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Abstract

In this paper, we propose a perceptual learned image
compression framework. We train our networks using rate-
distortion, perceptual and adversarial loss in an end-to-end
(E2E) manner. To efficiently allocate bits for different image
areas, we propose the Region of Interest (RoI) technique in
the variable rate adaptation framework. We also investi-
gate the training stability at low bit rate (0.075 bpp) and
the superiority of the E2E optimized framework to the post-
processing framework. Our proposed framework achieves
visually pleasing reconstructions over wide bit-rate range.

1. Introduction
With the increase of images created by ordinary con-

sumers using their smartphones, how to store them effi-
ciently has drawn lots of attention. Lossy image compres-
sion uses inexact approximations and partial data discard-
ing to represent the content. In this field, classic image
codecs [17] [16] [6] have been developed over the years
and achieve good results. The state-of-the-art video com-
pression algorithms [2] can also be used for single image
compression.

With the development of deep learning techniques, re-
searchers have also applied deep neural networks to image
compression. The learned image compression algorithms
take variational autoencoder (VAE) as its basic network
and use entropy model for rate estimation [4]. The latest
learned image compression algorithms already outperform
their classic counterpart in terms of rate-distortion perfor-
mance. However, deep neural networks optimized only by
rate-distortion loss can not fully put its generative capacity
into play.

Learned image compression based on Generative Ad-
versarial Networks (GANs) has been studied by lots of re-
searchers [3] [14] [12] [13]. Generative Compression [3]
synthesizes details that cannot afford to store and can oper-
ate at extremely low bit-rates. HiFiC [14] investigated both

Figure 1. Comparison between reconstructions of our framework
(left), winner of CLIC2020 (middle), and VTM at qp 37 (right) at
similar bit-rate. Best viewed on screen.

network architecture and loss functions and obtains visually
pleasing reconstructions at a broad range of bit-rates. The
1st [12] and 2nd [13] ranking methods of CLIC2020 also
utilized adversarial training and generated good reconstruc-
tions.

Utilizing the most advanced techniques in both learned
image compression and GAN fields, we propose the percep-
tual learned image compression framework. Besides, we
propose the RoI method to manually allocate more bit-rate
to important image area and achieve good trade-off between
bit consumption and image perceptual quality. We also in-
vestigate training schemes to stabilize the training at low
bit-rate (0.075 bpp) and shows the superiority of E2E opti-
mized framework.

2. Proposed methods

In this section, we present our proposed E2E optimized
perceptual image compression framework. We first intro-
duce the detailed network architecture, and the optimization
object is then explained. To manually allocate different bits
for different image areas, we utilize the RoI technique.

2.1. Architecture

The architecture is shown in Figure 2. Our main ar-
chitecture includes the encoder, generator, and entropy
model. The entropy model includes the hyper-encoder,
hyper-decoder, context, and gather. We adversarially train
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Figure 2. The architecture of our proposed framework. Conv192-5×5 is a convolution with 192 output channels, with 5x5 filters. DeConv
is a deconvolution operation. s2 means this convolution or deconvolution is used to downsample or upsample the spatial resolution by ratio
2. GDN or ReLU is used to increase the non-linearity. Gain unit and inverse gain unit are used to achieve continuous rate adaptation.
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Figure 3. The architecture of discriminator. Same notation is used
as in Figure 2.

our framework. The discriminator architecture is also ex-
plained in Figure 3.

2.1.1 Autoencoder

In encoder and generator, Generalized Divisive Normaliza-
tion (GDN) [4] is used to normalize the intermediate fea-
ture and add non-linearity. We use the attention module
proposed in [7] to increase the capacity of the encoder and
generator. As shown in [14], the increase of generator ca-
pacity resulting in better performance.

2.1.2 Entropy models

We use the hyper-prior model proposed in [5], where we
extract side information z to model the distribution of la-
tent code y and simulate quantization with uniform noise
U(−1/2, 1/2) in the hyper-encoder and when estimating
p(ŷ). For the probability estimation of ẑ, we use a fully

factorized density model [5]. ŷ is estimated by an asym-
metric Gaussian entropy model [8]. The asymmetric en-
tropy model has sufficient degrees of freedom and induces
a small estimation error for ŷ with the asymmetric distribu-
tion. This estimation can be formulated as

p(ŷ) ∼ N(µ, σ2
l , σ

2
r)

where σ2
l and σ2

r represent the left and right scale of a asym-
metric Gaussian distribution. All the parameters include µ,
σ2
l and σ2

r are trainable, which increases the computational
complexity since the output channel of gather is increased.

