LCOV - code coverage report
Current view: top level - test/unittests/base - ieee754-unittest.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 279 280 99.6 %
Date: 2019-02-19 Functions: 42 62 67.7 %

          Line data    Source code
       1             : // Copyright 2016 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include <limits>
       6             : 
       7             : #include "src/base/ieee754.h"
       8             : #include "src/base/macros.h"
       9             : #include "src/base/overflowing-math.h"
      10             : #include "testing/gmock-support.h"
      11             : #include "testing/gtest-support.h"
      12             : 
      13             : using testing::BitEq;
      14             : using testing::IsNaN;
      15             : 
      16             : namespace v8 {
      17             : namespace base {
      18             : namespace ieee754 {
      19             : 
      20             : namespace {
      21             : 
      22             : double const kE = 2.718281828459045;
      23             : double const kPI = 3.141592653589793;
      24             : double const kTwo120 = 1.329227995784916e+36;
      25             : double const kInfinity = std::numeric_limits<double>::infinity();
      26             : double const kQNaN = std::numeric_limits<double>::quiet_NaN();
      27             : double const kSNaN = std::numeric_limits<double>::signaling_NaN();
      28             : 
      29             : }  // namespace
      30             : 
      31       15188 : TEST(Ieee754, Acos) {
      32           1 :   EXPECT_THAT(acos(kInfinity), IsNaN());
      33           1 :   EXPECT_THAT(acos(-kInfinity), IsNaN());
      34           1 :   EXPECT_THAT(acos(kQNaN), IsNaN());
      35           1 :   EXPECT_THAT(acos(kSNaN), IsNaN());
      36             : 
      37           2 :   EXPECT_EQ(0.0, acos(1.0));
      38           1 : }
      39             : 
      40       15188 : TEST(Ieee754, Acosh) {
      41             :   // Tests for acosh for exceptional values
      42           2 :   EXPECT_EQ(kInfinity, acosh(kInfinity));
      43           1 :   EXPECT_THAT(acosh(-kInfinity), IsNaN());
      44           1 :   EXPECT_THAT(acosh(kQNaN), IsNaN());
      45           1 :   EXPECT_THAT(acosh(kSNaN), IsNaN());
      46           1 :   EXPECT_THAT(acosh(0.9), IsNaN());
      47             : 
      48             :   // Test basic acosh functionality
      49           2 :   EXPECT_EQ(0.0, acosh(1.0));
      50             :   // acosh(1.5) = log((sqrt(5)+3)/2), case 1 < x < 2
      51           2 :   EXPECT_EQ(0.9624236501192069e0, acosh(1.5));
      52             :   // acosh(4) = log(sqrt(15)+4), case 2 < x < 2^28
      53           2 :   EXPECT_EQ(2.0634370688955608e0, acosh(4.0));
      54             :   // acosh(2^50), case 2^28 < x
      55           2 :   EXPECT_EQ(35.35050620855721e0, acosh(1125899906842624.0));
      56             :   // acosh(most-positive-float), no overflow
      57           2 :   EXPECT_EQ(710.4758600739439e0, acosh(1.7976931348623157e308));
      58           1 : }
      59             : 
      60       15188 : TEST(Ieee754, Asin) {
      61           1 :   EXPECT_THAT(asin(kInfinity), IsNaN());
      62           1 :   EXPECT_THAT(asin(-kInfinity), IsNaN());
      63           1 :   EXPECT_THAT(asin(kQNaN), IsNaN());
      64           1 :   EXPECT_THAT(asin(kSNaN), IsNaN());
      65             : 
      66           1 :   EXPECT_THAT(asin(0.0), BitEq(0.0));
      67           1 :   EXPECT_THAT(asin(-0.0), BitEq(-0.0));
      68           1 : }
      69             : 
      70       15188 : TEST(Ieee754, Asinh) {
      71             :   // Tests for asinh for exceptional values
      72           2 :   EXPECT_EQ(kInfinity, asinh(kInfinity));
      73           2 :   EXPECT_EQ(-kInfinity, asinh(-kInfinity));
      74           1 :   EXPECT_THAT(asin(kQNaN), IsNaN());
