LCOV - code coverage report
Current view: top level - src/x64 - assembler-x64.h (source / functions) Hit Total Coverage
Test: app.info Lines: 369 386 95.6 %
Date: 2019-02-19 Functions: 181 193 93.8 %

          Line data    Source code
       1             : // Copyright (c) 1994-2006 Sun Microsystems Inc.
       2             : // All Rights Reserved.
       3             : //
       4             : // Redistribution and use in source and binary forms, with or without
       5             : // modification, are permitted provided that the following conditions are
       6             : // met:
       7             : //
       8             : // - Redistributions of source code must retain the above copyright notice,
       9             : // this list of conditions and the following disclaimer.
      10             : //
      11             : // - Redistribution in binary form must reproduce the above copyright
      12             : // notice, this list of conditions and the following disclaimer in the
      13             : // documentation and/or other materials provided with the distribution.
      14             : //
      15             : // - Neither the name of Sun Microsystems or the names of contributors may
      16             : // be used to endorse or promote products derived from this software without
      17             : // specific prior written permission.
      18             : //
      19             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
      20             : // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
      21             : // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      22             : // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
      23             : // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
      24             : // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
      25             : // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
      26             : // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
      27             : // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
      28             : // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
      29             : // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      30             : 
      31             : // The original source code covered by the above license above has been
      32             : // modified significantly by Google Inc.
      33             : // Copyright 2012 the V8 project authors. All rights reserved.
      34             : 
      35             : // A lightweight X64 Assembler.
      36             : 
      37             : #ifndef V8_X64_ASSEMBLER_X64_H_
      38             : #define V8_X64_ASSEMBLER_X64_H_
      39             : 
      40             : #include <deque>
      41             : #include <map>
      42             : #include <vector>
      43             : 
      44             : #include "src/assembler.h"
      45             : #include "src/label.h"
      46             : #include "src/objects/smi.h"
      47             : #include "src/x64/constants-x64.h"
      48             : #include "src/x64/register-x64.h"
      49             : #include "src/x64/sse-instr.h"
      50             : 
      51             : namespace v8 {
      52             : namespace internal {
      53             : 
      54             : class SafepointTableBuilder;
      55             : 
      56             : // Utility functions
      57             : 
      58             : enum Condition {
      59             :   // any value < 0 is considered no_condition
      60             :   no_condition  = -1,
      61             : 
      62             :   overflow      =  0,
      63             :   no_overflow   =  1,
      64             :   below         =  2,
      65             :   above_equal   =  3,
      66             :   equal         =  4,
      67             :   not_equal     =  5,
      68             :   below_equal   =  6,
      69             :   above         =  7,
      70             :   negative      =  8,
      71             :   positive      =  9,
      72             :   parity_even   = 10,
      73             :   parity_odd    = 11,
      74             :   less          = 12,
      75             :   greater_equal = 13,
      76             :   less_equal    = 14,
      77             :   greater       = 15,
      78             : 
      79             :   // Fake conditions that are handled by the
      80             :   // opcodes using them.
      81             :   always        = 16,
      82             :   never         = 17,
      83             :   // aliases
      84             :   carry         = below,
      85             :   not_carry     = above_equal,
      86             :   zero          = equal,
      87             :   not_zero      = not_equal,
      88             :   sign          = negative,
      89             :   not_sign      = positive,
      90             :   last_condition = greater
      91             : };
      92             : 
      93             : 
      94             : // Returns the equivalent of !cc.
      95             : // Negation of the default no_condition (-1) results in a non-default
      96             : // no_condition value (-2). As long as tests for no_condition check
      97             : // for condition < 0, this will work as expected.
      98           0 : inline Condition NegateCondition(Condition cc) {
      99      456706 :   return static_cast<Condition>(cc ^ 1);
     100             : }
     101             : 
     102             : 
     103             : enum RoundingMode {
     104             :   kRoundToNearest = 0x0,
     105             :   kRoundDown = 0x1,
     106             :   kRoundUp = 0x2,
     107             :   kRoundToZero = 0x3
     108             : };
     109             : 
     110             : 
     111             : // -----------------------------------------------------------------------------
     112             : // Machine instruction Immediates
     113             : 
     114             : class Immediate {
     115             :  public:
     116     9175623 :   explicit constexpr Immediate(int32_t value) : value_(value) {}
     117             :   explicit constexpr Immediate(int32_t value, RelocInfo::Mode rmode)
     118             :       : value_(value), rmode_(rmode) {}
     119             :   explicit Immediate(Smi value)
     120             :       : value_(static_cast<int32_t>(static_cast<intptr_t>(value.ptr()))) {
     121             :     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
     122             :   }
     123             : 
     124             :  private:
     125             :   const int32_t value_;
     126             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     127             : 
     128             :   friend class Assembler;
     129             : };
     130             : ASSERT_TRIVIALLY_COPYABLE(Immediate);
     131             : static_assert(sizeof(Immediate) <= kSystemPointerSize,
     132             :               "Immediate must be small enough to pass it by value");
     133             : 
     134             : class Immediate64 {
     135             :  public:
     136             :   explicit constexpr Immediate64(int64_t value) : value_(value) {}
     137             :   explicit constexpr Immediate64(int64_t value, RelocInfo::Mode rmode)
     138             :       : value_(value), rmode_(rmode) {}
     139             :   explicit constexpr Immediate64(Address value, RelocInfo::Mode rmode)
     140    47969621 :       : value_(static_cast<int64_t>(value)), rmode_(rmode) {}
     141             : 
     142             :  private:
     143             :   const int64_t value_;
     144             :   const RelocInfo::Mode rmode_ = RelocInfo::NONE;
     145             : 
     146             :   friend class Assembler;
     147             : };
     148             : 
     149             : // -----------------------------------------------------------------------------
     150             : // Machine instruction Operands
     151             : 
     152             : enum ScaleFactor : int8_t {
     153             :   times_1 = 0,
     154             :   times_2 = 1,
     155             :   times_4 = 2,
     156             :   times_8 = 3,
     157             :   times_int_size = times_4,
     158             :   times_system_pointer_size = (kSystemPointerSize == 8) ? times_8 : times_4,
     159             :   times_tagged_size = (kTaggedSize == 8) ? times_8 : times_4,
     160             : };
     161             : 
     162             : class V8_EXPORT_PRIVATE Operand {
     163             :  public:
     164    59013796 :   struct Data {
     165             :     byte rex = 0;
     166             :     byte buf[9];
     167             :     byte len = 1;   // number of bytes of buf_ in use.
     168             :     int8_t addend;  // for rip + offset + addend.
     169             :   };
     170             : 
     171             :   // [base + disp/r]
     172             :   Operand(Register base, int32_t disp);
     173             : 
     174             :   // [base + index*scale + disp/r]
     175             :   Operand(Register base,
     176             :           Register index,
     177             :           ScaleFactor scale,
     178             :           int32_t disp);
     179             : 
     180             :   // [index*scale + disp/r]
     181             :   Operand(Register index,
     182             :           ScaleFactor scale,
     183             :           int32_t disp);
     184             : 
     185             :   // Offset from existing memory operand.
     186             :   // Offset is added to existing displacement as 32-bit signed values and
     187             :   // this must not overflow.
     188             :   Operand(Operand base, int32_t offset);
     189             : 
     190             :   // [rip + disp/r]
     191             :   explicit Operand(Label* label, int addend = 0);
     192             : 
     193             :   Operand(const Operand&) V8_NOEXCEPT = default;
     194             : 
     195             :   // Checks whether either base or index register is the given register.
     196             :   // Does not check the "reg" part of the Operand.
     197             :   bool AddressUsesRegister(Register reg) const;
     198             : 
     199             :   // Queries related to the size of the generated instruction.
     200             :   // Whether the generated instruction will have a REX prefix.
     201             :   bool requires_rex() const { return data_.rex != 0; }
     202             :   // Size of the ModR/M, SIB and displacement parts of the generated
     203             :   // instruction.
     204             :   int operand_size() const { return data_.len; }
     205             : 
     206             :   const Data& data() const { return data_; }
     207             : 
     208             :  private:
     209             :   const Data data_;
     210             : };
     211             : ASSERT_TRIVIALLY_COPYABLE(Operand);
     212             : static_assert(sizeof(Operand) <= 2 * kSystemPointerSize,
     213             :               "Operand must be small enough to pass it by value");
     214             : 
     215             : #define ASSEMBLER_INSTRUCTION_LIST(V) \
     216             :   V(add)                              \
     217             :   V(and)                              \
     218             :   V(cmp)                              \
     219             :   V(cmpxchg)                          \
     220             :   V(dec)                              \
     221             :   V(idiv)                             \
     222             :   V(div)                              \
     223             :   V(imul)                             \
     224             :   V(inc)                              \
     225             :   V(lea)                              \
     226             :   V(mov)                              \
     227             :   V(movzxb)                           \
     228             :   V(movzxw)                           \
     229             :   V(neg)                              \
     230             :   V(not)                              \
     231             :   V(or)                               \
     232             :   V(repmovs)                          \
     233             :   V(sbb)                              \
     234             :   V(sub)                              \
     235             :   V(test)                             \
     236             :   V(xchg)                             \
     237             :   V(xor)
     238             : 
     239             : // Shift instructions on operands/registers with kInt32Size and kInt64Size.
     240             : #define SHIFT_INSTRUCTION_LIST(V) \
     241             :   V(rol, 0x0)                     \
     242             :   V(ror, 0x1)                     \
     243             :   V(rcl, 0x2)                     \
     244             :   V(rcr, 0x3)                     \
     245             :   V(shl, 0x4)                     \
     246             :   V(shr, 0x5)                     \
     247             :   V(sar, 0x7)
     248             : 
     249             : // Partial Constant Pool
     250             : // Different from complete constant pool (like arm does), partial constant pool
     251             : // only takes effects for shareable constants in order to reduce code size.
     252             : // Partial constant pool does not emit constant pool entries at the end of each
     253             : // code object. Instead, it keeps the first shareable constant inlined in the
     254             : // instructions and uses rip-relative memory loadings for the same constants in
     255             : // subsequent instructions. These rip-relative memory loadings will target at
     256             : // the position of the first inlined constant. For example:
     257             : //
     258             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     259             : //  …
     260             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     261             : //  …
     262             : //
     263             : // turns into
     264             : //
     265             : //  REX.W movq r10,0x7f9f75a32c20   ; 10 bytes
     266             : //  …
     267             : //  REX.W movq r10,[rip+0xffffff96] ; 7 bytes
     268             : //  …
     269             : 
     270           0 : class ConstPool {
     271             :  public:
     272    35720261 :   explicit ConstPool(Assembler* assm) : assm_(assm) {}
     273             :   // Returns true when partial constant pool is valid for this entry.
     274             :   bool TryRecordEntry(intptr_t data, RelocInfo::Mode mode);
     275             :   bool IsEmpty() const { return entries_.empty(); }
     276             : 
     277             :   void PatchEntries();
     278             :   // Discard any pending pool entries.
     279             :   void Clear();
     280             : 
     281             :  private:
     282             :   // Adds a shared entry to entries_. Returns true if this is not the first time
     283             :   // we add this entry, false otherwise.
     284             :   bool AddSharedEntry(uint64_t data, int offset);
     285             : 
     286             :   // Check if the instruction is a rip-relative move.
     287             :   bool IsMoveRipRelative(Address instr);
     288             : 
     289             :   Assembler* assm_;
     290             : 
     291             :   // Values, pc offsets of entries.
     292             :   typedef std::multimap<uint64_t, int> EntryMap;
     293             :   EntryMap entries_;
     294             : 
     295             :   // Number of bytes taken up by the displacement of rip-relative addressing.
     296             :   static constexpr int kRipRelativeDispSize = 4;  // 32-bit displacement.
     297             :   // Distance between the address of the displacement in the rip-relative move
     298             :   // instruction and the head address of the instruction.
     299             :   static constexpr int kMoveRipRelativeDispOffset =
     300             :       3;  // REX Opcode ModRM Displacement
     301             :   // Distance between the address of the imm64 in the 'movq reg, imm64'
     302             :   // instruction and the head address of the instruction.
     303             :   static constexpr int kMoveImm64Offset = 2;  // REX Opcode imm64
     304             :   // A mask for rip-relative move instruction.
     305             :   static constexpr uint32_t kMoveRipRelativeMask = 0x00C7FFFB;
     306             :   // The bits for a rip-relative move instruction after mask.
