Line data Source code
1 : // Copyright 2012 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_ISOLATE_H_
6 : #define V8_ISOLATE_H_
7 :
8 : #include <cstddef>
9 : #include <functional>
10 : #include <memory>
11 : #include <queue>
12 : #include <unordered_map>
13 : #include <vector>
14 :
15 : #include "include/v8-inspector.h"
16 : #include "include/v8-internal.h"
17 : #include "include/v8.h"
18 : #include "src/allocation.h"
19 : #include "src/base/macros.h"
20 : #include "src/builtins/builtins.h"
21 : #include "src/contexts.h"
22 : #include "src/debug/interface-types.h"
23 : #include "src/execution.h"
24 : #include "src/futex-emulation.h"
25 : #include "src/globals.h"
26 : #include "src/handles.h"
27 : #include "src/heap/factory.h"
28 : #include "src/heap/heap.h"
29 : #include "src/isolate-allocator.h"
30 : #include "src/isolate-data.h"
31 : #include "src/messages.h"
32 : #include "src/objects/code.h"
33 : #include "src/objects/debug-objects.h"
34 : #include "src/runtime/runtime.h"
35 : #include "src/unicode.h"
36 :
37 : #ifdef V8_INTL_SUPPORT
38 : #include "unicode/uversion.h" // Define U_ICU_NAMESPACE.
39 : namespace U_ICU_NAMESPACE {
40 : class UObject;
41 : } // namespace U_ICU_NAMESPACE
42 : #endif // V8_INTL_SUPPORT
43 :
44 : namespace v8 {
45 :
46 : namespace base {
47 : class RandomNumberGenerator;
48 : }
49 :
50 : namespace debug {
51 : class ConsoleDelegate;
52 : class AsyncEventDelegate;
53 : }
54 :
55 : namespace internal {
56 :
57 : namespace heap {
58 : class HeapTester;
59 : } // namespace heap
60 :
61 : class AddressToIndexHashMap;
62 : class AstStringConstants;
63 : class Bootstrapper;
64 : class BuiltinsConstantsTableBuilder;
65 : class CancelableTaskManager;
66 : class CodeEventDispatcher;
67 : class CodeTracer;
68 : class CompilationCache;
69 : class CompilationStatistics;
70 : class CompilerDispatcher;
71 : class ContextSlotCache;
72 : class Counters;
73 : class Debug;
74 : class DeoptimizerData;
75 : class DescriptorLookupCache;
76 : class EmbeddedFileWriterInterface;
77 : class EternalHandles;
78 : class HandleScopeImplementer;
79 : class HeapObjectToIndexHashMap;
80 : class HeapProfiler;
81 : class InnerPointerToCodeCache;
82 : class Logger;
83 : class MaterializedObjectStore;
84 : class Microtask;
85 : class MicrotaskQueue;
86 : class OptimizingCompileDispatcher;
87 : class ReadOnlyDeserializer;
88 : class RegExpStack;
89 : class RootVisitor;
90 : class RuntimeProfiler;
91 : class SetupIsolateDelegate;
92 : class Simulator;
93 : class StartupDeserializer;
94 : class StandardFrame;
95 : class StubCache;
96 : class ThreadManager;
97 : class ThreadState;
98 : class ThreadVisitor; // Defined in v8threads.h
99 : class TracingCpuProfilerImpl;
100 : class UnicodeCache;
101 : struct ManagedPtrDestructor;
102 :
103 : template <StateTag Tag> class VMState;
104 :
105 : namespace interpreter {
106 : class Interpreter;
107 : }
108 :
109 : namespace compiler {
110 : class PerIsolateCompilerCache;
111 : }
112 :
113 : namespace wasm {
114 : class WasmEngine;
115 : }
116 :
117 : namespace win64_unwindinfo {
118 : class BuiltinUnwindInfo;
119 : }
120 :
121 : #define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate) \
122 : do { \
123 : Isolate* __isolate__ = (isolate); \
124 : DCHECK(!__isolate__->has_pending_exception()); \
125 : if (__isolate__->has_scheduled_exception()) { \
126 : return __isolate__->PromoteScheduledException(); \
127 : } \
128 : } while (false)
129 :
130 : // Macros for MaybeHandle.
131 :
132 : #define RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, value) \
133 : do { \
134 : Isolate* __isolate__ = (isolate); \
135 : DCHECK(!__isolate__->has_pending_exception()); \
136 : if (__isolate__->has_scheduled_exception()) { \
137 : __isolate__->PromoteScheduledException(); \
138 : return value; \
139 : } \
140 : } while (false)
141 :
142 : #define RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, T) \
143 : RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, MaybeHandle<T>())
144 :
145 : #define ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, dst, call, value) \
146 : do { \
147 : Isolate* __isolate__ = (isolate); \
148 : if (!(call).ToLocal(&dst)) { \
149 : DCHECK(__isolate__->has_scheduled_exception()); \
150 : __isolate__->PromoteScheduledException(); \
151 : return value; \
152 : } \
153 : } while (false)
154 :
155 : #define RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, call, value) \
156 : do { \
157 : Isolate* __isolate__ = (isolate); \
158 : if ((call).IsNothing()) { \
159 : DCHECK(__isolate__->has_scheduled_exception()); \
160 : __isolate__->PromoteScheduledException(); \
161 : return value; \
162 : } \
163 : } while (false)
164 :
165 : /**
166 : * RETURN_RESULT_OR_FAILURE is used in functions with return type Object (such
167 : * as "RUNTIME_FUNCTION(...) {...}" or "BUILTIN(...) {...}" ) to return either
168 : * the contents of a MaybeHandle<X>, or the "exception" sentinel value.
169 : * Example usage:
170 : *
171 : * RUNTIME_FUNCTION(Runtime_Func) {
172 : * ...
173 : * RETURN_RESULT_OR_FAILURE(
174 : * isolate,
175 : * FunctionWithReturnTypeMaybeHandleX(...));
176 : * }
177 : *
178 : * If inside a function with return type MaybeHandle<X> use RETURN_ON_EXCEPTION
179 : * instead.
180 : * If inside a function with return type Handle<X>, or Maybe<X> use
181 : * RETURN_ON_EXCEPTION_VALUE instead.
182 : */
183 : #define RETURN_RESULT_OR_FAILURE(isolate, call) \
184 : do { \
185 : Handle<Object> __result__; \
186 : Isolate* __isolate__ = (isolate); \
187 : if (!(call).ToHandle(&__result__)) { \
188 : DCHECK(__isolate__->has_pending_exception()); \
189 : return ReadOnlyRoots(__isolate__).exception(); \
190 : } \
191 : DCHECK(!__isolate__->has_pending_exception()); \
192 : return *__result__; \
193 : } while (false)
194 :
195 : #define ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \
196 : do { \
197 : if (!(call).ToHandle(&dst)) { \
198 : DCHECK((isolate)->has_pending_exception()); \
199 : return value; \
200 : } \
201 : } while (false)
202 :
203 : #define ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \
204 : do { \
205 : Isolate* __isolate__ = (isolate); \
206 : ASSIGN_RETURN_ON_EXCEPTION_VALUE(__isolate__, dst, call, \
207 : ReadOnlyRoots(__isolate__).exception()); \
208 : } while (false)
209 :
210 : #define ASSIGN_RETURN_ON_EXCEPTION(isolate, dst, call, T) \
211 : ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, MaybeHandle<T>())
212 :
213 : #define THROW_NEW_ERROR(isolate, call, T) \
214 : do { \
215 : Isolate* __isolate__ = (isolate); \
216 : return __isolate__->Throw<T>(__isolate__->factory()->call); \
217 : } while (false)
218 :
219 : #define THROW_NEW_ERROR_RETURN_FAILURE(isolate, call) \
220 : do { \
221 : Isolate* __isolate__ = (isolate); \
222 : return __isolate__->Throw(*__isolate__->factory()->call); \
223 : } while (false)
224 :
225 : #define THROW_NEW_ERROR_RETURN_VALUE(isolate, call, value) \
226 : do { \
227 : Isolate* __isolate__ = (isolate); \
228 : __isolate__->Throw(*__isolate__->factory()->call); \
229 : return value; \
230 : } while (false)
231 :
232 : /**
233 : * RETURN_ON_EXCEPTION_VALUE conditionally returns the given value when the
234 : * given MaybeHandle is empty. It is typically used in functions with return
235 : * type Maybe<X> or Handle<X>. Example usage:
236 : *
237 : * Handle<X> Func() {
238 : * ...
239 : * RETURN_ON_EXCEPTION_VALUE(
240 : * isolate,
241 : * FunctionWithReturnTypeMaybeHandleX(...),
242 : * Handle<X>());
243 : * // code to handle non exception
244 : * ...
245 : * }
246 : *
247 : * Maybe<bool> Func() {
248 : * ..
249 : * RETURN_ON_EXCEPTION_VALUE(
250 : * isolate,
251 : * FunctionWithReturnTypeMaybeHandleX(...),
252 : * Nothing<bool>);
253 : * // code to handle non exception
254 : * return Just(true);
255 : * }
256 : *
257 : * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION
258 : * instead.
259 : * If inside a function with return type Object, use
260 : * RETURN_FAILURE_ON_EXCEPTION instead.
261 : */
262 : #define RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \
263 : do { \
264 : if ((call).is_null()) { \
265 : DCHECK((isolate)->has_pending_exception()); \
266 : return value; \
267 : } \
268 : } while (false)
269 :
270 : /**
271 : * RETURN_FAILURE_ON_EXCEPTION conditionally returns the "exception" sentinel if
272 : * the given MaybeHandle is empty; so it can only be used in functions with
273 : * return type Object, such as RUNTIME_FUNCTION(...) {...} or BUILTIN(...)
274 : * {...}. Example usage:
275 : *
276 : * RUNTIME_FUNCTION(Runtime_Func) {
277 : * ...
278 : * RETURN_FAILURE_ON_EXCEPTION(
279 : * isolate,
280 : * FunctionWithReturnTypeMaybeHandleX(...));
281 : * // code to handle non exception
282 : * ...
283 : * }
284 : *
285 : * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION
286 : * instead.
287 : * If inside a function with return type Maybe<X> or Handle<X>, use
288 : * RETURN_ON_EXCEPTION_VALUE instead.
289 : */
290 : #define RETURN_FAILURE_ON_EXCEPTION(isolate, call) \
291 : do { \
292 : Isolate* __isolate__ = (isolate); \
293 : RETURN_ON_EXCEPTION_VALUE(__isolate__, call, \
294 : ReadOnlyRoots(__isolate__).exception()); \
295 : } while (false);
296 :
297 : /**
298 : * RETURN_ON_EXCEPTION conditionally returns an empty MaybeHandle<T> if the
299 : * given MaybeHandle is empty. Use it to return immediately from a function with
300 : * return type MaybeHandle when an exception was thrown. Example usage:
301 : *
302 : * MaybeHandle<X> Func() {
303 : * ...
304 : * RETURN_ON_EXCEPTION(
305 : * isolate,
306 : * FunctionWithReturnTypeMaybeHandleY(...),
307 : * X);
308 : * // code to handle non exception
309 : * ...
310 : * }
311 : *
312 : * If inside a function with return type Object, use
313 : * RETURN_FAILURE_ON_EXCEPTION instead.
314 : * If inside a function with return type
315 : * Maybe<X> or Handle<X>, use RETURN_ON_EXCEPTION_VALUE instead.
