LCOV - code coverage report
Current view: top level - src - fixed-dtoa.cc (source / functions) Hit Total Coverage
Test: app.info Lines: 148 160 92.5 %
Date: 2019-04-19 Functions: 10 10 100.0 %

          Line data    Source code
       1             : // Copyright 2011 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #include <stdint.h>
       6             : 
       7             : #include <cmath>
       8             : 
       9             : #include "src/base/logging.h"
      10             : #include "src/utils.h"
      11             : 
      12             : #include "src/double.h"
      13             : #include "src/fixed-dtoa.h"
      14             : 
      15             : namespace v8 {
      16             : namespace internal {
      17             : 
      18             : // Represents a 128bit type. This class should be replaced by a native type on
      19             : // platforms that support 128bit integers.
      20             : class UInt128 {
      21             :  public:
      22             :   UInt128() : high_bits_(0), low_bits_(0) { }
      23      422439 :   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
      24             : 
      25     4221896 :   void Multiply(uint32_t multiplicand) {
      26             :     uint64_t accumulator;
      27             : 
      28     4221896 :     accumulator = (low_bits_ & kMask32) * multiplicand;
      29             :     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
      30     4221896 :     accumulator >>= 32;
      31     4221896 :     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
      32     4221896 :     low_bits_ = (accumulator << 32) + part;
      33     4221896 :     accumulator >>= 32;
      34     4221896 :     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
      35             :     part = static_cast<uint32_t>(accumulator & kMask32);
      36     4221896 :     accumulator >>= 32;
      37     4221896 :     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
      38     4221896 :     high_bits_ = (accumulator << 32) + part;
      39             :     DCHECK_EQ(accumulator >> 32, 0);
      40     4221896 :   }
      41             : 
      42      422439 :   void Shift(int shift_amount) {
      43             :     DCHECK(-64 <= shift_amount && shift_amount <= 64);
      44      422439 :     if (shift_amount == 0) {
      45             :       return;
      46      422439 :     } else if (shift_amount == -64) {
      47           0 :       high_bits_ = low_bits_;
      48           0 :       low_bits_ = 0;
      49      422439 :     } else if (shift_amount == 64) {
      50        6595 :       low_bits_ = high_bits_;
      51        6595 :       high_bits_ = 0;
      52      415844 :     } else if (shift_amount <= 0) {
      53           0 :       high_bits_ <<= -shift_amount;
      54           0 :       high_bits_ += low_bits_ >> (64 + shift_amount);
      55           0 :       low_bits_ <<= -shift_amount;
      56             :     } else {
      57      415844 :       low_bits_ >>= shift_amount;
      58      415844 :       low_bits_ += high_bits_ << (64 - shift_amount);
      59      415844 :       high_bits_ >>= shift_amount;
      60             :     }
      61             :   }
      62             : 
      63             :   // Modifies *this to *this MOD (2^power).
      64             :   // Returns *this DIV (2^power).
      65             :   int DivModPowerOf2(int power) {
      66     4221896 :     if (power >= 64) {
      67     4221896 :       int result = static_cast<int>(high_bits_ >> (power - 64));
      68     4221896 :       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
      69             :       return result;
      70             :     } else {
      71           0 :       uint64_t part_low = low_bits_ >> power;
      72           0 :       uint64_t part_high = high_bits_ << (64 - power);
      73           0 :       int result = static_cast<int>(part_low + part_high);
      74           0 :       high_bits_ = 0;
      75           0 :       low_bits_ -= part_low << power;
      76             :       return result;
      77             :     }
      78             :   }
      79             : 
      80             :   bool IsZero() const {
      81     4221896 :     return high_bits_ == 0 && low_bits_ == 0;
      82             :   }
      83             : 
      84             :   int BitAt(int position) {
      85      422439 :     if (position >= 64) {
      86      422439 :       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
      87             :     } else {
      88           0 :       return static_cast<int>(low_bits_ >> position) & 1;
      89             :     }
      90             :   }
      91             : 
      92             :  private:
      93             :   static const uint64_t kMask32 = 0xFFFFFFFF;
      94             :   // Value == (high_bits_ << 64) + low_bits_
      95             :   uint64_t high_bits_;
      96             :   uint64_t low_bits_;
      97             : };
      98             : 
      99             : 
     100             : static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
     101             : 
     102             : 
     103             : static void FillDigits32FixedLength(uint32_t number, int requested_length,
     104             :                                     Vector<char> buffer, int* length) {
     105     6261691 :   for (int i = requested_length - 1; i >= 0; --i) {
     106     5824406 :     buffer[(*length) + i] = '0' + number % 10;
     107     2912203 :     number /= 10;
     108             :   }
     109      437285 :   *length += requested_length;
     110             : }
     111             : 
     112             : 
     113      455615 : static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
     114             :   int number_length = 0;
     115             :   // We fill the digits in reverse order and exchange them afterwards.
