ENERGY-EFFICIENCY LABELS AND STANDARDS:
A GUIDEBOOK FOR APPLIANCES, EQUIPMENT, AND LIGHTING

2ND EDITION

Lead Authors:

Stephen Wiel
and
James E. McMahon

Collaborative Labeling and Appliance Standards Program (CLASP)
Washington, D.C.
USA

February 2005
The Collaborative Labeling and Appliance Standards Program (CLASP) wishes to acknowledge the organizations listed below for supporting the development, production and distribution of this Guidebook.

USAID is the primary funder of this Second Edition. USAID funded this work and work on the First Edition via the Office of Energy and Information Technology within the Global Bureau for Economic Growth, Agriculture and Trade, through the U.S. Department of Energy under Contract No., DE-AC03-76SF00098.

UNF funded the publication of both editions of this guidebook through the United Nations Department for Social and Economic Affairs, which is implementing Projects ESA/GLO/99/095 (Energy Efficiency Standards and Labeling Program) and ESA/GLO/02/236 (Promoting Energy Efficiency Standards) jointly with CLASP.

The United Nations Department of Economic and Social Affairs (UNDESA) has chosen CLASP as a technical partner to implement a range of project-based activities and supports publication of this guidebook, recognizing CLASP as one of the more successful partnerships to emerge from the World Summit on Sustainable Development (WSSD).

The United Nations Development Programme’s Global Environment Facility (UNDP-GEF) funds several CLASP project activities through the UNDP-GEF initiative on energy efficiency standards and labels. It contributed to the publication of this guidebook as a resource to be used in developing UNDP-GEF standards and labeling activities.

The U.S. Environmental Protection Agency (EPA) funds several CLASP project activities and contributed to both the writing and publication of this guidebook.

The International Copper Association (ICA) contributed to the preparation of this guidebook through ICA’s strategic initiatives on Sustainable Electrical Energy and the Environment.

The Australian Greenhouse Office (AGO) funds several CLASP project activities and contributed to the publication of this guidebook in support of the Australia/U.S. Climate Action Partnership.

Natural Resources Canada (NRCan) contributed to the preparation of this guidebook as part of its collaboration in CLASP project activities.
AUTHOR AFFILIATIONS AND AREAS OF CONTRIBUTION

LEAD AUTHORS
Stephen Wiel, Lawrence Berkeley National Laboratory, USA (First and Second Editions)
James McMahon, Lawrence Berkeley National Laboratory, USA (First and Second Editions)

COORDINATING AUTHOR
Mirka della Cava, Lawrence Berkeley National Laboratory, USA (First and Second Editions)

CHAPTER AND CONTRIBUTING AUTHORS

CHAPTER 1: INTRODUCTION
Stephen Wiel, Lawrence Berkeley National Laboratory, USA (First and Second Editions)

CHAPTER 2: ENERGY-EFFICIENCY LABELS AND STANDARDS: AN OVERVIEW
Stephen Wiel, Lawrence Berkeley National Laboratory, USA (First and Second Editions)

CHAPTER 3: DECIDING WHETHER AND HOW TO IMPLEMENT ENERGY-EFFICIENCY LABELS AND STANDARDS
Peter du Pont, Danish Energy Management A/S and International Institute for Energy Conservation (Board), Thailand (First and Second Editions)
Paul Waide, PW Consulting, United Kingdom (First Edition) and International Energy Agency, France (Second Edition)

CONTRIBUTING AUTHORS:
Benoit Lebot, United Nations Development Programme—Global Environmental Facility, France (First Edition)
John Newman, France (First Edition)

CHAPTER 4: ENERGY TESTING FOR APPLIANCES
Alan Meier, International Energy Agency, France (First and Second Editions)

CHAPTER 5: DESIGNING AND IMPLEMENTING A LABELING PROGRAM
Peter du Pont, Danish Energy Management A/S and International Institute for Energy Conservation (Board), Thailand (First and Second Editions)
Paul Schwengels, U.S. Environmental Protection Agency, USA (Second Edition)
Christine Egan, Collaborative Labeling and Appliance Standards Program, USA (Second Edition)
Lloyd Harrington, Energy Efficient Strategies, Australia (First Edition)

