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Abstract

In this paper, we study high fidelity variable rate com-

pression framework. Both conventional and learned codecs

in prior works are optimized for objective quality commonly

measured by PSNR or SSIM, leaving perceptual quality op-

timization underexplored. Besides, to circumvent the need

of training separate models under different rate conditions,

we design a novel coding framework to support variable

rate compression. Aside from the variable rate functional-

ity, we propose an adaptive bit allocation unit to strengthen

rate-distortion optimization across different rates. Exten-

sive experimental results demonstrate that our proposed ap-

proach achieves better subjective quality than methods op-

timized by the objective metrics such as MSE, and MS-SSIM

on CLIC 2021 validation dataset.

1. Introduction

Image compression is an important technology to re-

duce the resources of storage and transmission. In recent

years, the rapid development of deep learning has spawned

abundant end-to-end learning-based compression frame-

works [1, 11, 7, 6, 2].Among them, VAE-based frameworks

are of favorable rate-distortion performance thus more and

more prevalent, which adapt joint optimization of rate and

distortion as guidelines.

Employing some objective distortion metrics, most of

the existing VAE-based works are optimized on objective

indicators like mean square error (MSE) and MS-SSIM,

which are not very consistent with human perception. Rip-

pel et al. [12] first employ adversarial training to pursue re-

alistic reconstructions. And Mentzer et al. [10] strive to a

further step, by weighing ”rate-distortion-perception” and

introducing perceptual loss to improve reconstruction qual-

ity effectively. Even though they provide a combined met-

ric for pleasing visual reconstructions, there is no subjective
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explanation for the choice of metric in their method. There-

fore, optimization for high perceptual quality is still under-

explored. Besides, most VAE based methods train several

discrete models for rate adaptation. This brings heavy cost

for the deployment in the real industry scenarios. To address

this problem, Choi et al. [3] provide two adjustable parame-

ters: Lagrange multiplier and quantization bin size. The for-

mer corresponds to discrete rates with large intervals, while

the latter changes rate in a small range. By inserting a pair

of channel-wise units into the network, G-VAE [4] realizes

the continuous rate changing and the increase of parame-

ters is almost negligible. However, when performing rate

adjustment, they lack explicit guidance for allocating bits

according to different spatial contents, which is essential to

the visual quality of the reconstruction.

To alleviate the above issues, we propose a variable rate

compression framework with pleasing perceptual quality

optimization in this paper. First, we choose suitable dis-

tortion metrics as the training supervisions to improve the

perceptual quality. Considering distortion in the compres-

sion process lies on different granularities, we group MSS-

SIM, LPIPS and adversarial loss to instruct the optimiza-

tion of the network. Second, we design an adaptive spatial

bit allocation unit, which achieves quantization with differ-

ent scales according to their contents. Then referring to G-

VAE, we expanded the bit allocation unit as the role of ”gain

unit” to realize variable rate. It cleverly changes the rate by

adjusting the distortion of space content, which has obvi-

ous advantages in the perception quality. With the proposed

methods, our team (IMCL PQ) produces visually pleasing

reconstructions during the validation phase, and detailed ex-

perimental results are shown in Section 3.

2. Proposed Methods

2.1. The overall framework

The framework of the proposed method can be seen in

Figure 1. It can be divided into four parts: encoder, quan-

tizer, entropy model, and decoder. The backbone network

is an improved version based on [7]. Specifically, an input



Figure 1. The overall framework of our image compression model.

image will first be transformed into latent representation y
through the non-linear encoder. Then the latent feature y
will be quantized with the aid of the spatial scale map i,
the detailed operation of the quantization will be discussed

in Section 2.3. After quantization, the quantized feature ŷ
will be coded to bit-stream by arithmetic coding. To for-

mulate the distribution of ŷ for entropy coding, Gaussian

Mixture Model (GMM) is utilized in our model, where the

parameters of the GMM are estimated through hyper-prior

network (including hyper encoder and hyper decoder), 3D

context model, and Residual Parameter Estimation (RPE)

module. Compared with the former work [7], we improve

the decoder by adding a generator [10] in front of it, which

is utilized to enhance the quality of reconstruction images.

In addition, we combine different quality metrics to jointly

optimize the model for better visual quality, which will be

discussed in Section 2.2.

2.2. Improvement of Perceptual Quality

The aim of the compression is to reduce the distortion

D between reconstructed and original image as lower as

possible under the constraints of the limited transmission

bits R, which can be formulated by the Lagrange multiplier

method:

L = R+ λ ·D. (1)

Eq. 1 is usually employed as the loss function in learning

based compression frameworks. Among various distortion

metrics, MSE is commonly utilized, which can measure

the fidelity from the perspective of pixel level. However,

in the low rate setting, the guidance of MSE will result in

blur artifacts, which severely influences the experience of

human subjective quality. Although the model optimized

by MS-SSIM can produce clear reconstructions compared

with MSE, it still fails to reconstruct texture details. For

example, it is hard to reconstruct the text information in

most cases. To obtain decoded images with more texture

details, neural network-based quality assessment metrics

(such as LPIPS [13] and DISTS [5]) are feasible in com-

pression network optimization. Nevertheless, it will also

introduce artifacts such as checkboard effects in images.