316 : */
317 : #define RETURN_ON_EXCEPTION(isolate, call, T) \
318 : RETURN_ON_EXCEPTION_VALUE(isolate, call, MaybeHandle<T>())
319 :
320 :
321 : #define FOR_WITH_HANDLE_SCOPE(isolate, loop_var_type, init, loop_var, \
322 : limit_check, increment, body) \
323 : do { \
324 : loop_var_type init; \
325 : loop_var_type for_with_handle_limit = loop_var; \
326 : Isolate* for_with_handle_isolate = isolate; \
327 : while (limit_check) { \
328 : for_with_handle_limit += 1024; \
329 : HandleScope loop_scope(for_with_handle_isolate); \
330 : for (; limit_check && loop_var < for_with_handle_limit; increment) { \
331 : body \
332 : } \
333 : } \
334 : } while (false)
335 :
336 : #define FIELD_ACCESSOR(type, name) \
337 : inline void set_##name(type v) { name##_ = v; } \
338 : inline type name() const { return name##_; }
339 :
340 : // Controls for manual embedded blob lifecycle management, used by tests and
341 : // mksnapshot.
342 : V8_EXPORT_PRIVATE void DisableEmbeddedBlobRefcounting();
343 : V8_EXPORT_PRIVATE void FreeCurrentEmbeddedBlob();
344 :
345 : #ifdef DEBUG
346 :
347 : #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \
348 : V(CommentStatistic, paged_space_comments_statistics, \
349 : CommentStatistic::kMaxComments + 1) \
350 : V(int, code_kind_statistics, AbstractCode::NUMBER_OF_KINDS)
351 : #else
352 :
353 : #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V)
354 :
355 : #endif
356 :
357 : #define ISOLATE_INIT_ARRAY_LIST(V) \
358 : /* SerializerDeserializer state. */ \
359 : V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \
360 : V(int, bad_char_shift_table, kUC16AlphabetSize) \
361 : V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \
362 : V(int, suffix_table, (kBMMaxShift + 1)) \
363 : ISOLATE_INIT_DEBUG_ARRAY_LIST(V)
364 :
365 : using DebugObjectCache = std::vector<Handle<HeapObject>>;
366 :
367 : #define ISOLATE_INIT_LIST(V) \
368 : /* Assembler state. */ \
369 : V(FatalErrorCallback, exception_behavior, nullptr) \
370 : V(OOMErrorCallback, oom_behavior, nullptr) \
371 : V(LogEventCallback, event_logger, nullptr) \
372 : V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, nullptr) \
373 : V(AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback, nullptr) \
374 : V(ExtensionCallback, wasm_module_callback, &NoExtension) \
375 : V(ExtensionCallback, wasm_instance_callback, &NoExtension) \
376 : V(WasmStreamingCallback, wasm_streaming_callback, nullptr) \
377 : V(WasmThreadsEnabledCallback, wasm_threads_enabled_callback, nullptr) \
378 : /* State for Relocatable. */ \
379 : V(Relocatable*, relocatable_top, nullptr) \
380 : V(DebugObjectCache*, string_stream_debug_object_cache, nullptr) \
381 : V(Object, string_stream_current_security_token, Object()) \
382 : V(const intptr_t*, api_external_references, nullptr) \
383 : V(AddressToIndexHashMap*, external_reference_map, nullptr) \
384 : V(HeapObjectToIndexHashMap*, root_index_map, nullptr) \
385 : V(MicrotaskQueue*, default_microtask_queue, nullptr) \
386 : V(CompilationStatistics*, turbo_statistics, nullptr) \
387 : V(CodeTracer*, code_tracer, nullptr) \
388 : V(uint32_t, per_isolate_assert_data, 0xFFFFFFFFu) \
389 : V(PromiseRejectCallback, promise_reject_callback, nullptr) \
390 : V(const v8::StartupData*, snapshot_blob, nullptr) \
391 : V(int, code_and_metadata_size, 0) \
392 : V(int, bytecode_and_metadata_size, 0) \
393 : V(int, external_script_source_size, 0) \
394 : /* true if being profiled. Causes collection of extra compile info. */ \
395 : V(bool, is_profiling, false) \
396 : /* true if a trace is being formatted through Error.prepareStackTrace. */ \
397 : V(bool, formatting_stack_trace, false) \
398 : /* Perform side effect checks on function call and API callbacks. */ \
399 : V(DebugInfo::ExecutionMode, debug_execution_mode, DebugInfo::kBreakpoints) \
400 : /* Current code coverage mode */ \
401 : V(debug::CoverageMode, code_coverage_mode, debug::CoverageMode::kBestEffort) \
402 : V(debug::TypeProfileMode, type_profile_mode, debug::TypeProfileMode::kNone) \
403 : V(int, last_stack_frame_info_id, 0) \
404 : V(int, last_console_context_id, 0) \
405 : V(v8_inspector::V8Inspector*, inspector, nullptr) \
406 : V(bool, next_v8_call_is_safe_for_termination, false) \
407 : V(bool, only_terminate_in_safe_scope, false) \
408 : V(bool, detailed_source_positions_for_profiling, FLAG_detailed_line_info)
409 :
410 : #define THREAD_LOCAL_TOP_ACCESSOR(type, name) \
411 : inline void set_##name(type v) { thread_local_top()->name##_ = v; } \
412 : inline type name() const { return thread_local_top()->name##_; }
413 :
414 : #define THREAD_LOCAL_TOP_ADDRESS(type, name) \
415 : type* name##_address() { return &thread_local_top()->name##_; }
416 :
417 : // HiddenFactory exists so Isolate can privately inherit from it without making
418 : // Factory's members available to Isolate directly.
419 : class V8_EXPORT_PRIVATE HiddenFactory : private Factory {};
420 :
421 : class Isolate final : private HiddenFactory {
422 : // These forward declarations are required to make the friend declarations in
423 : // PerIsolateThreadData work on some older versions of gcc.
424 : class ThreadDataTable;
425 : class EntryStackItem;
426 : public:
427 : // A thread has a PerIsolateThreadData instance for each isolate that it has
428 : // entered. That instance is allocated when the isolate is initially entered
429 : // and reused on subsequent entries.
430 : class PerIsolateThreadData {
431 : public:
432 : PerIsolateThreadData(Isolate* isolate, ThreadId thread_id)
433 : : isolate_(isolate),
434 : thread_id_(thread_id),
435 : stack_limit_(0),
436 : thread_state_(nullptr),
437 : #if USE_SIMULATOR
438 : simulator_(nullptr),
439 : #endif
440 : next_(nullptr),
441 67977 : prev_(nullptr) {
442 : }
443 : ~PerIsolateThreadData();
444 : Isolate* isolate() const { return isolate_; }
445 : ThreadId thread_id() const { return thread_id_; }
446 :
447 5918 : FIELD_ACCESSOR(uintptr_t, stack_limit)
448 68770 : FIELD_ACCESSOR(ThreadState*, thread_state)
449 :
450 : #if USE_SIMULATOR
451 : FIELD_ACCESSOR(Simulator*, simulator)
452 : #endif
453 :
454 : bool Matches(Isolate* isolate, ThreadId thread_id) const {
455 : return isolate_ == isolate && thread_id_ == thread_id;
456 : }
457 :
458 : private:
459 : Isolate* isolate_;
460 : ThreadId thread_id_;
461 : uintptr_t stack_limit_;
462 : ThreadState* thread_state_;
463 :
464 : #if USE_SIMULATOR
465 : Simulator* simulator_;
466 : #endif
467 :
468 : PerIsolateThreadData* next_;
469 : PerIsolateThreadData* prev_;
470 :
471 : friend class Isolate;
472 : friend class ThreadDataTable;
473 : friend class EntryStackItem;
474 :
475 : DISALLOW_COPY_AND_ASSIGN(PerIsolateThreadData);
476 : };
477 :
478 : static void InitializeOncePerProcess();
479 :
480 : // Creates Isolate object. Must be used instead of constructing Isolate with
481 : // new operator.
482 : static V8_EXPORT_PRIVATE Isolate* New(
483 : IsolateAllocationMode mode = IsolateAllocationMode::kDefault);
484 :
485 : // Deletes Isolate object. Must be used instead of delete operator.
486 : // Destroys the non-default isolates.
487 : // Sets default isolate into "has_been_disposed" state rather then destroying,
488 : // for legacy API reasons.
489 : static void Delete(Isolate* isolate);
490 :
491 : // Returns allocation mode of this isolate.
492 : V8_INLINE IsolateAllocationMode isolate_allocation_mode();
493 :
494 : // Page allocator that must be used for allocating V8 heap pages.
495 : v8::PageAllocator* page_allocator();
496 :
497 : // Returns the PerIsolateThreadData for the current thread (or nullptr if one
498 : // is not currently set).
499 : static PerIsolateThreadData* CurrentPerIsolateThreadData() {
500 : return reinterpret_cast<PerIsolateThreadData*>(
501 286579 : base::Thread::GetThreadLocal(per_isolate_thread_data_key_));
502 : }
503 :
504 : // Returns the isolate inside which the current thread is running or nullptr.
505 : V8_INLINE static Isolate* TryGetCurrent() {
506 : DCHECK_EQ(true, isolate_key_created_.load(std::memory_order_relaxed));
507 : return reinterpret_cast<Isolate*>(
508 921084 : base::Thread::GetExistingThreadLocal(isolate_key_));
509 : }
510 :
511 : // Returns the isolate inside which the current thread is running.
512 : V8_INLINE static Isolate* Current() {
513 : Isolate* isolate = TryGetCurrent();
514 : DCHECK_NOT_NULL(isolate);
515 : return isolate;
516 : }
517 :
518 : // Usually called by Init(), but can be called early e.g. to allow
519 : // testing components that require logging but not the whole
520 : // isolate.
521 : //
522 : // Safe to call more than once.
523 : void InitializeLoggingAndCounters();
524 : bool InitializeCounters(); // Returns false if already initialized.
525 :
526 : bool InitWithoutSnapshot();
527 : bool InitWithSnapshot(ReadOnlyDeserializer* read_only_deserializer,
528 : StartupDeserializer* startup_deserializer);
529 :
530 : // True if at least one thread Enter'ed this isolate.
531 63192 : bool IsInUse() { return entry_stack_ != nullptr; }
532 :
533 : void ReleaseSharedPtrs();
534 :
535 : void ClearSerializerData();
536 :
537 : bool LogObjectRelocation();
538 :
539 : // Initializes the current thread to run this Isolate.
540 : // Not thread-safe. Multiple threads should not Enter/Exit the same isolate
541 : // at the same time, this should be prevented using external locking.
542 : void Enter();
543 :
544 : // Exits the current thread. The previosuly entered Isolate is restored
545 : // for the thread.
546 : // Not thread-safe. Multiple threads should not Enter/Exit the same isolate
547 : // at the same time, this should be prevented using external locking.
548 : void Exit();
549 :
550 : // Find the PerThread for this particular (isolate, thread) combination.
551 : // If one does not yet exist, allocate a new one.
552 : PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread();
553 :
554 : // Find the PerThread for this particular (isolate, thread) combination
555 : // If one does not yet exist, return null.
556 : PerIsolateThreadData* FindPerThreadDataForThisThread();
557 :
558 : // Find the PerThread for given (isolate, thread) combination
559 : // If one does not yet exist, return null.