     116     2560462 :   while (number != 0) {
     117     2104847 :     int digit = number % 10;
     118     2104847 :     number /= 10;
     119     4209694 :     buffer[(*length) + number_length] = '0' + digit;
     120     2104847 :     number_length++;
     121             :   }
     122             :   // Exchange the digits.
     123      455615 :   int i = *length;
     124      455615 :   int j = *length + number_length - 1;
     125     1388438 :   while (i < j) {
     126     1865646 :     char tmp = buffer[i];
     127     1865646 :     buffer[i] = buffer[j];
     128      932823 :     buffer[j] = tmp;
     129      932823 :     i++;
     130      932823 :     j--;
     131             :   }
     132      455615 :   *length += number_length;
     133      455615 : }
     134             : 
     135             : 
     136       37198 : static void FillDigits64FixedLength(uint64_t number, int requested_length,
     137             :                                     Vector<char> buffer, int* length) {
     138             :   const uint32_t kTen7 = 10000000;
     139             :   // For efficiency cut the number into 3 uint32_t parts, and print those.
     140       37198 :   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
     141       37198 :   number /= kTen7;
     142       37198 :   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
     143       37198 :   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
     144             : 
     145             :   FillDigits32FixedLength(part0, 3, buffer, length);
     146             :   FillDigits32FixedLength(part1, 7, buffer, length);
     147             :   FillDigits32FixedLength(part2, 7, buffer, length);
     148       37198 : }
     149             : 
     150             : 
     151      209293 : static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
     152             :   const uint32_t kTen7 = 10000000;
     153             :   // For efficiency cut the number into 3 uint32_t parts, and print those.
     154      209293 :   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
     155      209293 :   number /= kTen7;
     156      209293 :   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
     157      209293 :   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
     158             : 
     159      209293 :   if (part0 != 0) {
     160      116398 :     FillDigits32(part0, buffer, length);
     161             :     FillDigits32FixedLength(part1, 7, buffer, length);
     162             :     FillDigits32FixedLength(part2, 7, buffer, length);
     163       92895 :   } else if (part1 != 0) {
     164       92895 :     FillDigits32(part1, buffer, length);
     165             :     FillDigits32FixedLength(part2, 7, buffer, length);
     166             :   } else {
     167           0 :     FillDigits32(part2, buffer, length);
     168             :   }
     169      209293 : }
     170             : 
     171      250504 : static void DtoaRoundUp(Vector<char> buffer, int* length, int* decimal_point) {
     172             :   // An empty buffer represents 0.
     173      250504 :   if (*length == 0) {
     174         420 :     buffer[0] = '1';
     175         420 :     *decimal_point = 1;
     176         420 :     *length = 1;
     177             :     return;
     178             :   }
     179             :   // Round the last digit until we either have a digit that was not '9' or until
     180             :   // we reached the first digit.
     181      500168 :   buffer[(*length) - 1]++;
     182      250084 :   for (int i = (*length) - 1; i > 0; --i) {
     183      546890 :     if (buffer[i] != '0' + 10) {
     184             :       return;
     185             :     }
     186       24776 :     buffer[i] = '0';
     187       49552 :     buffer[i - 1]++;
     188             :   }
     189             :   // If the first digit is now '0' + 10, we would need to set it to '0' and add
     190             :   // a '1' in front. However we reach the first digit only if all following
     191             :   // digits had been '9' before rounding up. Now all trailing digits are '0' and
     192             :   // we simply switch the first digit to '1' and update the decimal-point
     193             :   // (indicating that the point is now one digit to the right).
     194        1415 :   if (buffer[0] == '0' + 10) {
     195         115 :     buffer[0] = '1';
     196         115 :     (*decimal_point)++;
     197             :   }
     198             : }
     199             : 
     200             : 
     201             : // The given fractionals number represents a fixed-point number with binary
     202             : // point at bit (-exponent).
     203             : // Preconditions:
     204             : //   -128 <= exponent <= 0.
     205             : //   0 <= fractionals * 2^exponent < 1
     206             : //   The buffer holds the result.
