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Abstract

Image quality assessment (IQA) intended to assess the
perceptual quality of images has been an essential problem
in both human and machine vision. Recently, with the help
of deep neural network (DNN), IQA algorithms can extract
more valuable differences between the distorted and refer-
ence images than the traditional algorithms, and thus the
performance of DNN-based algorithms is more satisfactory
than that of previous algorithms. However, the accuracy for
different distorted images preference rating of the existing
DNN-based quality assessment methods will be decreased
when multiple distorted images are quite similar to each
other or to the reference image. To tackle this problem, we
propose a focused feature differentiation network (FFDN)
to highlight the feature maps with greater distorted and ref-
erence differentiation. Furthermore, we use the multi-scale
feature fusion module to fuse the focused differentiation fea-
tures at different scale receptive fields. To further improve
the accuracy of our method, we predict the mean opinion
score and differentiation score by stages and combine them
with different self-learning weights. Finally, we convert the
weighted score into different image preference degrees. Ex-
perimental results on the validation dataset of CLIC2022
and test dataset of CLIC2021 show that the accuracy of our
model FFDN is higher than other excellent quality assess-
ment methods.

1. Introduction

In recent years, due to the rapid development of multi-
media, people increasingly rely on images to obtain infor-
mation. Image quality assessment (IQA) plays a vital role
[12] in various scenarios owing to the existence of quality
degradations in various stages of image acquisition, com-
pression, transmission and display. Image quality assess-
ment can be divided into subjective quality assessment and
objective quality assessment [6]. Subjective quality evalua-
tion is the intuitive evaluation of image quality by observers
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and pays more attention to people’s instinctive feelings.
According to different scenarios, objective quality

assessment can be divided into full-reference methods
(FR-IQA), reduced-reference methods (NN-IQA) and no-
reference methods(NR-IQA) [5]. For FR-IQA, many clas-
sic methods, such as MSE [9], SSIM [9] and MS-SSIM
[10], are widely used in many fields. Inspired by them,
FSIM [14], SR-SIM [13], and GMSD [11] are proposed.
These traditional methods require manual extraction of the
distorted image and the reference image features difference.
FR-IQA methods based on deep learning have better assess-
ment than traditional methods. Zhang et al. [15] proposed
LPIPS to evaluate deep features across different architec-
tures and tasks and compare them with classic metrics. Im-
portantly, they found that features extracted from deep ar-
chitectures outperform hand-crafted features. Ding et al.
[2] proposed DISTS method by using the structure and tex-
ture similarity of shallow and deep feature maps extracted
from reference and distorted images, which had an excellent
assessment effect on common IQA datasets.

However, when multiple distorted images are quite sim-
ilar to each other or to the reference image, the assessment
effect of these methods is relatively decreased. Moreover,
these methods lack quality preference for comparing dif-
ferent similar distorted images. In view of these existing
problems, we propose a focused feature differentiation net-
work (FFDN) for image quality assessment, which focuses
on the feature maps with greater distorted and reference dif-
ferentiation, and fuses multiple scores into different image
preference degrees.

FFDN obtains preference degree for different images by
learning image quality scores from common datasets and
converting multiple scores with different weights into prob-
abilities. One score is the mean opinion score (MOS) pre-
dicted by DISTS [2] training on the common IQA datasets
such as LIVE [7] and KADID-10k [4], and another is the
preference score of focused differential network training on
datasets with preference labels. We introduce the channel
attention module to make the feature maps focus on greater
distorted and reference differentiation. Moreover, we de-
vise the multi-scale differentiation feature fusion module to
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Figure 1. The architecture of the proposed approach focused feature differentiation network (FFDN). Dist. image A and B with different
degrees of corruptions are quite similar with each other. DS1 and DS2 are the datasets with different quality labels. FFE

R and FFE
D are

the reference image feature maps and distorted image feature maps output by VGG-16. FFD
R and FFD

D are focused differential reference
image features and distorted image features respectively. scoremos is the MOS score learned by DS1 in the first phase and scoredif is the
differentiation score of the distorted image and reference image. scorefus is the fused score learned by DS2 in the second phase. scoreAfus
and scoreBfus is the quality score of distorted image A and image B with reference image O. p is the preference degree of distorted images.

fuse the features of the focused differentiation distortion and
reference feature maps under different scale receptive fields
and purify the differentiation features. Finally, we assign
each score a weight that can be self-learned by the differ-
ences between distorted image features and reference im-
age features. Experimental results on the validation and test
sets being provided by CLIC 2022, demonstrate that our
proposed method FFDN can outperform DISTS and other
quality assessment method in terms of accuracy.