560 : PerIsolateThreadData* FindPerThreadDataForThread(ThreadId thread_id);
561 :
562 : // Discard the PerThread for this particular (isolate, thread) combination
563 : // If one does not yet exist, no-op.
564 : void DiscardPerThreadDataForThisThread();
565 :
566 : // Mutex for serializing access to break control structures.
567 21781790 : base::RecursiveMutex* break_access() { return &break_access_; }
568 :
569 : Address get_address_from_id(IsolateAddressId id);
570 :
571 : // Access to top context (where the current function object was created).
572 206646319 : Context context() { return thread_local_top()->context_; }
573 : inline void set_context(Context context);
574 62441 : Context* context_address() { return &thread_local_top()->context_; }
575 :
576 : // Access to current thread id.
577 213953 : THREAD_LOCAL_TOP_ACCESSOR(ThreadId, thread_id)
578 :
579 : // Interface to pending exception.
580 : inline Object pending_exception();
581 : inline void set_pending_exception(Object exception_obj);
582 : inline void clear_pending_exception();
583 :
584 : V8_EXPORT_PRIVATE bool AreWasmThreadsEnabled(Handle<Context> context);
585 :
586 62441 : THREAD_LOCAL_TOP_ADDRESS(Object, pending_exception)
587 :
588 : inline bool has_pending_exception();
589 :
590 62441 : THREAD_LOCAL_TOP_ADDRESS(Context, pending_handler_context)
591 62441 : THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_entrypoint)
592 62441 : THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_constant_pool)
593 62441 : THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_fp)
594 62441 : THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_sp)
595 :
596 8144 : THREAD_LOCAL_TOP_ACCESSOR(bool, external_caught_exception)
597 :
598 : v8::TryCatch* try_catch_handler() {
599 22430393 : return thread_local_top()->try_catch_handler_;
600 : }
601 : bool* external_caught_exception_address() {
602 62441 : return &thread_local_top()->external_caught_exception_;
603 : }
604 :
605 62554 : THREAD_LOCAL_TOP_ADDRESS(Object, scheduled_exception)
606 :
607 : inline void clear_pending_message();
608 : Address pending_message_obj_address() {
609 122168 : return reinterpret_cast<Address>(&thread_local_top()->pending_message_obj_);
610 : }
611 :
612 : inline Object scheduled_exception();
613 : inline bool has_scheduled_exception();
614 : inline void clear_scheduled_exception();
615 :
616 : bool IsJavaScriptHandlerOnTop(Object exception);
617 : bool IsExternalHandlerOnTop(Object exception);
618 :
619 : inline bool is_catchable_by_javascript(Object exception);
620 :
621 : // JS execution stack (see frames.h).
622 : static Address c_entry_fp(ThreadLocalTop* thread) {
623 : return thread->c_entry_fp_;
624 : }
625 : static Address handler(ThreadLocalTop* thread) { return thread->handler_; }
626 19078 : Address c_function() { return thread_local_top()->c_function_; }
627 :
628 : inline Address* c_entry_fp_address() {
629 62441 : return &thread_local_top()->c_entry_fp_;
630 : }
631 62441 : inline Address* handler_address() { return &thread_local_top()->handler_; }
632 : inline Address* c_function_address() {
633 62441 : return &thread_local_top()->c_function_;
634 : }
635 :
636 : // Bottom JS entry.
637 61934 : Address js_entry_sp() { return thread_local_top()->js_entry_sp_; }
638 : inline Address* js_entry_sp_address() {
639 62441 : return &thread_local_top()->js_entry_sp_;
640 : }
641 :
642 : // Returns the global object of the current context. It could be
643 : // a builtin object, or a JS global object.
644 : inline Handle<JSGlobalObject> global_object();
645 :
646 : // Returns the global proxy object of the current context.
647 : inline Handle<JSGlobalProxy> global_proxy();
648 :
649 : static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); }
650 68345 : void FreeThreadResources() { thread_local_top()->Free(); }
651 :
652 : // This method is called by the api after operations that may throw
653 : // exceptions. If an exception was thrown and not handled by an external
654 : // handler the exception is scheduled to be rethrown when we return to running
655 : // JavaScript code. If an exception is scheduled true is returned.
656 : V8_EXPORT_PRIVATE bool OptionalRescheduleException(bool clear_exception);
657 :
658 : // Push and pop a promise and the current try-catch handler.
659 : void PushPromise(Handle<JSObject> promise);
660 : void PopPromise();
661 :
662 : // Return the relevant Promise that a throw/rejection pertains to, based
663 : // on the contents of the Promise stack
664 : Handle<Object> GetPromiseOnStackOnThrow();
665 :
666 : // Heuristically guess whether a Promise is handled by user catch handler
667 : bool PromiseHasUserDefinedRejectHandler(Handle<Object> promise);
668 :
669 : class ExceptionScope {
670 : public:
671 : // Scope currently can only be used for regular exceptions,
672 : // not termination exception.
673 : inline explicit ExceptionScope(Isolate* isolate);
674 : inline ~ExceptionScope();
675 :
676 : private:
677 : Isolate* isolate_;
678 : Handle<Object> pending_exception_;
679 : };
680 :
681 : V8_EXPORT_PRIVATE void SetCaptureStackTraceForUncaughtExceptions(
682 : bool capture, int frame_limit, StackTrace::StackTraceOptions options);
683 :
684 : void SetAbortOnUncaughtExceptionCallback(
685 : v8::Isolate::AbortOnUncaughtExceptionCallback callback);
686 :
687 : enum PrintStackMode { kPrintStackConcise, kPrintStackVerbose };
688 : void PrintCurrentStackTrace(FILE* out);
689 : void PrintStack(StringStream* accumulator,
690 : PrintStackMode mode = kPrintStackVerbose);
691 : V8_EXPORT_PRIVATE void PrintStack(FILE* out,
692 : PrintStackMode mode = kPrintStackVerbose);
693 : Handle<String> StackTraceString();
694 : // Stores a stack trace in a stack-allocated temporary buffer which will
695 : // end up in the minidump for debugging purposes.
696 : V8_NOINLINE void PushStackTraceAndDie(void* ptr1 = nullptr,
697 : void* ptr2 = nullptr,
698 : void* ptr3 = nullptr,
699 : void* ptr4 = nullptr);
700 : Handle<FixedArray> CaptureCurrentStackTrace(
701 : int frame_limit, StackTrace::StackTraceOptions options);
702 : Handle<Object> CaptureSimpleStackTrace(Handle<JSReceiver> error_object,
703 : FrameSkipMode mode,
704 : Handle<Object> caller);
705 : MaybeHandle<JSReceiver> CaptureAndSetDetailedStackTrace(
706 : Handle<JSReceiver> error_object);
707 : MaybeHandle<JSReceiver> CaptureAndSetSimpleStackTrace(
708 : Handle<JSReceiver> error_object, FrameSkipMode mode,
709 : Handle<Object> caller);
710 : Handle<FixedArray> GetDetailedStackTrace(Handle<JSObject> error_object);
711 :
712 : Address GetAbstractPC(int* line, int* column);
713 :
714 : // Returns if the given context may access the given global object. If
715 : // the result is false, the pending exception is guaranteed to be
716 : // set.
717 : bool MayAccess(Handle<Context> accessing_context, Handle<JSObject> receiver);
718 :
719 : void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback);
720 : void ReportFailedAccessCheck(Handle<JSObject> receiver);
721 :
722 : // Exception throwing support. The caller should use the result
723 : // of Throw() as its return value.
724 : Object Throw(Object exception, MessageLocation* location = nullptr);
725 : Object ThrowIllegalOperation();
726 :
727 : template <typename T>
728 : V8_WARN_UNUSED_RESULT MaybeHandle<T> Throw(
729 : Handle<Object> exception, MessageLocation* location = nullptr) {
730 320133 : Throw(*exception, location);
731 : return MaybeHandle<T>();
732 : }
733 :
734 : void set_console_delegate(debug::ConsoleDelegate* delegate) {
735 38167 : console_delegate_ = delegate;
736 : }
737 : debug::ConsoleDelegate* console_delegate() { return console_delegate_; }
738 :
739 : void set_async_event_delegate(debug::AsyncEventDelegate* delegate) {
740 460 : async_event_delegate_ = delegate;
741 460 : PromiseHookStateUpdated();
742 : }
743 : void OnAsyncFunctionStateChanged(Handle<JSPromise> promise,
744 : debug::DebugAsyncActionType);
745 :
746 : // Re-throw an exception. This involves no error reporting since error
747 : // reporting was handled when the exception was thrown originally.
748 : Object ReThrow(Object exception);
749 :
750 : // Find the correct handler for the current pending exception. This also
751 : // clears and returns the current pending exception.
752 : Object UnwindAndFindHandler();
753 :
754 : // Tries to predict whether an exception will be caught. Note that this can
755 : // only produce an estimate, because it is undecidable whether a finally
756 : // clause will consume or re-throw an exception.
757 : enum CatchType {
758 : NOT_CAUGHT,
759 : CAUGHT_BY_JAVASCRIPT,
760 : CAUGHT_BY_EXTERNAL,
761 : CAUGHT_BY_DESUGARING,
762 : CAUGHT_BY_PROMISE,
763 : CAUGHT_BY_ASYNC_AWAIT
764 : };
765 : CatchType PredictExceptionCatcher();
766 :
767 : V8_EXPORT_PRIVATE void ScheduleThrow(Object exception);
768 : // Re-set pending message, script and positions reported to the TryCatch
769 : // back to the TLS for re-use when rethrowing.
770 : void RestorePendingMessageFromTryCatch(v8::TryCatch* handler);
771 : // Un-schedule an exception that was caught by a TryCatch handler.
772 : void CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler);
773 : void ReportPendingMessages();
774 : void ReportPendingMessagesFromJavaScript();
775 :
776 : // Implements code shared between the two above methods
777 : void ReportPendingMessagesImpl(bool report_externally);
778 :
779 : // Promote a scheduled exception to pending. Asserts has_scheduled_exception.
780 : Object PromoteScheduledException();
781 :
782 : // Attempts to compute the current source location, storing the
783 : // result in the target out parameter. The source location is attached to a
784 : // Message object as the location which should be shown to the user. It's
785 : // typically the top-most meaningful location on the stack.
786 : bool ComputeLocation(MessageLocation* target);
787 : bool ComputeLocationFromException(MessageLocation* target,
788 : Handle<Object> exception);
789 : V8_EXPORT_PRIVATE bool ComputeLocationFromStackTrace(
790 : MessageLocation* target, Handle<Object> exception);
791 :
792 : V8_EXPORT_PRIVATE Handle<JSMessageObject> CreateMessage(
793 : Handle<Object> exception, MessageLocation* location);
794 :
795 : // Out of resource exception helpers.
796 : Object StackOverflow();
797 : Object TerminateExecution();
798 : void CancelTerminateExecution();
799 :
800 : V8_EXPORT_PRIVATE void RequestInterrupt(InterruptCallback callback,
801 : void* data);
802 : void InvokeApiInterruptCallbacks();
803 :
804 : // Administration
805 : void Iterate(RootVisitor* v);
806 : void Iterate(RootVisitor* v, ThreadLocalTop* t);
807 : char* Iterate(RootVisitor* v, char* t);
808 : void IterateThread(ThreadVisitor* v, char* t);
809 :
810 : // Returns the current native context.