CONTRIBUTING AUTHORS:
John Cockburn, Natural Resources Canada, Canada (Second Edition)
Rachael Schmeltz, U.S. Environmental Protection Agency, USA (Second Edition)

Continued on next page
CHAPTER 6: ANALYZING AND SETTING STANDARDS
James McMahon, Lawrence Berkeley National Laboratory, USA *(First and Second Editions)*
Michael McNeil, Lawrence Berkeley National Laboratory, USA *(Second Edition)*
Isaac Turiel, Lawrence Berkeley National Laboratory, USA *(First Edition)*

CONTRIBUTING AUTHORS:
Peter Benenson, USA *(First and Second Editions)*

CHAPTER 7: DESIGN AND IMPLEMENTING COMMUNICATIONS CAMPAIGNS FOR LABELING AND STANDARDS-SETTING PROGRAMS
Jill Abelson, U.S. Environmental Protection Agency, USA *(Second Edition)*
Christine Egan, Collaborative Labeling and Appliance Standards Program, USA *(Second Edition)*
Lisa Surprenant, The Alliance to Save Energy, USA *(Second Edition)*

CONTRIBUTING AUTHORS:
Frank Klinckenberg, Klinckenberg Consultants, The Netherlands *(Second Edition)*

CHAPTER 8: ENSURING THE INTEGRITY OF ENERGY-EFFICIENCY LABELING AND STANDARDS-SETTING PROGRAMS
B.J. Kumar, Energetics, Inc., USA *(First Edition)*

CONTRIBUTING AUTHORS:
Chris Stone, Intertek Testing Services, USA *(Second Edition)*
Isaac Turiel, Lawrence Berkeley National Laboratory, USA *(First Edition)*
Lloyd Harrington, Energy Efficient Strategies, Australia *(First Edition)*
Shane Holt, Australian Greenhouse Office, Australia *(First Edition)*
Benoit Lebot, United Nations Development Programme—Global Environmental Facility, France *(First Edition)*

CHAPTER 9: EVALUATING THE IMPACT OF ENERGY-EFFICIENCY LABELING AND STANDARD-SETTING PROGRAMS
Edward Vine, Lawrence Berkeley National Laboratory, USA *(First and Second Editions)*

CONTRIBUTING AUTHORS:
Jun Choi, Korea Testing Laboratory, Korea *(Second Edition)*
Peter du Pont, Danish Energy Management A/S and International Institute for Energy Conservation (Board), Thailand *(First and Second Editions)*

CHAPTER 10: ENERGY PROGRAMS AND POLICIES THAT COMPLEMENT LABELS AND STANDARDS
Jeff Harris, Lawrence Berkeley National Laboratory, USA *(First and Second Editions)*
Margaret Suozzo, American Council for an Energy-Efficient Economy, USA *(First Edition)*

CONTRIBUTING AUTHORS:
Brad Hollomon, Pacific Northwest National Laboratory, USA *(Second Edition)*
Frank Klinckenberg, Klinckenberg Consultants, The Netherlands *(Second Edition)*
Marc Ledbetter, Pacific Northwest National Laboratory, USA *(First and Second Editions)*
Hans Westling, Promandat AB, Sweden *(Second Edition)*
David Fridley, Lawrence Berkeley National Laboratory, USA *(First Edition)*
Jiang Lin, Lawrence Berkeley National Laboratory, USA *(First Edition)*
Steve Meyers, Lawrence Berkeley National Laboratory, USA *(First Edition)*
Tracy Narel, U.S. Environmental Protection Agency, USA *(First Edition)*

SECOND EDITION REVIEWERS
Jun Choi, Korea Testing Laboratory, Korea
Christine Egan, Collaborative Labeling and Appliance Standards Program, USA
David Goldstein, Natural Resources Defense Council, USA
Frank Klinckenberg, Klinckenberg Consultants, The Netherlands
Benoit Lebot, United Nations Development Programme—Global Environmental Facility, France
Li Tienan, Center for the Certification of Energy Conservation Products, China
John Millhone, formerly U.S. Department of Energy, USA
Paul Schwengels, U.S. Environmental Protection Agency, USA
Laura Van Wie McGrory, Lawrence Berkeley National Laboratory, USA
Larry Wethje, Association of Home Appliance Manufacturers, USA

