           0 :     UNREACHABLE();
     844             :   }
     845           0 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     846             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
     847             :     // Returning 0 from EatsAtLeast should ensure we never get here.
     848           0 :     UNREACHABLE();
     849             :   }
     850             : 
     851             :  private:
     852             :   Action action_;
     853             : };
     854             : 
     855             : 
     856           0 : class NegativeSubmatchSuccess: public EndNode {
     857             :  public:
     858             :   NegativeSubmatchSuccess(int stack_pointer_reg,
     859             :                           int position_reg,
     860             :                           int clear_capture_count,
     861             :                           int clear_capture_start,
     862             :                           Zone* zone)
     863             :       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
     864             :         stack_pointer_register_(stack_pointer_reg),
     865             :         current_position_register_(position_reg),
     866             :         clear_capture_count_(clear_capture_count),
     867        2812 :         clear_capture_start_(clear_capture_start) { }
     868             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     869             : 
     870             :  private:
     871             :   int stack_pointer_register_;
     872             :   int current_position_register_;
     873             :   int clear_capture_count_;
     874             :   int clear_capture_start_;
     875             : };
     876             : 
     877             : 
     878             : class Guard: public ZoneObject {
     879             :  public:
     880             :   enum Relation { LT, GEQ };
     881             :   Guard(int reg, Relation op, int value)
     882             :       : reg_(reg),
     883             :         op_(op),
     884      903901 :         value_(value) { }
     885             :   int reg() { return reg_; }
     886             :   Relation op() { return op_; }
     887             :   int value() { return value_; }
     888             : 
     889             :  private:
     890             :   int reg_;
     891             :   Relation op_;
     892             :   int value_;
     893             : };
     894             : 
     895             : 
     896             : class GuardedAlternative {
     897             :  public:
     898             :   explicit GuardedAlternative(RegExpNode* node)
     899     2001070 :       : node_(node), guards_(nullptr) {}
     900             :   void AddGuard(Guard* guard, Zone* zone);
     901             :   RegExpNode* node() { return node_; }
     902       58072 :   void set_node(RegExpNode* node) { node_ = node; }
     903             :   ZoneList<Guard*>* guards() { return guards_; }
     904             : 
     905             :  private:
     906             :   RegExpNode* node_;
     907             :   ZoneList<Guard*>* guards_;
     908             : };
     909             : 
     910             : 
     911             : class AlternativeGeneration;
     912             : 
     913             : 
     914           0 : class ChoiceNode: public RegExpNode {
     915             :  public:
     916     1024937 :   explicit ChoiceNode(int expected_size, Zone* zone)
     917             :       : RegExpNode(zone),
     918             :         alternatives_(new (zone)
     919     1024937 :                           ZoneList<GuardedAlternative>(expected_size, zone)),
     920             :         table_(nullptr),
     921             :         not_at_start_(false),
     922     2049874 :         being_calculated_(false) {}
     923             :   void Accept(NodeVisitor* visitor) override;
     924     2131259 :   void AddAlternative(GuardedAlternative node) {
     925     4250290 :     alternatives()->Add(node, zone());
     926             :   }
     927             :   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
     928             :   DispatchTable* GetTable(bool ignore_case);
     929             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
     930             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
     931             :   int EatsAtLeastHelper(int still_to_find,
     932             :                         int budget,
     933             :                         RegExpNode* ignore_this_node,
     934             :                         bool not_at_start);
     935             :   void GetQuickCheckDetails(QuickCheckDetails* details,
     936             :                             RegExpCompiler* compiler, int characters_filled_in,
     937             :                             bool not_at_start) override;
     938             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
     939             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
     940             : 
     941             :   bool being_calculated() { return being_calculated_; }
     942             :   bool not_at_start() { return not_at_start_; }
     943        4051 :   void set_not_at_start() { not_at_start_ = true; }
     944           0 :   void set_being_calculated(bool b) { being_calculated_ = b; }
     945      470700 :   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
     946      470700 :     return true;
     947             :   }
     948             :   RegExpNode* FilterOneByte(int depth) override;
     949           0 :   virtual bool read_backward() { return false; }
     950             : 
     951             :  protected:
     952             :   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
     953             :   ZoneList<GuardedAlternative>* alternatives_;
     954             : 
     955             :  private:
     956             :   friend class DispatchTableConstructor;
     957             :   friend class Analysis;
     958             :   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
     959             :                      Guard* guard,
     960             :                      Trace* trace);
     961             :   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
     962             :   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
     963             :                                  Trace* trace,
     964             :                                  GuardedAlternative alternative,
     965             :                                  AlternativeGeneration* alt_gen,
     966             :                                  int preload_characters,
     967             :                                  bool next_expects_preload);
     968             :   void SetUpPreLoad(RegExpCompiler* compiler,
     969             :                     Trace* current_trace,
     970             :                     PreloadState* preloads);
     971             :   void AssertGuardsMentionRegisters(Trace* trace);
     972             :   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
     973             :   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
     974             :                         Trace* trace,
     975             :                         AlternativeGenerationList* alt_gens,
     976             :                         PreloadState* preloads,
     977             :                         GreedyLoopState* greedy_loop_state,
     978             :                         int text_length);
     979             :   void EmitChoices(RegExpCompiler* compiler,
     980             :                    AlternativeGenerationList* alt_gens,
     981             :                    int first_choice,
     982             :                    Trace* trace,
     983             :                    PreloadState* preloads);
     984             :   DispatchTable* table_;
     985             :   // If true, this node is never checked at the start of the input.
