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Abstract

Benefit from its capability of learning high-dimensional

compact representation from raw data, the auto-encoders

are widely used in various tasks of data compression. In

particular, for deep image compression, auto-encoders gen-

erally take the responsibility of mapping original images to

the latent representation to be coded. In this paper, we pro-

pose a new framework for deep image compression by de-

vising a loss function for latent optimization, and adopting

the differentiable approximation of quantization. In our ex-

periments, both subjective and objective results can confirm

the effectiveness of our contributions.

1. Introduction

In recent years, with the development of deep learn-

ing technology, researchers have begun to apply the related

technologies to image and video compression. Ballé et

al. first proposed an end-to-end joint Rate-Distortion op-

timization for image compression in [1] and integrated the

quantization function into the CNN based network. Theis

et al. used sub-pixel architecture and designed a new im-

age compression network in [15] to process high-resolution

images more efficiently. However, there are problems for

CNN-based deep image compression, such as the need to

train different models for different compression ratios or

the inability to dynamically adjust the size of the input im-

age. To avoid deficiencies of CNN-based auto-encoders,
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Toderici et al. [16] proposed a deep image compression

model based on RNN. Rippel et al. proposed a lightweight

and quickly deployable image compression model [14] us-

ing GAN, which achieves real-time encoding and decoding.

Auto-encoder has been widely used in the field of deep

learning including image reconstruction, data compression

[7] and data generation [17, 13, 12]. In the field of deep im-

age compression, auto-encoder is applied to remove image

redundant information. At present, most of the optimiza-

tion goals in the field of deep compression are to reduce the

error between the input original image and the output recon-

structed image. These errors include image reconstruction

error (MSE, 1-MS-SSIM) or perceptual loss (LPIPS) [18].

Among them, the perceptual loss is considered to be closer

to the perceptual evaluation of the human eye. However,

the latent high-dimensional feature representation learned

by auto-encoder also contains a lot of useful information

which has been rarely mentioned in the field of deep com-

pression before. In this article, we will use the latent infor-

mation for optimization and training.

Due to the discrete and non-differentiable nature of

quantization, the continuous optimization method like

stochastic gradient descent (SGD) cannot be directly used

to optimize quantized representation of network outputs.

Previous works have proposed many methods to solve this

problem. Uniform noise was added to replace quantization

in the training process in [2] . Uniform noise can be used

to simulate the difference between the quantized value and

the real-value, and the gradient can be calculated during the

back propagation. Linear approximation of the quantization

process was proposed in [8] where normal quantization was

kept for the forward propagation, and a linear model was

designed to approximate the quantization for the backward

propagation. More methods of quantization approximation

are proposed and validated in the field of deep compression,

such as differentiable soft quantization [6], piecewise poly-

nomial function [10] and so on. In this work, we adopt a



piecewise function to replace the discrete quantization dur-

ing training.

2. Proposed Method

2.1. Overview

Our autoencoder architecture consists of two parts, one

is the main network and the other is the hyperprior which

is similar to [4]. The main network is shown in Fig-

ure 1, which is composed by residual blocks, attention mod-

ules and convolutional layers. For the encoder, two types

of residuals block are devised. Both of them are com-

posed of two 3x3 convolution kernels, and one of them

includes the sub-sampling operation. Meanwhile, we use

skip-connections in both sides of the encoder and the de-

coder to facilitate feature aggregation.

Figure 1. The encoder and decoder of the main network.

The attention module help the model pay more attention

to significant regions of the image and improve the coding

performance of areas with richer textures. In [19], a residual

non-local attention structure is proposed for high-quality

image restoration, and we notice that this structure is also

used as an attention module in [4] and [5]. In the proposed

network, we refer to the design of the attention module men-

tioned above and make a minor adjustment as follows: we

discard the non-local module and keep the residual block.

Our attention module is shown in Figure 2.

The hyperprior network is designed to extract side infor-

mation from the encoded representation y. We use the side

information to improve the entropy estimation of the latent

representation. In the proposed network, we use sub-pixel

convolution and down-sampling to preserve more details.

At the end of the hyperprior decoder, there are the Gaus-

sian entropy model and the 3D context model. We adopt

the Gaussian modeling for accurate estimation of the en-

tropy parameters. We use 3D context model as introduced

Figure 2. The attention module.

in [9]. The input tensors are converted to a 3D tensor and

then processed by 3D CNN. 3D context model can make

use of feature representations from different channels and

facilitate the estimation of Gaussian entropy parameters.

The whole hyperprior network is illustrated in Figure 3

and the entropy estimation module is depicted in Figure 4.

Figure 3. The encoder and decoder of the hyperprior network.

Figure 4. The entropy estimation module.

2.2. Loss Function and Latent Optimization

In the proposed framework, our training and optimiza-

tion use the structure of auto-encoder and latent represen-

tations encoded by the encoder. Since our network adopts

the skip-connections structure, the latent representations en-

coded by the encoder of our network contain rich multi-

dimensional features of the image. We hope to make full

use of these feature representations that are more efficient

than the original image data for our network training and

optimization.

For the calculation of the loss of latent variables, we

adopt the following calculation process: the original latent

variables are passed through the decoder to obtain the re-

constructed image and the reconstructed image is input into

the encoder again to obtain the reconstructed latent variable.



We define the error between the original latent variable and

the reconstructed latent variable as latent loss. The differ-

ence between the calculation method of latent loss and im-

age reconstruction loss can be seen in Figure 5.