      75           1 :   EXPECT_THAT(asin(kSNaN), IsNaN());
      76             : 
      77             :   // Test basic asinh functionality
      78           1 :   EXPECT_THAT(asinh(0.0), BitEq(0.0));
      79           1 :   EXPECT_THAT(asinh(-0.0), BitEq(-0.0));
      80             :   // asinh(2^-29) = 2^-29, case |x| < 2^-28, where acosh(x) = x
      81           2 :   EXPECT_EQ(1.862645149230957e-9, asinh(1.862645149230957e-9));
      82             :   // asinh(-2^-29) = -2^-29, case |x| < 2^-28, where acosh(x) = x
      83           2 :   EXPECT_EQ(-1.862645149230957e-9, asinh(-1.862645149230957e-9));
      84             :   // asinh(2^-28), case 2 > |x| >= 2^-28
      85           2 :   EXPECT_EQ(3.725290298461914e-9, asinh(3.725290298461914e-9));
      86             :   // asinh(-2^-28), case 2 > |x| >= 2^-28
      87           2 :   EXPECT_EQ(-3.725290298461914e-9, asinh(-3.725290298461914e-9));
      88             :   // asinh(1), case 2 > |x| > 2^-28
      89           2 :   EXPECT_EQ(0.881373587019543e0, asinh(1.0));
      90             :   // asinh(-1), case 2 > |x| > 2^-28
      91           2 :   EXPECT_EQ(-0.881373587019543e0, asinh(-1.0));
      92             :   // asinh(5), case 2^28 > |x| > 2
      93           2 :   EXPECT_EQ(2.3124383412727525e0, asinh(5.0));
      94             :   // asinh(-5), case 2^28 > |x| > 2
      95           2 :   EXPECT_EQ(-2.3124383412727525e0, asinh(-5.0));
      96             :   // asinh(2^28), case 2^28 > |x|
      97           2 :   EXPECT_EQ(20.101268236238415e0, asinh(268435456.0));
      98             :   // asinh(-2^28), case 2^28 > |x|
      99           2 :   EXPECT_EQ(-20.101268236238415e0, asinh(-268435456.0));
     100             :   // asinh(<most-positive-float>), no overflow
     101           2 :   EXPECT_EQ(710.4758600739439e0, asinh(1.7976931348623157e308));
     102             :   // asinh(-<most-positive-float>), no overflow
     103           2 :   EXPECT_EQ(-710.4758600739439e0, asinh(-1.7976931348623157e308));
     104           1 : }
     105             : 
     106       15188 : TEST(Ieee754, Atan) {
     107           1 :   EXPECT_THAT(atan(kQNaN), IsNaN());
     108           1 :   EXPECT_THAT(atan(kSNaN), IsNaN());
     109           1 :   EXPECT_THAT(atan(-0.0), BitEq(-0.0));
     110           1 :   EXPECT_THAT(atan(0.0), BitEq(0.0));
     111           1 :   EXPECT_DOUBLE_EQ(1.5707963267948966, atan(kInfinity));
     112           1 :   EXPECT_DOUBLE_EQ(-1.5707963267948966, atan(-kInfinity));
     113           1 : }
     114             : 
     115       15188 : TEST(Ieee754, Atan2) {
     116           1 :   EXPECT_THAT(atan2(kQNaN, kQNaN), IsNaN());
     117           1 :   EXPECT_THAT(atan2(kQNaN, kSNaN), IsNaN());
     118           1 :   EXPECT_THAT(atan2(kSNaN, kQNaN), IsNaN());
     119           1 :   EXPECT_THAT(atan2(kSNaN, kSNaN), IsNaN());
     120           1 :   EXPECT_DOUBLE_EQ(0.7853981633974483, atan2(kInfinity, kInfinity));
     121           1 :   EXPECT_DOUBLE_EQ(2.356194490192345, atan2(kInfinity, -kInfinity));
     122           1 :   EXPECT_DOUBLE_EQ(-0.7853981633974483, atan2(-kInfinity, kInfinity));
     123           1 :   EXPECT_DOUBLE_EQ(-2.356194490192345, atan2(-kInfinity, -kInfinity));
     124           1 : }
     125             : 
     126       15188 : TEST(Ieee754, Atanh) {
     127           1 :   EXPECT_THAT(atanh(kQNaN), IsNaN());
     128           1 :   EXPECT_THAT(atanh(kSNaN), IsNaN());
     129           1 :   EXPECT_THAT(atanh(kInfinity), IsNaN());
     130           2 :   EXPECT_EQ(kInfinity, atanh(1));
     131           2 :   EXPECT_EQ(-kInfinity, atanh(-1));
     132           1 :   EXPECT_DOUBLE_EQ(0.54930614433405478, atanh(0.5));
     133           1 : }
     134             : 
     135       15188 : TEST(Ieee754, Cos) {
     136             :   // Test values mentioned in the EcmaScript spec.
