LCOV - code coverage report
Current view: top level - src/heap - heap-inl.h (source / functions) Hit Total Coverage
Test: app.info Lines: 138 151 91.4 %
Date: 2019-04-19 Functions: 18 20 90.0 %

          Line data    Source code
       1             : // Copyright 2012 the V8 project authors. All rights reserved.
       2             : // Use of this source code is governed by a BSD-style license that can be
       3             : // found in the LICENSE file.
       4             : 
       5             : #ifndef V8_HEAP_HEAP_INL_H_
       6             : #define V8_HEAP_HEAP_INL_H_
       7             : 
       8             : #include <cmath>
       9             : 
      10             : // Clients of this interface shouldn't depend on lots of heap internals.
      11             : // Do not include anything from src/heap other than src/heap/heap.h and its
      12             : // write barrier here!
      13             : #include "src/heap/heap-write-barrier.h"
      14             : #include "src/heap/heap.h"
      15             : 
      16             : #include "src/base/atomic-utils.h"
      17             : #include "src/base/platform/platform.h"
      18             : #include "src/feedback-vector.h"
      19             : 
      20             : // TODO(mstarzinger): There is one more include to remove in order to no longer
      21             : // leak heap internals to users of this interface!
      22             : #include "src/heap/spaces-inl.h"
      23             : #include "src/isolate-data.h"
      24             : #include "src/isolate.h"
      25             : #include "src/msan.h"
      26             : #include "src/objects-inl.h"
      27             : #include "src/objects/allocation-site-inl.h"
      28             : #include "src/objects/api-callbacks-inl.h"
      29             : #include "src/objects/cell-inl.h"
      30             : #include "src/objects/descriptor-array.h"
      31             : #include "src/objects/feedback-cell-inl.h"
      32             : #include "src/objects/literal-objects-inl.h"
      33             : #include "src/objects/oddball.h"
      34             : #include "src/objects/property-cell.h"
      35             : #include "src/objects/scope-info.h"
      36             : #include "src/objects/script-inl.h"
      37             : #include "src/objects/slots-inl.h"
      38             : #include "src/objects/struct-inl.h"
      39             : #include "src/profiler/heap-profiler.h"
      40             : #include "src/string-hasher.h"
      41             : #include "src/zone/zone-list-inl.h"
      42             : 
      43             : namespace v8 {
      44             : namespace internal {
      45             : 
      46             : AllocationSpace AllocationResult::RetrySpace() {
      47             :   DCHECK(IsRetry());
      48       22911 :   return static_cast<AllocationSpace>(Smi::ToInt(object_));
      49             : }
      50             : 
      51             : HeapObject AllocationResult::ToObjectChecked() {
      52         353 :   CHECK(!IsRetry());
      53             :   return HeapObject::cast(object_);
      54             : }
      55             : 
      56             : Isolate* Heap::isolate() {
      57             :   return reinterpret_cast<Isolate*>(
      58  1580764201 :       reinterpret_cast<intptr_t>(this) -
      59   793018578 :       reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
      60             : }
      61             : 
      62             : int64_t Heap::external_memory() {
      63           0 :   return isolate()->isolate_data()->external_memory_;
      64             : }
      65             : 
      66             : void Heap::update_external_memory(int64_t delta) {
      67        5303 :   isolate()->isolate_data()->external_memory_ += delta;
      68             : }
      69             : 
      70             : void Heap::update_external_memory_concurrently_freed(intptr_t freed) {
      71             :   external_memory_concurrently_freed_ += freed;
      72             : }
      73             : 
      74             : void Heap::account_external_memory_concurrently_freed() {
      75             :   isolate()->isolate_data()->external_memory_ -=
      76      163790 :       external_memory_concurrently_freed_;
      77             :   external_memory_concurrently_freed_ = 0;
      78             : }
      79             : 
      80             : RootsTable& Heap::roots_table() { return isolate()->roots_table(); }
      81             : 
      82             : #define ROOT_ACCESSOR(Type, name, CamelName)                           \
      83             :   Type Heap::name() {                                                  \
      84             :     return Type::cast(Object(roots_table()[RootIndex::k##CamelName])); \
      85             :   }
      86   380737151 : MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
      87             : #undef ROOT_ACCESSOR
      88             : 
      89             : #define ROOT_ACCESSOR(type, name, CamelName)                                   \
      90             :   void Heap::set_##name(type value) {                                          \
      91             :     /* The deserializer makes use of the fact that these common roots are */   \
      92             :     /* never in new space and never on a page that is being compacted.    */   \