On the other hand, generative Adversarial Networks (GAN)

can also bring more details on reconstruction by measuring

the difference in data distribution, while some fake patterns

would influence the visual quality. To utilize the advan-

tages of different distortion metrics and instruct the com-

pression network to reconstruct more pleasant results, we

explore merging different distortion metrics and try to find

the best combination. The detailed subjective results can be

seen in Section 3.2. Specifically, we use MS-SSIM, LPIPS

and adversarial loss as our final distortion metrics, which

can be formulated as:

L = λR ·R+λMS · (1−DMS)+λL ·DL+λG ·DG, (2)

where DMS , DL, and DG are respectively the distortion

metrics calculated by MS-SSIM, LPIPS and discriminator.

λMS , λL, and λG are the corresponding weights. The de-

tailed structure of the discriminator is based on [10]. We

empirically set λMS to 3× 2−6, λL to 5× 10−3, and λG to

7.5 × 10−4. In training procedure, we only need to adjust

the setting of the λR to obtain models on different rates.

2.3. Variable Rate with Bit Allocation

Since human are sensitive to different image contexts,

we can adjust the spatial-wise quantization step to allocate

bits and control local distortion. Furthermore, to achieve

variable rate, the spatial quantization intervals under differ-

ent rates can be used as a rate adaptation unit.

We design a spatial scale map synthesis module for adap-

tive bit allocation. Its structure is shown in Figure 2. Con-

cretely, the model will generate spatial scale map i from

the output of hyper decoder, which is calculated before the

arithmetic coding of y. This spatial scale map has the same

height and width of ŷ but the channel number is 1. It repre-

sents the spatial quantization scale of y, which is formulated

as

Q(y) = round(y ∗ i). (3)

Q(y) is the quantization operation and ∗ means spatial-

wise multiplication. Since the round() operation is not



Figure 2. Detailed structure of the spatial scale map synthesis net-

work.

differentiable, we simulate it with modified uniform noise,

which is learned to adapt to image contexts. It can also be

seen as a simplified noise scale to realize better spatial bit

allocation [8]. To recover the information after the scaled

quantization, we perform the corresponding inverse quanti-

zation at the input of the generator:

IQ(y) = ŷ/i, (4)

where IQ(y) represents the inverse quantization and /
means spatial-wise division. We use quantized hyper prior ẑ
to generate the spatial scale map i for two reasons. First, as

the prior information that can effectively predict the proba-

bility distribution of quantized latent ŷ, ẑ actually contains

the spatial information of y. Second, there is no extra trans-

mission overhead compared with discrete bit-rate model.

Based on the operation of gain units in G-VAE [4], we

group spatial maps {i0, i1, · · · , iK−1} at different rates for

continuous variable rate, where K is a hyperparameter cor-

responding to the number of discrete rate models. So the

quantization in variable rate involves rate selection

Q(y, k) = round(y ∗ [(ik)
l(ik+1)

1−l]), (5)

where k ∈ [0, 1, · · · ,K − 1] is the index of rates and l
represents an interpolation coefficient as in G-VAE. Then

the inverse quantization is

IQ(y, k) = ŷ/[(ik)
l(ik+1)

1−l]. (6)

Eq. 2 is the loss function at one rate. Here, we optimize the

network by accumulating the loss under K rates:

LV BR =
K−1
∑

k=0

[λRk ·Rk + λMS · (1−DMSk)

+λL ·DLk + λG ·Gk].

(7)

3. Experiments

3.1. Implementation Details

We follow the setting in [7] to build our network. We

utilize CLIC training set as our training dataset. During

training, the input image is randomly cropped to 256×256

patches with minibatches of 8. To meet the requirements

at three different bit-rates (0.075 bpp, 0.15 bpp, and 0.3

Table 1. Rate-Distortion Results of Different Metrics Combina-

tions on Kodak at 0.30 bpp.

