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Abstract

Deep-learning-based compressive autoencoders consist

of a single non-linear function mapping the image to a la-

tent space which is quantized and transmitted. Afterwards,

a second non-linear function transforms the received latent

space back to a reconstructed image. This method achieves

superior quality than many traditional image coders, which

is due to a non-linear generalization of linear transforms

used in traditional coders. However, modern image and

video coder achieve large coding gains by applying rate-

distortion optimization on dynamic block-partitioning. In

this paper, we present RDONet, a novel approach to achieve

similar effects in compression with full image autoencoders

by using different hierarchical levels, which are transmit-

ted adaptively after performing an external rate-distortion

optimization. Using our model, we are able to save up to

20% rate over comparable non-hierarchical models while

maintaining the same quality.

1. Introduction

Rate-Distortion Optimization (RDO) [18] is an impor-

tant tool in many image and video codecs. Here, the en-

coder has the choice between several alternatives during the

encoding process and picks the parametrization resulting in

the lowest cost. This decision is then transmitted to the de-

coder such that the decoder is aware of the decision and de-

codes the bitstream appropriately. Often the best decision

is obtained by an exhaustive search, trying out all possible

combinations.

One prominent example is the block partitioning in video

coders like HEVC [17], VVC [7], VP9 [16], or AV1 [8].

Since all mentioned coders are block-based, the block size

plays a crucial role in both the rate and the achieved image

quality. In most cases, a large block corresponds to small

rate and low quality. These coders therefore mainly use

large blocks for low quality settings in areas without many

details. Adaptive block-partitioning allows to transmit an

image with varying characteristics efficiently by choosing

the best block size for each part of the image.

In recent years, much research has been conducted in

neural-network-based image compression. The dominant

technology is the compressive autoencoder, which extends

the autoencoder as proposed by Krizhevsky and Hinton [12]

with an entropy bottleneck [3].

In this paper, we combine the autoencoder and rate dis-

tortion optimized hierarchical coding. To the best of our

knowledge, we are the first to propose a deep learning-based

compression scheme which allows the coder to choose be-

tween different hierarchical level in a block-wise manner

depending on the image content.

2. Related Work

In 2017, Ballé et al. proposed an end-to-end trained im-

age compression method using an autoencoder with an en-

tropy bottle neck in the latent space [3]. That way it was

possible to train a network that compresses the image into a

low entropy latent space, which can be used to reconstruct

the image at the decoder side. This work has served as

basis for many subsequent approaches which extended the

method in order to achieve better compression of the latent

space. Most notable is probably the introduction of a scale

hyperprior [4]. This hyperprior was subsequently extended

by Minnen et al. in [15] to predict not only the variance but

also the mean of the latent space distribution, also including

spatial correlation derived from a context model.

On the other hand, there has been much research to im-

prove the reconstruction quality of the image by increasing

the generative capabilities of the decoder and finding opti-

mal loss functions. In particular, interpreting the decoder as

the generative network of a generative adversarial network

(GAN) improved the visual quality [19, 14, 9].

There has also been some work to incorporate rate-
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(a) RDONet (b) Latent Space Unit (LS-Unit) (c) Channel with conditional hyperprior
Figure 1. Detailed architecture of the proposed RDONet with all novel components. The input image is denoted as x. Conv c/k/s↓ denotes

a convolutional layer with c output channels, a k × k kernel and a subsampling factor of s. TConv denotes a transposed convolution with

analogous parameters. Both Conv and TConv include a generalized divisive normalization (GDN) layer except those which are immediately

before a Channel or the overall output x̃. cat represents a concatenation along the channels and L(µ,σ) denotes a multidimensional Laplace

distribution with parameters µ and σ. The channel for the hyperprior in (c) is not given in detail for sake of simplicity. We use a standard

autoregressive model with two masked convolutions [10] that generate parameters for a second Laplace distribution.

distortion optimization in end-to-end image compression.

In [20], Wang et al. proposed to train multiple networks,

each specialized on certain characteristics. In the end, the

image is divided into large blocks, each of which is encoded

with one of the networks. The network ID is transmitted as

side information.

3. RDONet

In this section, we propose a novel structure for rate-

distortion-optimized image compression using a single net-

work. In the following, let g denote an encoder function and

f denote a decoder function. In recent approaches, both g

and f are largely fixed during the training process, so there

is no way to externally adapt the coder to the content after

the training is completed. We start our approach, by recog-

nizing that a deep autoencoder with more spatial subsam-

pling steps is capable of transmitting at lower rates, since

there are much less coefficients to be transmitted. However,

since not enough information can be passed to the decoder,

detailed structures can not be reconstructed properly. We

notice that for certain areas a deep autoencoder, which en-

codes a large portion of the picture in one latent space ele-

ment, may be desirable.