     137           1 :   EXPECT_THAT(cos(kQNaN), IsNaN());
     138           1 :   EXPECT_THAT(cos(kSNaN), IsNaN());
     139           1 :   EXPECT_THAT(cos(kInfinity), IsNaN());
     140           1 :   EXPECT_THAT(cos(-kInfinity), IsNaN());
     141             : 
     142             :   // Tests for cos for |x| < pi/4
     143           2 :   EXPECT_EQ(1.0, 1 / cos(-0.0));
     144           2 :   EXPECT_EQ(1.0, 1 / cos(0.0));
     145             :   // cos(x) = 1 for |x| < 2^-27
     146           2 :   EXPECT_EQ(1, cos(2.3283064365386963e-10));
     147           2 :   EXPECT_EQ(1, cos(-2.3283064365386963e-10));
     148             :   // Test KERNELCOS for |x| < 0.3.
     149             :   // cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2)
     150           2 :   EXPECT_EQ(0.9876883405951378, cos(0.15707963267948966));
     151             :   // Test KERNELCOS for x ~= 0.78125
     152           2 :   EXPECT_EQ(0.7100335477927638, cos(0.7812504768371582));
     153           2 :   EXPECT_EQ(0.7100338835660797, cos(0.78125));
     154             :   // Test KERNELCOS for |x| > 0.3.
     155             :   // cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4)
     156           2 :   EXPECT_EQ(0.9238795325112867, cos(0.39269908169872414));
     157             :   // Test KERNELTAN for |x| < 0.67434.
     158           2 :   EXPECT_EQ(0.9238795325112867, cos(-0.39269908169872414));
     159             : 
     160             :   // Tests for cos.
     161           2 :   EXPECT_EQ(1, cos(3.725290298461914e-9));
     162             :   // Cover different code paths in KERNELCOS.
     163           2 :   EXPECT_EQ(0.9689124217106447, cos(0.25));
     164           2 :   EXPECT_EQ(0.8775825618903728, cos(0.5));
     165           2 :   EXPECT_EQ(0.7073882691671998, cos(0.785));
     166             :   // Test that cos(Math.PI/2) != 0 since Math.PI is not exact.
     167           2 :   EXPECT_EQ(6.123233995736766e-17, cos(1.5707963267948966));
     168             :   // Test cos for various phases.
     169           2 :   EXPECT_EQ(0.7071067811865474, cos(7.0 / 4 * kPI));
     170           2 :   EXPECT_EQ(0.7071067811865477, cos(9.0 / 4 * kPI));
     171           2 :   EXPECT_EQ(-0.7071067811865467, cos(11.0 / 4 * kPI));
     172           2 :   EXPECT_EQ(-0.7071067811865471, cos(13.0 / 4 * kPI));
     173           2 :   EXPECT_EQ(0.9367521275331447, cos(1000000.0));
     174           2 :   EXPECT_EQ(-3.435757038074824e-12, cos(1048575.0 / 2 * kPI));
     175             : 
     176             :   // Test Hayne-Panek reduction.
     177           2 :   EXPECT_EQ(-0.9258790228548379e0, cos(kTwo120));
     178           2 :   EXPECT_EQ(-0.9258790228548379e0, cos(-kTwo120));
     179           1 : }
     180             : 
     181       15188 : TEST(Ieee754, Cosh) {
     182             :   // Test values mentioned in the EcmaScript spec.
