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Abstract

In this paper, we propose a hybrid video coding framework.
The framework is built on the basis of VVC (Versatile Video
Coding) video coding standard and constructs an implicitly
aligned multi-frame fusion model to accomplish subjective
video quality enhancement. The proposed framework
mainly optimizes video compression efficiency from two
perspectives. First is the sequence-level dynamic rate
control algorithm, which assigns the appropriate bitrate
to each video to obtain the highest overall video quality.
Second is the MAQE, a multi frame implicit alignment
video quality enhancement model, which performs mo-
tion alignment through multiple convolutional kernels of
different sizes, uses a residual aggregation layer to fuse
features of different frames, and then uses an enhanced
attention module to adaptively deflate features based
on spatio-temporal contextual features, so as to more
effectively fuse feature of multiple frames and obtain higher
quality reconstructed frames. The proposed method is
validated on two tracks of 0.1M code rate and 1M code
rate on CLIC-2022 video compression task, Experimental
results show that the proposed method achieves PSNR of
30.301 and 37.251 and obtains MS-SSIM of 0.9368 and
0.9875. This paper is a comprehensive presentation of the
scheme used by the Night-Watch team of the CLIC-2022
video track.

1. Introduction
In the last decade, video content has accounted for an

increasing share of traffic in the Internet, and as a result
a large number of video compression techniques have been
developed to compress video as much as possible, which in-
clude standards such as H263 [6],H264 [8],H265 [7],H266
[1],AVS [3] and AV1 [2]. Since H265, the code stream size
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of video content has been reduced as much as possible by
building hybrid video coding methods that use a number
of different tools for lossy encoding of video. These men-
tioned past standard methods compress video mainly by, ex-
tracting features, quantizing features, and entropy coding
with PSNR (peak signal to noise ratio) as the optimization
goal. In such an optimization model, MSE (Mean Square
Error) is usually used as the fidelity measure to calculate R-
D Loss, but since the subjective human perceptual quality is
not absolutely proportional to PSNR, the optimal perceptual
quality is not obtained by using PSNR as the optimization
target exclusively. To more accurately evaluate the compe-
tent quality of video images, the multiscale structural simi-
larity metric is widely accepted by researchers.

In order to effectively improve the subjective quality of
reconstructed videos, this paper proposes a hybrid compres-
sion strategy that can obtain a subjective quality exceeding
that of VVC. In this paper, first video sequences are dynam-
ically bit-rate assigned to obtain the highest overall evalua-
tion metric. And then an implicit motion alignment-based
video subjective quality enhancement model is constructed.
Such a hybrid video compression strategy can effectively
improve the subjective video quality. The main contribu-
tion classes of this paper are summarized in the following
points.

• We proposes the sequence-level dynamic rate control
algorithm that can obtain the highest quality video with
the overall bitrate of multiple videos less than the up-
per limit of the track and obtain the best R-D tradeoff.

• We propose a deep neural network model to enhance
the subjective quality of the reconstructed video by
implicit alignment, multi-frame fusion, and multiple
residual feature attention modules.
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Figure 1. Framework of our solution. For the validated videos released by CLIC2022, we first encode each video using different QPs
(using VTM) and next select the appropriate QP for each video by the proposed dynamic code rate allocation strategy, after which each
video has a selected BIN stream. We transfer the selected stream to the decoder side and decode it using the decoder. Then the video
quality is enhanced using our proposed MAQE model to obtain the final video.

2. Methodology
2.1. Framework

In this section, we introduce the proposed sequence-level
dynamic rate control algorithm and subjective quality en-
hancement model. First we introduce the overall frame-
work, the whole framework is shown in Figure 1. For the
source video XRAWi (total N videos), we first obtain the
bitstream Bij (i-th video, j-th QP) by encoding XRAW in
multiple steps (using several different QPs, total M QPs) us-
ing the VVC encoder. Next, Bij is decoded using the VVC
decoder to obtain XRecij , and the bitstream size and PSNR
are calculated for each reconstructed video. Given the over-
all upper limit of the bitrate, the optimal bitstream combi-
nation (OBij) is selected using the proposed sequence-level
dynamic rate control algorithm, where one QP is selected
for each video, so that we obtain the best bitrate combina-
tion. Next, the selected bitstreams OBij are transmitted to
the decoder side for decoding and post-processing enhance-
ment. At the decoder side, we first use the VVC decoder
to decode the bitstream OBij to obtain the reconstructed
video XRecij , and next use the proposed MAQE to perform
quality enhancement on XRecij to output the final video se-
quence XRi.

