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Abstract

With the development of compression technology, objec-

tive metrics (e.g. PSNR, MS SSIM) cannot satisfy our need,

especially in extreme low bit-rate compression, thus more

attention is being paid on perceptual quality. Since peo-

ple have different standards for objective evaluation. For

this reason, we simplify the topic with the consideration that

people will strict more on interested region, so a ROI(region

of interest) based image compression model is proposed

with team name ‘Sub201’. For the ROI, we expect its recon-

structed part to be more accurate, while the background,

server distortion is tolerable, and fake texture can be gen-

erated. Firstly, a weighted mask from saliency map is used.

Secondly, to balance the difference of ROI and background

area, different losses are applied separately. What’s more,

GAN and LPIPS are utilized to generate more texture in

background. At last, variable rate method is adopted to re-

alize rate control, and it performs well with perceptual met-

ric. Experiment shows that our method can achieve better

performance both in visual and objective quality.

1. Introduction

Image compression as a mature technology has been de-

veloped for decades, which aims to balance the tradeoff be-

tween rate and distortion: entropy of discretized representa-

tion and error arising while constructing[17]. For traditional

codec, such as JPEG and JPEG2000, rate and distortion are

optimized by hand separately. Recently, neural compres-

sion made rate and distortion optimization in an end-to-end

manner[4, 1, 5, 14, 12, 8].

In extrame low rate compression, objective metrics per-

form bad visually, perceptual quality enhancement attracts
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more attention, methods[15, 2, 18, 11, 3, 13] had been pro-

posed with GAN to generate perceptual texture. Perceptual

quality as a kind of high-level metric also adopted, such

as VGG[16], LPIPS[21]. Thus compression transfers to

the optimization of rate-distortion-perception. Since people

have different standards for subjective criterion, for some

content sensitive images, such as faces, documents, keep-

ing its authenticity is more important than generating vivid

but fake texture.

From this point, we propose a ROI based image com-

pression method. Based on the framework of [13], we in-

troduce ROI mask from salience map to guide the network

firstly. Secondly, to further utilize the prior information, for

areas of background and ROI, different loss functions are

used separately to obtain optimal visual quality technically.

Basically, more bits are allocated to the area of ROI. At last,

to satisfy target bits, our model is trained with a variable

rate compression method inspired from [9], and it performs

better than non-variable rate model.

2. Method

Figure 1 provides a high-level overview of our proposed

method. In the following chapters, we will separately intro-

duce the network structure, ROI compression, variable-rate

implementation.

2.1. Network architecture

Our network is based on a main auto-encoder with hyper-

prior network. The main encoder architecture is shown in

Figure 2, which contains residual and attention mechanism.

In order to capture both channel-wise and spatial-wise re-

lationships, we utilize a channel-spatial attention block in

our main autoencoder, as shown in Figure 3. Different from

previous work [19, 20], we introduce residual blocks both

in trunk and attention branch to extract more powerful fea-

tures. Batch normalization layers are removed and ReLU is

used in residual blocks.



Figure 1. Overall architecture of the proposed image compression framework. The blue stacked layer represents the image compression

network, and the yellow stacked layer represents the hyperprior network. The ROI Network is not trainable. VGain and Inverse VGain is

used to implement variable rate. AE/AD are short for arithmetical encoder/decoder. MASK processing will be described in Section 2.2.3.

Figure 2. Network architecture of our main encoder.

Figure 3. The structure of our channel-spatial attention mod-

ule.”RB” means residual block.

2.2. ROI Compression

In our model, to design corresponding optimization

methods for different image contents, the image is divided

into two types of regions. The first type of area includes hu-

man faces, text, etc. People require such textures to be accu-

rately reconstructed. For the second, more attention will be

paid on the perceptual quality even it deviates its original.

Thus, a ROI guided optimization method is introduce.

2.2.1 ROI Mask

When considering segmentation, instead of labeled seman-

tic segmentation, visual saliency detection can distinguish

the image into the focused area and background, which is

more suitable to our strategy. Different from [6], saliency

regions are generated offline through a saliency detection

network[7], which is fixed as a strong supervision while

training.