     183           1 :   EXPECT_THAT(cosh(kQNaN), IsNaN());
     184           1 :   EXPECT_THAT(cosh(kSNaN), IsNaN());
     185           0 :   EXPECT_THAT(cosh(kInfinity), kInfinity);
     186           1 :   EXPECT_THAT(cosh(-kInfinity), kInfinity);
     187           2 :   EXPECT_EQ(1, cosh(0.0));
     188           2 :   EXPECT_EQ(1, cosh(-0.0));
     189           1 : }
     190             : 
     191       15188 : TEST(Ieee754, Exp) {
     192           1 :   EXPECT_THAT(exp(kQNaN), IsNaN());
     193           1 :   EXPECT_THAT(exp(kSNaN), IsNaN());
     194           2 :   EXPECT_EQ(0.0, exp(-kInfinity));
     195           2 :   EXPECT_EQ(0.0, exp(-1000));
     196           2 :   EXPECT_EQ(0.0, exp(-745.1332191019412));
     197           2 :   EXPECT_EQ(2.2250738585072626e-308, exp(-708.39641853226408));
     198           2 :   EXPECT_EQ(3.307553003638408e-308, exp(-708.0));
     199           2 :   EXPECT_EQ(4.9406564584124654e-324, exp(-7.45133219101941108420e+02));
     200           2 :   EXPECT_EQ(0.36787944117144233, exp(-1.0));
     201           2 :   EXPECT_EQ(1.0, exp(-0.0));
     202           2 :   EXPECT_EQ(1.0, exp(0.0));
     203           2 :   EXPECT_EQ(1.0, exp(2.2250738585072014e-308));
     204             : 
     205             :   // Test that exp(x) is monotonic near 1.
     206           1 :   EXPECT_GE(exp(1.0), exp(0.9999999999999999));
     207           1 :   EXPECT_LE(exp(1.0), exp(1.0000000000000002));
     208             : 
     209             :   // Test that we produce the correctly rounded result for 1.
     210           2 :   EXPECT_EQ(kE, exp(1.0));
     211             : 
     212           2 :   EXPECT_EQ(7.38905609893065e0, exp(2.0));
     213           2 :   EXPECT_EQ(1.7976931348622732e308, exp(7.09782712893383973096e+02));
     214           2 :   EXPECT_EQ(2.6881171418161356e+43, exp(100.0));
     215           2 :   EXPECT_EQ(8.218407461554972e+307, exp(709.0));
     216           2 :   EXPECT_EQ(1.7968190737295725e308, exp(709.7822265625e0));
     217           2 :   EXPECT_EQ(kInfinity, exp(709.7827128933841e0));
     218           2 :   EXPECT_EQ(kInfinity, exp(710.0));
     219           2 :   EXPECT_EQ(kInfinity, exp(1000.0));
     220           2 :   EXPECT_EQ(kInfinity, exp(kInfinity));
     221           1 : }
     222             : 
     223       15188 : TEST(Ieee754, Expm1) {
     224           1 :   EXPECT_THAT(expm1(kQNaN), IsNaN());
     225           1 :   EXPECT_THAT(expm1(kSNaN), IsNaN());
     226           2 :   EXPECT_EQ(-1.0, expm1(-kInfinity));
     227           2 :   EXPECT_EQ(kInfinity, expm1(kInfinity));
     228           2 :   EXPECT_EQ(0.0, expm1(-0.0));
     229           2 :   EXPECT_EQ(0.0, expm1(0.0));
     230           2 :   EXPECT_EQ(1.718281828459045, expm1(1.0));
     231           2 :   EXPECT_EQ(2.6881171418161356e+43, expm1(100.0));
     232           2 :   EXPECT_EQ(8.218407461554972e+307, expm1(709.0));
     233           2 :   EXPECT_EQ(kInfinity, expm1(710.0));
     234           1 : }
     235             : 
     236       15188 : TEST(Ieee754, Log) {
     237           1 :   EXPECT_THAT(log(kQNaN), IsNaN());
     238           1 :   EXPECT_THAT(log(kSNaN), IsNaN());
     239           1 :   EXPECT_THAT(log(-kInfinity), IsNaN());
     240           1 :   EXPECT_THAT(log(-1.0), IsNaN());
     241           2 :   EXPECT_EQ(-kInfinity, log(-0.0));
     242           2 :   EXPECT_EQ(-kInfinity, log(0.0));
     243           2 :   EXPECT_EQ(0.0, log(1.0));
     244           2 :   EXPECT_EQ(kInfinity, log(kInfinity));
     245             : 
     246             :   // Test that log(E) produces the correctly rounded result.