The entire video encoding process can be formalized as
a formula. At the encoder side, the source video is first
encoded with multiple different QPs using VVC, and then
the code rate is assigned using the sequence-level dynamic
rate control algorithm (SDRC).

Bij =V V CEncoder(XRAW )

OBij =SDRC(Bij , XRAW )
(1)

Decode the video at the decoder side using VVC and
quality enhance the video using convolutional neural net-
work model.

XRecij =V V CDecoder(BSij)

XRi =MAQE(XRecij)
(2)

2.2. Sequence-level dynamic rate control

In the video track of CLIC-2022 challenge, for a given
set of validation sequences, the evaluation metric is subjec-
tive coding quality under average bitrate constraints, includ-
ing 0.1mbps and 1mbps. To facilitate the implementation of
the algorithm, we introduce quantifiable objective metric,
i.e., PSNR. This task can be formulated as :

{B} = argmax
{B}

N∑
i=1

Vi

s.t.S ≤ N · T ·Ravg

(3)

where B is the set of the encoded bitstream. N is the num-
ber of sequences in the validation set. Vi represents the av-
erage PSNR of the ith sequence. S is the total size of all
encoded bitstream. T is the duration of each sequence and
it is fixed as 10. Ravg is the limited average bitrate.

Therefore, the task can be regarded as solving a dynamic
programming problem. We propose a sequence-level dy-
namic rate control algorithm to achieve the trade-off be-
tween coding quality and bitrate (see Alg.1). First of all,
each sequence is encoded with various quantization param-
eters (QPs) and calculate the PSNR and corresponding size
of the bitstream under each QP. Generally, a larger bitstream
size indicates a higher PSNR and the rising slope is gradu-
ally decreasing. And then, by setting a reasonable thresh-
old λ and judging whether the slope is below it, the most
suitable encoding settings are selected for each sequence
through iterative optimization and ensure that the total size
of all bitstream does not exceed the limit.

2.3. Multi-frame fusion quality enhancement model

Inspired from deep learning-based video recovery and
hyper-segmentation methods, we propose a multi-frame fu-
sion convolutional neural network model MAQE applied
to the video compression post-processing stage. We will
present the architectural composition of MAQE here, and
the overall framework is shown in Figure 2.
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Figure 2. Architecture of proposed MAQE. The current frame and the six neighboring frames are input to the model simultaneously, and
the spatio-temporal information is first extracted using convolutional kernels with kernel size of 3, 3, 5, 7 and dilation size of 0, 1, 1, 1
to complete the implicit feature alignment. Next, it is input to 8 residual blocks, followed by 4 RFA modules, which are able to perform
spatio-temporal attention to better extract information useful for the current frame. Finally the reconstructed frames are output after vanilla
convolution and global skip connection.ESA module is the same as [5].

Algorithm 1: Sequence-level dynamic rate control
Data: largest QP Ql, smallest QP Qs, the average

PSNR under QP VQ, the size of bitstream
under QP SQ, threshold λ

Result: Optimal QP Qt

1 for Q← Ql to Qs+1 do
2 k ← (VQ+1 − VQ)/(SQ+1 − SQ);
3 if k>λ then
4 continue;
5 else
6 Qt ← Q;
7 break;
8 end
9 end