     307             :   static constexpr uint32_t kMoveRipRelativeInstr = 0x00058B48;
     308             : };
     309             : 
     310             : class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
     311             :  private:
     312             :   // We check before assembling an instruction that there is sufficient
     313             :   // space to write an instruction and its relocation information.
     314             :   // The relocation writer's position must be kGap bytes above the end of
     315             :   // the generated instructions. This leaves enough space for the
     316             :   // longest possible x64 instruction, 15 bytes, and the longest possible
     317             :   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
     318             :   // (There is a 15 byte limit on x64 instruction length that rules out some
     319             :   // otherwise valid instructions.)
     320             :   // This allows for a single, fast space check per instruction.
     321             :   static constexpr int kGap = 32;
     322             : 
     323             :  public:
     324             :   // Create an assembler. Instructions and relocation information are emitted
     325             :   // into a buffer, with the instructions starting from the beginning and the
     326             :   // relocation information starting from the end of the buffer. See CodeDesc
     327             :   // for a detailed comment on the layout (globals.h).
     328             :   //
     329             :   // If the provided buffer is nullptr, the assembler allocates and grows its
     330             :   // own buffer. Otherwise it takes ownership of the provided buffer.
     331             :   explicit Assembler(const AssemblerOptions&,
     332             :                      std::unique_ptr<AssemblerBuffer> = {});
     333    71440250 :   ~Assembler() override = default;
     334             : 
     335             :   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
     336             :   static constexpr int kNoHandlerTable = 0;
     337             :   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
     338             :   void GetCode(Isolate* isolate, CodeDesc* desc,
     339             :                SafepointTableBuilder* safepoint_table_builder,
     340             :                int handler_table_offset);
     341             : 
     342             :   // Convenience wrapper for code without safepoint or handler tables.
     343       99736 :   void GetCode(Isolate* isolate, CodeDesc* desc) {
     344      311448 :     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
     345       99736 :   }
     346             : 
     347             :   void FinalizeJumpOptimizationInfo();
     348             : 
     349             :   // Unused on this architecture.
     350             :   void MaybeEmitOutOfLineConstantPool() {}
     351             : 
     352             :   // Read/Modify the code target in the relative branch/call instruction at pc.
     353             :   // On the x64 architecture, we use relative jumps with a 32-bit displacement
     354             :   // to jump to other Code objects in the Code space in the heap.
     355             :   // Jumps to C functions are done indirectly through a 64-bit register holding
     356             :   // the absolute address of the target.
     357             :   // These functions convert between absolute Addresses of Code objects and
     358             :   // the relative displacements stored in the code.
     359             :   // The isolate argument is unused (and may be nullptr) when skipping flushing.
     360             :   static inline Address target_address_at(Address pc, Address constant_pool);
     361             :   static inline void set_target_address_at(
     362             :       Address pc, Address constant_pool, Address target,
     363             :       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
     364             : 
     365             :   // Return the code target address at a call site from the return address
     366             :   // of that call in the instruction stream.
     367             :   static inline Address target_address_from_return_address(Address pc);
     368             : 
     369             :   // This sets the branch destination (which is in the instruction on x64).
     370             :   // This is for calls and branches within generated code.
     371             :   inline static void deserialization_set_special_target_at(
     372             :       Address instruction_payload, Code code, Address target);
     373             : 
     374             :   // Get the size of the special target encoded at 'instruction_payload'.
     375             :   inline static int deserialization_special_target_size(
     376             :       Address instruction_payload);
     377             : 
     378             :   // This sets the internal reference at the pc.
     379             :   inline static void deserialization_set_target_internal_reference_at(
     380             :       Address pc, Address target,
     381             :       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
     382             : 
     383             :   inline Handle<Code> code_target_object_handle_at(Address pc);
     384             :   inline Address runtime_entry_at(Address pc);
     385             : 
     386             :   // Number of bytes taken up by the branch target in the code.
     387             :   static constexpr int kSpecialTargetSize = 4;  // 32-bit displacement.
     388             :   // Distance between the address of the code target in the call instruction
     389             :   // and the return address pushed on the stack.
     390             :   static constexpr int kCallTargetAddressOffset = 4;  // 32-bit displacement.
     391             : 
     392             :   // One byte opcode for test eax,0xXXXXXXXX.
     393             :   static constexpr byte kTestEaxByte = 0xA9;
     394             :   // One byte opcode for test al, 0xXX.
     395             :   static constexpr byte kTestAlByte = 0xA8;
     396             :   // One byte opcode for nop.
     397             :   static constexpr byte kNopByte = 0x90;
     398             : 
     399             :   // One byte prefix for a short conditional jump.
     400             :   static constexpr byte kJccShortPrefix = 0x70;
     401             :   static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
     402             :   static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
     403             :   static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
     404             :   static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;
     405             : 
     406             :   // VEX prefix encodings.
     407             :   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
     408             :   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
     409             :   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
     410             :   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
     411             : 
     412             :   // ---------------------------------------------------------------------------
     413             :   // Code generation
     414             :   //
     415             :   // Function names correspond one-to-one to x64 instruction mnemonics.
     416             :   // Unless specified otherwise, instructions operate on 64-bit operands.
     417             :   //
     418             :   // If we need versions of an assembly instruction that operate on different
     419             :   // width arguments, we add a single-letter suffix specifying the width.
     420             :   // This is done for the following instructions: mov, cmp, inc, dec,
     421             :   // add, sub, and test.
     422             :   // There are no versions of these instructions without the suffix.
     423             :   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
     424             :   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
     425             :   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
     426             :   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
     427             :   // - Instructions on operands/registers with pointer size use 'p'.
     428             : 
     429             : #define DECLARE_INSTRUCTION(instruction)                                       \
     430             :   template <class P1>                                                          \
     431             :   void instruction##_tagged(P1 p1) {                                           \
     432             :     STATIC_ASSERT(kTaggedSize == kSystemPointerSize);                          \
     433             :     /* TODO(ishell): change to kTaggedSize */                                  \
     434             :     emit_##instruction(p1, COMPRESS_POINTERS_BOOL ? kInt32Size : kTaggedSize); \
     435             :   }                                                                            \
     436             :                                                                                \
     437             :   template <class P1>                                                          \
     438             :   void instruction##l(P1 p1) {                                                 \
     439             :     emit_##instruction(p1, kInt32Size);                                        \
     440             :   }                                                                            \
     441             :                                                                                \
     442             :   template <class P1>                                                          \
     443             :   void instruction##q(P1 p1) {                                                 \
     444             :     emit_##instruction(p1, kInt64Size);                                        \
     445             :   }                                                                            \
     446             :                                                                                \
     447             :   template <class P1, class P2>                                                \
     448             :   void instruction##_tagged(P1 p1, P2 p2) {                                    \
     449             :     STATIC_ASSERT(kTaggedSize == kSystemPointerSize);                          \
     450             :     /* TODO(ishell): change to kTaggedSize */                                  \
     451             :     emit_##instruction(p1, p2,                                                 \
     452             :                        COMPRESS_POINTERS_BOOL ? kInt32Size : kTaggedSize);     \
     453             :   }                                                                            \
     454             :                                                                                \
     455             :   template <class P1, class P2>                                                \
     456             :   void instruction##l(P1 p1, P2 p2) {                                          \
     457             :     emit_##instruction(p1, p2, kInt32Size);                                    \
     458             :   }                                                                            \
     459             :                                                                                \
     460             :   template <class P1, class P2>                                                \
     461             :   void instruction##q(P1 p1, P2 p2) {                                          \
     462             :     emit_##instruction(p1, p2, kInt64Size);                                    \
     463             :   }                                                                            \
     464             :                                                                                \
     465             :   template <class P1, class P2, class P3>                                      \
     466             :   void instruction##l(P1 p1, P2 p2, P3 p3) {                                   \
     467             :     emit_##instruction(p1, p2, p3, kInt32Size);                                \
     468             :   }                                                                            \
     469             :                                                                                \
     470             :   template <class P1, class P2, class P3>                                      \
     471             :   void instruction##q(P1 p1, P2 p2, P3 p3) {                                   \
     472             :     emit_##instruction(p1, p2, p3, kInt64Size);                                \
     473             :   }
     474   151804099 :   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
     475             : #undef DECLARE_INSTRUCTION
     476             : 
     477             :   // Insert the smallest number of nop instructions
     478             :   // possible to align the pc offset to a multiple
     479             :   // of m, where m must be a power of 2.
     480             :   void Align(int m);
     481             :   // Insert the smallest number of zero bytes possible to align the pc offset
     482             :   // to a mulitple of m. m must be a power of 2 (>= 2).
     483             :   void DataAlign(int m);
     484             :   void Nop(int bytes = 1);
     485             :   // Aligns code to something that's optimal for a jump target for the platform.
     486             :   void CodeTargetAlign();
     487             : 
     488             :   // Stack
     489             :   void pushfq();
     490             :   void popfq();
     491             : 
     492             :   void pushq(Immediate value);
     493             :   // Push a 32 bit integer, and guarantee that it is actually pushed as a
     494             :   // 32 bit value, the normal push will optimize the 8 bit case.
     495             :   void pushq_imm32(int32_t imm32);
     496             :   void pushq(Register src);
     497             :   void pushq(Operand src);
     498             : 
     499             :   void popq(Register dst);
     500             :   void popq(Operand dst);
     501             : 
     502             :   void enter(Immediate size);
     503             :   void leave();
     504             : 
     505             :   // Moves
     506             :   void movb(Register dst, Operand src);
     507             :   void movb(Register dst, Immediate imm);
     508             :   void movb(Operand dst, Register src);
     509             :   void movb(Operand dst, Immediate imm);
     510             : 
     511             :   // Move the low 16 bits of a 64-bit register value to a 16-bit
     512             :   // memory location.
     513             :   void movw(Register dst, Operand src);
     514             :   void movw(Operand dst, Register src);
     515             :   void movw(Operand dst, Immediate imm);
     516             : 
     517             :   // Move the offset of the label location relative to the current
     518             :   // position (after the move) to the destination.
     519             :   void movl(Operand dst, Label* src);
     520             : 
     521             :   // Load a heap number into a register.
     522             :   // The heap number will not be allocated and embedded into the code right
     523             :   // away. Instead, we emit the load of a dummy object. Later, when calling
     524             :   // Assembler::GetCode, the heap number will be allocated and the code will be
     525             :   // patched by replacing the dummy with the actual object. The RelocInfo for
     526             :   // the embedded object gets already recorded correctly when emitting the dummy
     527             :   // move.
     528             :   void movq_heap_number(Register dst, double value);
     529             : 
     530             :   void movq_string(Register dst, const StringConstantBase* str);
     531             : 
     532             :   // Loads a 64-bit immediate into a register.
     533     3002115 :   void movq(Register dst, int64_t value) { movq(dst, Immediate64(value)); }
     534     1229714 :   void movq(Register dst, uint64_t value) {
     535     1229714 :     movq(dst, Immediate64(static_cast<int64_t>(value)));
     536     1229722 :   }
     537             : 
     538             :   void movsxbl(Register dst, Register src);
     539             :   void movsxbl(Register dst, Operand src);
     540             :   void movsxbq(Register dst, Register src);
     541             :   void movsxbq(Register dst, Operand src);
     542             :   void movsxwl(Register dst, Register src);
     543             :   void movsxwl(Register dst, Operand src);
     544             :   void movsxwq(Register dst, Register src);
     545             :   void movsxwq(Register dst, Operand src);
     546             :   void movsxlq(Register dst, Register src);
     547             :   void movsxlq(Register dst, Operand src);
     548             : 
     549             :   // Repeated moves.
     550             : 
     551             :   void repmovsb();
     552             :   void repmovsw();
     553             :   void repmovsl() { emit_repmovs(kInt32Size); }
     554             :   void repmovsq() { emit_repmovs(kInt64Size); }
     555             : 
     556             :   // Instruction to load from an immediate 64-bit pointer into RAX.
     557             :   void load_rax(Address value, RelocInfo::Mode rmode);
     558             :   void load_rax(ExternalReference ext);
     559             : 
     560             :   // Conditional moves.