     986             :   // Allows a new trace to start with at_start() set to false.
     987             :   bool not_at_start_;
     988             :   bool being_calculated_;
     989             : };
     990             : 
     991             : 
     992           0 : class NegativeLookaroundChoiceNode : public ChoiceNode {
     993             :  public:
     994        2812 :   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
     995             :                                         GuardedAlternative then_do_this,
     996             :                                         Zone* zone)
     997        2812 :       : ChoiceNode(2, zone) {
     998             :     AddAlternative(this_must_fail);
     999             :     AddAlternative(then_do_this);
    1000        2812 :   }
    1001             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1002             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1003             :                             RegExpCompiler* compiler, int characters_filled_in,
    1004             :                             bool not_at_start) override;
    1005        1105 :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1006             :                     BoyerMooreLookahead* bm, bool not_at_start) override {
    1007        2210 :     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
    1008        1105 :                                               not_at_start);
    1009        1105 :     if (offset == 0) set_bm_info(not_at_start, bm);
    1010        1105 :   }
    1011             :   // For a negative lookahead we don't emit the quick check for the
    1012             :   // alternative that is expected to fail.  This is because quick check code
    1013             :   // starts by loading enough characters for the alternative that takes fewest
    1014             :   // characters, but on a negative lookahead the negative branch did not take
    1015             :   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
    1016        5604 :   bool try_to_emit_quick_check_for_alternative(bool is_first) override {
    1017        5604 :     return !is_first;
    1018             :   }
    1019             :   RegExpNode* FilterOneByte(int depth) override;
    1020             : };
    1021             : 
    1022             : 
    1023           0 : class LoopChoiceNode: public ChoiceNode {
    1024             :  public:
    1025             :   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
    1026             :       : ChoiceNode(2, zone),
    1027             :         loop_node_(nullptr),
    1028             :         continue_node_(nullptr),
    1029             :         body_can_be_zero_length_(body_can_be_zero_length),
    1030      999129 :         read_backward_(read_backward) {}
    1031             :   void AddLoopAlternative(GuardedAlternative alt);
    1032             :   void AddContinueAlternative(GuardedAlternative alt);
    1033             :   void Emit(RegExpCompiler* compiler, Trace* trace) override;
    1034             :   int EatsAtLeast(int still_to_find, int budget, bool not_at_start) override;
    1035             :   void GetQuickCheckDetails(QuickCheckDetails* details,
    1036             :                             RegExpCompiler* compiler, int characters_filled_in,
    1037             :                             bool not_at_start) override;
    1038             :   void FillInBMInfo(Isolate* isolate, int offset, int budget,
    1039             :                     BoyerMooreLookahead* bm, bool not_at_start) override;
    1040             :   RegExpNode* loop_node() { return loop_node_; }
    1041             :   RegExpNode* continue_node() { return continue_node_; }
    1042             :   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
    1043       23194 :   bool read_backward() override { return read_backward_; }
    1044             :   void Accept(NodeVisitor* visitor) override;
    1045             :   RegExpNode* FilterOneByte(int depth) override;
    1046             : 
    1047             :  private:
    1048             :   // AddAlternative is made private for loop nodes because alternatives
    1049             :   // should not be added freely, we need to keep track of which node
    1050             :   // goes back to the node itself.