2.1.3 Continuous rate adaptation

To achieve flexible rate adaptation in one single model, we
also add a pair of gain units [8] [9] between encoder and
generator. The gain units pair is used to rescale the mag-
nitude of y. The rescaled y is then quantized. During this
process, the gain unit can control the information loss dur-
ing quantization, therefore, control the bit-rate. The gain
unit is made up of a gain matrix M ∈ Rc×n where c is
the channel number of y and n is the number of gain vec-
tors. Each gain vector corresponds to one bit-rate. In our
experiments, we always set n as three. After the gain units
pair are trained, continuous rate adaptation can be achieved
by exponential interpolation between gain vectors without
compromising performance[8].

2.1.4 Discriminator

In addition to the basic E2E learned image compression
framework described in previous subsections, we also use



Figure 4. Effectiveness of RoI technique. The image patches in the
rectangle are replaced by higher bpp patches. The original version
is in the first row and the replaced version is in the second row.
The image quality is increased with the cost of bpp increased by
2.7% (from 0.0764 bpp to 0.0785 bpp for the whole image).

adversarial training to fully utilize the generative capacity of
the generator and outputs more photo-realistic images. We
borrow the discriminator used in ESRGAN [18]. Instead of
a standard discriminator, an average relativistic discrimina-
tor tries to predict the probability that a real image is rela-
tively more realistic than a fake one. Following the notation
in ESRGAN, the discriminator loss is defined as:

LRa
D = −Exr

[log(DRa(xr, xf )]−Exf
[log(1−DRa(xf , xr)]

The adversarial loss for generator is in a symmetrical form:

LRa
G = −Exr

[log(1−DRa(xf , xr)]−Exf
[log(DRa(xr, xf )]

Inspired by pix2pix [11], we enhance the discriminator
with the so-called PatchGAN discriminator. The output of
DRa is a matrix instead of a single value. Each value in
the matrix corresponds to a patch of the whole input image
of the discrimiantor. In this way, the discriminator tries to
classify if each patch in an image is real or fake and penal-
izes the structure at the scale of patches. The PatchGAN can
not only retrain more texture but also has fewer parameters
and can be applied to arbitrarily large images. The detailed
architecture of our discriminator is shown in Figure 3.

2.2. Optimization

The objective of our framework consists of four parts:
rate, distortion, perceptual and adversarial loss. For dis-
tortion loss, we use L1 loss since it punishes less for large
difference compared with Mean Squared Error (MSE) loss.
For perceptual loss, we use LPIPS [19] loss instead of VGG
Loss, since it alleviates the artifacts [14]. For adversarial
loss, we use average relativistic loss, more details are shown
in the above section. The overall objective function can be
formulated as:

Ltotal = α×Lrate+λ1×LL1+λ2×LLPIPS+λ3×LGAN

BPP PNSR MSSSIM FID
Low 25.449 0.90502 165.014
Mid 28.329 0.94274 160.297
High 31.015 0.96612 131.711

Table 1. Quantitative results of our method at three bit-rates.

During the training for different target bit-rates, we keep
λs relatively fixed and adjust α, which makes our rate con-
straint much easier than what is used in [14].

2.3. Optimal bit allocation in single image

Lots of professional photographers like to blur the im-
age background to force the viewer to pay more attention to
some target objects and increase the aesthetic feeling. Mo-
tivated by this, we propose the optimal bit allocation tech-
nique to manually allocate more bit on the RoI area and
less on the background area. The RoI area can be obtained
by manual selection or by using a segmentation framework.
This technique can be easily integrated into our framework
since our framework uses gain units to achieve continuous
rate adaptation in a single model. There exists a spatial
correspondence between image x and latent code y. This
means, we can allocate fewer bits for the background by
decrease the corresponding y through the gain unit, and
vice versa, once we got the RoIs in the image. Through
this technique, we can decrease the bit consumption while
maintaining the image quality or increase the image quality
by slightly increase the bit consumption. The effectiveness
of RoI technique is shown in Figure 4.