FIRST EDITION REVIEWERS
Li Aixian, China National Institute of Standardization, China
Pankaj Bhatia, Tata Energy and Resources Institute, USA
Brenda Boardman, Environmental Change Institute, UK
Mirna Campananos, Department of Energy, Philippines
Sachu Constantine, Alliance to Save Energy, USA
Martin Dasek, SEVEN, The Energy Efficiency Center, Czech Republic
Linda Dethman, Dethman/Tangora LLC, USA
Carl Duisberg, U.S. Agency for International Development, USA
Peter du Pont, International Institute for Energy Conservation, Thailand
David Fridley, Lawrence Berkeley National Laboratory, USA
Glenn Goetz, Amana Appliances, USA

Continued on next page
Preface

Energy-performance improvements in consumer products are an essential element in any government’s portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country’s energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference.

This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook.

This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards.

This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.
Table of Contents

Author Affiliations and Areas of Contribution i

Preface v

List of Figures xiv

List of Tables xvi

Chapter 1: Introduction 2

1.1 Labels and Standards in Context 2

1.2 Purpose of This Guidebook 4

1.3 Modifications in the Second Edition 5

1.4 How to Use This Guidebook 5

Chapter 2: Energy-Efficiency Labels and Standards: An Overview 8

2.1 Definition of Energy-Efficiency Labels and Standards 8

2.1.1 Labels 9

2.1.2 Standards 9

2.1.3 Mandatory vs. Voluntary Programs 10

2.1.4 Individual Products vs. Product Class 10

2.2 Rationale for Energy-Efficiency Labels and Standards 11

2.2.1 Labels and Standards Reduce Capital Investment in Energy Supply Infrastructure 12

2.2.2 Labels and Standards Enhance National Economic Efficiency by Reducing Energy Bills 13

2.2.3 Labels and Standards Enhance Consumer Welfare 14

2.2.4 Labels and Standards Strengthen Competitive Markets 14

2.2.5 Labels and Standards Meet Climate-Change Goals 15

2.2.6 Labels and Standards Avert Urban/Regional Pollution 15

2.2.7 Harmonized Labels and Standards Reduce Program Costs and Foster Global Trade 15

2.3 History and Scope of Energy-Efficiency Labels and Standards 17

2.4 Resources Needed for Developing Energy-Efficiency Labels and Standards Programs 21

2.5 Effectiveness of Energy-Efficiency Labels and Standards 22

2.6 Steps in Developing Energy-Efficiency Labels and Standards Programs 26

2.6.1. First Step (D): Decide Whether and How to Implement Energy Labels and Standards 27

2.6.2. Second Step (T): Develop a Testing Capability 29

2.6.3. Third (L) and Fourth (S) Steps: Design and Implement a Labelling Program and Analyze and Set Standards 30

2.6.4. Fifth Step (C): Design and Implement a Communication Campaign 34

Continued on next page
CHAPTER 3 : DECIDING WHETHER AND HOW TO IMPLEMENT ENERGY LABELS AND STANDARDS

3.1 Step D-1: Assess Political, Institutional and Cultural Factors
 3.1.1 Assessing Existing Energy Regulatory Frameworks
 3.1.2 Assessing Existing Institutional Capacity

3.2 Step D-2: Establish Political Legitimacy
 3.2.1 Determining Boundaries of Authority and Responsibility
 3.2.2 Enacting Framework Legislation or Decrees
 3.2.3 Assigning Authority and Responsibility for Implementation
 3.2.4 Maintaining Political Support for Program Development and Operation