     561             :   void cmovq(Condition cc, Register dst, Register src);
     562             :   void cmovq(Condition cc, Register dst, Operand src);
     563             :   void cmovl(Condition cc, Register dst, Register src);
     564             :   void cmovl(Condition cc, Register dst, Operand src);
     565             : 
     566         336 :   void cmpb(Register dst, Immediate src) {
     567        7117 :     immediate_arithmetic_op_8(0x7, dst, src);
     568         336 :   }
     569             : 
     570             :   void cmpb_al(Immediate src);
     571             : 
     572             :   void cmpb(Register dst, Register src) {
     573        3358 :     arithmetic_op_8(0x3A, dst, src);
     574             :   }
     575             : 
     576         453 :   void cmpb(Register dst, Operand src) { arithmetic_op_8(0x3A, dst, src); }
     577             : 
     578         460 :   void cmpb(Operand dst, Register src) { arithmetic_op_8(0x38, src, dst); }
     579             : 
     580         168 :   void cmpb(Operand dst, Immediate src) {
     581       15100 :     immediate_arithmetic_op_8(0x7, dst, src);
     582         168 :   }
     583             : 
     584             :   void cmpw(Operand dst, Immediate src) {
     585      276081 :     immediate_arithmetic_op_16(0x7, dst, src);
     586             :   }
     587             : 
     588             :   void cmpw(Register dst, Immediate src) {
     589      154089 :     immediate_arithmetic_op_16(0x7, dst, src);
     590             :   }
     591             : 
     592          60 :   void cmpw(Register dst, Operand src) { arithmetic_op_16(0x3B, dst, src); }
     593             : 
     594             :   void cmpw(Register dst, Register src) {
     595         448 :     arithmetic_op_16(0x3B, dst, src);
     596             :   }
     597             : 
     598         455 :   void cmpw(Operand dst, Register src) { arithmetic_op_16(0x39, src, dst); }
     599             : 
     600           0 :   void testb(Register reg, Operand op) { testb(op, reg); }
     601             : 
     602           0 :   void testw(Register reg, Operand op) { testw(op, reg); }
     603             : 
     604             :   void andb(Register dst, Immediate src) {
     605             :     immediate_arithmetic_op_8(0x4, dst, src);
     606             :   }
     607             : 
     608             :   void decb(Register dst);
     609             :   void decb(Operand dst);
     610             : 
     611             :   // Lock prefix.
     612             :   void lock();
     613             : 
     614             :   void xchgb(Register reg, Operand op);
     615             :   void xchgw(Register reg, Operand op);
     616             : 
     617             :   void cmpxchgb(Operand dst, Register src);
     618             :   void cmpxchgw(Operand dst, Register src);
     619             : 
     620             :   // Sign-extends rax into rdx:rax.
     621             :   void cqo();
     622             :   // Sign-extends eax into edx:eax.
     623             :   void cdq();
     624             : 
     625             :   // Multiply eax by src, put the result in edx:eax.
     626             :   void mull(Register src);
     627             :   void mull(Operand src);
     628             :   // Multiply rax by src, put the result in rdx:rax.
     629             :   void mulq(Register src);
     630             : 
     631             : #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                     \
     632             :   void instruction##l(Register dst, Immediate imm8) {                       \
     633             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     634             :   }                                                                         \
     635             :                                                                             \
     636             :   void instruction##q(Register dst, Immediate imm8) {                       \
     637             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     638             :   }                                                                         \
     639             :                                                                             \
     640             :   void instruction##l(Operand dst, Immediate imm8) {                        \
     641             :     shift(dst, imm8, subcode, kInt32Size);                                  \
     642             :   }                                                                         \
     643             :                                                                             \
     644             :   void instruction##q(Operand dst, Immediate imm8) {                        \
     645             :     shift(dst, imm8, subcode, kInt64Size);                                  \
     646             :   }                                                                         \
     647             :                                                                             \
     648             :   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); } \
     649             :                                                                             \
     650             :   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); } \
     651             :                                                                             \
     652             :   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }  \
     653             :                                                                             \
     654             :   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
     655     1323097 :   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
     656             : #undef DECLARE_SHIFT_INSTRUCTION
     657             : 
     658             :   // Shifts dst:src left by cl bits, affecting only dst.
     659             :   void shld(Register dst, Register src);
     660             : 
     661             :   // Shifts src:dst right by cl bits, affecting only dst.
     662             :   void shrd(Register dst, Register src);
     663             : 
     664             :   void store_rax(Address dst, RelocInfo::Mode mode);
     665             :   void store_rax(ExternalReference ref);
     666             : 
     667             :   void subb(Register dst, Immediate src) {
     668        2334 :     immediate_arithmetic_op_8(0x5, dst, src);
     669             :   }
     670             : 
     671             :   void sub_sp_32(uint32_t imm);
     672             : 
     673             :   void testb(Register dst, Register src);
     674             :   void testb(Register reg, Immediate mask);
     675             :   void testb(Operand op, Immediate mask);
     676             :   void testb(Operand op, Register reg);
     677             : 
     678             :   void testw(Register dst, Register src);
     679             :   void testw(Register reg, Immediate mask);
     680             :   void testw(Operand op, Immediate mask);
     681             :   void testw(Operand op, Register reg);
     682             : 
     683             :   // Bit operations.
     684             :   void bswapl(Register dst);
     685             :   void bswapq(Register dst);
     686             :   void btq(Operand dst, Register src);
     687             :   void btsq(Operand dst, Register src);
     688             :   void btsq(Register dst, Immediate imm8);
     689             :   void btrq(Register dst, Immediate imm8);
     690             :   void bsrq(Register dst, Register src);
     691             :   void bsrq(Register dst, Operand src);
     692             :   void bsrl(Register dst, Register src);
     693             :   void bsrl(Register dst, Operand src);
     694             :   void bsfq(Register dst, Register src);
     695             :   void bsfq(Register dst, Operand src);
     696             :   void bsfl(Register dst, Register src);
     697             :   void bsfl(Register dst, Operand src);
     698             : 
     699             :   // Miscellaneous
     700             :   void clc();
     701             :   void cld();
     702             :   void cpuid();
     703             :   void hlt();
     704             :   void int3();
     705             :   void nop();
     706             :   void ret(int imm16);
     707             :   void ud2();
     708             :   void setcc(Condition cc, Register reg);
     709             : 
     710             :   void pshufw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
     711             :   void pshufw(XMMRegister dst, Operand src, uint8_t shuffle);
     712             :   void pblendw(XMMRegister dst, Operand src, uint8_t mask);
     713             :   void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask);
     714             :   void palignr(XMMRegister dst, Operand src, uint8_t mask);
     715             :   void palignr(XMMRegister dst, XMMRegister src, uint8_t mask);
     716             : 
     717             :   // Label operations & relative jumps (PPUM Appendix D)
     718             :   //
     719             :   // Takes a branch opcode (cc) and a label (L) and generates
     720             :   // either a backward branch or a forward branch and links it
     721             :   // to the label fixup chain. Usage:
     722             :   //
     723             :   // Label L;    // unbound label
     724             :   // j(cc, &L);  // forward branch to unbound label
     725             :   // bind(&L);   // bind label to the current pc
     726             :   // j(cc, &L);  // backward branch to bound label
     727             :   // bind(&L);   // illegal: a label may be bound only once
     728             :   //
     729             :   // Note: The same Label can be used for forward and backward branches
     730             :   // but it may be bound only once.
     731             : 
     732             :   void bind(Label* L);  // binds an unbound label L to the current code position
     733             : 
     734             :   // Calls
     735             :   // Call near relative 32-bit displacement, relative to next instruction.
     736             :   void call(Label* L);
     737             :   void call(Address entry, RelocInfo::Mode rmode);
     738             :   void near_call(Address entry, RelocInfo::Mode rmode);
     739             :   void near_jmp(Address entry, RelocInfo::Mode rmode);
     740             :   void call(Handle<Code> target,
     741             :             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
     742             : 
     743             :   // Calls directly to the given address using a relative offset.
     744             :   // Should only ever be used in Code objects for calls within the
     745             :   // same Code object. Should not be used when generating new code (use labels),
     746             :   // but only when patching existing code.
     747             :   void call(Address target);
     748             : 
     749             :   // Call near absolute indirect, address in register
     750             :   void call(Register adr);
     751             : 
     752             :   // Jumps
     753             :   // Jump short or near relative.
     754             :   // Use a 32-bit signed displacement.
     755             :   // Unconditional jump to L
     756             :   void jmp(Label* L, Label::Distance distance = Label::kFar);
     757             :   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
     758             : 
     759             :   // Jump near absolute indirect (r64)
     760             :   void jmp(Register adr);
     761             :   void jmp(Operand src);
     762             : 
     763             :   // Conditional jumps
     764             :   void j(Condition cc,
     765             :          Label* L,
     766             :          Label::Distance distance = Label::kFar);
     767             :   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
     768             :   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
     769             : 
     770             :   // Floating-point operations
     771             :   void fld(int i);
     772             : 
     773             :   void fld1();
     774             :   void fldz();
     775             :   void fldpi();
     776             :   void fldln2();
     777             : 
     778             :   void fld_s(Operand adr);
     779             :   void fld_d(Operand adr);
     780             : 
     781             :   void fstp_s(Operand adr);
     782             :   void fstp_d(Operand adr);
     783             :   void fstp(int index);
     784             : 
     785             :   void fild_s(Operand adr);
     786             :   void fild_d(Operand adr);
     787             : 
     788             :   void fist_s(Operand adr);
     789             : 
     790             :   void fistp_s(Operand adr);
     791             :   void fistp_d(Operand adr);
     792             : 
     793             :   void fisttp_s(Operand adr);
     794             :   void fisttp_d(Operand adr);
     795             : 
     796             :   void fabs();
     797             :   void fchs();
     798             : 
     799             :   void fadd(int i);
     800             :   void fsub(int i);
     801             :   void fmul(int i);
     802             :   void fdiv(int i);
     803             : 
     804             :   void fisub_s(Operand adr);
     805             : 
     806             :   void faddp(int i = 1);
     807             :   void fsubp(int i = 1);
     808             :   void fsubrp(int i = 1);
     809             :   void fmulp(int i = 1);
     810             :   void fdivp(int i = 1);
     811             :   void fprem();
     812             :   void fprem1();
     813             : 
     814             :   void fxch(int i = 1);
     815             :   void fincstp();
     816             :   void ffree(int i = 0);
     817             : 
     818             :   void ftst();
     819             :   void fucomp(int i);
     820             :   void fucompp();
     821             :   void fucomi(int i);
     822             :   void fucomip();
     823             : 
     824             :   void fcompp();
     825             :   void fnstsw_ax();
     826             :   void fwait();
     827             :   void fnclex();
     828             : 
     829             :   void fsin();
     830             :   void fcos();
     831             :   void fptan();
     832             :   void fyl2x();
     833             :   void f2xm1();
     834             :   void fscale();
     835             :   void fninit();
     836             : 
     837             :   void frndint();
     838             : 
     839             :   void sahf();
     840             : 
     841             :   // SSE instructions
     842             :   void addss(XMMRegister dst, XMMRegister src);
     843             :   void addss(XMMRegister dst, Operand src);
     844             :   void subss(XMMRegister dst, XMMRegister src);
     845             :   void subss(XMMRegister dst, Operand src);
     846             :   void mulss(XMMRegister dst, XMMRegister src);
     847             :   void mulss(XMMRegister dst, Operand src);
     848             :   void divss(XMMRegister dst, XMMRegister src);
     849             :   void divss(XMMRegister dst, Operand src);
     850             : 
     851             :   void maxss(XMMRegister dst, XMMRegister src);
     852             :   void maxss(XMMRegister dst, Operand src);
     853             :   void minss(XMMRegister dst, XMMRegister src);
     854             :   void minss(XMMRegister dst, Operand src);
     855             : 
     856             :   void sqrtss(XMMRegister dst, XMMRegister src);
     857             :   void sqrtss(XMMRegister dst, Operand src);
     858             : 
     859             :   void ucomiss(XMMRegister dst, XMMRegister src);
     860             :   void ucomiss(XMMRegister dst, Operand src);
     861             :   void movaps(XMMRegister dst, XMMRegister src);
     862             : 
     863             :   // Don't use this unless it's important to keep the
     864             :   // top half of the destination register unchanged.
     865             :   // Use movaps when moving float values and movd for integer
     866             :   // values in xmm registers.