      93             :     DCHECK_IMPLIES(deserialization_complete(),                                 \
      94             :                    !RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)); \
      95             :     DCHECK_IMPLIES(RootsTable::IsImmortalImmovable(RootIndex::k##CamelName),   \
      96             :                    IsImmovable(HeapObject::cast(value)));                      \
      97             :     roots_table()[RootIndex::k##CamelName] = value->ptr();                     \
      98             :   }
      99    20620917 : ROOT_LIST(ROOT_ACCESSOR)
     100             : #undef ROOT_ACCESSOR
     101             : 
     102             : void Heap::SetRootMaterializedObjects(FixedArray objects) {
     103          48 :   roots_table()[RootIndex::kMaterializedObjects] = objects->ptr();
     104             : }
     105             : 
     106             : void Heap::SetRootScriptList(Object value) {
     107         209 :   roots_table()[RootIndex::kScriptList] = value->ptr();
     108             : }
     109             : 
     110             : void Heap::SetRootStringTable(StringTable value) {
     111    14753266 :   roots_table()[RootIndex::kStringTable] = value->ptr();
     112             : }
     113             : 
     114             : void Heap::SetRootNoScriptSharedFunctionInfos(Object value) {
     115           0 :   roots_table()[RootIndex::kNoScriptSharedFunctionInfos] = value->ptr();
     116             : }
     117             : 
     118             : void Heap::SetMessageListeners(TemplateList value) {
     119       31436 :   roots_table()[RootIndex::kMessageListeners] = value->ptr();
     120             : }
     121             : 
     122             : void Heap::SetPendingOptimizeForTestBytecode(Object hash_table) {
     123             :   DCHECK(hash_table->IsObjectHashTable() || hash_table->IsUndefined(isolate()));
     124       81717 :   roots_table()[RootIndex::kPendingOptimizeForTestBytecode] = hash_table->ptr();
     125             : }
     126             : 
     127             : PagedSpace* Heap::paged_space(int idx) {
     128             :   DCHECK_NE(idx, LO_SPACE);
     129             :   DCHECK_NE(idx, NEW_SPACE);
     130             :   DCHECK_NE(idx, CODE_LO_SPACE);
     131             :   DCHECK_NE(idx, NEW_LO_SPACE);
     132     3589043 :   return static_cast<PagedSpace*>(space_[idx]);
     133             : }
     134             : 
     135     7205360 : Space* Heap::space(int idx) { return space_[idx]; }
     136             : 
     137             : Address* Heap::NewSpaceAllocationTopAddress() {
     138             :   return new_space_->allocation_top_address();
     139             : }
     140             : 
     141             : Address* Heap::NewSpaceAllocationLimitAddress() {
     142             :   return new_space_->allocation_limit_address();
     143             : }
     144             : 
     145             : Address* Heap::OldSpaceAllocationTopAddress() {
     146             :   return old_space_->allocation_top_address();
     147             : }
     148             : 
     149             : Address* Heap::OldSpaceAllocationLimitAddress() {
     150             :   return old_space_->allocation_limit_address();
     151             : }
     152             : 
     153             : void Heap::UpdateNewSpaceAllocationCounter() {
     154       94944 :   new_space_allocation_counter_ = NewSpaceAllocationCounter();
     155             : }
     156             : 
     157             : size_t Heap::NewSpaceAllocationCounter() {
     158      190488 :   return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
     159             : }
     160             : 
     161   327410987 : AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationType type,
     162             :                                    AllocationAlignment alignment) {
     163             :   DCHECK(AllowHandleAllocation::IsAllowed());
     164             :   DCHECK(AllowHeapAllocation::IsAllowed());
     165             :   DCHECK(gc_state_ == NOT_IN_GC);
     166             : #ifdef V8_ENABLE_ALLOCATION_TIMEOUT
     167             :   if (FLAG_random_gc_interval > 0 || FLAG_gc_interval >= 0) {
     168             :     if (!always_allocate() && Heap::allocation_timeout_-- <= 0) {
     169             :       return AllocationResult::Retry();
     170             :     }
     171             :   }
     172             : #endif
     173             : #ifdef DEBUG
     174             :   IncrementObjectCounters();
     175             : #endif
     176             : 
     177             :   bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
     178             : 
     179             :   HeapObject object;
     180             :   AllocationResult allocation;
     181             : 
     182   327410987 :   if (AllocationType::kYoung == type) {
     183   169343688 :     if (large_object) {
     184       19231 :       if (FLAG_young_generation_large_objects) {
     185       19231 :         allocation = new_lo_space_->AllocateRaw(size_in_bytes);
     186             :       } else {
     187             :         // If young generation large objects are disalbed we have to tenure the
     188             :         // allocation and violate the given allocation type. This could be
     189             :         // dangerous. We may want to remove FLAG_young_generation_large_objects
     190             :         // and avoid patching.