2. Proposed architecture

2.1. Feature extraction

Considering the excellent performance of DISTS [2]
which has been empirically proven sensitive to structural
distortions and robust to texture substitutions [1], we use
it as a fraction of FFDN to learn the MOS score. We
use VGG-16 as the backbone to extract shallow and deep
features of images. First, the reference images and dis-
torted images are input into VGG-16 respectively. Then,
the 64, 128, 256, 512, 512 reference and distorted feature
maps are obtained from the five phases of the network.
DISTS defines separate quality measurements for the tex-
ture l(FR

(i)
j , FD

(i)
j ) (using the global means) and the struc-

ture s(FR
(i)
j , FD

(i)
j ) (using the global correlations) of each

pair of corresponding feature maps, where FR
(i)
j and FD

(i)
j

are the i-th reference image feature map and distorted image
feature map in the j-th phase of VGG-16. Finally, DISTS
combines the quality measurements from different convolu-

tion layers using a weighted sum to get the distorted image
MOS scoremos:

scoremos =1−
m∑
i=0

ni∑
j=1

(αij ∗ l(FR
(i)
j , FD

(i)
j )

+ βij ∗ s(FR
(i)
j , FD

(i)
j )),

(1)

where m = 5 is the number of convolution layers, ni

is the number of feature maps in the i-th convolution
layer, and αij , βij are positive learnable weights, satisfy-

ing
m∑
i=0

ni∑
j=1

(αij + βij) = 1. We obtain image quality MOS

score in the first phase of FFDN.

2.2. Feature attention

As we described before, previous algorithms that con-
centrated on predicting image quality MOS of distorted im-
ages with different degradation ignored subtle differential
features information, as Figure 2 (a) and (b) show. When
they are used to assess those distorted indistinguishable im-
ages, the accuracy of the existing DNN-based quality as-
sessment methods will decrease, because of the reduction
of the extracted differential features. The differential fea-
tures mean that the feature map contains more information
that reflects the difference between the distorted image and
reference image. To compensate for the loss of accuracy
of scoremos, we use channel attention and multi-scale fea-
ture fusion to maximize the extraction of differentiated fea-
tures in the second phase of FFDN. VGG-16 extracts a large
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Figure 2. A visualization of the differential features. (c) FFE
R and

(e) FFE
D are the reference image feature maps and distorted image

feature maps by VGG-16. (d) FFD
R and (f) FFD

D are focused dif-
ferential features of reference image and distorted image features
respectively. Compared with (c) and (e), the focused differential
features (d) and (f) highlight more valuable information that can
reflect the difference between the distorted and reference images.

number of shallow and deep feature maps of reference and
distorted images. At the feature attention stage, inspired by
SENet [3], we first need to squeeze features by carrying out
global average pooling of these feature maps to obtain fea-
tures of 1×1×C size, C denotes the total number of feature
maps. Then, we assign the weights to the 1×1×C features
by using fully connected layers to get the excited features.
Finally, the scale is multiplied by the input feature maps and
features after weight distribution. We obtain focused differ-
ential reference image features FFD

R and distorted image
features FFD

D , as shown in Figure 2 (d) and (f) , which con-
tain more differential information than (c) and (e).

2.3. Feature fusion

We need fuse reference image features FFD
D and dis-

torted image features FFD
R in order to maximize the use

of differentiated features. Hence, we utilize multi-scale dif-
ferentiation feature fusion (MDFF) module, which is com-
posed of three convolution layers with difference receptive
fields (3×3, 5×5, 7×7) and a concatenation layer. MDFF
can perform feature fusion on focused differentiation dis-
torted feature maps and reference feature maps under differ-
ent scale receptive fields and extract differentiation features.
Then, the image quality differentiation scoredif is obtained
through putting the fused features into the maximum pool-
ing layer and the fully connected layer.

2.4. Regression and classification

To avoid the limitations of single method’s quality score,
our final image quality score scorefus which will eventu-
ally be used during the predict time, consists of scoremos,
and scoredif in the second phase of FFDN, assigned differ-
ent weights as follows:

scorefus = w1 ∗ scoremos + w2 ∗ scoredif (2)

where w1 and w2 perform automatic optimization learning
by means of backward gradient propagation according to
the differences between different distorted images and ref-
erence images.

In order to obtain the preference for different distorted
images, we convert the predicted scorefus through a fully
connected (FC) layer into the preference degree for a partic-
ular image. Distorted image A and image B yield scoreAfus
and scoreBfus respectively, which are used for input to the
FC layer with another two inputs (scoreAfus/(score

A
fus +

scoreBfus), score
B
fus/(score

A
fus + scoreBfus)). Finally we

end up with a preference degree p for distorted images in the
second phase of FFDN. The larger p indicates a preference
for distorted image B over image A.

2.5. Loss function

We use different datasets required different loss func-
tions for different training phases. As shown in Figure 1
pipeline of our model FFDN, in the first phase of FFDN, we
utilize LIVE [7] and KADID-10K [4] datasets with MOS to
train the scoremos by using mean squared error (MSE) loss
function as the following equation:

lossMSE =
1

N

N∑
i=1

(qi − q̂i)
2 (3)

where qi and q̂i refer to the predicted scoremos and the
ground-truth MOS label of the i-th image in a mini-batch,
N denotes the batch size. For the datasets with preference
label, we utilize binary cross entropy (BCE) loss formulated
as following Eq. 4 to train the second phase of FFDN:

lossBCE = − 1

N

N∑
i=1

[pilogp̂i + (1− pi)log(1− p̂i)] (4)

where pi and p̂i represent the predicted probability p and
the ground-truth label for preferring distorted image B over
image A of the i-th pair in the mini-batch.