     247           2 :   EXPECT_EQ(1.0, log(kE));
     248           1 : }
     249             : 
     250       15188 : TEST(Ieee754, Log1p) {
     251           1 :   EXPECT_THAT(log1p(kQNaN), IsNaN());
     252           1 :   EXPECT_THAT(log1p(kSNaN), IsNaN());
     253           1 :   EXPECT_THAT(log1p(-kInfinity), IsNaN());
     254           2 :   EXPECT_EQ(-kInfinity, log1p(-1.0));
     255           2 :   EXPECT_EQ(0.0, log1p(0.0));
     256           2 :   EXPECT_EQ(-0.0, log1p(-0.0));
     257           2 :   EXPECT_EQ(kInfinity, log1p(kInfinity));
     258           2 :   EXPECT_EQ(6.9756137364252422e-03, log1p(0.007));
     259           2 :   EXPECT_EQ(709.782712893384, log1p(1.7976931348623157e308));
     260           2 :   EXPECT_EQ(2.7755575615628914e-17, log1p(2.7755575615628914e-17));
     261           2 :   EXPECT_EQ(9.313225741817976e-10, log1p(9.313225746154785e-10));
     262           2 :   EXPECT_EQ(-0.2876820724517809, log1p(-0.25));
     263           2 :   EXPECT_EQ(0.22314355131420976, log1p(0.25));
     264           2 :   EXPECT_EQ(2.3978952727983707, log1p(10));
     265           2 :   EXPECT_EQ(36.841361487904734, log1p(10e15));
     266           2 :   EXPECT_EQ(37.08337388996168, log1p(12738099905822720));
     267           2 :   EXPECT_EQ(37.08336444902049, log1p(12737979646738432));
     268           2 :   EXPECT_EQ(1.3862943611198906, log1p(3));
     269           2 :   EXPECT_EQ(1.3862945995384413, log1p(3 + 9.5367431640625e-7));
     270           2 :   EXPECT_EQ(0.5596157879354227, log1p(0.75));
     271           2 :   EXPECT_EQ(0.8109302162163288, log1p(1.25));
     272           1 : }
     273             : 
     274       15188 : TEST(Ieee754, Log2) {
     275           1 :   EXPECT_THAT(log2(kQNaN), IsNaN());
     276           1 :   EXPECT_THAT(log2(kSNaN), IsNaN());
     277           1 :   EXPECT_THAT(log2(-kInfinity), IsNaN());
     278           1 :   EXPECT_THAT(log2(-1.0), IsNaN());
     279           2 :   EXPECT_EQ(-kInfinity, log2(0.0));
     280           2 :   EXPECT_EQ(-kInfinity, log2(-0.0));
     281           2 :   EXPECT_EQ(kInfinity, log2(kInfinity));
     282           1 : }
     283             : 
     284       15188 : TEST(Ieee754, Log10) {
     285           1 :   EXPECT_THAT(log10(kQNaN), IsNaN());
     286           1 :   EXPECT_THAT(log10(kSNaN), IsNaN());
     287           1 :   EXPECT_THAT(log10(-kInfinity), IsNaN());
     288           1 :   EXPECT_THAT(log10(-1.0), IsNaN());
     289           2 :   EXPECT_EQ(-kInfinity, log10(0.0));
     290           2 :   EXPECT_EQ(-kInfinity, log10(-0.0));
     291           2 :   EXPECT_EQ(kInfinity, log10(kInfinity));
     292           2 :   EXPECT_EQ(3.0, log10(1000.0));
     293           2 :   EXPECT_EQ(14.0, log10(100000000000000));  // log10(10 ^ 14)
     294           2 :   EXPECT_EQ(3.7389561269540406, log10(5482.2158));
     295           2 :   EXPECT_EQ(14.661551142893833, log10(458723662312872.125782332587));
     296           2 :   EXPECT_EQ(-0.9083828622192334, log10(0.12348583358871));
     297           2 :   EXPECT_EQ(5.0, log10(100000.0));
     298           1 : }
     299             : 
     300       15188 : TEST(Ieee754, Cbrt) {
     301           1 :   EXPECT_THAT(cbrt(kQNaN), IsNaN());
     302           1 :   EXPECT_THAT(cbrt(kSNaN), IsNaN());
     303           2 :   EXPECT_EQ(kInfinity, cbrt(kInfinity));
     304           2 :   EXPECT_EQ(-kInfinity, cbrt(-kInfinity));
     305           2 :   EXPECT_EQ(1.4422495703074083, cbrt(3));
     306           2 :   EXPECT_EQ(100, cbrt(100 * 100 * 100));
     307           2 :   EXPECT_EQ(46.415888336127786, cbrt(100000));
     308           1 : }
     309             : 
     310       15188 : TEST(Ieee754, Sin) {
     311             :   // Test values mentioned in the EcmaScript spec.