    1051             :   void AddAlternative(GuardedAlternative node) {
    1052             :     ChoiceNode::AddAlternative(node);
    1053             :   }
    1054             : 
    1055             :   RegExpNode* loop_node_;
    1056             :   RegExpNode* continue_node_;
    1057             :   bool body_can_be_zero_length_;
    1058             :   bool read_backward_;
    1059             : };
    1060             : 
    1061             : 
    1062             : // Improve the speed that we scan for an initial point where a non-anchored
    1063             : // regexp can match by using a Boyer-Moore-like table. This is done by
    1064             : // identifying non-greedy non-capturing loops in the nodes that eat any
    1065             : // character one at a time.  For example in the middle of the regexp
    1066             : // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
    1067             : // inserted at the start of any non-anchored regexp.
    1068             : //
    1069             : // When we have found such a loop we look ahead in the nodes to find the set of
    1070             : // characters that can come at given distances. For example for the regexp
    1071             : // /.?foo/ we know that there are at least 3 characters ahead of us, and the
    1072             : // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
    1073             : // the lookahead info where the set of characters is reasonably constrained. In
    1074             : // our example this is from index 1 to 2 (0 is not constrained). We can now
    1075             : // look 3 characters ahead and if we don't find one of [f, o] (the union of
    1076             : // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
    1077             : //
    1078             : // For Unicode input strings we do the same, but modulo 128.
    1079             : //
    1080             : // We also look at the first string fed to the regexp and use that to get a hint
    1081             : // of the character frequencies in the inputs. This affects the assessment of
    1082             : // whether the set of characters is 'reasonably constrained'.
    1083             : //
    1084             : // We also have another lookahead mechanism (called quick check in the code),
    1085             : // which uses a wide load of multiple characters followed by a mask and compare
    1086             : // to determine whether a match is possible at this point.
    1087             : enum ContainedInLattice {
    1088             :   kNotYet = 0,
    1089             :   kLatticeIn = 1,
    1090             :   kLatticeOut = 2,
    1091             :   kLatticeUnknown = 3  // Can also mean both in and out.
    1092             : };
    1093             : 
    1094             : 
    1095             : inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
    1096      838016 :   return static_cast<ContainedInLattice>(a | b);
    1097             : }
    1098             : 
    1099             : 
    1100             : ContainedInLattice AddRange(ContainedInLattice a,
    1101             :                             const int* ranges,
    1102             :                             int ranges_size,
    1103             :                             Interval new_range);
    1104             : 
    1105             : 
    1106             : class BoyerMoorePositionInfo : public ZoneObject {
    1107             :  public:
    1108       99251 :   explicit BoyerMoorePositionInfo(Zone* zone)
    1109       99251 :       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
    1110             :         map_count_(0),
    1111             :         w_(kNotYet),
    1112             :         s_(kNotYet),
    1113             :         d_(kNotYet),
    1114       99251 :         surrogate_(kNotYet) {
    1115    12803379 :      for (int i = 0; i < kMapSize; i++) {
    1116    12704128 :        map_->Add(false, zone);
    1117             :      }
    1118       99251 :   }
    1119             : 
    1120             :   bool& at(int i) { return map_->at(i); }
    1121             : 
    1122             :   static const int kMapSize = 128;
    1123             :   static const int kMask = kMapSize - 1;
    1124             : 
    1125             :   int map_count() const { return map_count_; }
    1126             : 
    1127             :   void Set(int character);
    1128             :   void SetInterval(const Interval& interval);
    1129             :   void SetAll();
    1130             :   bool is_non_word() { return w_ == kLatticeOut; }
    1131             :   bool is_word() { return w_ == kLatticeIn; }
    1132             : 
    1133             :  private:
    1134             :   ZoneList<bool>* map_;
    1135             :   int map_count_;  // Number of set bits in the map.
    1136             :   ContainedInLattice w_;  // The \w character class.
    1137             :   ContainedInLattice s_;  // The \s character class.
    1138             :   ContainedInLattice d_;  // The \d character class.