3.3 Step D-3: Consider Regional Harmonization
 3.3.1 Rationale for Alignment and Harmonization
 3.3.2 Aligning or Harmonizing Test Procedures
 3.3.3 Aligning or Harmonizing Labels
 3.3.4 Aligning or Harmonizing Energy-Efficiency Standards
 3.3.5 Using Mutual Recognition Agreements

3.4 Step D-4: Assess Data Needs
 3.4.1 Evaluating the Types of Data Needed for Analysis
 3.4.2 Specifying the Data-Gathering Process
 3.4.3 Finding a Home for the Data

3.5 Step D-5: Select Products and Set Priorities
 3.5.1 Selecting the Program Approach
 3.5.2 Setting Screening Criteria
 3.5.3 Addressing Standby Power Requirements as a Crosscutting Issue
 3.5.4 Assessing Potential Costs and Impacts
 3.5.5 Planning for Phase-In, Evaluation, and Update

CHAPTER 4 : ENERGY TESTING FOR APPLIANCES

4.1 Energy Testing Infrastructure
 4.1.1 Definition of an Energy Test Procedure
 4.1.2 Importance of Test Procedures
 4.1.3 Elements of a Good Test Procedure

4.2 Step T-1: Establish a Test Procedure
 4.2.1 Key Institutions Responsible for Making Test Procedures
 4.2.2 Existing Test Procedures
 4.2.3 The Difficulty in Modifying Existing Test Procedures
 4.2.4 The Difficulty of Translating Results from One Test to Another
4.2.5 Selecting a Test Procedure; Considering Alignment 77
4.2.6 Considering Regional Harmonization 78
4.2.7 Announcing the Test Procedure 81
4.2.8 Normalizing Energy Values for Volume, Capacity and Performance 81
4.2.9 Reconciling Test Values and Declared Energy Consumption 81
4.2.10 Emerging Issues in Energy Testing 82

4.3 Step T-2: Create a Facility for Testing and Monitoring Compliance 83

4.4 Step T-3: Incorporate Testing into Enforcement 85
 4.4.1 Establishing Administrative Mechanisms for Certification, Data Collection, and Appeal 85
 4.4.2 Establishing Procedures to Certify Independent and Manufacturer Test Facilities 86

Chapter 5: Designing and Implementing a Labeling Program 88

5.1 The Basics of Energy-Efficiency Labeling 88
 5.1.1 Why Energy Labeling? 89
 5.1.2 Types of Energy Labels 91
 5.1.3 How Labels Affect the Market 96
 5.1.4 Understanding and Involving Program Stakeholders 98
 5.1.5 Energy Labeling Is the Tip of the Iceberg 101

5.2 Step L-1: Select Products and Decide on the Labeling Approach 102
 5.2.1 Selecting Products 103
 5.2.2 Endorsement vs. Comparison Labels 104
 5.2.3 Additional Design Issues For Comparison Labelling 107
 5.2.4 How and When to Combine Endorsement and Comparison Labels 108
 5.2.5 Harmonization Considerations 113

5.3 Step L-2: Conduct Market Research to Design the Label(s) 113
 5.3.1 Market Research for Visual Design 115
 5.3.2 Market Research for Technical Specifications 117

5.4 Step L-3: Customize a Testing Program for Labels 122
 5.4.1 Design of the Testing Program 122
 5.4.2 Product Registration and Test Reports 123

5.5 Step L-4: Implement the Program 124
 5.5.1 Establish and Announce Regulations and Procedures 124
 5.5.2 Program Marketing and Promotion 124
 5.5.3 Compliance and Enforcement 125

5.6 Program Monitoring, Evaluation, and Revision 126
 5.6.1 Monitoring vs. Evaluation 126
 5.6.2 Monitoring Strategy 126
 5.6.3 Evaluation Approaches 127
 5.6.4 Regular Revision of Technical Specifications and Label Design 129

Continued on next page
CHAPTER 6: ANALYZING AND SETTING STANDARDS 134

6.1 Establishing a Technical and Economic Basis for Standards 134
 6.1.1 Types of Efficiency Standards 136
 6.1.2 The Process of Analyzing and Setting Standards 137
 6.1.3 Types of Analysis 138