     867             :   void movss(XMMRegister dst, XMMRegister src);
     868             : 
     869             :   void movss(XMMRegister dst, Operand src);
     870             :   void movss(Operand dst, XMMRegister src);
     871             :   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
     872             : 
     873             :   void cvttss2si(Register dst, Operand src);
     874             :   void cvttss2si(Register dst, XMMRegister src);
     875             :   void cvtlsi2ss(XMMRegister dst, Operand src);
     876             :   void cvtlsi2ss(XMMRegister dst, Register src);
     877             : 
     878             :   void andps(XMMRegister dst, XMMRegister src);
     879             :   void andps(XMMRegister dst, Operand src);
     880             :   void orps(XMMRegister dst, XMMRegister src);
     881             :   void orps(XMMRegister dst, Operand src);
     882             :   void xorps(XMMRegister dst, XMMRegister src);
     883             :   void xorps(XMMRegister dst, Operand src);
     884             : 
     885             :   void addps(XMMRegister dst, XMMRegister src);
     886             :   void addps(XMMRegister dst, Operand src);
     887             :   void subps(XMMRegister dst, XMMRegister src);
     888             :   void subps(XMMRegister dst, Operand src);
     889             :   void mulps(XMMRegister dst, XMMRegister src);
     890             :   void mulps(XMMRegister dst, Operand src);
     891             :   void divps(XMMRegister dst, XMMRegister src);
     892             :   void divps(XMMRegister dst, Operand src);
     893             : 
     894             :   void movmskps(Register dst, XMMRegister src);
     895             : 
     896             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
     897             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     898             :   void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
     899             :               SIMDPrefix pp, LeadingOpcode m, VexW w);
     900             : 
     901             :   // SSE2 instructions
     902             :   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
     903             :                   byte opcode);
     904             :   void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
     905             :                   byte opcode);
     906             : #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
     907             :   void instruction(XMMRegister dst, XMMRegister src) {                \
     908             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     909             :   }                                                                   \
     910             :   void instruction(XMMRegister dst, Operand src) {                    \
     911             :     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
     912             :   }
     913             : 
     914        3991 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
     915             : #undef DECLARE_SSE2_INSTRUCTION
     916             : 
     917             : #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
     918             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
     919             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     920             :   }                                                                          \
     921             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {     \
     922             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
     923             :   }
     924             : 
     925      276301 :   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
     926             : #undef DECLARE_SSE2_AVX_INSTRUCTION
     927             : 
     928             :   // SSE3
     929             :   void lddqu(XMMRegister dst, Operand src);
     930             : 
     931             :   // SSSE3
     932             :   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     933             :                    byte escape2, byte opcode);
     934             :   void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     935             :                    byte escape2, byte opcode);
     936             : 
     937             : #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     938             :                                   opcode)                                    \
     939             :   void instruction(XMMRegister dst, XMMRegister src) {                       \
     940             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     941             :   }                                                                          \
     942             :   void instruction(XMMRegister dst, Operand src) {                           \
     943             :     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     944             :   }
     945             : 
     946        2750 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
     947             : #undef DECLARE_SSSE3_INSTRUCTION
     948             : 
     949             :   // SSE4
     950             :   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
     951             :                   byte escape2, byte opcode);
     952             :   void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
     953             :                   byte escape2, byte opcode);
     954             : #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
     955             :                                  opcode)                                    \
     956             :   void instruction(XMMRegister dst, XMMRegister src) {                      \
     957             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     958             :   }                                                                         \
     959             :   void instruction(XMMRegister dst, Operand src) {                          \
     960             :     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
     961             :   }
     962             : 
     963         592 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
     964             : #undef DECLARE_SSE4_INSTRUCTION
     965             : 
     966             : #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
     967             :                                       opcode)                                 \
     968             :   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
     969             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     970             :   }                                                                           \
     971             :   void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {      \
     972             :     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
     973             :   }
     974             : 
     975          90 :   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     976         150 :   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
     977             : #undef DECLARE_SSE34_AVX_INSTRUCTION
     978             : 
     979             :   void movd(XMMRegister dst, Register src);
     980             :   void movd(XMMRegister dst, Operand src);
     981             :   void movd(Register dst, XMMRegister src);
     982             :   void movq(XMMRegister dst, Register src);
     983             :   void movq(Register dst, XMMRegister src);
     984             :   void movq(XMMRegister dst, XMMRegister src);
     985             : 
     986             :   // Don't use this unless it's important to keep the
     987             :   // top half of the destination register unchanged.
     988             :   // Use movapd when moving double values and movq for integer
     989             :   // values in xmm registers.
     990             :   void movsd(XMMRegister dst, XMMRegister src);
     991             : 
     992             :   void movsd(Operand dst, XMMRegister src);
     993             :   void movsd(XMMRegister dst, Operand src);
     994             : 
     995             :   void movdqa(Operand dst, XMMRegister src);
     996             :   void movdqa(XMMRegister dst, Operand src);
     997             : 
     998             :   void movdqu(Operand dst, XMMRegister src);
     999             :   void movdqu(XMMRegister dst, Operand src);
    1000             : 
    1001             :   void movapd(XMMRegister dst, XMMRegister src);
    1002             :   void movupd(XMMRegister dst, Operand src);
    1003             :   void movupd(Operand dst, XMMRegister src);
    1004             : 
    1005             :   void psllq(XMMRegister reg, byte imm8);
    1006             :   void psrlq(XMMRegister reg, byte imm8);
    1007             :   void psllw(XMMRegister reg, byte imm8);
    1008             :   void pslld(XMMRegister reg, byte imm8);
    1009             :   void psrlw(XMMRegister reg, byte imm8);
    1010             :   void psrld(XMMRegister reg, byte imm8);
    1011             :   void psraw(XMMRegister reg, byte imm8);
    1012             :   void psrad(XMMRegister reg, byte imm8);
    1013             : 
    1014             :   void cvttsd2si(Register dst, Operand src);
    1015             :   void cvttsd2si(Register dst, XMMRegister src);
    1016             :   void cvttss2siq(Register dst, XMMRegister src);
    1017             :   void cvttss2siq(Register dst, Operand src);
    1018             :   void cvttsd2siq(Register dst, XMMRegister src);
    1019             :   void cvttsd2siq(Register dst, Operand src);
    1020             :   void cvttps2dq(XMMRegister dst, Operand src);
    1021             :   void cvttps2dq(XMMRegister dst, XMMRegister src);
    1022             : 
    1023             :   void cvtlsi2sd(XMMRegister dst, Operand src);
    1024             :   void cvtlsi2sd(XMMRegister dst, Register src);
    1025             : 
    1026             :   void cvtqsi2ss(XMMRegister dst, Operand src);
    1027             :   void cvtqsi2ss(XMMRegister dst, Register src);
    1028             : 
    1029             :   void cvtqsi2sd(XMMRegister dst, Operand src);
    1030             :   void cvtqsi2sd(XMMRegister dst, Register src);
    1031             : 
    1032             : 
    1033             :   void cvtss2sd(XMMRegister dst, XMMRegister src);
    1034             :   void cvtss2sd(XMMRegister dst, Operand src);
    1035             :   void cvtsd2ss(XMMRegister dst, XMMRegister src);
    1036             :   void cvtsd2ss(XMMRegister dst, Operand src);
    1037             : 
    1038             :   void cvtsd2si(Register dst, XMMRegister src);
    1039             :   void cvtsd2siq(Register dst, XMMRegister src);
    1040             : 
    1041             :   void addsd(XMMRegister dst, XMMRegister src);
    1042             :   void addsd(XMMRegister dst, Operand src);
    1043             :   void subsd(XMMRegister dst, XMMRegister src);
    1044             :   void subsd(XMMRegister dst, Operand src);
    1045             :   void mulsd(XMMRegister dst, XMMRegister src);
    1046             :   void mulsd(XMMRegister dst, Operand src);
    1047             :   void divsd(XMMRegister dst, XMMRegister src);
    1048             :   void divsd(XMMRegister dst, Operand src);
    1049             : 
    1050             :   void maxsd(XMMRegister dst, XMMRegister src);
    1051             :   void maxsd(XMMRegister dst, Operand src);
    1052             :   void minsd(XMMRegister dst, XMMRegister src);
    1053             :   void minsd(XMMRegister dst, Operand src);
    1054             : 
    1055             :   void andpd(XMMRegister dst, XMMRegister src);
    1056             :   void andpd(XMMRegister dst, Operand src);
    1057             :   void orpd(XMMRegister dst, XMMRegister src);
    1058             :   void orpd(XMMRegister dst, Operand src);
    1059             :   void xorpd(XMMRegister dst, XMMRegister src);
    1060             :   void xorpd(XMMRegister dst, Operand src);
    1061             :   void sqrtsd(XMMRegister dst, XMMRegister src);
    1062             :   void sqrtsd(XMMRegister dst, Operand src);
    1063             : 
    1064             :   void haddps(XMMRegister dst, XMMRegister src);
    1065             :   void haddps(XMMRegister dst, Operand src);
    1066             : 
    1067             :   void ucomisd(XMMRegister dst, XMMRegister src);
    1068             :   void ucomisd(XMMRegister dst, Operand src);
    1069             :   void cmpltsd(XMMRegister dst, XMMRegister src);
    1070             : 
    1071             :   void movmskpd(Register dst, XMMRegister src);
    1072             : 
    1073             :   // SSE 4.1 instruction
    1074             :   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
    1075             :   void extractps(Register dst, XMMRegister src, byte imm8);
    1076             :   void pextrb(Register dst, XMMRegister src, int8_t imm8);
    1077             :   void pextrb(Operand dst, XMMRegister src, int8_t imm8);
    1078             :   void pextrw(Register dst, XMMRegister src, int8_t imm8);
    1079             :   void pextrw(Operand dst, XMMRegister src, int8_t imm8);
    1080             :   void pextrd(Register dst, XMMRegister src, int8_t imm8);
    1081             :   void pextrd(Operand dst, XMMRegister src, int8_t imm8);
    1082             :   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
    1083             :   void pinsrb(XMMRegister dst, Operand src, int8_t imm8);
    1084             :   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
    1085             :   void pinsrw(XMMRegister dst, Operand src, int8_t imm8);
    1086             :   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
    1087             :   void pinsrd(XMMRegister dst, Operand src, int8_t imm8);
    1088             : 
    1089             :   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1090             :   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
    1091             : 
    1092             :   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
    1093             :   void cmpps(XMMRegister dst, Operand src, int8_t cmp);
    1094             :   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
    1095             :   void cmppd(XMMRegister dst, Operand src, int8_t cmp);
    1096             : 
    1097             : #define SSE_CMP_P(instr, imm8)                                                \
    1098             :   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
    1099             :   void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); }     \
    1100             :   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
    1101             :   void instr##pd(XMMRegister dst, Operand src) { cmppd(dst, src, imm8); }
    1102             : 
    1103          24 :   SSE_CMP_P(cmpeq, 0x0)
    1104          28 :   SSE_CMP_P(cmplt, 0x1)
    1105          32 :   SSE_CMP_P(cmple, 0x2)
    1106          20 :   SSE_CMP_P(cmpneq, 0x4)
    1107          20 :   SSE_CMP_P(cmpnlt, 0x5)
    1108          20 :   SSE_CMP_P(cmpnle, 0x6)
    1109             : 
    1110             : #undef SSE_CMP_P
    1111             : 
    1112             :   void minps(XMMRegister dst, XMMRegister src);
    1113             :   void minps(XMMRegister dst, Operand src);
    1114             :   void maxps(XMMRegister dst, XMMRegister src);
    1115             :   void maxps(XMMRegister dst, Operand src);
    1116             :   void rcpps(XMMRegister dst, XMMRegister src);
    1117             :   void rcpps(XMMRegister dst, Operand src);
    1118             :   void rsqrtps(XMMRegister dst, XMMRegister src);
    1119             :   void rsqrtps(XMMRegister dst, Operand src);
    1120             :   void sqrtps(XMMRegister dst, XMMRegister src);
    1121             :   void sqrtps(XMMRegister dst, Operand src);
    1122             :   void movups(XMMRegister dst, XMMRegister src);
    1123             :   void movups(XMMRegister dst, Operand src);
    1124             :   void movups(Operand dst, XMMRegister src);
    1125             :   void psrldq(XMMRegister dst, uint8_t shift);
    1126             :   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1127             :   void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);
    1128             :   void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1129             :   void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
    1130             :   void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle);
    1131             :   void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
    1132             :   void cvtdq2ps(XMMRegister dst, XMMRegister src);
    1133             :   void cvtdq2ps(XMMRegister dst, Operand src);
    1134             : 
    1135             :   // AVX instruction
    1136             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1137          14 :     vfmasd(0x99, dst, src1, src2);
    1138             :   }
    1139             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1140          14 :     vfmasd(0xa9, dst, src1, src2);