811 : inline Handle<NativeContext> native_context();
812 : inline NativeContext raw_native_context();
813 :
814 : Handle<Context> GetIncumbentContext();
815 :
816 : void RegisterTryCatchHandler(v8::TryCatch* that);
817 : void UnregisterTryCatchHandler(v8::TryCatch* that);
818 :
819 : char* ArchiveThread(char* to);
820 : char* RestoreThread(char* from);
821 :
822 : static const int kUC16AlphabetSize = 256; // See StringSearchBase.
823 : static const int kBMMaxShift = 250; // See StringSearchBase.
824 :
825 : // Accessors.
826 : #define GLOBAL_ACCESSOR(type, name, initialvalue) \
827 : inline type name() const { \
828 : DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
829 : return name##_; \
830 : } \
831 : inline void set_##name(type value) { \
832 : DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
833 : name##_ = value; \
834 : }
835 67537152 : ISOLATE_INIT_LIST(GLOBAL_ACCESSOR)
836 : #undef GLOBAL_ACCESSOR
837 :
838 : #define GLOBAL_ARRAY_ACCESSOR(type, name, length) \
839 : inline type* name() { \
840 : DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \
841 : return &(name##_)[0]; \
842 : }
843 4527821 : ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR)
844 : #undef GLOBAL_ARRAY_ACCESSOR
845 :
846 : #define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name) \
847 : inline Handle<type> name(); \
848 : inline bool is_##name(type value);
849 : NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR)
850 : #undef NATIVE_CONTEXT_FIELD_ACCESSOR
851 :
852 : Bootstrapper* bootstrapper() { return bootstrapper_; }
853 : // Use for updating counters on a foreground thread.
854 : Counters* counters() { return async_counters().get(); }
855 : // Use for updating counters on a background thread.
856 : const std::shared_ptr<Counters>& async_counters() {
857 : // Make sure InitializeCounters() has been called.
858 : DCHECK_NOT_NULL(async_counters_.get());
859 : return async_counters_;
860 : }
861 : RuntimeProfiler* runtime_profiler() { return runtime_profiler_; }
862 : CompilationCache* compilation_cache() { return compilation_cache_; }
863 : Logger* logger() {
864 : // Call InitializeLoggingAndCounters() if logging is needed before
865 : // the isolate is fully initialized.
866 : DCHECK_NOT_NULL(logger_);
867 : return logger_;
868 : }
869 18138917 : StackGuard* stack_guard() { return &stack_guard_; }
870 4233492920 : Heap* heap() { return &heap_; }
871 : static Isolate* FromHeap(Heap* heap) {
872 4548070066 : return reinterpret_cast<Isolate*>(reinterpret_cast<Address>(heap) -
873 4548069916 : OFFSET_OF(Isolate, heap_));
874 : }
875 :
876 2823514 : const IsolateData* isolate_data() const { return &isolate_data_; }
877 17987538 : IsolateData* isolate_data() { return &isolate_data_; }
878 :
879 : // Generated code can embed this address to get access to the isolate-specific
880 : // data (for example, roots, external references, builtins, etc.).
881 : // The kRootRegister is set to this value.
882 : Address isolate_root() const { return isolate_data()->isolate_root(); }
883 : static size_t isolate_root_bias() {
884 : return OFFSET_OF(Isolate, isolate_data_) + IsolateData::kIsolateRootBias;
885 : }
886 :
887 : RootsTable& roots_table() { return isolate_data()->roots(); }
888 :
889 : // A sub-region of the Isolate object that has "predictable" layout which
890 : // depends only on the pointer size and therefore it's guaranteed that there
891 : // will be no compatibility issues because of different compilers used for
892 : // snapshot generator and actual V8 code.
893 : // Thus, kRootRegister may be used to address any location that falls into
894 : // this region.
895 : // See IsolateData::AssertPredictableLayout() for details.
896 : base::AddressRegion root_register_addressable_region() const {
897 : return base::AddressRegion(reinterpret_cast<Address>(&isolate_data_),
898 870912 : sizeof(IsolateData));
899 : }
900 :
901 959469983 : Object root(RootIndex index) { return Object(roots_table()[index]); }
902 :
903 : Handle<Object> root_handle(RootIndex index) {
904 : return Handle<Object>(&roots_table()[index]);
905 : }
906 :
907 : ExternalReferenceTable* external_reference_table() {
908 : DCHECK(isolate_data()->external_reference_table()->is_initialized());
909 : return isolate_data()->external_reference_table();
910 : }
911 :
912 : Address* builtin_entry_table() { return isolate_data_.builtin_entry_table(); }
913 : V8_INLINE Address* builtins_table() { return isolate_data_.builtins(); }
914 :
915 : StubCache* load_stub_cache() { return load_stub_cache_; }
916 : StubCache* store_stub_cache() { return store_stub_cache_; }
917 : DeoptimizerData* deoptimizer_data() { return deoptimizer_data_; }
918 : bool deoptimizer_lazy_throw() const { return deoptimizer_lazy_throw_; }
919 : void set_deoptimizer_lazy_throw(bool value) {
920 12218 : deoptimizer_lazy_throw_ = value;
921 : }
922 : ThreadLocalTop* thread_local_top() {
923 9359992 : return &isolate_data_.thread_local_top_;
924 : }
925 : ThreadLocalTop const* thread_local_top() const {
926 : return &isolate_data_.thread_local_top_;
927 : }
928 :
929 : static uint32_t thread_in_wasm_flag_address_offset() {
930 : // For WebAssembly trap handlers there is a flag in thread-local storage
931 : // which indicates that the executing thread executes WebAssembly code. To
932 : // access this flag directly from generated code, we store a pointer to the
933 : // flag in ThreadLocalTop in thread_in_wasm_flag_address_. This function
934 : // here returns the offset of that member from {isolate_root()}.
935 : return static_cast<uint32_t>(
936 : OFFSET_OF(Isolate, thread_local_top()->thread_in_wasm_flag_address_) -
937 292617 : isolate_root_bias());
938 : }
939 :
940 : MaterializedObjectStore* materialized_object_store() {
941 : return materialized_object_store_;
942 : }
943 :
944 : DescriptorLookupCache* descriptor_lookup_cache() {
945 : return descriptor_lookup_cache_;
946 : }
947 :
948 : HandleScopeData* handle_scope_data() { return &handle_scope_data_; }
949 :
950 : HandleScopeImplementer* handle_scope_implementer() {
951 : DCHECK(handle_scope_implementer_);
952 : return handle_scope_implementer_;
953 : }
954 :
955 : UnicodeCache* unicode_cache() {
956 : return unicode_cache_;
957 : }
958 :
959 : InnerPointerToCodeCache* inner_pointer_to_code_cache() {
960 : return inner_pointer_to_code_cache_;
961 : }
962 :
963 : GlobalHandles* global_handles() { return global_handles_; }
964 :
965 : EternalHandles* eternal_handles() { return eternal_handles_; }
966 :
967 : ThreadManager* thread_manager() { return thread_manager_; }
968 :
969 : #ifndef V8_INTL_SUPPORT
970 : unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() {
971 : return &jsregexp_uncanonicalize_;
972 : }
973 :
974 : unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() {
975 : return &jsregexp_canonrange_;
976 : }
977 :
978 : unibrow::Mapping<unibrow::Ecma262Canonicalize>*
979 : regexp_macro_assembler_canonicalize() {
980 : return ®exp_macro_assembler_canonicalize_;
981 : }
982 : #endif // !V8_INTL_SUPPORT
983 :
984 : RuntimeState* runtime_state() { return &runtime_state_; }
985 :
986 55136171 : Builtins* builtins() { return &builtins_; }
987 :
988 : RegExpStack* regexp_stack() { return regexp_stack_; }
989 :
990 : size_t total_regexp_code_generated() { return total_regexp_code_generated_; }
991 : void IncreaseTotalRegexpCodeGenerated(int size) {
992 85399 : total_regexp_code_generated_ += size;
993 : }
994 :
995 32277 : std::vector<int>* regexp_indices() { return ®exp_indices_; }
996 :
997 : Debug* debug() { return debug_; }
998 :
999 62554 : bool* is_profiling_address() { return &is_profiling_; }
1000 : CodeEventDispatcher* code_event_dispatcher() const {
1001 : return code_event_dispatcher_.get();
1002 : }
1003 : HeapProfiler* heap_profiler() const { return heap_profiler_; }
1004 :
1005 : #ifdef DEBUG
1006 : static size_t non_disposed_isolates() { return non_disposed_isolates_; }
1007 : #endif
1008 :
1009 : v8::internal::Factory* factory() {
1010 : // Upcast to the privately inherited base-class using c-style casts to avoid
1011 : // undefined behavior (as static_cast cannot cast across private bases).
1012 : // NOLINTNEXTLINE (google-readability-casting)
1013 : return (v8::internal::Factory*)this; // NOLINT(readability/casting)
1014 : }
1015 :
1016 : static const int kJSRegexpStaticOffsetsVectorSize = 128;
1017 :
1018 16444353 : THREAD_LOCAL_TOP_ACCESSOR(ExternalCallbackScope*, external_callback_scope)
1019 :
1020 212018178 : THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state)
1021 :
1022 : void SetData(uint32_t slot, void* data) {
1023 : DCHECK_LT(slot, Internals::kNumIsolateDataSlots);
1024 : isolate_data_.embedder_data_[slot] = data;
1025 : }
1026 : void* GetData(uint32_t slot) {
1027 : DCHECK_LT(slot, Internals::kNumIsolateDataSlots);
1028 60 : return isolate_data_.embedder_data_[slot];
1029 : }
1030 :
1031 : bool serializer_enabled() const { return serializer_enabled_; }
1032 :
1033 251 : void enable_serializer() { serializer_enabled_ = true; }
1034 :
1035 : bool snapshot_available() const {
1036 341375 : return snapshot_blob_ != nullptr && snapshot_blob_->raw_size != 0;
1037 : }
1038 :
1039 : bool IsDead() { return has_fatal_error_; }
1040 10 : void SignalFatalError() { has_fatal_error_ = true; }
1041 :
1042 : V8_EXPORT_PRIVATE bool use_optimizer();
1043 :
1044 : bool initialized_from_snapshot() { return initialized_from_snapshot_; }
1045 :
1046 : bool NeedsSourcePositionsForProfiling() const;
1047 :
1048 : V8_EXPORT_PRIVATE bool NeedsDetailedOptimizedCodeLineInfo() const;
1049 :
1050 : bool is_best_effort_code_coverage() const {
1051 : return code_coverage_mode() == debug::CoverageMode::kBestEffort;
1052 : }
1053 :
1054 : bool is_precise_count_code_coverage() const {
1055 : return code_coverage_mode() == debug::CoverageMode::kPreciseCount;
1056 : }
1057 :
1058 : bool is_precise_binary_code_coverage() const {
1059 : return code_coverage_mode() == debug::CoverageMode::kPreciseBinary;
1060 : }
1061 :
1062 : bool is_block_count_code_coverage() const {
1063 : return code_coverage_mode() == debug::CoverageMode::kBlockCount;
1064 : }
1065 :
1066 : bool is_block_binary_code_coverage() const {
1067 : return code_coverage_mode() == debug::CoverageMode::kBlockBinary;
1068 : }
1069 :
1070 : bool is_block_code_coverage() const {
1071 2467496 : return is_block_count_code_coverage() || is_block_binary_code_coverage();
1072 : }
1073 :
1074 : bool is_binary_code_coverage() const {
1075 1022732 : return is_precise_binary_code_coverage() || is_block_binary_code_coverage();
1076 : }
1077 :
1078 : bool is_count_code_coverage() const {
1079 178366 : return is_precise_count_code_coverage() || is_block_count_code_coverage();
1080 : }
1081 :
1082 : bool is_collecting_type_profile() const {
1083 : return type_profile_mode() == debug::TypeProfileMode::kCollect;
1084 : }
1085 :
1086 : // Collect feedback vectors with data for code coverage or type profile.