    1139             :   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
    1140             : };
    1141             : 
    1142             : 
    1143             : class BoyerMooreLookahead : public ZoneObject {
    1144             :  public:
    1145             :   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
    1146             : 
    1147             :   int length() { return length_; }
    1148             :   int max_char() { return max_char_; }
    1149             :   RegExpCompiler* compiler() { return compiler_; }
    1150             : 
    1151             :   int Count(int map_number) {
    1152      541035 :     return bitmaps_->at(map_number)->map_count();
    1153             :   }
    1154             : 
    1155         150 :   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
    1156             : 
    1157       79581 :   void Set(int map_number, int character) {
    1158      159162 :     if (character > max_char_) return;
    1159      159162 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1160             :     info->Set(character);
    1161             :   }
    1162             : 
    1163      323288 :   void SetInterval(int map_number, const Interval& interval) {
    1164      323288 :     if (interval.from() > max_char_) return;
    1165      323288 :     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
    1166      161644 :     if (interval.to() > max_char_) {
    1167           0 :       info->SetInterval(Interval(interval.from(), max_char_));
    1168             :     } else {
    1169      161644 :       info->SetInterval(interval);
    1170             :     }
    1171             :   }
    1172             : 
    1173        5457 :   void SetAll(int map_number) {
    1174       10914 :     bitmaps_->at(map_number)->SetAll();
    1175        5457 :   }
    1176             : 
    1177        1078 :   void SetRest(int from_map) {
    1178        1078 :     for (int i = from_map; i < length_; i++) SetAll(i);
    1179             :   }
    1180             :   void EmitSkipInstructions(RegExpMacroAssembler* masm);
    1181             : 
    1182             :  private:
    1183             :   // This is the value obtained by EatsAtLeast.  If we do not have at least this
    1184             :   // many characters left in the sample string then the match is bound to fail.
    1185             :   // Therefore it is OK to read a character this far ahead of the current match
    1186             :   // point.
    1187             :   int length_;
    1188             :   RegExpCompiler* compiler_;
    1189             :   // 0xff for Latin1, 0xffff for UTF-16.
    1190             :   int max_char_;
    1191             :   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
    1192             : 
    1193             :   int GetSkipTable(int min_lookahead,
    1194             :                    int max_lookahead,
    1195             :                    Handle<ByteArray> boolean_skip_table);
    1196             :   bool FindWorthwhileInterval(int* from, int* to);
    1197             :   int FindBestInterval(
    1198             :     int max_number_of_chars, int old_biggest_points, int* from, int* to);
    1199             : };
    1200             : 
    1201             : 
    1202             : // There are many ways to generate code for a node.  This class encapsulates
    1203             : // the current way we should be generating.  In other words it encapsulates
    1204             : // the current state of the code generator.  The effect of this is that we
    1205             : // generate code for paths that the matcher can take through the regular
    1206             : // expression.  A given node in the regexp can be code-generated several times
    1207             : // as it can be part of several traces.  For example for the regexp:
    1208             : // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
    1209             : // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
    1210             : // to match foo is generated only once (the traces have a common prefix).  The
    1211             : // code to store the capture is deferred and generated (twice) after the places
    1212             : // where baz has been matched.
    1213             : class Trace {
    1214             :  public:
    1215             :   // A value for a property that is either known to be true, know to be false,
    1216             :   // or not known.
    1217             :   enum TriBool {
    1218             :     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
    1219             :   };
    1220             : 
    1221             :   class DeferredAction {
    1222             :    public:
    1223             :     DeferredAction(ActionNode::ActionType action_type, int reg)
    1224      250255 :         : action_type_(action_type), reg_(reg), next_(nullptr) {}
    1225             :     DeferredAction* next() { return next_; }
    1226             :     bool Mentions(int reg);
    1227             :     int reg() { return reg_; }
    1228             :     ActionNode::ActionType action_type() { return action_type_; }
    1229             :    private:
    1230             :     ActionNode::ActionType action_type_;
    1231             :     int reg_;
    1232             :     DeferredAction* next_;
    1233             :     friend class Trace;
    1234             :   };
    1235             : 
    1236             :   class DeferredCapture : public DeferredAction {
    1237             :    public:
    1238      240962 :     DeferredCapture(int reg, bool is_capture, Trace* trace)
    1239             :         : DeferredAction(ActionNode::STORE_POSITION, reg),
    1240             :           cp_offset_(trace->cp_offset()),
    1241      240962 :           is_capture_(is_capture) { }
    1242             :     int cp_offset() { return cp_offset_; }
    1243             :     bool is_capture() { return is_capture_; }
    1244             :    private:
    1245             :     int cp_offset_;
    1246             :     bool is_capture_;
    1247             :     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
    1248             :   };
    1249             : 
    1250             :   class DeferredSetRegister : public DeferredAction {
    1251             :    public:
    1252             :     DeferredSetRegister(int reg, int value)
    1253             :         : DeferredAction(ActionNode::SET_REGISTER, reg),
    1254        3430 :           value_(value) { }
    1255             :     int value() { return value_; }
    1256             :    private:
    1257             :     int value_;
    1258             :   };
    1259             : 
    1260             :   class DeferredClearCaptures : public DeferredAction {
    1261             :    public:
    1262             :     explicit DeferredClearCaptures(Interval range)
    1263             :         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
    1264        2154 :           range_(range) { }
    1265             :     Interval range() { return range_; }
    1266             :    private:
    1267             :     Interval range_;
    1268             :   };
    1269             : 
    1270             :   class DeferredIncrementRegister : public DeferredAction {
    1271             :    public:
    1272             :     explicit DeferredIncrementRegister(int reg)
    1273             :         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
    1274             :   };
    1275             : 
    1276      637245 :   Trace()
    1277             :       : cp_offset_(0),
    1278             :         actions_(nullptr),
    1279             :         backtrack_(nullptr),
    1280             :         stop_node_(nullptr),
    1281             :         loop_label_(nullptr),
    1282             :         characters_preloaded_(0),
    1283             :         bound_checked_up_to_(0),
    1284             :         flush_budget_(100),
    1285     1274490 :         at_start_(UNKNOWN) {}
    1286             : 
    1287             :   // End the trace.  This involves flushing the deferred actions in the trace
    1288             :   // and pushing a backtrack location onto the backtrack stack.  Once this is
    1289             :   // done we can start a new trace or go to one that has already been
    1290             :   // generated.
    1291             :   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
    1292             :   int cp_offset() { return cp_offset_; }
    1293             :   DeferredAction* actions() { return actions_; }
    1294             :   // A trivial trace is one that has no deferred actions or other state that
    1295             :   // affects the assumptions used when generating code.  There is no recorded
    1296             :   // backtrack location in a trivial trace, so with a trivial trace we will
    1297             :   // generate code that, on a failure to match, gets the backtrack location
    1298             :   // from the backtrack stack rather than using a direct jump instruction.  We
    1299             :   // always start code generation with a trivial trace and non-trivial traces
    1300             :   // are created as we emit code for nodes or add to the list of deferred
    1301             :   // actions in the trace.  The location of the code generated for a node using
    1302             :   // a trivial trace is recorded in a label in the node so that gotos can be
    1303             :   // generated to that code.
    1304     2205079 :   bool is_trivial() {
    1305     3490711 :     return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 &&
    1306     1861837 :            characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
    1307     4032861 :            quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
    1308             :   }
    1309             :   TriBool at_start() { return at_start_; }
    1310      530729 :   void set_at_start(TriBool at_start) { at_start_ = at_start; }
    1311             :   Label* backtrack() { return backtrack_; }
    1312             :   Label* loop_label() { return loop_label_; }
    1313             :   RegExpNode* stop_node() { return stop_node_; }
    1314             :   int characters_preloaded() { return characters_preloaded_; }
    1315             :   int bound_checked_up_to() { return bound_checked_up_to_; }
    1316             :   int flush_budget() { return flush_budget_; }
    1317             :   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
    1318             :   bool mentions_reg(int reg);
    1319             :   // Returns true if a deferred position store exists to the specified
    1320             :   // register and stores the offset in the out-parameter.  Otherwise
    1321             :   // returns false.
    1322             :   bool GetStoredPosition(int reg, int* cp_offset);
    1323             :   // These set methods and AdvanceCurrentPositionInTrace should be used only on
    1324             :   // new traces - the intention is that traces are immutable after creation.