    1141             :   }
    1142             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1143          14 :     vfmasd(0xb9, dst, src1, src2);
    1144             :   }
    1145             :   void vfmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1146          14 :     vfmasd(0x99, dst, src1, src2);
    1147             :   }
    1148             :   void vfmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1149          14 :     vfmasd(0xa9, dst, src1, src2);
    1150             :   }
    1151             :   void vfmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1152          14 :     vfmasd(0xb9, dst, src1, src2);
    1153             :   }
    1154             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1155           9 :     vfmasd(0x9b, dst, src1, src2);
    1156             :   }
    1157             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1158           9 :     vfmasd(0xab, dst, src1, src2);
    1159             :   }
    1160             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1161           9 :     vfmasd(0xbb, dst, src1, src2);
    1162             :   }
    1163             :   void vfmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1164           9 :     vfmasd(0x9b, dst, src1, src2);
    1165             :   }
    1166             :   void vfmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1167           9 :     vfmasd(0xab, dst, src1, src2);
    1168             :   }
    1169             :   void vfmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1170           9 :     vfmasd(0xbb, dst, src1, src2);
    1171             :   }
    1172             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1173           9 :     vfmasd(0x9d, dst, src1, src2);
    1174             :   }
    1175             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1176           9 :     vfmasd(0xad, dst, src1, src2);
    1177             :   }
    1178             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1179           9 :     vfmasd(0xbd, dst, src1, src2);
    1180             :   }
    1181             :   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1182           9 :     vfmasd(0x9d, dst, src1, src2);
    1183             :   }
    1184             :   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1185           9 :     vfmasd(0xad, dst, src1, src2);
    1186             :   }
    1187             :   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1188           9 :     vfmasd(0xbd, dst, src1, src2);
    1189             :   }
    1190             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1191           9 :     vfmasd(0x9f, dst, src1, src2);
    1192             :   }
    1193             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1194           9 :     vfmasd(0xaf, dst, src1, src2);
    1195             :   }
    1196             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1197           9 :     vfmasd(0xbf, dst, src1, src2);
    1198             :   }
    1199             :   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1200           9 :     vfmasd(0x9f, dst, src1, src2);
    1201             :   }
    1202             :   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1203           9 :     vfmasd(0xaf, dst, src1, src2);
    1204             :   }
    1205             :   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1206           9 :     vfmasd(0xbf, dst, src1, src2);
    1207             :   }
    1208             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1209             :   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1210             : 
    1211             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1212           9 :     vfmass(0x99, dst, src1, src2);
    1213             :   }
    1214             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1215           9 :     vfmass(0xa9, dst, src1, src2);
    1216             :   }
    1217             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1218           9 :     vfmass(0xb9, dst, src1, src2);
    1219             :   }
    1220             :   void vfmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1221           9 :     vfmass(0x99, dst, src1, src2);
    1222             :   }
    1223             :   void vfmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1224           9 :     vfmass(0xa9, dst, src1, src2);
    1225             :   }
    1226             :   void vfmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1227           9 :     vfmass(0xb9, dst, src1, src2);
    1228             :   }
    1229             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1230           9 :     vfmass(0x9b, dst, src1, src2);
    1231             :   }
    1232             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1233           9 :     vfmass(0xab, dst, src1, src2);
    1234             :   }
    1235             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1236           9 :     vfmass(0xbb, dst, src1, src2);
    1237             :   }
    1238             :   void vfmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1239           9 :     vfmass(0x9b, dst, src1, src2);
    1240             :   }
    1241             :   void vfmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1242           9 :     vfmass(0xab, dst, src1, src2);
    1243             :   }
    1244             :   void vfmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1245           9 :     vfmass(0xbb, dst, src1, src2);
    1246             :   }
    1247             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1248           9 :     vfmass(0x9d, dst, src1, src2);
    1249             :   }
    1250             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1251           9 :     vfmass(0xad, dst, src1, src2);
    1252             :   }
    1253             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1254           9 :     vfmass(0xbd, dst, src1, src2);
    1255             :   }
    1256             :   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1257           9 :     vfmass(0x9d, dst, src1, src2);
    1258             :   }
    1259             :   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1260           9 :     vfmass(0xad, dst, src1, src2);
    1261             :   }
    1262             :   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1263           9 :     vfmass(0xbd, dst, src1, src2);
    1264             :   }
    1265             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1266           9 :     vfmass(0x9f, dst, src1, src2);
    1267             :   }
    1268             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1269           9 :     vfmass(0xaf, dst, src1, src2);
    1270             :   }
    1271             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1272           9 :     vfmass(0xbf, dst, src1, src2);
    1273             :   }
    1274             :   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1275           9 :     vfmass(0x9f, dst, src1, src2);
    1276             :   }
    1277             :   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1278           9 :     vfmass(0xaf, dst, src1, src2);
    1279             :   }
    1280             :   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1281           9 :     vfmass(0xbf, dst, src1, src2);
    1282             :   }
    1283             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1284             :   void vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1285             : 
    1286             :   void vmovd(XMMRegister dst, Register src);
    1287             :   void vmovd(XMMRegister dst, Operand src);
    1288             :   void vmovd(Register dst, XMMRegister src);
    1289             :   void vmovq(XMMRegister dst, Register src);
    1290             :   void vmovq(XMMRegister dst, Operand src);
    1291             :   void vmovq(Register dst, XMMRegister src);
    1292             : 
    1293      102887 :   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1294             :     vsd(0x10, dst, src1, src2);
    1295      102889 :   }
    1296     2838837 :   void vmovsd(XMMRegister dst, Operand src) { vsd(0x10, dst, xmm0, src); }
    1297     3359408 :   void vmovsd(Operand dst, XMMRegister src) { vsd(0x11, src, xmm0, dst); }
    1298             : 
    1299             : #define AVX_SP_3(instr, opcode) \
    1300             :   AVX_S_3(instr, opcode)        \
    1301             :   AVX_P_3(instr, opcode)
    1302             : 
    1303             : #define AVX_S_3(instr, opcode)  \
    1304             :   AVX_3(instr##ss, opcode, vss) \
    1305             :   AVX_3(instr##sd, opcode, vsd)
    1306             : 
    1307             : #define AVX_P_3(instr, opcode)  \
    1308             :   AVX_3(instr##ps, opcode, vps) \
    1309             :   AVX_3(instr##pd, opcode, vpd)
    1310             : 
    1311             : #define AVX_3(instr, opcode, impl)                                  \
    1312             :   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1313             :     impl(opcode, dst, src1, src2);                                  \
    1314             :   }                                                                 \
    1315             :   void instr(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1316             :     impl(opcode, dst, src1, src2);                                  \
    1317             :   }
    1318             : 
    1319        1280 :   AVX_SP_3(vsqrt, 0x51)
    1320      163646 :   AVX_SP_3(vadd, 0x58)
    1321       45184 :   AVX_SP_3(vsub, 0x5c)
    1322       27526 :   AVX_SP_3(vmul, 0x59)
    1323       26954 :   AVX_SP_3(vdiv, 0x5e)
    1324          42 :   AVX_SP_3(vmin, 0x5d)
    1325          42 :   AVX_SP_3(vmax, 0x5f)
    1326         779 :   AVX_P_3(vand, 0x54)
    1327          14 :   AVX_P_3(vor, 0x56)
    1328      528207 :   AVX_P_3(vxor, 0x57)
    1329       36050 :   AVX_3(vcvtsd2ss, 0x5a, vsd)
    1330          20 :   AVX_3(vhaddps, 0x7c, vsd)
    1331             : 
    1332             : #undef AVX_3
    1333             : #undef AVX_S_3
    1334             : #undef AVX_P_3
    1335             : #undef AVX_SP_3
    1336             : 
    1337             :   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
    1338      186136 :     vpd(0x73, xmm2, dst, src);
    1339             :     emit(imm8);
    1340             :   }
    1341             :   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
    1342      215909 :     vpd(0x73, xmm6, dst, src);
    1343             :     emit(imm8);
    1344             :   }
    1345             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1346       10110 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1347             :   }
    1348             :   void vcvtss2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1349       11310 :     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
    1350             :   }
    1351             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1352      366866 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1353      366866 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
    1354             :   }
    1355             :   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1356        3921 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
    1357             :   }
    1358             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1359        1122 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1360        1122 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
    1361             :   }
    1362             :   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1363           8 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
    1364             :   }
    1365             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
    1366         404 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1367         404 :     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
    1368             :   }
    1369             :   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    1370           0 :     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
    1371             :   }
    1372             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
    1373       19592 :     XMMRegister isrc2 = XMMRegister::from_code(src2.code());
    1374       19592 :     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
    1375             :   }
    1376             :   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    1377        2082 :     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
    1378             :   }
    1379         460 :   void vcvttss2si(Register dst, XMMRegister src) {
    1380         460 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1381         460 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1382         460 :   }
    1383           0 :   void vcvttss2si(Register dst, Operand src) {
    1384           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1385           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
    1386           0 :   }
    1387      104840 :   void vcvttsd2si(Register dst, XMMRegister src) {
    1388      104840 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1389      104840 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1390      104840 :   }
    1391       20322 :   void vcvttsd2si(Register dst, Operand src) {
    1392       20322 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1393       20322 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
    1394       20322 :   }
    1395         364 :   void vcvttss2siq(Register dst, XMMRegister src) {
    1396         364 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1397         364 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1398         364 :   }
    1399           0 :   void vcvttss2siq(Register dst, Operand src) {
    1400           0 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1401           0 :     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
    1402           0 :   }
    1403       61720 :   void vcvttsd2siq(Register dst, XMMRegister src) {
    1404       61720 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1405       61720 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1406       61723 :   }
    1407          10 :   void vcvttsd2siq(Register dst, Operand src) {
    1408          10 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1409          10 :     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
    1410          10 :   }
    1411           9 :   void vcvtsd2si(Register dst, XMMRegister src) {
    1412           9 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1413           9 :     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
    1414           9 :   }
    1415             :   void vucomisd(XMMRegister dst, XMMRegister src) {
    1416      238434 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1417             :   }
    1418             :   void vucomisd(XMMRegister dst, Operand src) {
    1419       20703 :     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
    1420             :   }
    1421         591 :   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1422             :                 RoundingMode mode) {
    1423         591 :     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
    1424         590 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1425         590 :   }
    1426       43974 :   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
    1427             :                 RoundingMode mode) {
    1428       43974 :     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
    1429       43976 :     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
    1430       43976 :   }
    1431             : 
    1432             :   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1433      235502 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1434             :   }
    1435      247237 :   void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
    1436     3236674 :     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
    1437      247237 :   }
    1438             : 
    1439             :   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    1440       96446 :     vss(0x10, dst, src1, src2);
    1441             :   }
    1442       25341 :   void vmovss(XMMRegister dst, Operand src) { vss(0x10, dst, xmm0, src); }
    1443      684169 :   void vmovss(Operand dst, XMMRegister src) { vss(0x11, src, xmm0, dst); }
    1444             :   void vucomiss(XMMRegister dst, XMMRegister src);
    1445             :   void vucomiss(XMMRegister dst, Operand src);
    1446             :   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1447             :   void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1448             : 
    1449         362 :   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
    1450        2053 :   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
