Line data Source code
1 : // Copyright 2007-2010 the V8 project authors. All rights reserved.
2 : // Use of this source code is governed by a BSD-style license that can be
3 : // found in the LICENSE file.
4 :
5 : #ifndef V8_UNICODE_INL_H_
6 : #define V8_UNICODE_INL_H_
7 :
8 : #include "src/unicode.h"
9 : #include "src/base/logging.h"
10 : #include "src/utils.h"
11 :
12 : namespace unibrow {
13 :
14 : #ifndef V8_INTL_SUPPORT
15 : template <class T, int s> bool Predicate<T, s>::get(uchar code_point) {
16 : CacheEntry entry = entries_[code_point & kMask];
17 : if (entry.code_point() == code_point) return entry.value();
18 : return CalculateValue(code_point);
19 : }
20 :
21 : template <class T, int s> bool Predicate<T, s>::CalculateValue(
22 : uchar code_point) {
23 : bool result = T::Is(code_point);
24 : entries_[code_point & kMask] = CacheEntry(code_point, result);
25 : return result;
26 : }
27 :
28 : template <class T, int s> int Mapping<T, s>::get(uchar c, uchar n,
29 : uchar* result) {
30 : CacheEntry entry = entries_[c & kMask];
31 : if (entry.code_point_ == c) {
32 : if (entry.offset_ == 0) {
33 : return 0;
34 : } else {
35 : result[0] = c + entry.offset_;
36 : return 1;
37 : }
38 : } else {
39 : return CalculateValue(c, n, result);
40 : }
41 : }
42 :
43 : template <class T, int s> int Mapping<T, s>::CalculateValue(uchar c, uchar n,
44 : uchar* result) {
45 : bool allow_caching = true;
46 : int length = T::Convert(c, n, result, &allow_caching);
47 : if (allow_caching) {
48 : if (length == 1) {
49 : entries_[c & kMask] = CacheEntry(c, result[0] - c);
50 : return 1;
51 : } else {
52 : entries_[c & kMask] = CacheEntry(c, 0);
53 : return 0;
54 : }
55 : } else {
56 : return length;
57 : }
58 : }
59 : #endif // !V8_INTL_SUPPORT
60 :
61 : // Decodes UTF-8 bytes incrementally, allowing the decoding of bytes as they
62 : // stream in. This **must** be followed by a call to ValueOfIncrementalFinish
63 : // when the stream is complete, to ensure incomplete sequences are handled.
64 209229038 : uchar Utf8::ValueOfIncremental(const byte** cursor, State* state,
65 : Utf8IncrementalBuffer* buffer) {
66 : DCHECK_NOT_NULL(buffer);
67 209229038 : State old_state = *state;
68 209229038 : byte next = **cursor;
69 209229038 : *cursor += 1;
70 :
71 209229038 : if (V8_LIKELY(next <= kMaxOneByteChar && old_state == State::kAccept)) {
72 : DCHECK_EQ(0u, *buffer);
73 205706429 : return static_cast<uchar>(next);
74 : }
75 :
76 : // So we're at the lead byte of a 2/3/4 sequence, or we're at a continuation
77 : // char in that sequence.
78 : Utf8DfaDecoder::Decode(next, state, buffer);
79 :
80 3522609 : switch (*state) {
81 : case State::kAccept: {
82 : uchar t = *buffer;
83 1330198 : *buffer = 0;
84 1330198 : return t;
85 : }
86 :
87 : case State::kReject:
88 3139 : *state = State::kAccept;
89 3139 : *buffer = 0;
90 :
91 : // If we hit a bad byte, we need to determine if we were trying to start
92 : // a sequence or continue one. If we were trying to start a sequence,
93 : // that means it's just an invalid lead byte and we need to continue to
94 : // the next (which we already did above). If we were already in a
95 : // sequence, we need to reprocess this same byte after resetting to the
96 : // initial state.
97 3139 : if (old_state != State::kAccept) {
98 : // We were trying to continue a sequence, so let's reprocess this byte
99 : // next time.