1087 : // Reset the list, when both code coverage and type profile are not
1088 : // needed anymore. This keeps many feedback vectors alive, but code
1089 : // coverage or type profile are used for debugging only and increase in
1090 : // memory usage is expected.
1091 : void SetFeedbackVectorsForProfilingTools(Object value);
1092 :
1093 : void MaybeInitializeVectorListFromHeap();
1094 :
1095 : double time_millis_since_init() {
1096 95028 : return heap_.MonotonicallyIncreasingTimeInMs() - time_millis_at_init_;
1097 : }
1098 :
1099 : DateCache* date_cache() {
1100 : return date_cache_;
1101 : }
1102 :
1103 : V8_EXPORT_PRIVATE void set_date_cache(DateCache* date_cache);
1104 :
1105 : #ifdef V8_INTL_SUPPORT
1106 :
1107 : const std::string& default_locale() { return default_locale_; }
1108 :
1109 : void ResetDefaultLocale() { default_locale_.clear(); }
1110 :
1111 : void set_default_locale(const std::string& locale) {
1112 : DCHECK_EQ(default_locale_.length(), 0);
1113 494 : default_locale_ = locale;
1114 : }
1115 :
1116 : // enum to access the icu object cache.
1117 : enum class ICUObjectCacheType{
1118 : kDefaultCollator, kDefaultNumberFormat, kDefaultSimpleDateFormat,
1119 : kDefaultSimpleDateFormatForTime, kDefaultSimpleDateFormatForDate};
1120 :
1121 : icu::UObject* get_cached_icu_object(ICUObjectCacheType cache_type);
1122 : void set_icu_object_in_cache(ICUObjectCacheType cache_type,
1123 : std::shared_ptr<icu::UObject> obj);
1124 : void clear_cached_icu_object(ICUObjectCacheType cache_type);
1125 :
1126 : #endif // V8_INTL_SUPPORT
1127 :
1128 : static const int kProtectorValid = 1;
1129 : static const int kProtectorInvalid = 0;
1130 :
1131 : inline bool IsArrayConstructorIntact();
1132 :
1133 : // The version with an explicit context parameter can be used when
1134 : // Isolate::context is not set up, e.g. when calling directly into C++ from
1135 : // CSA.
1136 : bool IsNoElementsProtectorIntact(Context context);
1137 : V8_EXPORT_PRIVATE bool IsNoElementsProtectorIntact();
1138 :
1139 : bool IsArrayOrObjectOrStringPrototype(Object object);
1140 :
1141 : inline bool IsArraySpeciesLookupChainIntact();
1142 : inline bool IsTypedArraySpeciesLookupChainIntact();
1143 : inline bool IsRegExpSpeciesLookupChainIntact();
1144 : inline bool IsPromiseSpeciesLookupChainIntact();
1145 : bool IsIsConcatSpreadableLookupChainIntact();
1146 : bool IsIsConcatSpreadableLookupChainIntact(JSReceiver receiver);
1147 : inline bool IsStringLengthOverflowIntact();
1148 : inline bool IsArrayIteratorLookupChainIntact();
1149 :
1150 : // The MapIterator protector protects the original iteration behaviors of
1151 : // Map.prototype.keys(), Map.prototype.values(), and Set.prototype.entries().
1152 : // It does not protect the original iteration behavior of
1153 : // Map.prototype[Symbol.iterator](). The protector is invalidated when:
1154 : // * The 'next' property is set on an object where the property holder is the
1155 : // %MapIteratorPrototype% (e.g. because the object is that very prototype).
1156 : // * The 'Symbol.iterator' property is set on an object where the property
1157 : // holder is the %IteratorPrototype%. Note that this also invalidates the
1158 : // SetIterator protector (see below).
1159 : inline bool IsMapIteratorLookupChainIntact();
1160 :
1161 : // The SetIterator protector protects the original iteration behavior of
1162 : // Set.prototype.keys(), Set.prototype.values(), Set.prototype.entries(),
1163 : // and Set.prototype[Symbol.iterator](). The protector is invalidated when:
1164 : // * The 'next' property is set on an object where the property holder is the
1165 : // %SetIteratorPrototype% (e.g. because the object is that very prototype).
1166 : // * The 'Symbol.iterator' property is set on an object where the property
1167 : // holder is the %SetPrototype% OR %IteratorPrototype%. This means that
1168 : // setting Symbol.iterator on a MapIterator object can also invalidate the
1169 : // SetIterator protector, and vice versa, setting Symbol.iterator on a
1170 : // SetIterator object can also invalidate the MapIterator. This is an over-
1171 : // approximation for the sake of simplicity.
1172 : inline bool IsSetIteratorLookupChainIntact();
1173 :
1174 : // The StringIteratorProtector protects the original string iteration behavior
1175 : // for primitive strings. As long as the StringIteratorProtector is valid,
1176 : // iterating over a primitive string is guaranteed to be unobservable from
1177 : // user code and can thus be cut short. More specifically, the protector gets
1178 : // invalidated as soon as either String.prototype[Symbol.iterator] or
1179 : // String.prototype[Symbol.iterator]().next is modified. This guarantee does
1180 : // not apply to string objects (as opposed to primitives), since they could
1181 : // define their own Symbol.iterator.
1182 : // String.prototype itself does not need to be protected, since it is
1183 : // non-configurable and non-writable.
1184 : inline bool IsStringIteratorLookupChainIntact();
1185 :
1186 : // Make sure we do check for detached array buffers.
1187 : inline bool IsArrayBufferDetachingIntact();
1188 :
1189 : // Disable promise optimizations if promise (debug) hooks have ever been
1190 : // active.
1191 : bool IsPromiseHookProtectorIntact();
1192 :
1193 : // Make sure a lookup of "resolve" on the %Promise% intrinsic object
1194 : // yeidls the initial Promise.resolve method.
1195 : bool IsPromiseResolveLookupChainIntact();
1196 :
1197 : // Make sure a lookup of "then" on any JSPromise whose [[Prototype]] is the
1198 : // initial %PromisePrototype% yields the initial method. In addition this
1199 : // protector also guards the negative lookup of "then" on the intrinsic
1200 : // %ObjectPrototype%, meaning that such lookups are guaranteed to yield
1201 : // undefined without triggering any side-effects.
1202 : bool IsPromiseThenLookupChainIntact();
1203 : bool IsPromiseThenLookupChainIntact(Handle<JSReceiver> receiver);
1204 :
1205 : // On intent to set an element in object, make sure that appropriate
1206 : // notifications occur if the set is on the elements of the array or
1207 : // object prototype. Also ensure that changes to prototype chain between
1208 : // Array and Object fire notifications.
1209 : void UpdateNoElementsProtectorOnSetElement(Handle<JSObject> object);
1210 : void UpdateNoElementsProtectorOnSetLength(Handle<JSObject> object) {
1211 723533 : UpdateNoElementsProtectorOnSetElement(object);
1212 : }
1213 : void UpdateNoElementsProtectorOnSetPrototype(Handle<JSObject> object) {
1214 184688 : UpdateNoElementsProtectorOnSetElement(object);
1215 : }
1216 : void UpdateNoElementsProtectorOnNormalizeElements(Handle<JSObject> object) {
1217 297759 : UpdateNoElementsProtectorOnSetElement(object);
1218 : }
1219 : void InvalidateArrayConstructorProtector();
1220 : void InvalidateArraySpeciesProtector();
1221 : void InvalidateTypedArraySpeciesProtector();
1222 : void InvalidateRegExpSpeciesProtector();
1223 : void InvalidatePromiseSpeciesProtector();
1224 : void InvalidateIsConcatSpreadableProtector();
1225 : void InvalidateStringLengthOverflowProtector();
1226 : void InvalidateArrayIteratorProtector();
1227 : void InvalidateMapIteratorProtector();
1228 : void InvalidateSetIteratorProtector();
1229 : void InvalidateStringIteratorProtector();
1230 : void InvalidateArrayBufferDetachingProtector();
1231 : V8_EXPORT_PRIVATE void InvalidatePromiseHookProtector();
1232 : void InvalidatePromiseResolveProtector();
1233 : void InvalidatePromiseThenProtector();
1234 :
1235 : // Returns true if array is the initial array prototype in any native context.
1236 : bool IsAnyInitialArrayPrototype(Handle<JSArray> array);
1237 :
1238 : void IterateDeferredHandles(RootVisitor* visitor);
1239 : void LinkDeferredHandles(DeferredHandles* deferred_handles);
1240 : void UnlinkDeferredHandles(DeferredHandles* deferred_handles);
1241 :
1242 : #ifdef DEBUG
1243 : bool IsDeferredHandle(Address* location);
1244 : #endif // DEBUG
1245 :
1246 : bool concurrent_recompilation_enabled() {
1247 : // Thread is only available with flag enabled.
1248 : DCHECK(optimizing_compile_dispatcher_ == nullptr ||
1249 : FLAG_concurrent_recompilation);
1250 : return optimizing_compile_dispatcher_ != nullptr;
1251 : }
1252 :
1253 : OptimizingCompileDispatcher* optimizing_compile_dispatcher() {
1254 : return optimizing_compile_dispatcher_;
1255 : }
1256 : // Flushes all pending concurrent optimzation jobs from the optimizing
1257 : // compile dispatcher's queue.
1258 : void AbortConcurrentOptimization(BlockingBehavior blocking_behavior);
1259 :
1260 : int id() const { return id_; }
1261 :
1262 : CompilationStatistics* GetTurboStatistics();
1263 : V8_EXPORT_PRIVATE CodeTracer* GetCodeTracer();
1264 :
1265 : void DumpAndResetStats();
1266 :
1267 62726 : void* stress_deopt_count_address() { return &stress_deopt_count_; }
1268 :
1269 20 : void set_force_slow_path(bool v) { force_slow_path_ = v; }
1270 : bool force_slow_path() const { return force_slow_path_; }
1271 62442 : bool* force_slow_path_address() { return &force_slow_path_; }
1272 :
1273 : DebugInfo::ExecutionMode* debug_execution_mode_address() {
1274 62446 : return &debug_execution_mode_;
1275 : }
1276 :
1277 : V8_EXPORT_PRIVATE base::RandomNumberGenerator* random_number_generator();
1278 :
1279 : V8_EXPORT_PRIVATE base::RandomNumberGenerator* fuzzer_rng();
1280 :
1281 : // Generates a random number that is non-zero when masked
1282 : // with the provided mask.
1283 : int GenerateIdentityHash(uint32_t mask);
1284 :
1285 : // Given an address occupied by a live code object, return that object.