Mask2D = σ(Detection(x)) (1)

where Detection denotes the saliency detection network

and σ refers to sigmoid function.

For the saliency map, there are sharp boundaries between

different regions, so transition method should be used. Fig-

ure 5 shows that the decoder generates noise at such bound-

aries with gan loss. Therefore, we adapt a convolution layer

(the filter size is 51, and weights are all set to 1) to generate

a 2D ROI mask RM2D to smooth the saliency map.

RM2D = Smoothconv(Mask2D) (2)

2.2.2 Distortion Loss

Under the guidance of RM2D, we use differentiated loss

functions to optimize the ROI and the background area,

dROI and dBG.

dROI = RM2D ⊗MSE(x, x̂) (3)

dBG = 1−MS SSIM(x, x̂) + λp × dP (4)

x and x̂ denote the input and reconstructed image. And

⊗ refers to element-wise multiplication. dROI uses MSE as

a measurement, and it only takes effect in the ROI. While,

dBG includes MS SSIM and a perceptual loss LPIPS as dP ,

which proves to be closer to human visual evaluation stan-

dards. The default λp is 0.5.

2.2.3 ROI Latents

From the perspective of visual quality optimization, more

bits are allocated to the ROI to enhance the accuracy of the

reconstructed features. When the image is mapped into la-

tent representations by the encoder, the spatial characteris-

tics are still preserved even down-scaled by 16x. So for the

latents, we can generate ROI mask RMLatent applied on it

by averaging pooling (stride is set as 16):

RMLatent = AvgPool(RM2D) (5)

With the weighted RMLatent, latents in ROI are mag-

nified, thus the area of ROI will occupy more bits in the



Figure 4. Visual quality comparison of reconstructed images. Comparison of the visual quality of the reconstructed image. BASE represents

the compression model without deploying the ROI module. The w/o ch and w/o GAN isolate the channel protection strategy and the GAN

model respectively. ROI1.5 and ROI1.0 represent the complete ROI model, and the alpha is set to 1.5 and 1.0 respectively.

Figure 5. Comparisons with different masks.

generated code stream. In addition, we use α to control the

weight of the ROI in terms of rate allocation.

LatentROI =
RMLatent + α

α
⊗ Latent (6)

Here, a smaller α means more bits are allocated to the

ROI area in latents. What’s more, we protect a certain num-

ber of channels to retain appropriate information for the

background to avoid the fading of its reconstructed texture.

LatentROI = Latentch0−ch47||LatentROIch48−ch191

(7)

Assuming there are 192 channels in latents, the first 48

feature maps are protected, and the following channels are

weighted with [6] for corresponding channels.

2.3. Variable Rate

To realize rate control, we adopt a variable-rate strategy

as in [9]. In the encoder, a scaled matrix M ∈ Rc∗n is

introduced to scale the encoded latent representation y ∈
Rc∗h∗w channel by channel, where c, h, w, n represent the

number of the channels, the height, width of latents, and the

number of scaled vectors respectively. The scaled vector

can be denoted as vs = {αs(0), αs(1), ..., αs(c−1)}, αs(i) ∈
R, where s represents the index of the scaled vectors in the

scaled matrix. The scaled matrix is trained to obtain differ-

ent bit rates by scaling the channels of the latent represen-

tation as Eq.8. Here y represents LatentROI .

ȳs = G(y, s) = y ⊙ vs, (8)

where G(·) represents the scale process, ⊙ represents

channel-wise multiplication, ȳs is the scaled latent repre-

sentation.

In the decoder side, another scaled matrix M ′ ∈ Rc∗n

is applied to rescale the quantized scaled latent represen-

tation ŷs. The inverse-scale vector is denoted as v′s =
{βs(0), βs(1), ..., βs(c−1)}, βs(i) ∈ R. The inverse-scale

process works as Eq.9.

y′s = IG(ŷs, s) = ŷs ⊙ v′s, (9)

Each pair of the scaled vector vs, v
′

s are corresponding to

a specific Lagrange multiplier which are included in the loss

function for training to acquire models with variable rate.