100 869 : *cursor -= 1;
101 : }
102 : return kBadChar;
103 :
104 : default:
105 : return kIncomplete;
106 : }
107 : }
108 :
109 : unsigned Utf8::EncodeOneByte(char* str, uint8_t c) {
110 : static const int kMask = ~(1 << 6);
111 8123 : if (c <= kMaxOneByteChar) {
112 7751 : str[0] = c;
113 : return 1;
114 : }
115 372 : str[0] = 0xC0 | (c >> 6);
116 372 : str[1] = 0x80 | (c & kMask);
117 : return 2;
118 : }
119 :
120 : // Encode encodes the UTF-16 code units c and previous into the given str
121 : // buffer, and combines surrogate code units into single code points. If
122 : // replace_invalid is set to true, orphan surrogate code units will be replaced
123 : // with kBadChar.
124 183218433 : unsigned Utf8::Encode(char* str,
125 : uchar c,
126 : int previous,
127 : bool replace_invalid) {
128 : static const int kMask = ~(1 << 6);
129 183218433 : if (c <= kMaxOneByteChar) {
130 32840272 : str[0] = c;
131 32840272 : return 1;
132 150378161 : } else if (c <= kMaxTwoByteChar) {
133 45124756 : str[0] = 0xC0 | (c >> 6);
134 45124756 : str[1] = 0x80 | (c & kMask);
135 45124756 : return 2;
136 105253405 : } else if (c <= kMaxThreeByteChar) {
137 : DCHECK(!Utf16::IsLeadSurrogate(Utf16::kNoPreviousCharacter));
138 180505528 : if (Utf16::IsSurrogatePair(previous, c)) {
139 : const int kUnmatchedSize = kSizeOfUnmatchedSurrogate;
140 30000654 : return Encode(str - kUnmatchedSize,
141 15000327 : Utf16::CombineSurrogatePair(previous, c),
142 : Utf16::kNoPreviousCharacter,
143 15000327 : replace_invalid) - kUnmatchedSize;
144 150504908 : } else if (replace_invalid &&
145 12 : (Utf16::IsLeadSurrogate(c) ||
146 : Utf16::IsTrailSurrogate(c))) {
147 : c = kBadChar;
148 : }
149 75252437 : str[0] = 0xE0 | (c >> 12);
150 75252437 : str[1] = 0x80 | ((c >> 6) & kMask);
151 75252437 : str[2] = 0x80 | (c & kMask);
152 75252437 : return 3;
153 : } else {
154 15000641 : str[0] = 0xF0 | (c >> 18);
155 15000641 : str[1] = 0x80 | ((c >> 12) & kMask);
156 15000641 : str[2] = 0x80 | ((c >> 6) & kMask);
157 15000641 : str[3] = 0x80 | (c & kMask);
158 15000641 : return 4;
159 : }
160 : }
161 :
162 :
163 : uchar Utf8::ValueOf(const byte* bytes, size_t length, size_t* cursor) {
164 208026574 : if (length <= 0) return kBadChar;
165 181753530 : byte first = bytes[0];
166 : // Characters between 0000 and 007F are encoded as a single character
167 181753530 : if (V8_LIKELY(first <= kMaxOneByteChar)) {
168 181696555 : *cursor += 1;
169 181696555 : return first;
170 : }
171 56975 : return CalculateValue(bytes, length, cursor);
172 : }
173 :
174 : unsigned Utf8::Length(uchar c, int previous) {
175 30235892 : if (c <= kMaxOneByteChar) {
176 : return 1;
177 372764 : } else if (c <= kMaxTwoByteChar) {
178 : return 2;
179 : } else if (c <= kMaxThreeByteChar) {
180 : DCHECK(!Utf16::IsLeadSurrogate(Utf16::kNoPreviousCharacter));
181 248488 : if (Utf16::IsSurrogatePair(previous, c)) {
182 : return kSizeOfUnmatchedSurrogate - kBytesSavedByCombiningSurrogates;
183 : }
184 : return 3;
185 : } else {
186 : return 4;
187 : }
188 : }
189 :
190 : bool Utf8::IsValidCharacter(uchar c) {
191 : return c < 0xD800u || (c >= 0xE000u && c < 0xFDD0u) ||
192 : (c > 0xFDEFu && c <= 0x10FFFFu && (c & 0xFFFEu) != 0xFFFEu &&
193 : c != kBadChar);
194 : }
195 :
196 : } // namespace unibrow
197 :
198 : #endif // V8_UNICODE_INL_H_
|