     191           0 :         allocation = lo_space_->AllocateRaw(size_in_bytes);
     192             :       }
     193             :     } else {
     194   169324457 :       allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
     195             :     }
     196   158067299 :   } else if (AllocationType::kOld == type) {
     197   125017434 :     if (large_object) {
     198        2760 :       allocation = lo_space_->AllocateRaw(size_in_bytes);
     199             :     } else {
     200   125014674 :       allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
     201             :     }
     202    33049865 :   } else if (AllocationType::kCode == type) {
     203     1907027 :     if (size_in_bytes <= code_space()->AreaSize() && !large_object) {
     204     1906941 :       allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
     205             :     } else {
     206          86 :       allocation = code_lo_space_->AllocateRaw(size_in_bytes);
     207             :     }
     208    31142838 :   } else if (AllocationType::kMap == type) {
     209    30929982 :     allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
     210      212856 :   } else if (AllocationType::kReadOnly == type) {
     211             : #ifdef V8_USE_SNAPSHOT
     212             :     DCHECK(isolate_->serializer_enabled());
     213             : #endif
     214             :     DCHECK(!large_object);
     215             :     DCHECK(CanAllocateInReadOnlySpace());
     216      212856 :     allocation = read_only_space_->AllocateRaw(size_in_bytes, alignment);
     217             :   } else {
     218           0 :     UNREACHABLE();
     219             :   }
     220             : 
     221   327410757 :   if (allocation.To(&object)) {
     222   327385229 :     if (AllocationType::kCode == type) {
     223             :       // Unprotect the memory chunk of the object if it was not unprotected
     224             :       // already.
     225     1212854 :       UnprotectAndRegisterMemoryChunk(object);
     226     1212854 :       ZapCodeObject(object->address(), size_in_bytes);
     227             :     }
     228   327385230 :     OnAllocationEvent(object, size_in_bytes);
     229             :   }
     230             : 
     231   327410806 :   return allocation;
     232             : }
     233             : 
     234   769254918 : void Heap::OnAllocationEvent(HeapObject object, int size_in_bytes) {
     235   769428873 :   for (auto& tracker : allocation_trackers_) {
     236      347910 :     tracker->AllocationEvent(object->address(), size_in_bytes);
     237             :   }
     238             : 
     239             :   if (FLAG_verify_predictable) {
     240             :     ++allocations_count_;
     241             :     // Advance synthetic time by making a time request.