     207             : // The function will round its result. During the rounding-process digits not
     208             : // generated by this function might be updated, and the decimal-point variable
     209             : // might be updated. If this function generates the digits 99 and the buffer
     210             : // already contained "199" (thus yielding a buffer of "19999") then a
     211             : // rounding-up will change the contents of the buffer to "20000".
     212      840484 : static void FillFractionals(uint64_t fractionals, int exponent,
     213             :                             int fractional_count, Vector<char> buffer,
     214             :                             int* length, int* decimal_point) {
     215             :   DCHECK(-128 <= exponent && exponent <= 0);
     216             :   // 'fractionals' is a fixed-point number, with binary point at bit
     217             :   // (-exponent). Inside the function the non-converted remainder of fractionals
     218             :   // is a fixed-point number, with binary point at bit 'point'.
     219      840484 :   if (-exponent <= 64) {
     220             :     // One 64 bit number is sufficient.
     221             :     DCHECK_EQ(fractionals >> 56, 0);
     222             :     int point = -exponent;
     223     7809749 :     for (int i = 0; i < fractional_count; ++i) {
     224     3761799 :       if (fractionals == 0) break;
     225             :       // Instead of multiplying by 10 we multiply by 5 and adjust the point
     226             :       // location. This way the fractionals variable will not overflow.
     227             :       // Invariant at the beginning of the loop: fractionals < 2^point.
     228             :       // Initially we have: point <= 64 and fractionals < 2^56
     229             :       // After each iteration the point is decremented by one.
     230             :       // Note that 5^3 = 125 < 128 = 2^7.
     231             :       // Therefore three iterations of this loop will not overflow fractionals
     232             :       // (even without the subtraction at the end of the loop body). At this
     233             :       // time point will satisfy point <= 61 and therefore fractionals < 2^point
     234             :       // and any further multiplication of fractionals by 5 will not overflow.
     235     3695852 :       fractionals *= 5;
     236     3695852 :       point--;
     237     3695852 :       int digit = static_cast<int>(fractionals >> point);
     238     7391704 :       buffer[*length] = '0' + digit;
     239     3695852 :       (*length)++;
     240     3695852 :       fractionals -= static_cast<uint64_t>(digit) << point;
     241             :     }
     242             :     // If the first bit after the point is set we have to round up.
     243      418045 :     if (point > 0 && ((fractionals >> (point - 1)) & 1) == 1) {
     244      172251 :       DtoaRoundUp(buffer, length, decimal_point);
     245             :     }
     246             :   } else {  // We need 128 bits.
     247             :     DCHECK(64 < -exponent && -exponent <= 128);
     248             :     UInt128 fractionals128 = UInt128(fractionals, 0);
     249      422439 :     fractionals128.Shift(-exponent - 64);
     250             :     int point = 128;
     251     8866231 :     for (int i = 0; i < fractional_count; ++i) {
     252     4221896 :       if (fractionals128.IsZero()) break;
     253             :       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
     254             :       // point location.
     255             :       // This multiplication will not overflow for the same reasons as before.
     256     4221896 :       fractionals128.Multiply(5);
     257     4221896 :       point--;
     258             :       int digit = fractionals128.DivModPowerOf2(point);
     259     8443792 :       buffer[*length] = '0' + digit;
     260     4221896 :       (*length)++;
     261             :     }
     262      844878 :     if (fractionals128.BitAt(point - 1) == 1) {
     263       78253 :       DtoaRoundUp(buffer, length, decimal_point);
     264             :     }
     265             :   }
     266      840484 : }
     267             : 
     268             : 
     269             : // Removes leading and trailing zeros.
     270             : // If leading zeros are removed then the decimal point position is adjusted.
     271     1003095 : static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
     272     5792339 :   while (*length > 0 && buffer[(*length) - 1] == '0') {
     273     2054273 :     (*length)--;
     274             :   }
     275             :   int first_non_zero = 0;
     276     4554855 :   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
     277     1435531 :     first_non_zero++;
     278             :   }
     279     1003095 :   if (first_non_zero != 0) {
     280     2935102 :     for (int i = first_non_zero; i < *length; ++i) {
     281     4098615 :       buffer[i - first_non_zero] = buffer[i];
     282             :     }
     283      202692 :     *length -= first_non_zero;
     284      202692 :     *decimal_point -= first_non_zero;
     285             :   }
     286     1003095 : }
     287             : 
     288             : 
     289     1003131 : bool FastFixedDtoa(double v,
     290             :                    int fractional_count,
     291             :                    Vector<char> buffer,
     292             :                    int* length,
     293             :                    int* decimal_point) {
     294             :   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
     295             :   uint64_t significand = Double(v).Significand();
     296             :   int exponent = Double(v).Exponent();
     297             :   // v = significand * 2^exponent (with significand a 53bit integer).