     312           1 :   EXPECT_THAT(sin(kQNaN), IsNaN());
     313           1 :   EXPECT_THAT(sin(kSNaN), IsNaN());
     314           1 :   EXPECT_THAT(sin(kInfinity), IsNaN());
     315           1 :   EXPECT_THAT(sin(-kInfinity), IsNaN());
     316             : 
     317             :   // Tests for sin for |x| < pi/4
     318           2 :   EXPECT_EQ(-kInfinity, Divide(1.0, sin(-0.0)));
     319           2 :   EXPECT_EQ(kInfinity, Divide(1.0, sin(0.0)));
     320             :   // sin(x) = x for x < 2^-27
     321           2 :   EXPECT_EQ(2.3283064365386963e-10, sin(2.3283064365386963e-10));
     322           2 :   EXPECT_EQ(-2.3283064365386963e-10, sin(-2.3283064365386963e-10));
     323             :   // sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4)
     324           2 :   EXPECT_EQ(0.3826834323650898, sin(0.39269908169872414));
     325           2 :   EXPECT_EQ(-0.3826834323650898, sin(-0.39269908169872414));
     326             : 
     327             :   // Tests for sin.
     328           2 :   EXPECT_EQ(0.479425538604203, sin(0.5));
     329           2 :   EXPECT_EQ(-0.479425538604203, sin(-0.5));
     330           2 :   EXPECT_EQ(1, sin(kPI / 2.0));
     331           2 :   EXPECT_EQ(-1, sin(-kPI / 2.0));
     332             :   // Test that sin(Math.PI) != 0 since Math.PI is not exact.
     333           2 :   EXPECT_EQ(1.2246467991473532e-16, sin(kPI));
     334           2 :   EXPECT_EQ(-7.047032979958965e-14, sin(2200.0 * kPI));
     335             :   // Test sin for various phases.
     336           2 :   EXPECT_EQ(-0.7071067811865477, sin(7.0 / 4.0 * kPI));
     337           2 :   EXPECT_EQ(0.7071067811865474, sin(9.0 / 4.0 * kPI));
     338           2 :   EXPECT_EQ(0.7071067811865483, sin(11.0 / 4.0 * kPI));
     339           2 :   EXPECT_EQ(-0.7071067811865479, sin(13.0 / 4.0 * kPI));
     340           2 :   EXPECT_EQ(-3.2103381051568376e-11, sin(1048576.0 / 4 * kPI));
     341             : 
     342             :   // Test Hayne-Panek reduction.
     343           2 :   EXPECT_EQ(0.377820109360752e0, sin(kTwo120));
     344           2 :   EXPECT_EQ(-0.377820109360752e0, sin(-kTwo120));
     345           1 : }
     346             : 
     347       15188 : TEST(Ieee754, Sinh) {
     348             :   // Test values mentioned in the EcmaScript spec.