The final loss function as following Eq. 5 combines
lossMSE and lossBCE with the trade-off coefficients λ1

and λ2 to train FFDN with different datasets:

loss = λ1 ∗ lossMSE + λ2 ∗ lossBCE (5)

We can adjust the coefficients λ1 and λ2 according to the
significance of different datasets to adapt the challenge task.



3. Experiment

3.1. Datasets

We utilize four datasets named LIVE [7], KADID-10K
[4], CLIC-V, and CLIC-T to train and test our model FFDN.

LIVE [7]: It contains 29 reference images and 779 dis-
tortion images, including JPEG2000, JPEG, white noise,
Gaussian blur, and fast fading Rayleigh distortion.

KADID-10K [4]: It contains 81 reference images, each
of which is distorted by 25 distortion types at 5 distortion
levels and total 10,206 distorted images.

CLIC-V: It is the validation set provided by the
CLIC2022 competition. It contains 5,220 pairs images,
each pair containing a reference image and two distorted
images with quality preference label.

CLIC-T: It is the test set provided by the CLIC2021 com-
petition. It contains 122,107 pairs image data, which con-
tain some error labels in the perceptual quality assessment.
When it is used as the training set, we filter its data and
remove the wrong label data.

3.2. Training and testing details

Our method FFDN is implemented based on Pytorch
framework. We utilize LIVE [7] and KADID-10K [4] to
train scoremos and scoredif with lossMSE , and separately
use CLIC-V and CLIC-T to train the preference score with
lossBCE . It should be noted that we swap CLIC-V and
CLIC-T as testing sets and training sets. In the training
phase, we set the mini-batch size as 8 and utilize the Adam
optimizer with an initial learning rate as 0.001 to optimize
our model FFDN. We totally train 50 epochs and the learn-
ing rate decay by a factor valued 0.1 every 20 epochs. We
perform data enhancement during the training phase. Dur-
ing the test phase, we test FFDN model with ensemble (×4)
testing, i.e., flipping in four ways (none, horizontally, verti-
cally, both horizontally and vertically) and averaging these
outputs to obtain robust higher accuracy.

3.3. Comparison with previous methods

We compare the performance of our model FFDN with
some current excellent FR-IQA methods, such as PSNR,
FSIM [14], GMSD [11], LPIPS [15], DISTS [2], and
RADN [8] on CLIC-V and CLIC-T datasets. The experi-
mental results are listed in the following Table 1. As we
can see in Table 1, the accuracy of traditional methods
PSNR, FSIM [14], and GMSD [11] based on manual fea-
ture extraction is far lower than that of deep learning meth-
ods LPIPS [15], DISTS [2], and RADN [8]. Compared
with other deep learning methods, our method FFDN fur-
ther focuses on image feature differentiation and can predict
more accurate scores than other FR-IQA models on these
datasets.

Table 1. Accuracy of different methods on CLIC-V and CLIC-T
datasets. CLIC-T without any processing is used as a test set.

Methods CLIC-V CLIC-T
PSNR 0.572 0.507
SSIM [9] 0.571 -
FSIM [14] 0.640 -
GMSD [11] 0.647 -
LPIPS [15] 0.740 0.682
DISTS [2] 0.742 0.725
RADN [8] 0.741 0.710
FFDN (ours) 0.762 0.744

3.4. Ablation study

To further investigate the effectiveness of our proposed
components, we conduct ablation studies on CLIC-V and
CLIC-T datasets. As shown in Table 2, scoredif , which
obtained more differential features by using attention, per-
forms better than scoremos. Moreover, the accuracy of the
fused scorefus is higher than that of both scoremos and
scoredif . It demonstrates that both mean opinion scores
and differentiation scores contribute significantly to our
method. The accuracy is further improved by using pref-
erence classification after scores fusion.

Table 2. Ablation study on CLIC-V and CLIC-T datasets.

Components CLIC-V CLIC-T
scoremos 0.742 0.725
scoredif 0.753 0.734
scorefus 0.759 0.740
scorefus + classification 0.762 0.744

4. Conclusion
In this paper, we propose a full-reference image quality

assessment approach called focused feature differentiation
network (FFDN), which can give objective quality score
and preference degree of images. Based on DISTS, we use
VGG-16 as a backbone to extract image shallow and deep
features. We utilize channel attention to focus our atten-
tion on the more differentiated feature maps between the
distorted image and reference image, and use multi-scale
convolution feature fusion module to perform feature fusion
at different scale receptive fields and extract differentiated
features. Finally, we fuse the two predicted scores with as-
signing different weights and convert them into preference
degree for images. Experimental results on the CLIC-V and
CLIC-T datasets demonstrate the superiority and higher ac-
curacy of our method.
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