1286 : V8_EXPORT_PRIVATE Code FindCodeObject(Address a);
1287 :
1288 : int NextOptimizationId() {
1289 483540 : int id = next_optimization_id_++;
1290 : if (!Smi::IsValid(next_optimization_id_)) {
1291 : next_optimization_id_ = 0;
1292 : }
1293 : return id;
1294 : }
1295 :
1296 : void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data);
1297 : void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback,
1298 : size_t heap_limit);
1299 : void AddCallCompletedCallback(CallCompletedCallback callback);
1300 : void RemoveCallCompletedCallback(CallCompletedCallback callback);
1301 : void FireCallCompletedCallback(MicrotaskQueue* microtask_queue);
1302 :
1303 : void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
1304 : void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback);
1305 : inline void FireBeforeCallEnteredCallback();
1306 :
1307 : void SetPromiseRejectCallback(PromiseRejectCallback callback);
1308 : void ReportPromiseReject(Handle<JSPromise> promise, Handle<Object> value,
1309 : v8::PromiseRejectEvent event);
1310 :
1311 : void SetTerminationOnExternalTryCatch();
1312 :
1313 : Handle<Symbol> SymbolFor(RootIndex dictionary_index, Handle<String> name,
1314 : bool private_symbol);
1315 :
1316 : V8_EXPORT_PRIVATE void SetUseCounterCallback(
1317 : v8::Isolate::UseCounterCallback callback);
1318 : void CountUsage(v8::Isolate::UseCounterFeature feature);
1319 :
1320 : static std::string GetTurboCfgFileName(Isolate* isolate);
1321 :
1322 : #if V8_SFI_HAS_UNIQUE_ID
1323 : int GetNextUniqueSharedFunctionInfoId() { return next_unique_sfi_id_++; }
1324 : #endif
1325 :
1326 : Address promise_hook_address() {
1327 62498 : return reinterpret_cast<Address>(&promise_hook_);
1328 : }
1329 :
1330 : Address async_event_delegate_address() {
1331 62666 : return reinterpret_cast<Address>(&async_event_delegate_);
1332 : }
1333 :
1334 : Address promise_hook_or_async_event_delegate_address() {
1335 63198 : return reinterpret_cast<Address>(&promise_hook_or_async_event_delegate_);
1336 : }
1337 :
1338 : Address promise_hook_or_debug_is_active_or_async_event_delegate_address() {
1339 : return reinterpret_cast<Address>(
1340 63674 : &promise_hook_or_debug_is_active_or_async_event_delegate_);
1341 : }
1342 :
1343 : Address handle_scope_implementer_address() {
1344 63114 : return reinterpret_cast<Address>(&handle_scope_implementer_);
1345 : }
1346 :
1347 : void SetAtomicsWaitCallback(v8::Isolate::AtomicsWaitCallback callback,
1348 : void* data);
1349 : void RunAtomicsWaitCallback(v8::Isolate::AtomicsWaitEvent event,
1350 : Handle<JSArrayBuffer> array_buffer,
1351 : size_t offset_in_bytes, int64_t value,
1352 : double timeout_in_ms,
1353 : AtomicsWaitWakeHandle* stop_handle);
1354 :
1355 : V8_EXPORT_PRIVATE void SetPromiseHook(PromiseHook hook);
1356 : V8_EXPORT_PRIVATE void RunPromiseHook(PromiseHookType type,
1357 : Handle<JSPromise> promise,
1358 : Handle<Object> parent);
1359 : void PromiseHookStateUpdated();
1360 :
1361 : void AddDetachedContext(Handle<Context> context);
1362 : void CheckDetachedContextsAfterGC();
1363 :
1364 : std::vector<Object>* partial_snapshot_cache() {
1365 275278 : return &partial_snapshot_cache_;
1366 : }
1367 :
1368 : // Off-heap builtins cannot embed constants within the code object itself,
1369 : // and thus need to load them from the root list.
1370 : bool IsGeneratingEmbeddedBuiltins() const {
1371 : return FLAG_embedded_builtins &&
1372 : builtins_constants_table_builder() != nullptr;
1373 : }
1374 :
1375 : BuiltinsConstantsTableBuilder* builtins_constants_table_builder() const {
1376 : return builtins_constants_table_builder_;
1377 : }
1378 :
1379 : // Hashes bits of the Isolate that are relevant for embedded builtins. In
1380 : // particular, the embedded blob requires builtin Code object layout and the
1381 : // builtins constants table to remain unchanged from build-time.
1382 : size_t HashIsolateForEmbeddedBlob();
1383 :
1384 : V8_EXPORT_PRIVATE static const uint8_t* CurrentEmbeddedBlob();
1385 : V8_EXPORT_PRIVATE static uint32_t CurrentEmbeddedBlobSize();
1386 : static bool CurrentEmbeddedBlobIsBinaryEmbedded();
1387 :
1388 : // These always return the same result as static methods above, but don't
1389 : // access the global atomic variable (and thus *might be* slightly faster).
1390 : const uint8_t* embedded_blob() const;
1391 : uint32_t embedded_blob_size() const;
1392 :
1393 : void set_array_buffer_allocator(v8::ArrayBuffer::Allocator* allocator) {
1394 62596 : array_buffer_allocator_ = allocator;
1395 : }
1396 : v8::ArrayBuffer::Allocator* array_buffer_allocator() const {
1397 : return array_buffer_allocator_;
1398 : }
1399 :
1400 1033693 : FutexWaitListNode* futex_wait_list_node() { return &futex_wait_list_node_; }
1401 :
1402 : CancelableTaskManager* cancelable_task_manager() {
1403 : return cancelable_task_manager_;
1404 : }
1405 :
1406 : const AstStringConstants* ast_string_constants() const {
1407 : return ast_string_constants_;
1408 : }
1409 :
1410 : interpreter::Interpreter* interpreter() const { return interpreter_; }
1411 :
1412 : compiler::PerIsolateCompilerCache* compiler_cache() const {
1413 : return compiler_cache_;
1414 : }
1415 : void set_compiler_utils(compiler::PerIsolateCompilerCache* cache,
1416 : Zone* zone) {
1417 14929 : compiler_cache_ = cache;
1418 14929 : compiler_zone_ = zone;
1419 : }
1420 :
1421 : AccountingAllocator* allocator() { return allocator_; }
1422 :
1423 : CompilerDispatcher* compiler_dispatcher() const {
1424 : return compiler_dispatcher_;
1425 : }
1426 :
1427 : bool IsInAnyContext(Object object, uint32_t index);
1428 :
1429 : void SetHostImportModuleDynamicallyCallback(
1430 : HostImportModuleDynamicallyCallback callback);
1431 : V8_EXPORT_PRIVATE MaybeHandle<JSPromise>
1432 : RunHostImportModuleDynamicallyCallback(Handle<Script> referrer,
1433 : Handle<Object> specifier);
1434 :
1435 : void SetHostInitializeImportMetaObjectCallback(
1436 : HostInitializeImportMetaObjectCallback callback);
1437 : V8_EXPORT_PRIVATE Handle<JSObject> RunHostInitializeImportMetaObjectCallback(
1438 : Handle<Module> module);
1439 :
1440 : void RegisterEmbeddedFileWriter(EmbeddedFileWriterInterface* writer) {
1441 1 : embedded_file_writer_ = writer;
1442 : }
1443 :
1444 : int LookupOrAddExternallyCompiledFilename(const char* filename);
1445 : const char* GetExternallyCompiledFilename(int index) const;
1446 : int GetExternallyCompiledFilenameCount() const;
1447 : // PrepareBuiltinSourcePositionMap is necessary in order to preserve the
1448 : // builtin source positions before the corresponding code objects are
1449 : // replaced with trampolines. Those source positions are used to
1450 : // annotate the builtin blob with debugging information.
1451 : void PrepareBuiltinSourcePositionMap();
1452 :
1453 : #if defined(V8_OS_WIN_X64)
1454 : void SetBuiltinUnwindData(
1455 : int builtin_index,
1456 : const win64_unwindinfo::BuiltinUnwindInfo& unwinding_info);
1457 : #endif
1458 :
1459 : void SetPrepareStackTraceCallback(PrepareStackTraceCallback callback);
1460 : MaybeHandle<Object> RunPrepareStackTraceCallback(Handle<Context>,
1461 : Handle<JSObject> Error,
1462 : Handle<JSArray> sites);
1463 : bool HasPrepareStackTraceCallback() const;
1464 :
1465 : void SetRAILMode(RAILMode rail_mode);
1466 :
1467 : RAILMode rail_mode() { return rail_mode_.load(); }
1468 :
1469 : double LoadStartTimeMs();
1470 :
1471 : void IsolateInForegroundNotification();
1472 :
1473 : void IsolateInBackgroundNotification();
1474 :
1475 : bool IsIsolateInBackground() { return is_isolate_in_background_; }
1476 :
1477 5 : void EnableMemorySavingsMode() { memory_savings_mode_active_ = true; }
1478 :
1479 5 : void DisableMemorySavingsMode() { memory_savings_mode_active_ = false; }
1480 :
1481 : bool IsMemorySavingsModeActive() { return memory_savings_mode_active_; }
1482 :
1483 : PRINTF_FORMAT(2, 3) void PrintWithTimestamp(const char* format, ...);
1484 :
1485 62159 : void set_allow_atomics_wait(bool set) { allow_atomics_wait_ = set; }
1486 : bool allow_atomics_wait() { return allow_atomics_wait_; }
1487 :
1488 : // Register a finalizer to be called at isolate teardown.
1489 : V8_EXPORT_PRIVATE void RegisterManagedPtrDestructor(
1490 : ManagedPtrDestructor* finalizer);
1491 :
1492 : // Removes a previously-registered shared object finalizer.
1493 : void UnregisterManagedPtrDestructor(ManagedPtrDestructor* finalizer);
1494 :
1495 : size_t elements_deletion_counter() { return elements_deletion_counter_; }
1496 : void set_elements_deletion_counter(size_t value) {
1497 7 : elements_deletion_counter_ = value;
1498 : }
1499 :
1500 : wasm::WasmEngine* wasm_engine() const { return wasm_engine_.get(); }
1501 : V8_EXPORT_PRIVATE void SetWasmEngine(
1502 : std::shared_ptr<wasm::WasmEngine> engine);
1503 :
1504 : const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope() const {
1505 : return top_backup_incumbent_scope_;
1506 : }
1507 : void set_top_backup_incumbent_scope(
1508 : const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope) {
1509 4 : top_backup_incumbent_scope_ = top_backup_incumbent_scope;
1510 : }
1511 :
1512 : V8_EXPORT_PRIVATE void SetIdle(bool is_idle);
1513 :
1514 : private:
1515 : explicit Isolate(std::unique_ptr<IsolateAllocator> isolate_allocator);
1516 : ~Isolate();
1517 :
1518 : V8_EXPORT_PRIVATE bool Init(ReadOnlyDeserializer* read_only_deserializer,
1519 : StartupDeserializer* startup_deserializer);
1520 :
1521 : void CheckIsolateLayout();
1522 :
1523 62427 : class ThreadDataTable {
1524 : public:
1525 : ThreadDataTable() = default;
1526 :
1527 : PerIsolateThreadData* Lookup(ThreadId thread_id);
1528 : void Insert(PerIsolateThreadData* data);
1529 : void Remove(PerIsolateThreadData* data);
1530 : void RemoveAllThreads();
1531 :
1532 : private:
1533 : struct Hasher {
1534 : std::size_t operator()(const ThreadId& t) const {
1535 : return std::hash<int>()(t.ToInteger());
1536 : }
1537 : };
1538 :
1539 : std::unordered_map<ThreadId, PerIsolateThreadData*, Hasher> table_;
1540 : };
1541 :
1542 : // These items form a stack synchronously with threads Enter'ing and Exit'ing
1543 : // the Isolate. The top of the stack points to a thread which is currently
1544 : // running the Isolate. When the stack is empty, the Isolate is considered
1545 : // not entered by any thread and can be Disposed.