6.2 Step S-1: Involve Stakeholders 141
 6.2.1 Appliance Manufacturers and Importers 144
 6.2.2 Consumers 146
 6.2.3 Energy Providers 146
 6.2.4 Environmental Advocates 146

6.3 Step S-2: Gather Data and Forecast Input Parameters 147
 6.3.1 Effect of Data Availability on Selection of Analytical Method 147
 6.3.2 Deciding What Data to Collect 147
 6.3.3 Market Data 151
 6.3.4 Data for Assessing Economic Factors 152
 6.3.5 Proprietary Information and Confidentiality 152

6.4 Step S-3: Categorize Product Classes 153

6.5 Step S-4: Analyze Using a Statistic Approach (Method 1) 154

6.6 Step S-5: Analyze Using an Engineering/Economic Approach (Method 2) 156

6.7 Step S-6: Analyze Consumer, Manufacturer, National and Environment Impacts 158
 6.7.1 Consumer Payback Period and Life-Cycle Cost 158
 6.7.2 Manufacturer and Industry Impacts 162
 6.7.3 National Energy and Economic Impacts 162
 6.7.4 Energy Supply Impacts 164
 6.7.5 Environmental Impacts 165
 6.7.6 Improving Analytical Methods 165

6.8 Step S-7: Document Data, Methods, and Results 166
 6.8.1 Documentation Objectives 166

6.9 Step S-8: Set the Standards 168

CHAPTER 7: DESIGNING AND IMPLEMENTING COMMUNICATIONS CAMPAIGNS FOR LABELING AND STANDARDS-SETTING PROGRAMS 174

7.1 The Definition and Importance of Communications Campaigns 174

7.2 Step C-1: Establish Goals and Objectives 177

7.3 Step C-2: Assess Communications Program Needs and Conduct Research 180

7.4 Step C-3: Select the Target Audience 184

7.5 Step C-4: Identify and Recruit Partners 185
7.6 Step C-5: Develop and Test Messages 186
 7.6.1 Keep it Simple 187
 7.6.2 Consider Cultural and Societal Attitudes about Saving Energy 187
 7.6.3 Make Communications Personally Relevant 188
 7.6.4 Address Perceptions about Outcomes 188
 7.6.5 Address Literacy and Language Issues 190
 7.6.6 Design Label for Maximum Consumer Understanding 190
 7.6.7 Pre-Testing of Communications 191

7.7 Step C-6: Design the Communications Plan 192
 7.7.1 How to Prioritize Tactics 194
 7.7.2 Timing 197

7.8 Step C-7: Evaluate 198

Chapter 8: Ensuring the Integrity of Labeling and Standards-Setting Programs 202

8.1 The Importance of Reliable Energy-Performance Information 202

8.2 Concepts and Definitions 203
 8.2.1 What is a Test? 203
 8.2.2 What are Accreditation and Certification? 204
 8.2.3 What is a Verification Regime? 204
 8.2.4 What is a Compliance Regime? 204
 8.2.5 Steps in Establishing Testing, Verification, and Compliance Regimes 204

8.3 Technical Sources of Error and Variability in Measuring Equipment Energy Performance 204
 8.3.1 Sources of Error 205
 8.3.2 Assessing the Competence of Testing Laboratories 205
 8.3.3 Accuracy of Testing Laboratories 206
 8.3.4 Variability Among Testing Laboratories 206
 8.3.5 Acceptable Targets for the Variability of Test Results 206

8.4 Step I-1: Assess Options and Competencies for Testing Products 207

8.5 Step I-2: Assess Accreditation Options for Verifying the Competence of Testing Facilities and Legitimizing Test Results 208
 8.5.1 Ensuring International Acceptability of Test Results 209

8.6 Step I-3: Assess Certification Program Options for Validating that Products Comply with Standards and Label Requirements 209
 8.6.1 Third-party Certification 215
 8.6.2 Laboratories Used for Product Certification 215