     242             :     MonotonicallyIncreasingTimeInMs();
     243             : 
     244             :     UpdateAllocationsHash(object);
     245             :     UpdateAllocationsHash(size_in_bytes);
     246             : 
     247             :     if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
     248             :       PrintAllocationsHash();
     249             :     }
     250   769254918 :   } else if (FLAG_fuzzer_gc_analysis) {
     251           0 :     ++allocations_count_;
     252   769254918 :   } else if (FLAG_trace_allocation_stack_interval > 0) {
     253           0 :     ++allocations_count_;
     254           0 :     if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
     255           0 :       isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
     256             :     }
     257             :   }
     258   769254918 : }
     259             : 
     260             : bool Heap::CanAllocateInReadOnlySpace() {
     261    14671793 :   return !deserialization_complete_ &&
     262           0 :          (isolate()->serializer_enabled() ||
     263             :           !isolate()->initialized_from_snapshot());
     264             : }
     265             : 
     266             : void Heap::UpdateAllocationsHash(HeapObject object) {
     267             :   Address object_address = object->address();
     268             :   MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
     269             :   AllocationSpace allocation_space = memory_chunk->owner()->identity();
     270             : 
     271             :   STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
     272             :   uint32_t value =
     273             :       static_cast<uint32_t>(object_address - memory_chunk->address()) |
     274             :       (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
     275             : 
     276             :   UpdateAllocationsHash(value);
     277             : }
     278             : 
     279             : void Heap::UpdateAllocationsHash(uint32_t value) {
     280             :   uint16_t c1 = static_cast<uint16_t>(value);
     281             :   uint16_t c2 = static_cast<uint16_t>(value >> 16);
     282             :   raw_allocations_hash_ =
     283             :       StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
     284             :   raw_allocations_hash_ =
     285             :       StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
     286             : }
     287             : 
     288             : void Heap::RegisterExternalString(String string) {
     289             :   DCHECK(string->IsExternalString());
     290             :   DCHECK(!string->IsThinString());
     291       88027 :   external_string_table_.AddString(string);
     292             : }
     293             : 
     294       88006 : void Heap::FinalizeExternalString(String string) {
     295             :   DCHECK(string->IsExternalString());
     296             :   Page* page = Page::FromHeapObject(string);
     297       88006 :   ExternalString ext_string = ExternalString::cast(string);
     298             : 
     299       88006 :   page->DecrementExternalBackingStoreBytes(
     300             :       ExternalBackingStoreType::kExternalString,
     301      176012 :       ext_string->ExternalPayloadSize());
     302             : 
     303             :   ext_string->DisposeResource();
     304       88006 : }
     305             : 
     306             : Address Heap::NewSpaceTop() { return new_space_->top(); }
     307             : 
     308           0 : bool Heap::InYoungGeneration(Object object) {
     309             :   DCHECK(!HasWeakHeapObjectTag(object));
     310   826377579 :   return object->IsHeapObject() && InYoungGeneration(HeapObject::cast(object));
     311             : }
     312             : 
     313             : // static
     314           0 : bool Heap::InYoungGeneration(MaybeObject object) {
     315             :   HeapObject heap_object;
     316           0 :   return object->GetHeapObject(&heap_object) && InYoungGeneration(heap_object);
     317             : }
     318             : 
     319             : // static
     320      150717 : bool Heap::InYoungGeneration(HeapObject heap_object) {
     321             :   bool result = MemoryChunk::FromHeapObject(heap_object)->InYoungGeneration();
     322             : #ifdef DEBUG
     323             :   // If in the young generation, then check we're either not in the middle of
     324             :   // GC or the object is in to-space.
     325             :   if (result) {
     326             :     // If the object is in the young generation, then it's not in RO_SPACE so
     327             :     // this is safe.
     328             :     Heap* heap = Heap::FromWritableHeapObject(heap_object);
     329             :     DCHECK_IMPLIES(heap->gc_state_ == NOT_IN_GC, InToPage(heap_object));
     330             :   }
     331             : #endif
     332      150717 :   return result;
     333             : }
     334             : 
     335             : // static
     336             : bool Heap::InFromPage(Object object) {
     337             :   DCHECK(!HasWeakHeapObjectTag(object));
     338      261098 :   return object->IsHeapObject() && InFromPage(HeapObject::cast(object));
     339             : }
     340             : 
     341             : // static
     342             : bool Heap::InFromPage(MaybeObject object) {
     343             :   HeapObject heap_object;
     344    66016719 :   return object->GetHeapObject(&heap_object) && InFromPage(heap_object);
     345             : }
     346             : 
     347             : // static
     348      313312 : bool Heap::InFromPage(HeapObject heap_object) {
     349      313312 :   return MemoryChunk::FromHeapObject(heap_object)->IsFromPage();
     350             : }
     351             : 
     352             : // static
     353             : bool Heap::InToPage(Object object) {
     354             :   DCHECK(!HasWeakHeapObjectTag(object));
     355             :   return object->IsHeapObject() && InToPage(HeapObject::cast(object));
     356             : }
     357             : 
     358             : // static
     359       86284 : bool Heap::InToPage(MaybeObject object) {
     360             :   HeapObject heap_object;
     361     2223744 :   return object->GetHeapObject(&heap_object) && InToPage(heap_object);
     362             : }
     363             : 
     364             : // static
     365             : bool Heap::InToPage(HeapObject heap_object) {
     366             :   return MemoryChunk::FromHeapObject(heap_object)->IsToPage();
     367             : }
     368             : 
     369             : bool Heap::InOldSpace(Object object) { return old_space_->Contains(object); }
     370             : 
     371             : // static
     372             : Heap* Heap::FromWritableHeapObject(const HeapObject obj) {
     373             :   MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj);
     374             :   // RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to
     375             :   // find a heap. The exception is when the ReadOnlySpace is writeable, during
     376             :   // bootstrapping, so explicitly allow this case.