1546 : // If the same thread enters the Isolate more than once, the entry_count_
1547 : // is incremented rather then a new item pushed to the stack.
1548 : class EntryStackItem {
1549 : public:
1550 : EntryStackItem(PerIsolateThreadData* previous_thread_data,
1551 : Isolate* previous_isolate,
1552 : EntryStackItem* previous_item)
1553 : : entry_count(1),
1554 : previous_thread_data(previous_thread_data),
1555 : previous_isolate(previous_isolate),
1556 213917 : previous_item(previous_item) { }
1557 :
1558 : int entry_count;
1559 : PerIsolateThreadData* previous_thread_data;
1560 : Isolate* previous_isolate;
1561 : EntryStackItem* previous_item;
1562 :
1563 : private:
1564 : DISALLOW_COPY_AND_ASSIGN(EntryStackItem);
1565 : };
1566 :
1567 : static base::Thread::LocalStorageKey per_isolate_thread_data_key_;
1568 : static base::Thread::LocalStorageKey isolate_key_;
1569 :
1570 : #ifdef DEBUG
1571 : static std::atomic<bool> isolate_key_created_;
1572 : #endif
1573 :
1574 : void Deinit();
1575 :
1576 : static void SetIsolateThreadLocals(Isolate* isolate,
1577 : PerIsolateThreadData* data);
1578 :
1579 : void InitializeThreadLocal();
1580 :
1581 : void MarkCompactPrologue(bool is_compacting,
1582 : ThreadLocalTop* archived_thread_data);
1583 : void MarkCompactEpilogue(bool is_compacting,
1584 : ThreadLocalTop* archived_thread_data);
1585 :
1586 : void FillCache();
1587 :
1588 : // Propagate pending exception message to the v8::TryCatch.
1589 : // If there is no external try-catch or message was successfully propagated,
1590 : // then return true.
1591 : bool PropagatePendingExceptionToExternalTryCatch();
1592 :
1593 : void RunPromiseHookForAsyncEventDelegate(PromiseHookType type,
1594 : Handle<JSPromise> promise);
1595 :
1596 : const char* RAILModeName(RAILMode rail_mode) const {
1597 0 : switch (rail_mode) {
1598 : case PERFORMANCE_RESPONSE:
1599 : return "RESPONSE";
1600 : case PERFORMANCE_ANIMATION:
1601 : return "ANIMATION";
1602 : case PERFORMANCE_IDLE:
1603 : return "IDLE";
1604 : case PERFORMANCE_LOAD:
1605 : return "LOAD";
1606 : }
1607 : return "";
1608 : }
1609 :
1610 : // This class contains a collection of data accessible from both C++ runtime
1611 : // and compiled code (including assembly stubs, builtins, interpreter bytecode
1612 : // handlers and optimized code).
1613 : IsolateData isolate_data_;
1614 :
1615 : std::unique_ptr<IsolateAllocator> isolate_allocator_;
1616 : Heap heap_;
1617 :
1618 : const int id_;
1619 : EntryStackItem* entry_stack_ = nullptr;
1620 : int stack_trace_nesting_level_ = 0;
1621 : StringStream* incomplete_message_ = nullptr;
1622 : Address isolate_addresses_[kIsolateAddressCount + 1] = {};
1623 : Bootstrapper* bootstrapper_ = nullptr;
1624 : RuntimeProfiler* runtime_profiler_ = nullptr;
1625 : CompilationCache* compilation_cache_ = nullptr;
1626 : std::shared_ptr<Counters> async_counters_;
1627 : base::RecursiveMutex break_access_;
1628 : Logger* logger_ = nullptr;
1629 : StackGuard stack_guard_;
1630 : StubCache* load_stub_cache_ = nullptr;
1631 : StubCache* store_stub_cache_ = nullptr;
1632 : DeoptimizerData* deoptimizer_data_ = nullptr;
1633 : bool deoptimizer_lazy_throw_ = false;
1634 : MaterializedObjectStore* materialized_object_store_ = nullptr;
1635 : bool capture_stack_trace_for_uncaught_exceptions_ = false;
1636 : int stack_trace_for_uncaught_exceptions_frame_limit_ = 0;
1637 : StackTrace::StackTraceOptions stack_trace_for_uncaught_exceptions_options_ =
1638 : StackTrace::kOverview;
1639 : DescriptorLookupCache* descriptor_lookup_cache_ = nullptr;
1640 : HandleScopeData handle_scope_data_;
1641 : HandleScopeImplementer* handle_scope_implementer_ = nullptr;
1642 : UnicodeCache* unicode_cache_ = nullptr;
1643 : AccountingAllocator* allocator_ = nullptr;
1644 : InnerPointerToCodeCache* inner_pointer_to_code_cache_ = nullptr;
1645 : GlobalHandles* global_handles_ = nullptr;
1646 : EternalHandles* eternal_handles_ = nullptr;
1647 : ThreadManager* thread_manager_ = nullptr;
1648 : RuntimeState runtime_state_;
1649 : Builtins builtins_;
1650 : SetupIsolateDelegate* setup_delegate_ = nullptr;
1651 : #ifndef V8_INTL_SUPPORT
1652 : unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_;
1653 : unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_;
1654 : unibrow::Mapping<unibrow::Ecma262Canonicalize>
1655 : regexp_macro_assembler_canonicalize_;
1656 : #endif // !V8_INTL_SUPPORT
1657 : RegExpStack* regexp_stack_ = nullptr;
1658 : std::vector<int> regexp_indices_;
1659 : DateCache* date_cache_ = nullptr;
1660 : base::RandomNumberGenerator* random_number_generator_ = nullptr;
1661 : base::RandomNumberGenerator* fuzzer_rng_ = nullptr;
1662 : std::atomic<RAILMode> rail_mode_;
1663 : v8::Isolate::AtomicsWaitCallback atomics_wait_callback_ = nullptr;
1664 : void* atomics_wait_callback_data_ = nullptr;
1665 : PromiseHook promise_hook_ = nullptr;
1666 : HostImportModuleDynamicallyCallback host_import_module_dynamically_callback_ =
1667 : nullptr;
1668 : HostInitializeImportMetaObjectCallback
1669 : host_initialize_import_meta_object_callback_ = nullptr;
1670 : base::Mutex rail_mutex_;
1671 : double load_start_time_ms_ = 0;
1672 :
1673 : #ifdef V8_INTL_SUPPORT
1674 : std::string default_locale_;
1675 :
1676 : struct ICUObjectCacheTypeHash {
1677 : std::size_t operator()(ICUObjectCacheType a) const {
1678 65107 : return static_cast<std::size_t>(a);
1679 : }
1680 : };
1681 : std::unordered_map<ICUObjectCacheType, std::shared_ptr<icu::UObject>,
1682 : ICUObjectCacheTypeHash>
1683 : icu_object_cache_;
1684 :
1685 : #endif // V8_INTL_SUPPORT
1686 :
1687 : // Whether the isolate has been created for snapshotting.
1688 : bool serializer_enabled_ = false;
1689 :
1690 : // True if fatal error has been signaled for this isolate.
1691 : bool has_fatal_error_ = false;
1692 :
1693 : // True if this isolate was initialized from a snapshot.
1694 : bool initialized_from_snapshot_ = false;
1695 :
1696 : // TODO(ishell): remove
1697 : // True if ES2015 tail call elimination feature is enabled.
1698 : bool is_tail_call_elimination_enabled_ = true;
1699 :
1700 : // True if the isolate is in background. This flag is used
1701 : // to prioritize between memory usage and latency.
1702 : bool is_isolate_in_background_ = false;
1703 :
1704 : // True if the isolate is in memory savings mode. This flag is used to
1705 : // favor memory over runtime performance.
1706 : bool memory_savings_mode_active_ = false;
1707 :
1708 : // Time stamp at initialization.
1709 : double time_millis_at_init_ = 0;
1710 :
1711 : #ifdef DEBUG
1712 : V8_EXPORT_PRIVATE static std::atomic<size_t> non_disposed_isolates_;
1713 :
1714 : JSObject::SpillInformation js_spill_information_;
1715 : #endif
1716 :
1717 : Debug* debug_ = nullptr;
1718 : HeapProfiler* heap_profiler_ = nullptr;
1719 : std::unique_ptr<CodeEventDispatcher> code_event_dispatcher_;
1720 :
1721 : const AstStringConstants* ast_string_constants_ = nullptr;
1722 :
1723 : interpreter::Interpreter* interpreter_ = nullptr;
1724 :
1725 : compiler::PerIsolateCompilerCache* compiler_cache_ = nullptr;
1726 : Zone* compiler_zone_ = nullptr;
1727 :
1728 : CompilerDispatcher* compiler_dispatcher_ = nullptr;
1729 :
1730 : typedef std::pair<InterruptCallback, void*> InterruptEntry;
1731 : std::queue<InterruptEntry> api_interrupts_queue_;
1732 :
1733 : #define GLOBAL_BACKING_STORE(type, name, initialvalue) \
1734 : type name##_;
1735 : ISOLATE_INIT_LIST(GLOBAL_BACKING_STORE)
1736 : #undef GLOBAL_BACKING_STORE
1737 :
1738 : #define GLOBAL_ARRAY_BACKING_STORE(type, name, length) \
1739 : type name##_[length];
1740 : ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_BACKING_STORE)
1741 : #undef GLOBAL_ARRAY_BACKING_STORE
1742 :
1743 : #ifdef DEBUG
1744 : // This class is huge and has a number of fields controlled by
1745 : // preprocessor defines. Make sure the offsets of these fields agree
1746 : // between compilation units.
1747 : #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
1748 : V8_EXPORT_PRIVATE static const intptr_t name##_debug_offset_;
1749 : ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
1750 : ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
1751 : #undef ISOLATE_FIELD_OFFSET
1752 : #endif
1753 :
1754 : DeferredHandles* deferred_handles_head_ = nullptr;
1755 : OptimizingCompileDispatcher* optimizing_compile_dispatcher_ = nullptr;
1756 :
1757 : // Counts deopt points if deopt_every_n_times is enabled.
1758 : unsigned int stress_deopt_count_ = 0;
1759 :
1760 : bool force_slow_path_ = false;
1761 :
1762 : int next_optimization_id_ = 0;
1763 :
1764 : #if V8_SFI_HAS_UNIQUE_ID
1765 : int next_unique_sfi_id_ = 0;
1766 : #endif
1767 :
1768 : // Vector of callbacks before a Call starts execution.
1769 : std::vector<BeforeCallEnteredCallback> before_call_entered_callbacks_;
1770 :
1771 : // Vector of callbacks when a Call completes.
1772 : std::vector<CallCompletedCallback> call_completed_callbacks_;
1773 :
1774 : v8::Isolate::UseCounterCallback use_counter_callback_ = nullptr;
1775 :
1776 : std::vector<Object> partial_snapshot_cache_;
1777 :
1778 : // Used during builtins compilation to build the builtins constants table,
1779 : // which is stored on the root list prior to serialization.