8.7 Step I-4: Establish a Verification Regime for Declaring and Verifying that Manufacturers are Complying with Standards and Label Requirements 216
 8.7.1 Verifying a Product’s Performance When It Is First Introduced to the Market 216
 8.7.2 Check Testing Products Already on the Market 217
 8.7.3 Advantages and Disadvantages of Each Approach 218

Continued on next page
8.8 Step II-5: Establish a Compliance Regime for Ensuring that Manufacturers Are Complying with Standards and Label Requirements

8.8.1 Establishing a Legal Basis and Identifying Degrees of Non-compliance 219
8.8.2 Types of Abuse 219
8.8.3 Establishing Penalties for Non-compliance 220
8.8.4 Designating Compliance Agencies and Establishing Compliance Monitoring 220

8.9 International Examples of Different Program Integrity Schemes 222

8.9.1 Compliance Verification Performed by Government: Australia 222
8.9.2 Self-certification within a Regional Policy Framework: The E.U. 223
8.9.3 Government Blessing of Private Certification Programs: The U.S. 224
8.9.4 Government-Controlled Certification: Tunisia and The Philippines 227

CHAPTER 9: EVALUATING THE IMPACT OF LABELING AND STANDARDS-SETTING PROGRAMS 228

9.1 Why Evaluation is a Must and Not a Luxury 228
9.1.1 Making the Case 228
9.1.2 Assessing the Program 229
9.1.3 State of the Art 229
9.1.4 Planning 230

9.2 Step E-1: Plan the Evaluation and Set Objectives 236
9.2.1 Evaluating Labeling vs. Evaluating Standards Programs 236
9.2.2 The Objectives of Evaluation 237

9.3. Step E-2: Identify Resource and Data Needs and Collect Data 240
9.3.1 Resources Needed for Evaluation 240
9.3.2 Data Needed for Evaluation 240
9.3.3 Types of Data 242
9.3.4 Data-Collection Methods 242

9.4 Step E-3: Analyze Data 242
9.4.1 Baseline 243
9.4.2 Impacts on Consumers 244
9.4.3 Impacts on Manufacturers and Retailers 245
9.4.4 Program Compliance, Enforcement, Training, and Education 245
9.4.5 Sales 246
9.4.6 Energy Savings and Greenhouse Gas Emissions Reductions 247

9.5. Step E-4: Apply Evaluation Results 249
9.5.1 Refining Labeling and Standards Programs 249
9.5.2 Supporting Other Energy Programs and Policies 249
9.5.3 Forecasting Energy Use and Strategic Planning 250
9.5.4 Using Evaluation Results and Data for Other Regulatory Purposes 250

9.6 Considering Key Evaluation Issues 250
9.6.1 Free Riders 250
9.6.2 Accuracy and Uncertainty 251
9.6.3 Policy and Market Complexity 252
CHAPTER 10: ENERGY PROGRAMS AND POLICIES THAT COMPLEMENT LABELS AND STANDARDS

10.1 Developing a Program Portfolio: Regulatory Plus Market-Based Programs

10.2 Policy Objectives
 10.2.1 Stimulating New Technology
 10.2.2 Influencing Product Development and Manufacturing
 10.2.3 Influencing Supply, Distribution and Wholesale Purchases
 10.2.4 Influencing Retail Purchases
 10.2.5 Influencing System Design and Installation
 10.2.6 Influencing Operation and Maintenance

10.3 Program and Policy Tools
 10.3.1 Research and Development
 10.3.2 Energy Pricing and Metering
 10.3.3 Financing and Incentives
 10.3.4 Regulatory Programs
 10.3.5 Voluntary Programs: Quality Marks, Targets, and Promotional Campaigns
 10.3.6 Government Purchasing
 10.3.7 Energy-Audit Programs
 10.3.8 Consumer Education and Information