     377             :   SLOW_DCHECK(chunk->owner()->identity() != RO_SPACE ||
     378             :               static_cast<ReadOnlySpace*>(chunk->owner())->writable());
     379             :   Heap* heap = chunk->heap();
     380             :   SLOW_DCHECK(heap != nullptr);
     381             :   return heap;
     382             : }
     383             : 
     384             : bool Heap::ShouldBePromoted(Address old_address) {
     385             :   Page* page = Page::FromAddress(old_address);
     386             :   Address age_mark = new_space_->age_mark();
     387   216836267 :   return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
     388    29026130 :          (!page->ContainsLimit(age_mark) || old_address < age_mark);
     389             : }
     390             : 
     391    25138557 : void Heap::CopyBlock(Address dst, Address src, int byte_size) {
     392             :   DCHECK(IsAligned(byte_size, kTaggedSize));
     393   174189625 :   CopyTagged(dst, src, static_cast<size_t>(byte_size / kTaggedSize));
     394    25133815 : }
     395             : 
     396             : template <Heap::FindMementoMode mode>
     397    16157962 : AllocationMemento Heap::FindAllocationMemento(Map map, HeapObject object) {
     398             :   Address object_address = object->address();
     399    16157962 :   Address memento_address = object_address + object->SizeFromMap(map);
     400    16148229 :   Address last_memento_word_address = memento_address + kTaggedSize;
     401             :   // If the memento would be on another page, bail out immediately.
     402    16148229 :   if (!Page::OnSamePage(object_address, last_memento_word_address)) {
     403         475 :     return AllocationMemento();
     404             :   }
     405             :   HeapObject candidate = HeapObject::FromAddress(memento_address);
     406             :   MapWordSlot candidate_map_slot = candidate->map_slot();
     407             :   // This fast check may peek at an uninitialized word. However, the slow check
     408             :   // below (memento_address == top) ensures that this is safe. Mark the word as
     409             :   // initialized to silence MemorySanitizer warnings.
     410             :   MSAN_MEMORY_IS_INITIALIZED(candidate_map_slot.address(), kTaggedSize);
     411    16147754 :   if (!candidate_map_slot.contains_value(
     412             :           ReadOnlyRoots(this).allocation_memento_map().ptr())) {
     413    14309426 :     return AllocationMemento();
     414             :   }
     415             : 
     416             :   // Bail out if the memento is below the age mark, which can happen when
     417             :   // mementos survived because a page got moved within new space.
     418             :   Page* object_page = Page::FromAddress(object_address);
     419     1838328 :   if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
     420             :     Address age_mark =
     421             :         reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
     422      421146 :     if (!object_page->Contains(age_mark)) {
     423           3 :       return AllocationMemento();
     424             :     }
     425             :     // Do an exact check in the case where the age mark is on the same page.
     426      421143 :     if (object_address < age_mark) {
     427           0 :       return AllocationMemento();
     428             :     }
     429             :   }
     430             : 
     431      394749 :   AllocationMemento memento_candidate = AllocationMemento::cast(candidate);
     432             : 
     433             :   // Depending on what the memento is used for, we might need to perform
     434             :   // additional checks.
     435             :   Address top;
     436             :   switch (mode) {
     437             :     case Heap::kForGC:
     438     1443576 :       return memento_candidate;
     439             :     case Heap::kForRuntime:
     440      394749 :       if (memento_candidate.is_null()) return AllocationMemento();
     441             :       // Either the object is the last object in the new space, or there is
     442             :       // another object of at least word size (the header map word) following
     443             :       // it, so suffices to compare ptr and top here.