    1451        6039 :   void vmovups(XMMRegister dst, Operand src) { vps(0x10, dst, xmm0, src); }
    1452        5951 :   void vmovups(Operand dst, XMMRegister src) { vps(0x11, src, xmm0, dst); }
    1453      129827 :   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
    1454           5 :   void vmovupd(XMMRegister dst, Operand src) { vpd(0x10, dst, xmm0, src); }
    1455           5 :   void vmovupd(Operand dst, XMMRegister src) { vpd(0x11, src, xmm0, dst); }
    1456             :   void vmovmskps(Register dst, XMMRegister src) {
    1457         196 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1458         196 :     vps(0x50, idst, xmm0, src);
    1459             :   }
    1460             :   void vmovmskpd(Register dst, XMMRegister src) {
    1461         662 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1462         662 :     vpd(0x50, idst, xmm0, src);
    1463             :   }
    1464             :   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1465          35 :     vps(0xC2, dst, src1, src2);
    1466             :     emit(cmp);
    1467             :   }
    1468             :   void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1469          35 :     vps(0xC2, dst, src1, src2);
    1470             :     emit(cmp);
    1471             :   }
    1472             :   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
    1473          35 :     vpd(0xC2, dst, src1, src2);
    1474             :     emit(cmp);
    1475             :   }
    1476             :   void vcmppd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp) {
    1477          35 :     vpd(0xC2, dst, src1, src2);
    1478             :     emit(cmp);
    1479             :   }
    1480             : 
    1481             : #define AVX_CMP_P(instr, imm8)                                          \
    1482             :   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1483             :     vcmpps(dst, src1, src2, imm8);                                      \
    1484             :   }                                                                     \
    1485             :   void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1486             :     vcmpps(dst, src1, src2, imm8);                                      \
    1487             :   }                                                                     \
    1488             :   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    1489             :     vcmppd(dst, src1, src2, imm8);                                      \
    1490             :   }                                                                     \
    1491             :   void instr##pd(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    1492             :     vcmppd(dst, src1, src2, imm8);                                      \
    1493             :   }
    1494             : 
    1495          40 :   AVX_CMP_P(vcmpeq, 0x0)
    1496          40 :   AVX_CMP_P(vcmplt, 0x1)
    1497          40 :   AVX_CMP_P(vcmple, 0x2)
    1498          40 :   AVX_CMP_P(vcmpneq, 0x4)
    1499          40 :   AVX_CMP_P(vcmpnlt, 0x5)
    1500          40 :   AVX_CMP_P(vcmpnle, 0x6)
    1501             : 
    1502             : #undef AVX_CMP_P
    1503             : 
    1504             :   void vlddqu(XMMRegister dst, Operand src) {
    1505           5 :     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
    1506             :   }
    1507           5 :   void vpsllw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1508           5 :     vinstr(0x71, xmm6, dst, src, k66, k0F, kWIG);
    1509             :     emit(imm8);
    1510           5 :   }
    1511           5 :   void vpsrlw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1512           5 :     vinstr(0x71, xmm2, dst, src, k66, k0F, kWIG);
    1513             :     emit(imm8);
    1514           5 :   }
    1515           5 :   void vpsraw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1516           5 :     vinstr(0x71, xmm4, dst, src, k66, k0F, kWIG);
    1517             :     emit(imm8);
    1518           5 :   }
    1519       49089 :   void vpslld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1520       49089 :     vinstr(0x72, xmm6, dst, src, k66, k0F, kWIG);
    1521             :     emit(imm8);
    1522       49090 :   }
    1523       37172 :   void vpsrld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1524       37172 :     vinstr(0x72, xmm2, dst, src, k66, k0F, kWIG);
    1525             :     emit(imm8);
    1526       37172 :   }
    1527           5 :   void vpsrad(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1528           5 :     vinstr(0x72, xmm4, dst, src, k66, k0F, kWIG);
    1529             :     emit(imm8);
    1530           5 :   }
    1531           5 :   void vpextrb(Register dst, XMMRegister src, uint8_t imm8) {
    1532           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1533           5 :     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
    1534             :     emit(imm8);
    1535           5 :   }
    1536           5 :   void vpextrb(Operand dst, XMMRegister src, uint8_t imm8) {
    1537           5 :     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
    1538             :     emit(imm8);
    1539           5 :   }
    1540           5 :   void vpextrw(Register dst, XMMRegister src, uint8_t imm8) {
    1541           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1542           5 :     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
    1543             :     emit(imm8);
    1544           5 :   }
    1545           5 :   void vpextrw(Operand dst, XMMRegister src, uint8_t imm8) {
    1546           5 :     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
    1547             :     emit(imm8);
    1548           5 :   }
    1549           5 :   void vpextrd(Register dst, XMMRegister src, uint8_t imm8) {
    1550           5 :     XMMRegister idst = XMMRegister::from_code(dst.code());
    1551           5 :     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
    1552             :     emit(imm8);
    1553           5 :   }
    1554           5 :   void vpextrd(Operand dst, XMMRegister src, uint8_t imm8) {
    1555           5 :     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
    1556             :     emit(imm8);
    1557           5 :   }
    1558           5 :   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1559           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1560           5 :     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
    1561             :     emit(imm8);
    1562           5 :   }
    1563           5 :   void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1564           5 :     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
    1565             :     emit(imm8);
    1566           5 :   }
    1567           5 :   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1568           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1569           5 :     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
    1570             :     emit(imm8);
    1571           5 :   }
    1572           5 :   void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1573           5 :     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
    1574             :     emit(imm8);
    1575           5 :   }
    1576           5 :   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8) {
    1577           5 :     XMMRegister isrc = XMMRegister::from_code(src2.code());
    1578           5 :     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
    1579             :     emit(imm8);
    1580           5 :   }
    1581           5 :   void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8) {
    1582           5 :     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
    1583             :     emit(imm8);
    1584           5 :   }
    1585           5 :   void vpshufd(XMMRegister dst, XMMRegister src, uint8_t imm8) {
    1586           5 :     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
    1587             :     emit(imm8);
    1588           5 :   }
    1589             : 
    1590             :   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1591             :   void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1592             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
    1593             :   void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
    1594             : 
    1595             :   // BMI instruction
    1596             :   void andnq(Register dst, Register src1, Register src2) {
    1597           9 :     bmi1q(0xf2, dst, src1, src2);
    1598             :   }
    1599             :   void andnq(Register dst, Register src1, Operand src2) {
    1600           9 :     bmi1q(0xf2, dst, src1, src2);
    1601             :   }
    1602             :   void andnl(Register dst, Register src1, Register src2) {
    1603           9 :     bmi1l(0xf2, dst, src1, src2);
    1604             :   }
    1605             :   void andnl(Register dst, Register src1, Operand src2) {
    1606           9 :     bmi1l(0xf2, dst, src1, src2);
    1607             :   }
    1608             :   void bextrq(Register dst, Register src1, Register src2) {
    1609           9 :     bmi1q(0xf7, dst, src2, src1);
    1610             :   }
    1611             :   void bextrq(Register dst, Operand src1, Register src2) {
    1612           9 :     bmi1q(0xf7, dst, src2, src1);
    1613             :   }
    1614             :   void bextrl(Register dst, Register src1, Register src2) {
    1615           9 :     bmi1l(0xf7, dst, src2, src1);
    1616             :   }
    1617             :   void bextrl(Register dst, Operand src1, Register src2) {
    1618           9 :     bmi1l(0xf7, dst, src2, src1);
    1619             :   }
    1620           9 :   void blsiq(Register dst, Register src) { bmi1q(0xf3, rbx, dst, src); }
    1621           9 :   void blsiq(Register dst, Operand src) { bmi1q(0xf3, rbx, dst, src); }
    1622           9 :   void blsil(Register dst, Register src) { bmi1l(0xf3, rbx, dst, src); }
    1623           9 :   void blsil(Register dst, Operand src) { bmi1l(0xf3, rbx, dst, src); }
    1624           9 :   void blsmskq(Register dst, Register src) { bmi1q(0xf3, rdx, dst, src); }
    1625           9 :   void blsmskq(Register dst, Operand src) { bmi1q(0xf3, rdx, dst, src); }
    1626           9 :   void blsmskl(Register dst, Register src) { bmi1l(0xf3, rdx, dst, src); }
    1627           9 :   void blsmskl(Register dst, Operand src) { bmi1l(0xf3, rdx, dst, src); }
    1628           9 :   void blsrq(Register dst, Register src) { bmi1q(0xf3, rcx, dst, src); }
    1629           9 :   void blsrq(Register dst, Operand src) { bmi1q(0xf3, rcx, dst, src); }
    1630           9 :   void blsrl(Register dst, Register src) { bmi1l(0xf3, rcx, dst, src); }
    1631           9 :   void blsrl(Register dst, Operand src) { bmi1l(0xf3, rcx, dst, src); }
    1632             :   void tzcntq(Register dst, Register src);
    1633             :   void tzcntq(Register dst, Operand src);
    1634             :   void tzcntl(Register dst, Register src);
    1635             :   void tzcntl(Register dst, Operand src);
    1636             : 
    1637             :   void lzcntq(Register dst, Register src);
    1638             :   void lzcntq(Register dst, Operand src);
    1639             :   void lzcntl(Register dst, Register src);
    1640             :   void lzcntl(Register dst, Operand src);
    1641             : 
    1642             :   void popcntq(Register dst, Register src);
    1643             :   void popcntq(Register dst, Operand src);
    1644             :   void popcntl(Register dst, Register src);
    1645             :   void popcntl(Register dst, Operand src);
    1646             : 
    1647             :   void bzhiq(Register dst, Register src1, Register src2) {
    1648           9 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1649             :   }
    1650             :   void bzhiq(Register dst, Operand src1, Register src2) {
    1651           9 :     bmi2q(kNone, 0xf5, dst, src2, src1);
    1652             :   }
    1653             :   void bzhil(Register dst, Register src1, Register src2) {
    1654           9 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1655             :   }
    1656             :   void bzhil(Register dst, Operand src1, Register src2) {
    1657           9 :     bmi2l(kNone, 0xf5, dst, src2, src1);
    1658             :   }
    1659             :   void mulxq(Register dst1, Register dst2, Register src) {
    1660           9 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1661             :   }
    1662             :   void mulxq(Register dst1, Register dst2, Operand src) {
    1663           9 :     bmi2q(kF2, 0xf6, dst1, dst2, src);
    1664             :   }
    1665             :   void mulxl(Register dst1, Register dst2, Register src) {
    1666           9 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1667             :   }
    1668             :   void mulxl(Register dst1, Register dst2, Operand src) {
    1669           9 :     bmi2l(kF2, 0xf6, dst1, dst2, src);
    1670             :   }
    1671             :   void pdepq(Register dst, Register src1, Register src2) {
    1672           9 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1673             :   }
    1674             :   void pdepq(Register dst, Register src1, Operand src2) {
    1675           9 :     bmi2q(kF2, 0xf5, dst, src1, src2);
    1676             :   }
    1677             :   void pdepl(Register dst, Register src1, Register src2) {
    1678           9 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1679             :   }
    1680             :   void pdepl(Register dst, Register src1, Operand src2) {
    1681           9 :     bmi2l(kF2, 0xf5, dst, src1, src2);
    1682             :   }
    1683             :   void pextq(Register dst, Register src1, Register src2) {
    1684           9 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1685             :   }
    1686             :   void pextq(Register dst, Register src1, Operand src2) {
    1687           9 :     bmi2q(kF3, 0xf5, dst, src1, src2);
    1688             :   }
    1689             :   void pextl(Register dst, Register src1, Register src2) {
    1690           9 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1691             :   }
    1692             :   void pextl(Register dst, Register src1, Operand src2) {
    1693           9 :     bmi2l(kF3, 0xf5, dst, src1, src2);
    1694             :   }
    1695             :   void sarxq(Register dst, Register src1, Register src2) {
    1696           9 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1697             :   }
    1698             :   void sarxq(Register dst, Operand src1, Register src2) {
    1699           9 :     bmi2q(kF3, 0xf7, dst, src2, src1);
    1700             :   }
    1701             :   void sarxl(Register dst, Register src1, Register src2) {
    1702           9 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1703             :   }
    1704             :   void sarxl(Register dst, Operand src1, Register src2) {
    1705           9 :     bmi2l(kF3, 0xf7, dst, src2, src1);
    1706             :   }
    1707             :   void shlxq(Register dst, Register src1, Register src2) {
    1708           9 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1709             :   }
    1710             :   void shlxq(Register dst, Operand src1, Register src2) {
    1711           9 :     bmi2q(k66, 0xf7, dst, src2, src1);
    1712             :   }
    1713             :   void shlxl(Register dst, Register src1, Register src2) {
    1714           9 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1715             :   }
    1716             :   void shlxl(Register dst, Operand src1, Register src2) {
    1717           9 :     bmi2l(k66, 0xf7, dst, src2, src1);
    1718             :   }
    1719             :   void shrxq(Register dst, Register src1, Register src2) {
    1720           9 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1721             :   }
    1722             :   void shrxq(Register dst, Operand src1, Register src2) {
    1723           9 :     bmi2q(kF2, 0xf7, dst, src2, src1);
    1724             :   }
    1725             :   void shrxl(Register dst, Register src1, Register src2) {
    1726           9 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1727             :   }
    1728             :   void shrxl(Register dst, Operand src1, Register src2) {
    1729           9 :     bmi2l(kF2, 0xf7, dst, src2, src1);
    1730             :   }
    1731             :   void rorxq(Register dst, Register src, byte imm8);
    1732             :   void rorxq(Register dst, Operand src, byte imm8);
    1733             :   void rorxl(Register dst, Register src, byte imm8);
    1734             :   void rorxl(Register dst, Operand src, byte imm8);
    1735             : 
    1736             :   void lfence();
    1737             :   void pause();
    1738             : 
    1739             :   // Check the code size generated from label to here.