We therefore propose RDONet, a hierarchical compres-

sive autoencoder. This structure includes a masking layer,

which sets certain parts of the latent space to zero, such that

they do not have to be transmitted. We show the network

structure in Fig 1. The core of our network is the Latent

Space Unit (LS-Unit) which handles the transmission. In

Fig. 1 (a), we see that we use three consecutive LS-Units.

Just looking at the left side of Fig. 1 (b), each LS-Unit

computes a new sub-sampled representation un+1 from the

input un. This works just like the previous layers of the

encoder, finding deeper representations for the input signal.

The major novelty here is that within each LS-Unit, we can

transmit parts of the latent space. Looking at the right side,

we see that during decoding, we receive some information

vn+1 from the lower LS-Unit which is combined with in-

formation from the current latent space before obtaining the

output vn using a transposed convolution. The lowest LS-

Unit receives a zero tensor as vn+1.

Note, that having only one LS-Unit, which transmits the

whole latent space, corresponds to a standard compressive

autoencoder similar to the approach of Minnen [15]. The

only difference is the additional convolution layer before

transmission over the channel and the use of the autoregres-

sive context model in the hyperprior and not in the latent

space.

The transmission order is bottom to top, so first LS-

Unit 3 transmits parts of the latent space, then LS-Unit 2 and

then LS-Unit 1. Different to standard approaches, we do

not directly transmit the output of the convolutional layer.

Since potentially information was transmitted in deeper lay-

ers, we need to take this information into account in order

to not transmit the same information twice. A straightfor-

ward way would be to subtract the two signals. However,

we decided to use a “generalized difference” in form of a

concatenation and a convolution, as depicted in the lower

part of Fig. 1 (b). It is easily seen that a signal difference

is a special case of that structure. However, this way the

network has the freedom to take the previously transmitted

information into account in any way it sees fit. That way, we

obtain our latent space which we need to transmit. Which

part of the latent space is transmitted is controlled by the

masking layer.
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The masking layer can be influenced externally. We de-

fine three masks m1,2,3, which are associated with the cor-

responding LS-Unit and share the spatial dimensions with

its latent space. When we encode images, the mask is op-

timized such that the rate-distortion measure is optimal for

the image. There are certain constraints to the masks which

are most easily understood when we assign a portion of the

image to each mask entry. So each entry of the deepest mask

m3 corresponds to a 64×64 block. Every part of the image

has to be transmitted exactly once. So if m3(0, 0) = True,

i.e. we transmit the latent space at position (0, 0) in the low-

est layer, the corresponding entries in m2 and m1 are always

set to False. This serves two purposes: First, this limits the

amount of side-information and second, during training it is

encouraged that each latent space can stand for itself. Note

that this also comes close to the intuition of including adap-

tive block-partitioning to end-to-end trained image coders.

Also note that this constraint implies that we do not need to

transmit m1 at all, since there all remaining positions have

to be transmitted.

Finally, we will have a look at the way we transmit each

latent space. Here, we use a hyperprior, similar to [15]. The

only difference is that we use a conditional autoencoder to

transmit the hyperprior. Conditional autoencoders were first

used for coding in [5, 6] in the context of intra prediction

and more recently in [13] for residual coding. As a con-

dition, which is known to both encoder and decoder, we

again use the previously decoded signal. This allows for a

very efficient transmission of higher layers, when the previ-

ously decoded data contains enough information to predict

the current layer. The exact structure of the conditional au-

toencoder we use is shown in Fig. 1 (c).

4. Experiments and Results

4.1. Training

We implemented the network as shown and explained

above using the PyTorch framework. We trained the net-

work using the following loss function:

Ltrain = 0.1 ·Dmse (x, x̃) +Dms-ssim (x, x̃) + λt · r (1)

Here, x and x̃ denote the original and reconstructed image

respectively and Dmse and Dms-ssim denote the MSE and

MS-SSIM loss, respectively. Furthermore, r represents the

total rate in bit per pixel (bpp), we need to transmit all latent

spaces and hyperpriors. This takes into account that we do

not transmit all symbols of each latent space. λt is the La-

grangian multiplier to set the importance of the rate during

training.

Ideally, we need to perform an RDO for each training

step to obtain the best masks, however, this is computation-

ally infeasible. We therefore pick random masks obeying

the constraints from above during the training process.

We train the model on the CLIC21 intra challenge train-

ing set, the TECNICK dataset [2], and the DIV2K dataset

[1]. In total these are 1585 images with varying resolution.

We train the network using the ADAM optimizer [11] and

an initial learning rate of 0.00001. We train the model for

2000 epochs and divide the learning rate by ten after the

first 1000 epochs.

4.2. Rate Distortion Optimization

After training the model, we encode the images using

rate distortion optimization. During RDO, we measure the

performance of the coder using the rate-distortion loss

LRDO = Dms-ssim (x, x̃) + λe · r (2)

To that end, we initialize the masks such that m3 is True

for all positions, which automatically sets the remaining

masks to False. We then test for each entry in m3 if the

coder performs better when we transmit the corresponding

image section using LS-Unit 2 by setting the masks accord-

ingly. In line with the concepts in HEVC we call this a split.