Metric PSNR MS-SSIM LPIPS DISTS

MSE 31.14 0.9611 0.2010 0.1467

MSE+

LPIPS+GAN
29.85 0.9523 0.0567 0.0871

MSE+

DISTS+GAN
30.44 0.9560 0.1564 0.1286

MS-SSIM 27.63 0.9749 0.2055 0.1543

MS-SSIM+

LPIPS
26.20 0.9498 0.0734 0.1312

MS-SSIM+

LPIPS+GAN
27.00 0.9675 0.0653 0.1068

bpp) in CLIC competition, we train three varaiable rate

models, and each model can adapt to a certain range of

rate changes. Specifically, for 0.075 bpp, we set λRk ∈
{

2−4.5, 2−5.3, 2−6
}

to realize the variable rate, it can fi-

nally achieve the rate range of 0.058 bpp to 0.085 bpp

in CLIC validation dataset. In 0.15 bpp, the setting of

the λR is 2−6, 2−7, 2−8, which realize the range between

0.126 bpp and 0.198 bpp. In 0.3 bpp, we set the λR to
{

2−7.5, 2−9.33, 2−11
}

, and the range of the rate can be

0.242∼0.412 bpp. The training procedure of our method

can be divided into three steps. First, we train network with

high rate λR = 2−11, and only optimize it for two distor-

tion metrics including MS-SSIM and LPIPS. The aim of the

first stage training is to obtain a high rate model as pre-train

weights, which can accelerate the convergence of each rate

points in the next stage. In the second stage, we start to train

single rate-distortion points by utilizing the loss in Eq. 2,

where the λR is respectively set to 2−6.25, 2−8, 2−9.75. The

final stage training will introduce the proposed spatial scale

map synthesis network to realize variable rate for each rate

point. In different training process, we set the initial learn-

ing rate lr as 5e − 5, and decay it after 300000 iterations.

We utilize Adam as the optimizer and train our network on

NVIDIA GTX 1080Ti GPU. It takes about 500000 itera-

tions to finish the training of the first stage, while the train-

ing of second stage needs 300,000 iterations. And the train-

ing of the final stage only needs 100,000 iterations.

3.2. Metrics Combinations for Perceptual Quality

To explore better visual quality for image reconstruction,

we experiment different combinations on MSE, MS-SSIM,

LPIPS, DISTS, and adversarial loss. We utilize Kodak as

the testset. The reconstructed results are shown in Figure 3

and the rate-distortion results are in Table 1.

In our experiments, since the codec optimized with MS-

SSIM metric has demonstrated better visual quality com-

pared with the codec optimized with MSE, we continue

to verify hybrid metrics based on MS-SSIM. We further
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Figure 3. Visual Comparison between Different Metrics Combinations at 0.30 bpp.

Table 2. Comparison on adopting our variable rate (VBR) method.

Methods
Our method

without VBR

Our method

with VBR

BPP 0.07416 0.07402

PSNR 26.890 26.837

MS-SSIM 0.93353 0.93017

Average Preference 27.8% 72.2%

Table 3. Results on CLIC 2021 validation dataset.
Task FID PSNR MS-SSIM

Image 075(valid) 177.240 26.311 0.94040

Image 150(valid) 160.317 28.918 0.97109

Image 300(valid) 147.937 30.823 0.98388

use LPIPS with MS-SSIM to enhance performance in de-

tails, but the experimental results show that it will instead

generate worse visual quality due to additional texture arti-

facts (checkboard effects). Inspired by the success of GAN

in [10], we combine MS-SSIM, LPIPS, and GAN, and com-

pared it with the model optimzed by MS-SSIM. With the

aid of the generator, the decoded images can obtain realis-

tic texture details compared with the reconstructions from

MS-SSIM optimized model. Besides, as reported in [9],

compared with LPIPS, DISTS is proven to have better con-

sistency with human subjective quality scoring. Therefore

we try to replace LPIPS with DISTS and compare their

performances. However, the model optimized by DISTS

will generate more blurry images, which reduces the sub-

jective quality. Finally, we compare the proposed hybrid

metric(MS-SSIM, LPIPS and GAN) with the model that

optimized by the loss utilized in [10], and better perceptual

quality can be achieved from our experiments.

3.3. Variable Rate

Table 2 shows compression performance influences of

VBR in terms of both subjective and objective quality,

which is tested on the CLIC validation dataset. The per-

formance drop of VBR is minor, which is difficult to com-

pare quality differences. Therefore, we employ 5 experts

to conduct subjective experiments and test the objective

metrics (PSNR and MS-SSIM) to evaluate the performance

of VBR. Obviously, our variable rate approach has over-

whelming subjective advantages while nearly no drop on

MSE and MS-SSIM. Based on the proposed framework, we

obtain objective results on CLIC competition, and perfor-

mance results on validation phase can be seen in Table 3.

4. Conclusion

In this paper, we introduce our work utilized in CLIC

2021 competition. We first focus on the improvement of

perceptual quality. In detail, we analyze the influence of

different metrics in this part and find a better metric com-

bination for pleasing visual reconstruction. Then we intro-

duce spatial scale map to realize variable rate in our work.

It utilizes different scales in spatial contents for better rate

adaption. As shown in experiments, our approach achieves

best subjective quality compared with models optimized by

other metrics, and realizes variable rate with even better vi-

sual quality.
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