We hope that our network can preserve latent feature rep-

resentations as much as possible. With this goal, we use the

L2 norm for the calculation of latent loss Ll. The formula

is as follows:

Ll = ‖E(x)− E(D(E(x)))‖
2
, (1)

in which x stands for the input image, E stands for the en-

coder, D stands for the decoder.

The loss function of the experiment includes four parts,

namely perceptual loss, reconstruction loss, entropy coding

loss and latent loss. We denote the loss function as follows:

L = λpLp + Le + λlLl + λrLr. (2)

For the perceptual loss function Lp, we use LPIPS. For the

reconstruction loss function Lr we use MSE and a differ-

entiable implementation of (1-MS-SSIM), and the entropy

coding loss Le includes two parts of the entropy coding

length of the main network and the hyperprior. The latent

loss Ll includes that of the main network and that of the

hyperprior part.

(a) (b)

Figure 5. Difference between (a) image reconstruction loss and (b)

latent loss.

2.3. Piece­wise Function for Quantization Approx­
imation

In the back propagation, unlike the previous method of

adding random noise, we use a nonlinear piece-wise func-

tion to approximate the quantization process so that param-

eters of the entire network can be updated by gradient de-

scent. We also notice that most values of the latent repre-

sentation are ranged between -1 and 1. Therefore, we design

the piece-wise function for quantization approximation:

G(x) =
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Meanwhile, the derivative of this equation is formulated

as the following piece-wise linear function:
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(4)

Random noise can only roughly simulate the quantiza-

tion process. The approximation with random noise may

fail in modeling the exact rounding direction for different

sub-intervals. It also cannot accurately simulate the deriva-

tive of the quantization function. On the contrary, the piece-

wise function can better reflect the trend of data changes in

the quantization process. Its triangular derivative is closer

to the derivative of the discrete quantization process than

other methods [10], as illustrated in Figure 6.

(a) (b)

Figure 6. (a) The discrete quantization function and the piece-

wise function (Equation 3) for quantization approximation, (b)

The derivative of each function.

3. Experiment

We set the number of channel as 128 for all three dif-

ferent bit-rates, namely 0.075 bpp, 0.15 bpp, and 0.3 bpp.

In the training phase, we use 192 × 192 patches randomly

cropped from the CLIC 2021 training dataset. We adapt a

two-step training process: in the first step, our loss function

only includes Le, Lr and Lp. In the second step, we add

latent loss Ll into the loss function. The learning rate is set

0.0001 initially and gradient decay is applied by decreasing

the learning rate by half every 6 epochs. The batch size is

set to 4.

In order to verify the effectiveness of the proposed la-

tent optimization, we conduct an ablation study. Note that



during the calculation process, we use piece-wise quantiza-

tion approximation instead of direct quantization. All pa-

rameters are set under training mode. Under the extremely

low bit-rate of 0.075 bpp, we select two patches from CLIC

2021 validation dataset for comparison, which are visual-

ized in Figure 7. Although the model optimized with la-

tent loss has lower PSNR (28.279 versus 28.898) scores and

lower MS-SSIM (0.942 versus 0.944) scores than the one

optimized without latent loss, it provides better perceptual

quality.

(a) Original picture. (b) Optimized with la-

tent loss.

(c) Optimized without

latent loss.

(d) Original picture. (e) Optimized with la-

tent loss.

(f) Optimized without

latent loss.

Figure 7. Comparison between reconstructed images with the

model optimized with (0.073 bpp) and without latent loss (0.078

bpp).

Besides, we also conduct an ablation study for piece-

wise function for quantization approximation. We train two

models with the same hyper-parameters. One is trained

with piece-wise quantization approximation and the other

is trained with uniform noise. Both of the models are

optimized with latent loss. Result shows that piece-wise

quantization approximation can improve PSNR by 0.13 and

MSSSIM by 0.0002 with lower bit rate (0.2568 bpp versus

0.2579 bpp).

As shown in Figure 8, we adopt MS-SSIM as the quality

metric. Our proposed method is compared with other deep

learning based competitive methods for image compres-

sion such as Balle’s work [2] (bmshj2018 factorized means

model with factorized prior and bmshj2018 hyperprior

means model with scale hyperprior), Minnen’s work [11]

(mbt2018 mean means model with mean scale hyperprior

and mbt2018 means model with joint autoregressive hierar-

chical priors) and Cheng’s work [4] (cheng2020). At low

bit rate (about 0.075 bpp), our proposed method has sur-

passed Balle’s work by a large margin. When compared

with Minnen’s work , we also achieve comparable results.

At middle bit rate (about 0.15 bpp), our proposed method

has surpassed Minnen’s work and the results are compara-

ble with Cheng’s work. At high bit rate (about 0.3 bpp), we

Figure 8. Rate-distortion curves of the proposed method and other

competitive methods for image compression (Quality measured

with MS-SSIM).

bpp FID PSNR MSSSIM

0.282 192.101 32.987 0.979

0.143 218.328 30.490 0.966

0.073 258.160 28.279 0.942
Table 1. Evaluation results using the CLIC 2021 validation

dataset. Note that FID score is not deterministic because of the

random crop selection.

achieve excellent performance comparing with other state-

of-art models. Our test code is derived from [3]. Finally,

Table 1 shows the results using the CLIC 2021 validation

dataset. Our submission team’s name is “IVPG”.

4. Conclusion

In this paper, we propose a novel method for deep im-

age compression. Our framework includes latent optimiza-

tion and quantized approximation function. Making use of

the new method, we further improve the quality of recon-

structed images with respect to perception. In the exper-

iment section, our ablation study and comparison results

prove the effectiveness of our framework.
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