     349           1 :   EXPECT_THAT(sinh(kQNaN), IsNaN());
     350           1 :   EXPECT_THAT(sinh(kSNaN), IsNaN());
     351           1 :   EXPECT_THAT(sinh(kInfinity), kInfinity);
     352           1 :   EXPECT_THAT(sinh(-kInfinity), -kInfinity);
     353           2 :   EXPECT_EQ(0.0, sinh(0.0));
     354           2 :   EXPECT_EQ(-0.0, sinh(-0.0));
     355           1 : }
     356             : 
     357       15188 : TEST(Ieee754, Tan) {
     358             :   // Test values mentioned in the EcmaScript spec.
     359           1 :   EXPECT_THAT(tan(kQNaN), IsNaN());
     360           1 :   EXPECT_THAT(tan(kSNaN), IsNaN());
     361           1 :   EXPECT_THAT(tan(kInfinity), IsNaN());
     362           1 :   EXPECT_THAT(tan(-kInfinity), IsNaN());
     363             : 
     364             :   // Tests for tan for |x| < pi/4
     365           2 :   EXPECT_EQ(kInfinity, Divide(1.0, tan(0.0)));
     366           2 :   EXPECT_EQ(-kInfinity, Divide(1.0, tan(-0.0)));
     367             :   // tan(x) = x for |x| < 2^-28
     368           2 :   EXPECT_EQ(2.3283064365386963e-10, tan(2.3283064365386963e-10));
     369           2 :   EXPECT_EQ(-2.3283064365386963e-10, tan(-2.3283064365386963e-10));
     370             :   // Test KERNELTAN for |x| > 0.67434.
     371           2 :   EXPECT_EQ(0.8211418015898941, tan(11.0 / 16.0));
     372           2 :   EXPECT_EQ(-0.8211418015898941, tan(-11.0 / 16.0));
     373           2 :   EXPECT_EQ(0.41421356237309503, tan(0.39269908169872414));
     374             :   // crbug/427468
     375           2 :   EXPECT_EQ(0.7993357819992383, tan(0.6743358));
     376             : 
     377             :   // Tests for tan.
     378           2 :   EXPECT_EQ(3.725290298461914e-9, tan(3.725290298461914e-9));
     379             :   // Test that tan(PI/2) != Infinity since PI is not exact.
     380           2 :   EXPECT_EQ(1.633123935319537e16, tan(kPI / 2));
     381             :   // Cover different code paths in KERNELTAN (tangent and cotangent)
     382           2 :   EXPECT_EQ(0.5463024898437905, tan(0.5));
     383           2 :   EXPECT_EQ(2.0000000000000027, tan(1.107148717794091));
     384           2 :   EXPECT_EQ(-1.0000000000000004, tan(7.0 / 4.0 * kPI));
     385           2 :   EXPECT_EQ(0.9999999999999994, tan(9.0 / 4.0 * kPI));
     386           2 :   EXPECT_EQ(-6.420676210313675e-11, tan(1048576.0 / 2.0 * kPI));
     387           2 :   EXPECT_EQ(2.910566692924059e11, tan(1048575.0 / 2.0 * kPI));
     388             : 
     389             :   // Test Hayne-Panek reduction.
     390           2 :   EXPECT_EQ(-0.40806638884180424e0, tan(kTwo120));
     391           2 :   EXPECT_EQ(0.40806638884180424e0, tan(-kTwo120));
     392           1 : }
     393             : 
     394       15188 : TEST(Ieee754, Tanh) {
     395             :   // Test values mentioned in the EcmaScript spec.
     396           1 :   EXPECT_THAT(tanh(kQNaN), IsNaN());
     397           1 :   EXPECT_THAT(tanh(kSNaN), IsNaN());
     398           1 :   EXPECT_THAT(tanh(kInfinity), 1);
     399           1 :   EXPECT_THAT(tanh(-kInfinity), -1);
     400           2 :   EXPECT_EQ(0.0, tanh(0.0));
     401           2 :   EXPECT_EQ(-0.0, tanh(-0.0));
     402           1 : }
     403             : 
     404             : }  // namespace ieee754
     405             : }  // namespace base
     406        9111 : }  // namespace v8

Generated by: LCOV version 1.10