10.4 New Strategies to Transform Markets
 10.4.1 National Market Transformation Programs
 10.4.2 Multinational Trends

ACRONYMS

GLOSSARY

REFERENCES

INDEX

254

254

258

258

260

260

261

261

262

263

263

264

268

268

269

271

272

274

274

276

278

282

286

302
LIST OF FIGURES

CHAPTER 1: INTRODUCTION

Figure 1-1 Source of Energy Consumption in Buildings in 2020 3

CHAPTER 2: ENERGY-EFFICIENCY LABELS AND STANDARDS: AN OVERVIEW

Figure 2-1 The Impact of Energy-Efficiency Labels and Standards on the Distribution of Products in the Marketplace: The Concept 11
Figure 2-2 The Cost of Electricity in the U.S. from Various New Sources 14
Figure 2-3 The Power of Ratcheting the Stringency of Standards: The Example of U.S. Refrigerator Standards 18
Figure 2-4 Growth in the Number of Countries That Have Adopted at Least One Standard or Label 21
Figure 2-5 The Impact of Energy-Efficiency Standards on the Distribution of Products in the Marketplace: Clothes Washers in the U.S. 22
Figure 2-6 The Impact of Energy-Efficiency Standards and Labels on the Distribution of Products in the Marketplace: Refrigerators in the EU 23
Figure 2-7 The Impact of Energy-Efficiency Labels on the Distribution of Products in the Marketplace: Refrigerators in Korea 25
Figure 2-8 Typical Steps in the Process of Developing Consumer Product Energy-Efficiency Labels and Standards 26

CHAPTER 3: DECIDING WHETHER AND HOW TO IMPLEMENT ENERGY LABELS AND STANDARDS

Figure 3-1 Major Steps in Deciding Whether and How to Implement an Energy-Labeling or Standards-Setting Program 40

CHAPTER 4: ENERGY TESTING FOR APPLIANCES

Figure 4-1 Major Steps in Developing a Testing Capability for a Labeling or Standards-Setting Program 70

CHAPTER 5: DESIGNING AND IMPLEMENTING A LABELING PROGRAM

Figure 5-1 Examples of Energy Endorsement Labels 93
Figure 5-2 Examples of Ecolabels 94
Figure 5-3 Examples of Comparative Energy Labels 95
Figure 5-4 Impact of the E.U. Refrigerator Energy Labelling Sales by Efficiency Index 97
Figure 5-5 The “Iceberg” of Energy Labelling 102
Figure 5-6 Major Steps in Designing and Implementing an Energy-Labeling Program 103
Figure 5-7 Two Examples of Integrated Label 108
Figure 5-8 Recommended Integration of the ENERGY STAR Logo into the U.S. EnergyGuide Comparison Label 110
Figure 5-9 Label Design Research Flowchart 117
Figure 5-10 Focus Group Results of Four Finalist Label Designs in Mexico 118
Figure 5-11 Korea Label Redesign 131

CHAPTER 6: ANALYZING AND SETTING STANDARDS

Figure 6-1 Major Steps in Analyzing and Setting Standards 138
Figure 6-2 Decision Tree for Choosing Appliance Standards Analysis Method 147
Figure 6-3 End-Use Electricity Consumption (1995) in China Households 150
Figure 6-4 Statistical Approach Applied to E.U. Refrigerator-Freezers 155
Figure 6-5 Example of Fundamental Data for Engineering Analysis: U.S. Top-Mount Auto-Defrost Refrigerator-Freezer 157
Figure 6-6 The Relationship of Engineering Analysis to Other Impact Analyses 158
Figure 6-7 Payback Periods for Top-Mount Automatic-Defrost Refrigerator-Freezers 160
Figure 6-8 Life-Cycle Cost vs. Annual Energy Use 161
Figure 6-9 Example of Utility Impacts: New Ballast Standards Effective in Year 2005/2010 164
Figure 6-10 Example of Environmental Impacts: New Ballast Standards Effective in Year 2005/2010 165

CHAPTER 7: DESIGNING AND IMPLEMENTING COMMUNICATIONS CAMPAIGNS FOR LABELING AND STANDARDS-SETTING PROGRAMS

Figure 7-1 Major Steps in Creating a Communications Campaign 177
Figure 7-2 Canada’s One Tonne Challenge Brochure 189
Figure 7-3 Natural Resources Canada ENERGY STAR Ads in English/French 190
Figure 7-4 Theory-of-Change Diagram for a Communications Campaign 194
Figure 7-5 Australia’s Top Energy Saver Award 195
Figure 7-6 Information Sources That Consumers Consult 196