3. Experiments
We implemented our framework using PyTorch. During

the training phase, we randomly crop 256x256 patches from
the ImageNet dataset and set the batch size to 8. We use
Adam optimizer with β1 = 0.9 β2 = 0.999 to train our
networks. The initial learning rate is set to 1e-4 and halved
at 160k and 500k iteration. We use kaiming initialization
[10] to initialize all our models except for the gain units.
The gain units is initialized to one. We set λ1 to 1e-2 λ2
to 1 and λ3 to 5e-4. For different target bit-rates, we only
modify α and always use variable-rate models. We set the
alpha list to [1.6, 2.6, 4.7] for low bit-rate, [0.75, 1.35, 2.0]
for middle bit-rate, and [0.45, 0.6, 1.0] for high bit-rate.

3.1. Stability at low bit-rate

Jointly using GAN with E2E optimized image compres-
sion at a low target bit-rate is extremely challenging, since
the information used for image reconstruction is very small.
In this case, if we still use the same loss weights as in mid-
dle and high target bit-rates, the training processing would
be unstable and some artifacts will appear. We have three



Figure 5. Qualitative comparison of our method at different bit-rates and VTM. 1st column is VTM reconstruction at qp 32 (around 0.3 bpp
at CLIC2021 valid dataset). 2nd - 4th column is our method at low (0.075 bpp), mid (0.15 bpp), and high (0.3 bpp) bit-rates. 5th column
is the original image patches. Best viewed on screen.

options to stabilize the training:

• Increasing the weight for L1 loss term. L1 loss works
opposite to adversarial loss, it makes the reconstructed
image more pixel-wisely similar to the original image
while adversarial loss helps the reconstruction more
photo-realistic and stochastic. Therefore, the incre-
ment of L1 term aid the training stability. In our ex-
periments, we increase the weight from 0.01 to 0.04.

• Adding average pooling operation after every decon-
volution. The most common artifact is the so-called
checkerboard artifact. It is well-known that deconvo-
lution layers with non-unit strides cause checkerboard
artifacts. We adopt the method proposed in [15] by
adding an average pooling layer after deconvolution
to avoid the artifact. However, the pooling operation
smooths the image and intermediate feature represen-
tation. In middle and high target bit-rates, pooling op-
eration is removed.

• Using the variable-rate model to achieve low bit-rate.
One advantage of the variable-rate model is that the
decoder process both low and high bit-rate informa-
tion. Experiment shows that the mixed training of dif-
ferent bit-rates improve the performance at the lowest
bit-rate.

3.2. Superiority compared with post-processing

Our perceptual image compression framework is E2E
optimized. Since all models are jointly trained, the per-
ceptual loss can also guide the information loss of y dur-
ing quantization. On the contrary, the VTM based post-
processing image enhancement method can only use fixed

information, therefore, limit the generative ability of deep
neural networks. The winner of CLIC2020 is using VTM
with post-processing. We compare our method with theirs
at the same bit-rates in Figure 1. As can be seen, our frame-
work generates a more realistic road texture. Since the re-
construction of VTM lost detail on the road, the enhance-
ment of road texture is very difficult.

3.3. Qualitative and quantitative results

The qualitative results of our model at three bit-rates are
shown in Figure 5. The reconstructions from our method
at low bit-rate are more visually pleasing even compared
with VTM at high bit-rate. Our reconstructions at all three
bit-rates are photo-realistic and without any artifact. With
the increase of bit-rate, the images look more similar with
original images. We also evaluate our results in terms of
PSNR, MSSSIM, and FID on the CLIC2021 valid dataset.
The results are shown in Table 1.

4. Conclusion

In this paper, we propose a learned image compres-
sion framework oriented for visually pleasing reconstruc-
tions. Our framework is optimized by the combination of
rate-distortion, perceptual, and adversarial loss and outputs
photo-realistic images in a wide bit-rate range. We also in-
vestigate the training stability and difference between the
E2E optimized and post-processing framework. We also
want to implement our framework on MindSpore [1], which
is a new deep learning computing framework. These prob-
lems are left for future work.
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