For the video enhancement task, due to the existence
of spatio-temporal information correlation in videos, con-
structing a spatio-temporal information interaction mech-
anism can effectively enhance the enhancement capability
of the model. Thus, in this paper, we design a simple
multi-frame restoration model to capture motion informa-
tion through convolutional kernels with different void rates,
so as to implicitly accomplish motion alignment and effec-
tively fuse video multi-frame information. After extracting
multi-frame information, extracting effective information
from multi-frame information can enhance video recovery,
so the model needs to be able to perform differential fea-
ture extraction for different regions of different frames, and
to achieve this function, we use a residual module based on
the spatial residual attention mechanism. In order to achieve
this function, we use a residual module based on the spatial

residual attention mechanism.
Our specific implementation is described next. Firstly,

the decoded video frame XRec is passed through Conv3×3
with dilation 0, Conv3× 3 with dilation 1, Conv5× 5 with
dilation 1 and Conv7 × 7 with dilation 1 convolution ker-
nels, and then the obtained features are stitched. Then, the
features are input to 8 residual modules in series, through
which the advanced features of video frames can be ex-
tracted and the spatio-temporal information of video frames
can be fused, and then the output features are input to 4 RFA
[5] residual modules, which can perform spatio-temporal
attention to the input video frame information and weight
the features in different time spaces, so that the fidelity fea-
tures in different frames can be extracted more specifically.
The RFA module can perform spatio-temporal attention on
the input video frame information and weight the features in
different time spaces, so that the image features with high fi-
delity in different frames can be extracted in a more targeted
manner, which can reduce the artifacts brought by multi-
frame fusion. The final output XR is obtained by summing
the input frames after a vanilla convolution with a kernel
size of 3.

3. Experiments
3.1. Experimental setup

We choose the validation set provided by CLIC2022 to
evaluate the proposed method, and choose MS-SSIM and
PSNR as the evaluation metric. For the first half of the cod-
ing framework we choose VTM, a standard implementation
of VVC, as the codec, and the coding configuration are set
in table 1. In the training process of the deep neural net-
work, we choose the dataset provided by MFQE2.0 [4] to



Option Description

–InputFile Selects the input file
–BitstreamFile Path of bistream file
–SourceWidth Video width
–SourceHeight Video height
-c encoder randomaccess vtm.cfg Coding configuration
–IntraPeriod=-1 Intra Period: A single Intra frame is selected
–QP qp Value of the quantization parameter
–SliceChromaQPOffsetPeriodicity=1 Periodicity for inter slices that use the slice-level chroma QP offsets
–PerceptQPA=1 Applies perceptually optimized QP adaptation

Table 1. VTM configuration.

Method 0.1M
PSNR

0.1M
MS-SSIM

1M
PSNR

1M
MS-SSIM

VTM 29.536 0.9324 36.467 0.9832
Ours 30.301 0.9368 37.251 0.9875

Table 2. Quantitative Results.We tested the CLIC2022 at 0.1M
and 1M bitrate track respectively.

Method Params(M) Runtime(ms)

MAQE 1.93 570

Table 3. Parameter size and inference time of MAQE.

train the model. We use the RAdam optimizer ,the initial-
ized learning rate is set to 0.0001, and the learning rate de-
creases to 1/10 of the original one every 20,000 iteration,
and MS-SSIM is used as the loss function.

3.2. Results

To validate the effectiveness of each component of the
proposed framework, we evaluate the proposed dynamic bi-
trate control algorithm and deep learning post-processing
model separately. As seen in Table 2, the proposed video
compression method shows improvement over VTM on
MS-SSIM. The proposed video compression method shows
better performance than VTM at every bitrate.

In addition, we further calculate the inference speed of
the proposed enhanced model as shown in Table 3, where
the inference times are calculated using a Tesla P100 GPU
at 1080P resolution.

4. Conclusion
In this paper, we propose a two-stage hybrid video cod-

ing framework that can significantly improve the compe-
tent quality of encoded videos by effectively enhancing
the video coding efficiency through a sequence-level dy-
namic rate control algorithm with a post-processing subjec-
tive quality enhancement model. The code rate allocation in
the proposed scheme can improve the objective quality of
the video with limited overall code rate. An implicit multi-
frame aligned quality enhancement model is proposed and

incorporates a spatial residual adaptive attention module to
enable the model to effectively identify multi-frame quality
differences and selectively perform feature fusion to further
improve video quality.
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