    1325             :   void add_action(DeferredAction* new_action) {
    1326             :     DCHECK(new_action->next_ == nullptr);
    1327      250255 :     new_action->next_ = actions_;
    1328      250255 :     actions_ = new_action;
    1329             :   }
    1330      805555 :   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
    1331       11597 :   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
    1332       11597 :   void set_loop_label(Label* label) { loop_label_ = label; }
    1333      827802 :   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
    1334      432202 :   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
    1335      192279 :   void set_flush_budget(int to) { flush_budget_ = to; }
    1336             :   void set_quick_check_performed(QuickCheckDetails* d) {
    1337      224615 :     quick_check_performed_ = *d;
    1338             :   }
    1339             :   void InvalidateCurrentCharacter();
    1340             :   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
    1341             : 
    1342             :  private:
    1343             :   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
    1344             :   void PerformDeferredActions(RegExpMacroAssembler* macro,
    1345             :                               int max_register,
    1346             :                               const OutSet& affected_registers,
    1347             :                               OutSet* registers_to_pop,
    1348             :                               OutSet* registers_to_clear,
    1349             :                               Zone* zone);
    1350             :   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
    1351             :                                 int max_register,
    1352             :                                 const OutSet& registers_to_pop,
    1353             :                                 const OutSet& registers_to_clear);
    1354             :   int cp_offset_;
    1355             :   DeferredAction* actions_;
    1356             :   Label* backtrack_;
    1357             :   RegExpNode* stop_node_;
    1358             :   Label* loop_label_;
    1359             :   int characters_preloaded_;
    1360             :   int bound_checked_up_to_;
    1361             :   QuickCheckDetails quick_check_performed_;
    1362             :   int flush_budget_;
    1363             :   TriBool at_start_;
    1364             : };
    1365             : 
    1366             : 
    1367             : class GreedyLoopState {
    1368             :  public:
    1369             :   explicit GreedyLoopState(bool not_at_start);
    1370             : 
    1371             :   Label* label() { return &label_; }
    1372             :   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
    1373             : 
    1374             :  private:
    1375             :   Label label_;
    1376             :   Trace counter_backtrack_trace_;
    1377             : };
    1378             : 
    1379             : 
    1380             : struct PreloadState {
    1381             :   static const int kEatsAtLeastNotYetInitialized = -1;
    1382             :   bool preload_is_current_;
    1383             :   bool preload_has_checked_bounds_;
    1384             :   int preload_characters_;
    1385             :   int eats_at_least_;
    1386             :   void init() {
    1387      213389 :     eats_at_least_ = kEatsAtLeastNotYetInitialized;
    1388             :   }
    1389             : };
    1390             : 
    1391             : 
    1392       85592 : class NodeVisitor {
    1393             :  public:
    1394       85592 :   virtual ~NodeVisitor() = default;
    1395             : #define DECLARE_VISIT(Type)                                          \
    1396             :   virtual void Visit##Type(Type##Node* that) = 0;
    1397             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1398             : #undef DECLARE_VISIT
    1399           0 :   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
    1400             : };
    1401             : 
    1402             : 
    1403             : // Node visitor used to add the start set of the alternatives to the
    1404             : // dispatch table of a choice node.
    1405          55 : class DispatchTableConstructor: public NodeVisitor {
    1406             :  public:
    1407             :   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
    1408             :                            Zone* zone)
    1409             :       : table_(table),
    1410             :         choice_index_(-1),
    1411             :         ignore_case_(ignore_case),
    1412          55 :         zone_(zone) { }
    1413             : 
    1414             :   void BuildTable(ChoiceNode* node);
    1415             : 
    1416         580 :   void AddRange(CharacterRange range) {
    1417        1160 :     table()->AddRange(range, choice_index_, zone_);
    1418             :   }
    1419             : 
    1420             :   void AddInverse(ZoneList<CharacterRange>* ranges);
    1421             : 
    1422             : #define DECLARE_VISIT(Type)                                          \
    1423             :   virtual void Visit##Type(Type##Node* that);
    1424             : FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1425             : #undef DECLARE_VISIT
    1426             : 
    1427             :   DispatchTable* table() { return table_; }
    1428          55 :   void set_choice_index(int value) { choice_index_ = value; }
    1429             : 
    1430             :  protected:
    1431             :   DispatchTable* table_;
    1432             :   int choice_index_;
    1433             :   bool ignore_case_;
    1434             :   Zone* zone_;
    1435             : };
    1436             : 
    1437             : 
    1438             : // Assertion propagation moves information about assertions such as
    1439             : // \b to the affected nodes.  For instance, in /.\b./ information must