     444             :       top = NewSpaceTop();
     445             :       DCHECK(memento_address == top ||
     446             :              memento_address + HeapObject::kHeaderSize <= top ||
     447             :              !Page::OnSamePage(memento_address, top - 1));
     448      394749 :       if ((memento_address != top) && memento_candidate->IsValid()) {
     449      394731 :         return memento_candidate;
     450             :       }
     451          20 :       return AllocationMemento();
     452             :     default:
     453             :       UNREACHABLE();
     454             :   }
     455             :   UNREACHABLE();
     456             : }
     457             : 
     458   142776204 : void Heap::UpdateAllocationSite(Map map, HeapObject object,
     459             :                                 PretenuringFeedbackMap* pretenuring_feedback) {
     460             :   DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_);
     461             : #ifdef DEBUG
     462             :   MemoryChunk* chunk = MemoryChunk::FromHeapObject(object);
     463             :   DCHECK_IMPLIES(chunk->IsToPage(),
     464             :                  chunk->IsFlagSet(MemoryChunk::PAGE_NEW_NEW_PROMOTION));
     465             :   DCHECK_IMPLIES(!chunk->InYoungGeneration(),
     466             :                  chunk->IsFlagSet(MemoryChunk::PAGE_NEW_OLD_PROMOTION));
     467             : #endif
     468   285648480 :   if (!FLAG_allocation_site_pretenuring ||
     469             :       !AllocationSite::CanTrack(map->instance_type())) {
     470             :     return;
     471             :   }
     472             :   AllocationMemento memento_candidate =
     473    15567176 :       FindAllocationMemento<kForGC>(map, object);
     474    15533976 :   if (memento_candidate.is_null()) return;
     475             : 
     476             :   // Entering cached feedback is used in the parallel case. We are not allowed
     477             :   // to dereference the allocation site and rather have to postpone all checks
     478             :   // till actually merging the data.
     479             :   Address key = memento_candidate->GetAllocationSiteUnchecked();
     480     2888577 :   (*pretenuring_feedback)[AllocationSite::unchecked_cast(Object(key))]++;
     481             : }
     482             : 
     483       88027 : void Heap::ExternalStringTable::AddString(String string) {
     484             :   DCHECK(string->IsExternalString());
     485             :   DCHECK(!Contains(string));
     486             : 
     487       88027 :   if (InYoungGeneration(string)) {
     488         466 :     young_strings_.push_back(string);
     489             :   } else {
     490       87561 :     old_strings_.push_back(string);
     491             :   }
     492       88027 : }
     493             : 
     494         108 : Oddball Heap::ToBoolean(bool condition) {
     495             :   ReadOnlyRoots roots(this);
     496    30888191 :   return condition ? roots.true_value() : roots.false_value();
     497             : }
     498             : 
     499             : int Heap::NextScriptId() {
     500             :   int last_id = last_script_id()->value();
     501     2917974 :   if (last_id == Smi::kMaxValue) last_id = v8::UnboundScript::kNoScriptId;
     502     2917974 :   last_id++;
     503             :   set_last_script_id(Smi::FromInt(last_id));
     504             :   return last_id;
     505             : }
     506             : 
     507             : int Heap::NextDebuggingId() {
     508             :   int last_id = last_debugging_id()->value();
     509          55 :   if (last_id == DebugInfo::DebuggingIdBits::kMax) {
     510             :     last_id = DebugInfo::kNoDebuggingId;
     511             :   }
     512          55 :   last_id++;
     513             :   set_last_debugging_id(Smi::FromInt(last_id));
     514             :   return last_id;
     515             : }
     516             : 
     517             : int Heap::GetNextTemplateSerialNumber() {
     518     4484833 :   int next_serial_number = next_template_serial_number()->value() + 1;
     519             :   set_next_template_serial_number(Smi::FromInt(next_serial_number));
     520             :   return next_serial_number;
     521             : }
     522             : 
     523             : int Heap::MaxNumberToStringCacheSize() const {
     524             :   // Compute the size of the number string cache based on the max newspace size.
     525             :   // The number string cache has a minimum size based on twice the initial cache
     526             :   // size to ensure that it is bigger after being made 'full size'.
     527    28174297 :   size_t number_string_cache_size = max_semi_space_size_ / 512;
     528             :   number_string_cache_size =
     529             :       Max(static_cast<size_t>(kInitialNumberStringCacheSize * 2),
     530             :           Min<size_t>(0x4000u, number_string_cache_size));
     531             :   // There is a string and a number per entry so the length is twice the number
     532             :   // of entries.