    1740             :   int SizeOfCodeGeneratedSince(Label* label) {
    1741             :     return pc_offset() - label->pos();
    1742             :   }
    1743             : 
    1744             :   // Record a deoptimization reason that can be used by a log or cpu profiler.
    1745             :   // Use --trace-deopt to enable.
    1746             :   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
    1747             :                          int id);
    1748             : 
    1749             : 
    1750             :   // Writes a single word of data in the code stream.
    1751             :   // Used for inline tables, e.g., jump-tables.
    1752             :   void db(uint8_t data);
    1753             :   void dd(uint32_t data);
    1754             :   void dq(uint64_t data);
    1755             :   void dp(uintptr_t data) { dq(data); }
    1756             :   void dq(Label* label);
    1757             : 
    1758             :   // Patch entries for partial constant pool.
    1759             :   void PatchConstPool();
    1760             : 
    1761             :   // Check if use partial constant pool for this rmode.
    1762             :   static bool UseConstPoolFor(RelocInfo::Mode rmode);
    1763             : 
    1764             :   // Check if there is less than kGap bytes available in the buffer.
    1765             :   // If this is the case, we need to grow the buffer before emitting
    1766             :   // an instruction or relocation information.
    1767             :   inline bool buffer_overflow() const {
    1768   326954057 :     return pc_ >= reloc_info_writer.pos() - kGap;
    1769             :   }
    1770             : 
    1771             :   // Get the number of bytes available in the buffer.
    1772             :   inline int available_space() const {
    1773             :     return static_cast<int>(reloc_info_writer.pos() - pc_);
    1774             :   }
    1775             : 
    1776             :   static bool IsNop(Address addr);
    1777             : 
    1778             :   // Avoid overflows for displacements etc.
    1779             :   static constexpr int kMaximalBufferSize = 512 * MB;
    1780             : 
    1781             :   byte byte_at(int pos) { return buffer_start_[pos]; }
    1782     1891010 :   void set_byte_at(int pos, byte value) { buffer_start_[pos] = value; }
    1783             : 
    1784             :  protected:
    1785             :   // Call near indirect
    1786             :   void call(Operand operand);
    1787             : 
    1788             :  private:
    1789             :   Address addr_at(int pos) {
    1790    63173395 :     return reinterpret_cast<Address>(buffer_start_ + pos);
    1791             :   }
    1792    39040924 :   uint32_t long_at(int pos) {
    1793             :     return ReadUnalignedValue<uint32_t>(addr_at(pos));
    1794             :   }
    1795    18278467 :   void long_at_put(int pos, uint32_t x)  {
    1796             :     WriteUnalignedValue(addr_at(pos), x);
    1797             :   }
    1798             : 
    1799             :   // code emission
    1800             :   void GrowBuffer();
    1801             : 
    1802   504519149 :   void emit(byte x) { *pc_++ = x; }
    1803             :   inline void emitl(uint32_t x);
    1804             :   inline void emitq(uint64_t x);
    1805             :   inline void emitw(uint16_t x);
    1806             :   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
    1807             :   inline void emit(Immediate x);
    1808             :   inline void emit(Immediate64 x);
    1809             : 
    1810             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1811             :   // the top bit of both register codes.
    1812             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1813             :   // REX.W is set.
    1814             :   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
    1815             :   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
    1816             :   inline void emit_rex_64(Register reg, Register rm_reg);
    1817             :   inline void emit_rex_64(XMMRegister reg, XMMRegister rm_reg);
    1818             : 
    1819             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1820             :   // the top bit of the destination, index, and base register codes.
    1821             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1822             :   // register is used for REX.B, and the high bit of op's index register
    1823             :   // is used for REX.X.  REX.W is set.
    1824             :   inline void emit_rex_64(Register reg, Operand op);
    1825             :   inline void emit_rex_64(XMMRegister reg, Operand op);
    1826             : 
    1827             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1828             :   // the top bit of the register code.
    1829             :   // The high bit of register is used for REX.B.
    1830             :   // REX.W is set and REX.R and REX.X are clear.
    1831             :   inline void emit_rex_64(Register rm_reg);
    1832             : 
    1833             :   // Emits a REX prefix that encodes a 64-bit operand size and
    1834             :   // the top bit of the index and base register codes.
    1835             :   // The high bit of op's base register is used for REX.B, and the high
    1836             :   // bit of op's index register is used for REX.X.
    1837             :   // REX.W is set and REX.R clear.
    1838             :   inline void emit_rex_64(Operand op);
    1839             : 
    1840             :   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
    1841             :   void emit_rex_64() { emit(0x48); }
    1842             : 
    1843             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1844             :   // REX.W is clear.
    1845             :   inline void emit_rex_32(Register reg, Register rm_reg);
    1846             : 
    1847             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1848             :   // register is used for REX.B, and the high bit of op's index register
    1849             :   // is used for REX.X.  REX.W is cleared.
    1850             :   inline void emit_rex_32(Register reg, Operand op);
    1851             : 
    1852             :   // High bit of rm_reg goes to REX.B.
    1853             :   // REX.W, REX.R and REX.X are clear.
    1854             :   inline void emit_rex_32(Register rm_reg);
    1855             : 
    1856             :   // High bit of base goes to REX.B and high bit of index to REX.X.
    1857             :   // REX.W and REX.R are clear.
    1858             :   inline void emit_rex_32(Operand op);
    1859             : 
    1860             :   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
    1861             :   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
    1862             :   inline void emit_optional_rex_32(Register reg, Register rm_reg);
    1863             : 
    1864             :   // The high bit of reg is used for REX.R, the high bit of op's base
    1865             :   // register is used for REX.B, and the high bit of op's index register
    1866             :   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
    1867             :   // is emitted.
    1868             :   inline void emit_optional_rex_32(Register reg, Operand op);
    1869             : 
    1870             :   // As for emit_optional_rex_32(Register, Register), except that
    1871             :   // the registers are XMM registers.
    1872             :   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
    1873             : 
    1874             :   // As for emit_optional_rex_32(Register, Register), except that
    1875             :   // one of the registers is an XMM registers.
    1876             :   inline void emit_optional_rex_32(XMMRegister reg, Register base);
    1877             : 
    1878             :   // As for emit_optional_rex_32(Register, Register), except that
    1879             :   // one of the registers is an XMM registers.
    1880             :   inline void emit_optional_rex_32(Register reg, XMMRegister base);
    1881             : 
    1882             :   // As for emit_optional_rex_32(Register, Operand), except that
    1883             :   // the register is an XMM register.
    1884             :   inline void emit_optional_rex_32(XMMRegister reg, Operand op);
    1885             : 
    1886             :   // Optionally do as emit_rex_32(Register) if the register number has
    1887             :   // the high bit set.
    1888             :   inline void emit_optional_rex_32(Register rm_reg);
    1889             :   inline void emit_optional_rex_32(XMMRegister rm_reg);
    1890             : 
    1891             :   // Optionally do as emit_rex_32(Operand) if the operand register
    1892             :   // numbers have a high bit set.
    1893             :   inline void emit_optional_rex_32(Operand op);
    1894             : 
    1895             :   void emit_rex(int size) {
    1896           0 :     if (size == kInt64Size) {
    1897             :       emit_rex_64();
    1898             :     } else {
    1899             :       DCHECK_EQ(size, kInt32Size);
    1900             :     }
    1901             :   }
    1902             : 
    1903             :   template<class P1>
    1904             :   void emit_rex(P1 p1, int size) {
    1905    66572386 :     if (size == kInt64Size) {
    1906             :       emit_rex_64(p1);
    1907             :     } else {
    1908             :       DCHECK_EQ(size, kInt32Size);
    1909             :       emit_optional_rex_32(p1);
    1910             :     }
    1911             :   }
    1912             : 
    1913             :   template<class P1, class P2>
    1914    69237453 :   void emit_rex(P1 p1, P2 p2, int size) {
    1915    69237453 :     if (size == kInt64Size) {
    1916             :       emit_rex_64(p1, p2);
    1917             :     } else {
    1918             :       DCHECK_EQ(size, kInt32Size);
    1919             :       emit_optional_rex_32(p1, p2);
    1920             :     }
    1921    69237453 :   }
    1922             : 
    1923             :   // Emit vex prefix
    1924             :   void emit_vex2_byte0() { emit(0xc5); }
    1925             :   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
    1926             :                               SIMDPrefix pp);
    1927             :   void emit_vex3_byte0() { emit(0xc4); }
    1928             :   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
    1929             :   inline void emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m);
    1930             :   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
    1931             :                               SIMDPrefix pp);
    1932             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
    1933             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1934             :                               VexW w);
    1935             :   inline void emit_vex_prefix(Register reg, Register v, Register rm,
    1936             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1937             :                               VexW w);
    1938             :   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, Operand rm,
    1939             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1940             :                               VexW w);
    1941             :   inline void emit_vex_prefix(Register reg, Register v, Operand rm,
    1942             :                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
    1943             :                               VexW w);
    1944             : 
    1945             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1946             :   // 1- or 4-byte offset for a memory operand.  Also encodes
    1947             :   // the second operand of the operation, a register or operation
    1948             :   // subcode, into the reg field of the ModR/M byte.
    1949             :   void emit_operand(Register reg, Operand adr) {
    1950    54356492 :     emit_operand(reg.low_bits(), adr);
    1951             :   }
    1952             : 
    1953             :   // Emit the ModR/M byte, and optionally the SIB byte and
    1954             :   // 1- or 4-byte offset for a memory operand.  Also used to encode
    1955             :   // a three-bit opcode extension into the ModR/M byte.
    1956             :   void emit_operand(int rm, Operand adr);
    1957             : 
    1958             :   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
    1959             :   void emit_modrm(Register reg, Register rm_reg) {
    1960    27666691 :     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
    1961             :   }
    1962             : 
    1963             :   // Emit a ModR/M byte with an operation subcode in the reg field and
    1964             :   // a register in the rm_reg field.
    1965             :   void emit_modrm(int code, Register rm_reg) {
    1966             :     DCHECK(is_uint3(code));
    1967    67074318 :     emit(0xC0 | code << 3 | rm_reg.low_bits());
    1968             :   }
    1969             : 
    1970             :   // Emit the code-object-relative offset of the label's position
    1971             :   inline void emit_code_relative_offset(Label* label);
    1972             : 
    1973             :   // The first argument is the reg field, the second argument is the r/m field.
    1974             :   void emit_sse_operand(XMMRegister dst, XMMRegister src);
    1975             :   void emit_sse_operand(XMMRegister reg, Operand adr);
    1976             :   void emit_sse_operand(Register reg, Operand adr);
    1977             :   void emit_sse_operand(XMMRegister dst, Register src);
    1978             :   void emit_sse_operand(Register dst, XMMRegister src);
    1979             :   void emit_sse_operand(XMMRegister dst);
    1980             : 
    1981             :   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
    1982             :   // AND, OR, XOR, or CMP.  The encodings of these operations are all
    1983             :   // similar, differing just in the opcode or in the reg field of the
    1984             :   // ModR/M byte.
    1985             :   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
    1986             :   void arithmetic_op_8(byte opcode, Register reg, Operand rm_reg);
    1987             :   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
    1988             :   void arithmetic_op_16(byte opcode, Register reg, Operand rm_reg);
    1989             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    1990             :   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
    1991             :   void arithmetic_op(byte opcode, Register reg, Operand rm_reg, int size);
    1992             :   // Operate on a byte in memory or register.
    1993             :   void immediate_arithmetic_op_8(byte subcode,
    1994             :                                  Register dst,
    1995             :                                  Immediate src);
    1996             :   void immediate_arithmetic_op_8(byte subcode, Operand dst, Immediate src);
    1997             :   // Operate on a word in memory or register.
    1998             :   void immediate_arithmetic_op_16(byte subcode,
    1999             :                                   Register dst,
    2000             :                                   Immediate src);
    2001             :   void immediate_arithmetic_op_16(byte subcode, Operand dst, Immediate src);
    2002             :   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
    2003             :   void immediate_arithmetic_op(byte subcode,
    2004             :                                Register dst,
    2005             :                                Immediate src,
    2006             :                                int size);
    2007             :   void immediate_arithmetic_op(byte subcode, Operand dst, Immediate src,
    2008             :                                int size);
    2009             : 
    2010             :   // Emit machine code for a shift operation.