CHAPTER 8: ENSURING THE INTEGRITY OF LABELING AND STANDARDS-SETTING PROGRAMS

Figure 8-1 Major Steps in Ensuring the Integrity of Labelling and Standards-setting Programs 204

CHAPTER 9: EVALUATING THE IMPACT OF LABELING AND STANDARDS-SETTING PROGRAMS

Figure 9-1 Major Steps in Evaluating a Labeling or Standards-Setting Program 233
Figure 9-2 The Appliance Purchase Environment 240
Figure 9-3 Simplified Example of Analyzing Appliance Labeling Programs 243
Figure 9-4 Impact of the E.U. Dishwasher Energy Label (Dishwasher sales as a function of energy label class from 1994 to 2003) 247
Figure 9-5 Impact of the E.U. Refrigerator Energy Label (E.U. average refrigerator price as a function of energy label class from 1994 to 2002) 247
LIST OF TABLES

CHAPTER 2: ENERGY-EFFICIENCY LABELS AND STANDARDS: AN OVERVIEW
 Table 2-1 The Status of Energy Efficiency Labels and Standards 19

CHAPTER 3: DECIDING WHETHER AND HOW TO IMPLEMENT ENERGY LABELS AND STANDARDS
 Table 3-1 A Sample Priority List of Appliances to be Covered by Minimum Energy-Efficiency Standards 64
 Table 3-2 Cost-Efficiency of a Thai Refrigerator 66
 Table 3-3 Possible Barriers to the Purchase of Efficient Products 68

CHAPTER 4: DEVELOPING A TESTING PROGRAM
 Table 4-1 Key Institutions Involved in Creating Energy Test Procedures for Appliances 73
 Table 4-2 General Approach for Testing Energy Performance in Major Appliances 74
 Table 4-3 Energy Test Procedures for Common Appliances 75
 Table 4-4 Energy Test Procedures for Consumer Home Electronics 76
 Table 4-5 Some Firms that Can Perform Internationally Recognized Energy Tests along with Accompanying Certification of Results 83

CHAPTER 5: DESIGNING AND IMPLEMENTING A LABELING PROGRAM
 Table 5-1 Characteristics of Endorsement and Comparative Energy Labels 91
 Table 5-2 Products with Multiple Labels in Use or Under Consideration 109

CHAPTER 6: ANALYZING AND SETTING STANDARDS
 Table 6-1 Analytical Elements of U.S. Standards-Setting Process, as Revised in 1996 139
 Table 6-2 Data Needs for a Complete Appliance Standards Analysis 148
 Table 6-3 Steps for Engineering Analysis 156
 Table 6-4 Energy Savings and Net Present Value from U.S. Standards for Fluorescent Lamp Ballasts Starting in 2005 163

CHAPTER 7: DESIGNING AND IMPLEMENTING COMMUNICATIONS CAMPAIGNS FOR LABELING AND STANDARDS-SETTING PROGRAMS
 Table 7-1 Goals, Objectives, Target Audience, Strategies, and Messages by Campaign Type—Individual Behavior Change and Public Will 178
 Table 7-2 Research Stratification by Consumer Buying Decision 185
 Table 7-3 Four Types of Evaluation Activities for Standards and Labels Communication Campaigns 199

CHAPTER 8: ENSURING THE INTEGRITY OF LABELING AND STANDARDS-SETTING PROGRAMS
 Table 8-1 ILAC Members Listed by Category 210
Table 8-2 International Standards Applicable to Test Laboratories and Accreditation and Certification Bodies 216

Table 8-3 Types of Certification 217

Table 8-4 Results from the Australian Check-Testing Program 1991 to 2000 222

Chapter 9: Evaluating the Impact of Labeling and Standards-Setting Programs

Table 9-1 Evaluation Data: Type and Sources 241

Chapter 10: Energy Programs and Policies that Complement Labels and Standards

Table 10-1 Policy Objectives and Program and Policy Instruments 257