For purpose of accurate rate control, a continuous vari-

able rate model is need in inference.

vs · v
′

s = C, (10)

where vs, v
′

s (s ∈ [0, 1, ..., n− 1]) represent existing scaled

vector pairs, and C ∈ Rc is a constant vector. More vec-

tors can be interpolated linearly through these scaled vector

pairs as [9].



Figure 6. Comparison of rate-distortion performance of Our model with BPG and ICLR2019 [10]. ↑ and ↓ respectively represent larger

and smaller values are better.

2.4. Quantization and Entropy Model

In our model, an additive i.i.d uniform noise is used to

approximate quantization on latent representations to make

the framework end-to-end trainable.

Following the work of Cheng et al. [8], we intro-

duce Gaussian mixture model to parameterize flexible con-

ditional distributions of LatentROI representations com-

bine with an auto-regressive context prior and hyperprior.

For the latents of hyperprior ẑ, it’s modeled by a non-

parametric, fully factorized density model. Finally, the total

bit rate cost r is defined as Eq.11.

r = r ˆLatentROI
+ rẑ (11)

2.5. Adversarial Training

With a ROI loss that protects key information of con-

tents and reduce substantial redundancy in backgrounds, we

further introduce a conditional GAN in the rate-distortion

trade-off to maintain high perceptual fidelity of recon-

structed images at low bit-rate, as that in [13], where the

information used in conditional GAN is ROI latents, as is

defined in Eq.[3,4].

3. Experiments

3.1. Training

Models are trained in two stages. Firstly, it’s trained

without GAN to initialize parameters stably, then the model

with GAN are trained to improve subjective quality. The

size of the images is cropped to 256×256, and we use Adam

optimization with the initial learning rate of 1e−4. Mean-

while, batch size is set to 8, and it takes 1e6 iterations for

the model without GAN and with GAN respectively.

While training for variable rate, three models of

0.075bpp, 0.15bpp and 0.3bpp are optimized. For each

variable-rate model, we set six sets of scaled vectors and

Lagrange multipliers [vs, v
′

s, λs] in training. For 0.075bpp,

λ is selected from [120, 220, 320, 420, 520, 720], and [30,

90, 140, 190, 240, 290] and [10, 20, 30, 50, 70, 90] for

0.15bpp and 0.3bpp separately.

3.2. Subjective Quality Evaluation

Figure 4 shows the details of the reconstruction of our

model. Compared with HIFIC [13], a learning image com-

pression method with the most advanced visual quality, our

model can reconstruct more accurate textures resulting in

higher visual quality. From the hat area on the left, we can

see that the colors of our reconstructed image are more ac-

curate, while in the face area, there are less noise with more

vivid and accurate textures in our image. As for the text de-

tails, on the right side of the figure, due to the existence of

GAN, the fake texture generated by HIFIC has seriously af-

fected the quality and the words are out of shape. In our ROI

model, this problem is solved regardless of whether GAN is

included or not.

3.3. Objective Quality Evaluation

Figure 6 demonstrates that the rate-distortion curve of

our model and other advanced compression models in

CLIC2021 validation set. It can be seen that, compared with

ICLR2019 [10] and BPG, our ROI compression model has

a great advantage in perceptual metrics (LPIPS, FID), while

its performance on MS SSIM is mediocre. In the curve of

MS SSIM, ROI 1.5 and w/oGAN perform better than the

BASE, which indicates that the objective quality did not

decrease with the deployment of the ROI. We assume such

result to the protection of channel as explained in 7.

4. Conclusion

In this paper, ROI based image compression method is

proposed to improve visual quality. To fully extract the in-

formation of ROI, we utilize it not only in loss but also la-

tents, and method to obtain ROI based latents is proposed.

A better balance of rate and distortion between ROI and

background are discovered. At last, we also verify the ef-

fectiveness of variable rate method, that is one model can

get different rates with different subjective quality in one

model. Experiments results prove that our method can sur-

pass the state-of-the-art method both in subjective and some

high-level objective metrics, such as LPIPS, FID.
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