     533    28174297 :   return static_cast<int>(number_string_cache_size * 2);
     534             : }
     535             : 
     536             : void Heap::IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
     537             :                                               size_t amount) {
     538             :   base::CheckedIncrement(&backing_store_bytes_, amount);
     539             :   // TODO(mlippautz): Implement interrupt for global memory allocations that can
     540             :   // trigger garbage collections.
     541             : }
     542             : 
     543             : void Heap::DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
     544             :                                               size_t amount) {
     545             :   base::CheckedDecrement(&backing_store_bytes_, amount);
     546             : }
     547             : 
     548             : AlwaysAllocateScope::AlwaysAllocateScope(Heap* heap) : heap_(heap) {
     549             :   heap_->always_allocate_scope_count_++;
     550             : }
     551             : 
     552             : AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
     553             :     : AlwaysAllocateScope(isolate->heap()) {}
     554             : 
     555             : AlwaysAllocateScope::~AlwaysAllocateScope() {
     556             :   heap_->always_allocate_scope_count_--;
     557             : }
     558             : 
     559      281836 : CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap)
     560      281836 :     : heap_(heap) {
     561      281836 :   if (heap_->write_protect_code_memory()) {
     562             :     heap_->increment_code_space_memory_modification_scope_depth();
     563      281835 :     heap_->code_space()->SetReadAndWritable();
     564      281837 :     LargePage* page = heap_->code_lo_space()->first_page();
     565      976803 :     while (page != nullptr) {
     566             :       DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
     567      694966 :       CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
     568      347483 :       page->SetReadAndWritable();
     569             :       page = page->next_page();
     570             :     }
     571             :   }
     572      281838 : }
     573             : 
     574      563672 : CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() {
     575      281835 :   if (heap_->write_protect_code_memory()) {
     576             :     heap_->decrement_code_space_memory_modification_scope_depth();
     577      281835 :     heap_->code_space()->SetDefaultCodePermissions();
     578      281837 :     LargePage* page = heap_->code_lo_space()->first_page();
     579      976755 :     while (page != nullptr) {
     580             :       DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
     581      694918 :       CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
     582      347459 :       page->SetDefaultCodePermissions();
     583             :       page = page->next_page();
     584             :     }
     585             :   }
     586      281837 : }
     587             : 
     588             : CodePageCollectionMemoryModificationScope::
     589             :     CodePageCollectionMemoryModificationScope(Heap* heap)
     590     1907012 :     : heap_(heap) {
     591     1907012 :   if (heap_->write_protect_code_memory() &&
     592             :       !heap_->code_space_memory_modification_scope_depth()) {
     593             :     heap_->EnableUnprotectedMemoryChunksRegistry();
     594             :   }
     595             : }
     596             : 
     597     1907010 : CodePageCollectionMemoryModificationScope::
     598     1907012 :     ~CodePageCollectionMemoryModificationScope() {
     599     1907010 :   if (heap_->write_protect_code_memory() &&
     600             :       !heap_->code_space_memory_modification_scope_depth()) {
     601     1777089 :     heap_->ProtectUnprotectedMemoryChunks();
     602     1777091 :     heap_->DisableUnprotectedMemoryChunksRegistry();
     603             :   }
     604     1907012 : }
     605             : 
     606     1324652 : CodePageMemoryModificationScope::CodePageMemoryModificationScope(
     607             :     MemoryChunk* chunk)
     608             :     : chunk_(chunk),
     609     2649295 :       scope_active_(chunk_->heap()->write_protect_code_memory() &&
     610     2649304 :                     chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
     611     1324652 :   if (scope_active_) {
     612             :     DCHECK(chunk_->owner()->identity() == CODE_SPACE ||
     613             :            (chunk_->owner()->identity() == CODE_LO_SPACE));
     614      479794 :     chunk_->SetReadAndWritable();
     615             :   }
     616     1324651 : }
     617             : 
     618     1324301 : CodePageMemoryModificationScope::~CodePageMemoryModificationScope() {
     619     1324301 :   if (scope_active_) {
     620      479793 :     chunk_->SetDefaultCodePermissions();
     621             :   }
     622             : }
     623             : 
     624             : }  // namespace internal
     625             : }  // namespace v8
     626             : 
     627             : #endif  // V8_HEAP_HEAP_INL_H_

Generated by: LCOV version 1.10