1780 : BuiltinsConstantsTableBuilder* builtins_constants_table_builder_ = nullptr;
1781 :
1782 : void InitializeDefaultEmbeddedBlob();
1783 : void CreateAndSetEmbeddedBlob();
1784 : void TearDownEmbeddedBlob();
1785 :
1786 : void SetEmbeddedBlob(const uint8_t* blob, uint32_t blob_size);
1787 : void ClearEmbeddedBlob();
1788 :
1789 : const uint8_t* embedded_blob_ = nullptr;
1790 : uint32_t embedded_blob_size_ = 0;
1791 :
1792 : v8::ArrayBuffer::Allocator* array_buffer_allocator_ = nullptr;
1793 :
1794 : FutexWaitListNode futex_wait_list_node_;
1795 :
1796 : CancelableTaskManager* cancelable_task_manager_ = nullptr;
1797 :
1798 : debug::ConsoleDelegate* console_delegate_ = nullptr;
1799 :
1800 : debug::AsyncEventDelegate* async_event_delegate_ = nullptr;
1801 : bool promise_hook_or_async_event_delegate_ = false;
1802 : bool promise_hook_or_debug_is_active_or_async_event_delegate_ = false;
1803 : int async_task_count_ = 0;
1804 :
1805 : v8::Isolate::AbortOnUncaughtExceptionCallback
1806 : abort_on_uncaught_exception_callback_ = nullptr;
1807 :
1808 : bool allow_atomics_wait_ = true;
1809 :
1810 : base::Mutex managed_ptr_destructors_mutex_;
1811 : ManagedPtrDestructor* managed_ptr_destructors_head_ = nullptr;
1812 :
1813 : size_t total_regexp_code_generated_ = 0;
1814 :
1815 : size_t elements_deletion_counter_ = 0;
1816 :
1817 : std::shared_ptr<wasm::WasmEngine> wasm_engine_;
1818 :
1819 : std::unique_ptr<TracingCpuProfilerImpl> tracing_cpu_profiler_;
1820 :
1821 : EmbeddedFileWriterInterface* embedded_file_writer_ = nullptr;
1822 :
1823 : // The top entry of the v8::Context::BackupIncumbentScope stack.
1824 : const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope_ =
1825 : nullptr;
1826 :
1827 : PrepareStackTraceCallback prepare_stack_trace_callback_ = nullptr;
1828 :
1829 : // TODO(kenton@cloudflare.com): This mutex can be removed if
1830 : // thread_data_table_ is always accessed under the isolate lock. I do not
1831 : // know if this is the case, so I'm preserving it for now.
1832 : base::Mutex thread_data_table_mutex_;
1833 : ThreadDataTable thread_data_table_;
1834 :
1835 : // Delete new/delete operators to ensure that Isolate::New() and
1836 : // Isolate::Delete() are used for Isolate creation and deletion.
1837 : void* operator new(size_t, void* ptr) { return ptr; }
1838 : void* operator new(size_t) = delete;
1839 : void operator delete(void*) = delete;
1840 :
1841 : friend class heap::HeapTester;
1842 : friend class TestSerializer;
1843 :
1844 : DISALLOW_COPY_AND_ASSIGN(Isolate);
1845 : };
1846 :
1847 : #undef FIELD_ACCESSOR
1848 : #undef THREAD_LOCAL_TOP_ACCESSOR
1849 :
1850 : class PromiseOnStack {
1851 : public:
1852 : PromiseOnStack(Handle<JSObject> promise, PromiseOnStack* prev)
1853 17420 : : promise_(promise), prev_(prev) {}
1854 : Handle<JSObject> promise() { return promise_; }
1855 : PromiseOnStack* prev() { return prev_; }
1856 :
1857 : private:
1858 : Handle<JSObject> promise_;
1859 : PromiseOnStack* prev_;
1860 : };
1861 :
1862 : // SaveContext scopes save the current context on the Isolate on creation, and
1863 : // restore it on destruction.
1864 : class V8_EXPORT_PRIVATE SaveContext {
1865 : public:
1866 : explicit SaveContext(Isolate* isolate);
1867 :
1868 : ~SaveContext();
1869 :
1870 : Handle<Context> context() { return context_; }
1871 :
1872 : // Returns true if this save context is below a given JavaScript frame.
1873 : bool IsBelowFrame(StandardFrame* frame);
1874 :
1875 : private:
1876 : Isolate* const isolate_;
1877 : Handle<Context> context_;
1878 : Address c_entry_fp_;
1879 : };
1880 :
1881 : // Like SaveContext, but also switches the Context to a new one in the
1882 : // constructor.
1883 221045 : class V8_EXPORT_PRIVATE SaveAndSwitchContext : public SaveContext {
1884 : public:
1885 : SaveAndSwitchContext(Isolate* isolate, Context new_context);
1886 : };
1887 :
1888 : class AssertNoContextChange {
1889 : #ifdef DEBUG
1890 : public:
1891 : explicit AssertNoContextChange(Isolate* isolate);
1892 : ~AssertNoContextChange() {
1893 : DCHECK(isolate_->context() == *context_);
1894 : }
1895 :
1896 : private:
1897 : Isolate* isolate_;
1898 : Handle<Context> context_;
1899 : #else
1900 : public:
1901 : explicit AssertNoContextChange(Isolate* isolate) { }
1902 : #endif
1903 : };
1904 :
1905 : class ExecutionAccess {
1906 : public:
1907 106702 : explicit ExecutionAccess(Isolate* isolate) : isolate_(isolate) {
1908 : Lock(isolate);
1909 : }
1910 213404 : ~ExecutionAccess() { Unlock(isolate_); }
1911 :
1912 21675088 : static void Lock(Isolate* isolate) { isolate->break_access()->Lock(); }
1913 21599244 : static void Unlock(Isolate* isolate) { isolate->break_access()->Unlock(); }
1914 :
1915 : static bool TryLock(Isolate* isolate) {
1916 : return isolate->break_access()->TryLock();
1917 : }
1918 :
1919 : private:
1920 : Isolate* isolate_;
1921 : };
1922 :
1923 :
1924 : // Support for checking for stack-overflows.
1925 : class StackLimitCheck {
1926 : public:
1927 54748858 : explicit StackLimitCheck(Isolate* isolate) : isolate_(isolate) { }
1928 :
1929 : // Use this to check for stack-overflows in C++ code.
1930 : bool HasOverflowed() const {
1931 : StackGuard* stack_guard = isolate_->stack_guard();
1932 436913561 : return GetCurrentStackPosition() < stack_guard->real_climit();
1933 : }
1934 :
1935 : // Use this to check for interrupt request in C++ code.
1936 52173296 : bool InterruptRequested() {
1937 52173296 : StackGuard* stack_guard = isolate_->stack_guard();
1938 104346592 : return GetCurrentStackPosition() < stack_guard->climit();
1939 : }
1940 :
1941 : // Use this to check for stack-overflow when entering runtime from JS code.
1942 : bool JsHasOverflowed(uintptr_t gap = 0) const;
1943 :
1944 : private:
1945 : Isolate* isolate_;
1946 : };
1947 :
1948 : #define STACK_CHECK(isolate, result_value) \
1949 : do { \
1950 : StackLimitCheck stack_check(isolate); \
1951 : if (stack_check.HasOverflowed()) { \
1952 : isolate->StackOverflow(); \
1953 : return result_value; \
1954 : } \
1955 : } while (false)
1956 :
1957 : // Scope intercepts only interrupt which is part of its interrupt_mask and does
1958 : // not affect other interrupts.
1959 : class InterruptsScope {
1960 : public:
1961 : enum Mode { kPostponeInterrupts, kRunInterrupts, kNoop };
1962 :
1963 30578134 : virtual ~InterruptsScope() {
1964 15289063 : if (mode_ != kNoop) stack_guard_->PopInterruptsScope();
1965 0 : }
1966 :
1967 : // Find the scope that intercepts this interrupt.
1968 : // It may be outermost PostponeInterruptsScope or innermost
1969 : // SafeForInterruptsScope if any.
1970 : // Return whether the interrupt has been intercepted.
1971 : bool Intercept(StackGuard::InterruptFlag flag);
1972 :
1973 : InterruptsScope(Isolate* isolate, int intercept_mask, Mode mode)
1974 : : stack_guard_(isolate->stack_guard()),
1975 : intercept_mask_(intercept_mask),
1976 : intercepted_flags_(0),
1977 30578139 : mode_(mode) {
1978 15289072 : if (mode_ != kNoop) stack_guard_->PushInterruptsScope(this);
1979 : }
1980 :
1981 : private:
1982 : StackGuard* stack_guard_;
1983 : int intercept_mask_;
1984 : int intercepted_flags_;
1985 : Mode mode_;
1986 : InterruptsScope* prev_;
1987 :
1988 : friend class StackGuard;
1989 : };
1990 :
1991 : // Support for temporarily postponing interrupts. When the outermost
1992 : // postpone scope is left the interrupts will be re-enabled and any
1993 : // interrupts that occurred while in the scope will be taken into
1994 : // account.
1995 : class PostponeInterruptsScope : public InterruptsScope {
1996 : public:
1997 : PostponeInterruptsScope(Isolate* isolate,
1998 : int intercept_mask = StackGuard::ALL_INTERRUPTS)
1999 : : InterruptsScope(isolate, intercept_mask,
2000 3119475 : InterruptsScope::kPostponeInterrupts) {}
2001 5726363 : ~PostponeInterruptsScope() override = default;
2002 : };
2003 :
2004 : // Support for overriding PostponeInterruptsScope. Interrupt is not ignored if
2005 : // innermost scope is SafeForInterruptsScope ignoring any outer
2006 : // PostponeInterruptsScopes.
2007 : class SafeForInterruptsScope : public InterruptsScope {
2008 : public:
2009 : SafeForInterruptsScope(Isolate* isolate,
2010 : int intercept_mask = StackGuard::ALL_INTERRUPTS)
2011 : : InterruptsScope(isolate, intercept_mask,
2012 11375 : InterruptsScope::kRunInterrupts) {}
2013 22750 : ~SafeForInterruptsScope() override = default;
2014 : };
2015 :
2016 : class StackTraceFailureMessage {
2017 : public:
2018 : explicit StackTraceFailureMessage(Isolate* isolate, void* ptr1 = nullptr,
2019 : void* ptr2 = nullptr, void* ptr3 = nullptr,
2020 : void* ptr4 = nullptr);
2021 :
2022 : V8_NOINLINE void Print() volatile;
2023 :
2024 : static const uintptr_t kStartMarker = 0xdecade30;
2025 : static const uintptr_t kEndMarker = 0xdecade31;
2026 : static const int kStacktraceBufferSize = 32 * KB;
2027 :
2028 : uintptr_t start_marker_ = kStartMarker;
2029 : void* isolate_;
2030 : void* ptr1_;
2031 : void* ptr2_;
2032 : void* ptr3_;
2033 : void* ptr4_;
2034 : void* code_objects_[4];
2035 : char js_stack_trace_[kStacktraceBufferSize];
2036 : uintptr_t end_marker_ = kEndMarker;
2037 : };
2038 :
2039 : } // namespace internal
2040 : } // namespace v8
2041 :
2042 : #endif // V8_ISOLATE_H_
|