    1440             : // be propagated to the first '.' that whatever follows needs to know
    1441             : // if it matched a word or a non-word, and to the second '.' that it
    1442             : // has to check if it succeeds a word or non-word.  In this case the
    1443             : // result will be something like:
    1444             : //
    1445             : //   +-------+        +------------+
    1446             : //   |   .   |        |      .     |
    1447             : //   +-------+  --->  +------------+
    1448             : //   | word? |        | check word |
    1449             : //   +-------+        +------------+
    1450       85537 : class Analysis: public NodeVisitor {
    1451             :  public:
    1452             :   Analysis(Isolate* isolate, bool is_one_byte)
    1453       85537 :       : isolate_(isolate), is_one_byte_(is_one_byte), error_message_(nullptr) {}
    1454             :   void EnsureAnalyzed(RegExpNode* node);
    1455             : 
    1456             : #define DECLARE_VISIT(Type) void Visit##Type(Type##Node* that) override;
    1457             :   FOR_EACH_NODE_TYPE(DECLARE_VISIT)
    1458             : #undef DECLARE_VISIT
    1459             :   void VisitLoopChoice(LoopChoiceNode* that) override;
    1460             : 
    1461             :   bool has_failed() { return error_message_ != nullptr; }
    1462             :   const char* error_message() {
    1463             :     DCHECK(error_message_ != nullptr);
    1464             :     return error_message_;
    1465             :   }
    1466             :   void fail(const char* error_message) {
    1467         310 :     error_message_ = error_message;
    1468             :   }
    1469             : 
    1470             :   Isolate* isolate() const { return isolate_; }
    1471             : 
    1472             :  private:
    1473             :   Isolate* isolate_;
    1474             :   bool is_one_byte_;
    1475             :   const char* error_message_;
    1476             : 
    1477             :   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
    1478             : };
    1479             : 
    1480             : 
    1481             : struct RegExpCompileData {
    1482             :   RegExpCompileData()
    1483             :       : tree(nullptr),
    1484             :         node(nullptr),
    1485             :         simple(true),
    1486             :         contains_anchor(false),
    1487      704460 :         capture_count(0) {}
    1488             :   RegExpTree* tree;
    1489             :   RegExpNode* node;
    1490             :   bool simple;
    1491             :   bool contains_anchor;
    1492             :   Handle<FixedArray> capture_name_map;
    1493             :   Handle<String> error;
    1494             :   int capture_count;
    1495             : };
    1496             : 
    1497             : 
    1498             : class RegExpEngine: public AllStatic {
    1499             :  public:
    1500             :   struct CompilationResult {
    1501             :     inline CompilationResult(Isolate* isolate, const char* error_message);
    1502             :     CompilationResult(Object code, int registers)
    1503       85227 :         : code(code), num_registers(registers) {}
    1504             :     const char* const error_message = nullptr;
    1505             :     Object const code;
    1506             :     int const num_registers = 0;
    1507             :   };
    1508             : 
    1509             :   static CompilationResult Compile(Isolate* isolate, Zone* zone,
    1510             :                                    RegExpCompileData* input,
    1511             :                                    JSRegExp::Flags flags,
    1512             :                                    Handle<String> pattern,
    1513             :                                    Handle<String> sample_subject,
    1514             :                                    bool is_one_byte);
    1515             : 
    1516             :   static bool TooMuchRegExpCode(Isolate* isolate, Handle<String> pattern);
    1517             : 
    1518             :   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
    1519             : };
    1520             : 
    1521             : 
    1522             : class RegExpResultsCache : public AllStatic {
    1523             :  public:
    1524             :   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
    1525             : 
    1526             :   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
    1527             :   // On success, the returned result is guaranteed to be a COW-array.
    1528             :   static Object Lookup(Heap* heap, String key_string, Object key_pattern,
    1529             :                        FixedArray* last_match_out, ResultsCacheType type);
    1530             :   // Attempt to add value_array to the cache specified by type.  On success,
    1531             :   // value_array is turned into a COW-array.
    1532             :   static void Enter(Isolate* isolate, Handle<String> key_string,
    1533             :                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
    1534             :                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
    1535             :   static void Clear(FixedArray cache);
    1536             :   static const int kRegExpResultsCacheSize = 0x100;
    1537             : 
    1538             :  private:
    1539             :   static const int kArrayEntriesPerCacheEntry = 4;
    1540             :   static const int kStringOffset = 0;
    1541             :   static const int kPatternOffset = 1;
    1542             :   static const int kArrayOffset = 2;
    1543             :   static const int kLastMatchOffset = 3;
    1544             : };
    1545             : 
    1546             : }  // namespace internal
    1547             : }  // namespace v8
    1548             : 
    1549             : #endif  // V8_REGEXP_JSREGEXP_H_

Generated by: LCOV version 1.10