We then check for each of the four corresponding positions

in m2 if another split is advantageous (leading to transmis-

sion in LS-Unit 1) before moving on to the next element

of m3. Preliminary experiments indicated that this proce-

dure does not converge to the global optimum, since parts

of the image are still set to the initial value when the deci-

sion for the first mask elements is made. We therefore use a

two-pass RDO, by repeating the procedure above initialized

with the result of the first pass. Here, the coder is also al-

lowed to reverse splits. This improved the results. In theory,

even more passes are possible, however we found that the

additional gain is too small to justify the additional effort

beyond two passes.

4.3. Experiments

At first, we want to give a visual demonstration of the

effect of the RDO. To that end, we show a reconstructed

image and the corresponding depth information in Fig. 2.

We can clearly observe the expected behavior. In areas with

many fine structures, like the camera and the hair, the RDO

chooses to use the highest possible level for encoding. On

the other hand, in the slightly blurry background, we see

that often the lower levels down to the third LS-Unit are

used.

Next, we want to compare our model against one without

hierarchical latent space unit. For a fair comparison, we use

a model with the same parameters having only one LS-Unit

which we train in exactly the same way. As explained in the

previous section, this model is similar to current compres-

sive autoencoder such as by Minnen et al. [15]. We show

the rate-distortion curve for one image in Fig. 3. At first,

we recognize that λt = 0.04 constitutes an outlier, being
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Figure 2. Reconstructed image and coder depth for the image “sergey-zolkin-1045” from the CLIC validation set for λt/λe = 0.02/0.0625.

The right image shows the depth of the latent space transmitted at each position, where white indicates the highest depth.
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Figure 3. Rate-distortion curve for the image “sergey-zolkin-

1045”. We show one curve for the non-hierarchical model in

which we vary λt. For the hierarchical model with 2-pass RDO,

we show one curve for each λt in which we vary λe.The dotted line

shows the curve we use to compute the Bjøntegaard Delta Rate.

the only value for which the non-hierarchical model is bet-

ter. This tendency can be observed throughout the entire

dataset. We assume that this is due to unfavorable initial-

ization in the training and that another training might solve

the problem. For reasons of fairness and to not overfit on

our test set, however, we decided not to repeat the training.

Second, we notice that one value of λt can produce a wide

range of rate points by varying λe. Our model is therefore

suitable to rate-variable compression, which is not obvious

for deep-learning-based image compression. For the plot,

we varied λe from 0.0625 to 1. For most measurements, the

curves are located well above the reference.

Finally, we present the average rate savings of RDONet

compared to the reference. For these computations, we used

the curve of the reference as shown in Fig. 3 and picked one

rate-point for each λt to create an RD-curve for RDONet.

We chose to pick λe = [0.5, 0.5, 0.25, 0.0125] for λt =
[0.08, 0.04, 0.02, 0.01], respectively, following the intuition

that a larger λe fits best to a larger λt. As visualization,

we included the dotted line in Fig. 3. We first see that 2-

pass RDO in fact works better than 1-pass RDO. In some

cases, the reference performs better, but only by a maximum

of 3.5% in the worst case. On the other hand, in the best

1-pass 2-pass

Worst Case jeremy-cai-1174 +7.5% +3.5%

Best Case casey-fyfe-999 -18.8% -22.5%

Average -4.1% -7.7%

Table 1. Bjøntegaard Delta Rate for the CLIC validation set. We

present the worst, best, and average performance for a 1-pass RDO

and a 2-pass RDO. Negative values denote rate savings.

case, we can save more than 22% for equal MS-SSIM. On

average, we can save 7.4% of bitrate over the entire dataset.

5. Conclusion

In this paper, we presented a novel method to apply

concepts known from adaptive block partitioning in tradi-

tional image and video coders to end-to-end trained image

coders. With our proposed RDONet, we are able to adap-

tively choose the depth of the autoencoder to fit the image

characteristics. We furthermore presented a concrete algo-

rithm how to employ such an RDO using a 2-pass proce-

dure. It is notable that employing RDO at the encoder-side

does not influence the decoder complexity.

Since this work was the first of this kind, adding novel

components to classical autoencoders, we only trained the

network using a MS-SSIM and MSE loss function. How-

ever, in principle the concepts are also applicable to any

other kind of loss, in particular to adversarial losses as

known from GANs, which have the potential to increase the

visual quality further. Currently, the models suffers from

encoder-decoder drifts if two different GPUs are used for

encoding and decoding, which prevented a participation in

this year’s CLIC challenge. In future research, we aim to

make our model more robust against these effects.

In conclusion, these initial results achieved by RDONet

over non-hierarchical networks show the great potential of

this approach. By optimally switching the depth of the

coder in a content adaptive way, we are able to save an av-

erage of 7.4% rate with peak savings of over 22%.
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