     298             :   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
     299             :   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
     300             :   // If necessary this limit could probably be increased, but we don't need
     301             :   // more.
     302     1003131 :   if (exponent > 20) return false;
     303     1003131 :   if (fractional_count > 20) return false;
     304     1003095 :   *length = 0;
     305             :   // At most kDoubleSignificandSize bits of the significand are non-zero.
     306             :   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
     307             :   // bits:  0..11*..0xxx..53*..xx
     308     1003095 :   if (exponent + kDoubleSignificandSize > 64) {
     309             :     // The exponent must be > 11.
     310             :     //
     311             :     // We know that v = significand * 2^exponent.
     312             :     // And the exponent > 11.
     313             :     // We simplify the task by dividing v by 10^17.
     314             :     // The quotient delivers the first digits, and the remainder fits into a 64
     315             :     // bit number.
     316             :     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
     317             :     const uint64_t kFive17 = V8_2PART_UINT64_C(0xB1, A2BC2EC5);  // 5^17
     318             :     uint64_t divisor = kFive17;
     319             :     int divisor_power = 17;
     320             :     uint64_t dividend = significand;
     321             :     uint32_t quotient;
     322             :     uint64_t remainder;
     323             :     // Let v = f * 2^e with f == significand and e == exponent.
     324             :     // Then need q (quotient) and r (remainder) as follows:
     325             :     //   v            = q * 10^17       + r
     326             :     //   f * 2^e      = q * 10^17       + r
     327             :     //   f * 2^e      = q * 5^17 * 2^17 + r
     328             :     // If e > 17 then
     329             :     //   f * 2^(e-17) = q * 5^17        + r/2^17
     330             :     // else
     331             :     //   f  = q * 5^17 * 2^(17-e) + r/2^e
     332       37198 :     if (exponent > divisor_power) {
     333             :       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
     334           5 :       dividend <<= exponent - divisor_power;
     335           5 :       quotient = static_cast<uint32_t>(dividend / divisor);
     336           5 :       remainder = (dividend % divisor) << divisor_power;
     337             :     } else {
     338       37193 :       divisor <<= divisor_power - exponent;
     339       37193 :       quotient = static_cast<uint32_t>(dividend / divisor);
     340       37193 :       remainder = (dividend % divisor) << exponent;
     341             :     }
     342       37198 :     FillDigits32(quotient, buffer, length);
     343       37198 :     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
     344       37198 :     *decimal_point = *length;
     345      965897 :   } else if (exponent >= 0) {
     346             :     // 0 <= exponent <= 11
     347       79358 :     significand <<= exponent;
     348       79358 :     FillDigits64(significand, buffer, length);
     349       79358 :     *decimal_point = *length;
     350      886539 :   } else if (exponent > -kDoubleSignificandSize) {
     351             :     // We have to cut the number.
     352      339059 :     uint64_t integrals = significand >> -exponent;
     353      339059 :     uint64_t fractionals = significand - (integrals << -exponent);
     354      339059 :     if (integrals > kMaxUInt32) {
     355      129935 :       FillDigits64(integrals, buffer, length);
     356             :     } else {
     357      209124 :       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
     358             :     }
     359      339059 :     *decimal_point = *length;
     360             :     FillFractionals(fractionals, exponent, fractional_count,
     361      339059 :                     buffer, length, decimal_point);
     362      547480 :   } else if (exponent < -128) {
     363             :     // This configuration (with at most 20 digits) means that all digits must be
     364             :     // 0.
     365             :     DCHECK_LE(fractional_count, 20);
     366       46055 :     buffer[0] = '\0';
     367       46055 :     *length = 0;
     368       46055 :     *decimal_point = -fractional_count;
     369             :   } else {
     370      501425 :     *decimal_point = 0;
     371             :     FillFractionals(significand, exponent, fractional_count,
     372      501425 :                     buffer, length, decimal_point);
     373             :   }
     374     1003095 :   TrimZeros(buffer, length, decimal_point);
     375     2006190 :   buffer[*length] = '\0';
     376     1003095 :   if ((*length) == 0) {
     377             :     // The string is empty and the decimal_point thus has no importance. Mimick
     378             :     // Gay's dtoa and and set it to -fractional_count.
     379      322397 :     *decimal_point = -fractional_count;
     380             :   }
     381             :   return true;
     382             : }
     383             : 
     384             : }  // namespace internal
     385      122036 : }  // namespace v8

Generated by: LCOV version 1.10