    2011             :   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
    2012             :   void shift(Register dst, Immediate shift_amount, int subcode, int size);
    2013             :   // Shift dst by cl % 64 bits.
    2014             :   void shift(Register dst, int subcode, int size);
    2015             :   void shift(Operand dst, int subcode, int size);
    2016             : 
    2017             :   void emit_farith(int b1, int b2, int i);
    2018             : 
    2019             :   // labels
    2020             :   // void print(Label* L);
    2021             :   void bind_to(Label* L, int pos);
    2022             : 
    2023             :   // record reloc info for current pc_
    2024             :   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
    2025             : 
    2026             :   // Arithmetics
    2027      152028 :   void emit_add(Register dst, Register src, int size) {
    2028     1077280 :     arithmetic_op(0x03, dst, src, size);
    2029      152028 :   }
    2030             : 
    2031      303963 :   void emit_add(Register dst, Immediate src, int size) {
    2032     1976149 :     immediate_arithmetic_op(0x0, dst, src, size);
    2033      303963 :   }
    2034             : 
    2035         126 :   void emit_add(Register dst, Operand src, int size) {
    2036       21954 :     arithmetic_op(0x03, dst, src, size);
    2037         126 :   }
    2038             : 
    2039             :   void emit_add(Operand dst, Register src, int size) {
    2040      164008 :     arithmetic_op(0x1, src, dst, size);
    2041             :   }
    2042             : 
    2043         336 :   void emit_add(Operand dst, Immediate src, int size) {
    2044        6449 :     immediate_arithmetic_op(0x0, dst, src, size);
    2045         336 :   }
    2046             : 
    2047             :   void emit_and(Register dst, Register src, int size) {
    2048      836841 :     arithmetic_op(0x23, dst, src, size);
    2049             :   }
    2050             : 
    2051             :   void emit_and(Register dst, Operand src, int size) {
    2052        4781 :     arithmetic_op(0x23, dst, src, size);
    2053             :   }
    2054             : 
    2055             :   void emit_and(Operand dst, Register src, int size) {
    2056             :     arithmetic_op(0x21, src, dst, size);
    2057             :   }
    2058             : 
    2059      111293 :   void emit_and(Register dst, Immediate src, int size) {
    2060     1107720 :     immediate_arithmetic_op(0x4, dst, src, size);
    2061      111293 :   }
    2062             : 
    2063             :   void emit_and(Operand dst, Immediate src, int size) {
    2064           0 :     immediate_arithmetic_op(0x4, dst, src, size);
    2065             :   }
    2066             : 
    2067         280 :   void emit_cmp(Register dst, Register src, int size) {
    2068     1936671 :     arithmetic_op(0x3B, dst, src, size);
    2069         280 :   }
    2070             : 
    2071         168 :   void emit_cmp(Register dst, Operand src, int size) {
    2072      868235 :     arithmetic_op(0x3B, dst, src, size);
    2073         168 :   }
    2074             : 
    2075             :   void emit_cmp(Operand dst, Register src, int size) {
    2076     1535013 :     arithmetic_op(0x39, src, dst, size);
    2077             :   }
    2078             : 
    2079      382418 :   void emit_cmp(Register dst, Immediate src, int size) {
    2080     2891319 :     immediate_arithmetic_op(0x7, dst, src, size);
    2081      382418 :   }
    2082             : 
    2083       35323 :   void emit_cmp(Operand dst, Immediate src, int size) {
    2084      188696 :     immediate_arithmetic_op(0x7, dst, src, size);
    2085       35323 :   }
    2086             : 
    2087             :   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
    2088             :   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
    2089             :   // operation is only atomic if prefixed by the lock instruction.
    2090             :   void emit_cmpxchg(Operand dst, Register src, int size);
    2091             : 
    2092             :   void emit_dec(Register dst, int size);
    2093             :   void emit_dec(Operand dst, int size);
    2094             : 
    2095             :   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
    2096             :   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
    2097             :   // when size is 32.
    2098             :   void emit_idiv(Register src, int size);
    2099             :   void emit_div(Register src, int size);
    2100             : 
    2101             :   // Signed multiply instructions.
    2102             :   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
    2103             :   void emit_imul(Register src, int size);
    2104             :   void emit_imul(Operand src, int size);
    2105             :   void emit_imul(Register dst, Register src, int size);
    2106             :   void emit_imul(Register dst, Operand src, int size);
    2107             :   void emit_imul(Register dst, Register src, Immediate imm, int size);
    2108             :   void emit_imul(Register dst, Operand src, Immediate imm, int size);
    2109             : 
    2110             :   void emit_inc(Register dst, int size);
    2111             :   void emit_inc(Operand dst, int size);
    2112             : 
    2113             :   void emit_lea(Register dst, Operand src, int size);
    2114             : 
    2115             :   void emit_mov(Register dst, Operand src, int size);
    2116             :   void emit_mov(Register dst, Register src, int size);
    2117             :   void emit_mov(Operand dst, Register src, int size);
    2118             :   void emit_mov(Register dst, Immediate value, int size);
    2119             :   void emit_mov(Operand dst, Immediate value, int size);
    2120             :   void emit_mov(Register dst, Immediate64 value, int size);
    2121             : 
    2122             :   void emit_movzxb(Register dst, Operand src, int size);
    2123             :   void emit_movzxb(Register dst, Register src, int size);
    2124             :   void emit_movzxw(Register dst, Operand src, int size);
    2125             :   void emit_movzxw(Register dst, Register src, int size);
    2126             : 
    2127             :   void emit_neg(Register dst, int size);
    2128             :   void emit_neg(Operand dst, int size);
    2129             : 
    2130             :   void emit_not(Register dst, int size);
    2131             :   void emit_not(Operand dst, int size);
    2132             : 
    2133             :   void emit_or(Register dst, Register src, int size) {
    2134      169221 :     arithmetic_op(0x0B, dst, src, size);
    2135             :   }
    2136             : 
    2137             :   void emit_or(Register dst, Operand src, int size) {
    2138        7361 :     arithmetic_op(0x0B, dst, src, size);
    2139             :   }
    2140             : 
    2141             :   void emit_or(Operand dst, Register src, int size) {
    2142           4 :     arithmetic_op(0x9, src, dst, size);
    2143             :   }
    2144             : 
    2145             :   void emit_or(Register dst, Immediate src, int size) {
    2146       31311 :     immediate_arithmetic_op(0x1, dst, src, size);
    2147             :   }
    2148             : 
    2149             :   void emit_or(Operand dst, Immediate src, int size) {
    2150           0 :     immediate_arithmetic_op(0x1, dst, src, size);
    2151             :   }
    2152             : 
    2153             :   void emit_repmovs(int size);
    2154             : 
    2155             :   void emit_sbb(Register dst, Register src, int size) {
    2156           5 :     arithmetic_op(0x1b, dst, src, size);
    2157             :   }
    2158             : 
    2159        1344 :   void emit_sub(Register dst, Register src, int size) {
    2160      213483 :     arithmetic_op(0x2B, dst, src, size);
    2161        1344 :   }
    2162             : 
    2163      138080 :   void emit_sub(Register dst, Immediate src, int size) {
    2164     3638524 :     immediate_arithmetic_op(0x5, dst, src, size);
    2165      138080 :   }
    2166             : 
    2167             :   void emit_sub(Register dst, Operand src, int size) {
    2168      171635 :     arithmetic_op(0x2B, dst, src, size);
    2169             :   }
    2170             : 
    2171             :   void emit_sub(Operand dst, Register src, int size) {
    2172      164012 :     arithmetic_op(0x29, src, dst, size);
    2173             :   }
    2174             : 
    2175         112 :   void emit_sub(Operand dst, Immediate src, int size) {
    2176         117 :     immediate_arithmetic_op(0x5, dst, src, size);
    2177         112 :   }
    2178             : 
    2179             :   void emit_test(Register dst, Register src, int size);
    2180             :   void emit_test(Register reg, Immediate mask, int size);
    2181             :   void emit_test(Operand op, Register reg, int size);
    2182             :   void emit_test(Operand op, Immediate mask, int size);
    2183             :   void emit_test(Register reg, Operand op, int size) {
    2184         358 :     return emit_test(op, reg, size);
    2185             :   }
    2186             : 
    2187             :   void emit_xchg(Register dst, Register src, int size);
    2188             :   void emit_xchg(Register dst, Operand src, int size);
    2189             : 
    2190     2751466 :   void emit_xor(Register dst, Register src, int size) {
    2191     2757746 :     if (size == kInt64Size && dst.code() == src.code()) {
    2192             :     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
    2193             :     // there is no need to make this a 64 bit operation.
    2194        3870 :       arithmetic_op(0x33, dst, src, kInt32Size);
    2195             :     } else {
    2196     2747596 :       arithmetic_op(0x33, dst, src, size);
    2197             :     }
    2198     2751464 :   }
    2199             : 
    2200             :   void emit_xor(Register dst, Operand src, int size) {
    2201         548 :     arithmetic_op(0x33, dst, src, size);
    2202             :   }
    2203             : 
    2204             :   void emit_xor(Register dst, Immediate src, int size) {
    2205       22603 :     immediate_arithmetic_op(0x6, dst, src, size);
    2206             :   }
    2207             : 
    2208             :   void emit_xor(Operand dst, Immediate src, int size) {
    2209           0 :     immediate_arithmetic_op(0x6, dst, src, size);
    2210             :   }
    2211             : 
    2212             :   void emit_xor(Operand dst, Register src, int size) {
    2213           4 :     arithmetic_op(0x31, src, dst, size);
    2214             :   }
    2215             : 
    2216             :   // Most BMI instructions are similar.
    2217             :   void bmi1q(byte op, Register reg, Register vreg, Register rm);
    2218             :   void bmi1q(byte op, Register reg, Register vreg, Operand rm);
    2219             :   void bmi1l(byte op, Register reg, Register vreg, Register rm);
    2220             :   void bmi1l(byte op, Register reg, Register vreg, Operand rm);
    2221             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2222             :   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2223             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
    2224             :   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);
    2225             : 
    2226             :   // record the position of jmp/jcc instruction
    2227             :   void record_farjmp_position(Label* L, int pos);
    2228             : 
    2229             :   bool is_optimizable_farjmp(int idx);
    2230             : 
    2231             :   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
    2232             : 
    2233             :   int WriteCodeComments();
    2234             : 
    2235             :   friend class EnsureSpace;
    2236             :   friend class RegExpMacroAssemblerX64;
    2237             : 
    2238             :   // code generation
    2239             :   RelocInfoWriter reloc_info_writer;
    2240             : 
    2241             :   // Internal reference positions, required for (potential) patching in
    2242             :   // GrowBuffer(); contains only those internal references whose labels
    2243             :   // are already bound.
    2244             :   std::deque<int> internal_reference_positions_;
    2245             : 
    2246             :   // Variables for this instance of assembler
    2247             :   int farjmp_num_ = 0;
    2248             :   std::deque<int> farjmp_positions_;
    2249             :   std::map<Label*, std::vector<int>> label_farjmp_maps_;
    2250             : 
    2251             :   ConstPool constpool_;
    2252             : 
    2253             :   friend class ConstPool;
    2254             : };
    2255             : 
    2256             : 
    2257             : // Helper class that ensures that there is enough space for generating
    2258             : // instructions and relocation information.  The constructor makes
    2259             : // sure that there is enough space and (in debug mode) the destructor
    2260             : // checks that we did not generate too much.
    2261             : class EnsureSpace {
    2262             :  public:
    2263             :   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    2264   326954057 :     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
    2265             : #ifdef DEBUG
    2266             :     space_before_ = assembler_->available_space();
    2267             : #endif
    2268             :   }
    2269             : 
    2270             : #ifdef DEBUG
    2271             :   ~EnsureSpace() {
    2272             :     int bytes_generated = space_before_ - assembler_->available_space();
    2273             :     DCHECK(bytes_generated < assembler_->kGap);
    2274             :   }
    2275             : #endif
    2276             : 
    2277             :  private:
    2278             :   Assembler* assembler_;
    2279             : #ifdef DEBUG
    2280             :   int space_before_;
    2281             : #endif
    2282             : };
    2283             : 
    2284             : }  // namespace internal
    2285             : }  // namespace v8
    2286             : 
    2287             : #endif  // V8_X64_ASSEMBLER_X64_H_

Generated by: LCOV version 1.10