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Abstract

Image quality assessment is crucial for low-level vision
tasks such as compression, super-resolution, denoising and
etc. It guides researchers how to design networks, design
loss functions, and decide the optimization direction of net-
works. A good quality assessment metric should comform
to people’s subjective feelings as much as possible. Tra-
ditional PSNR and MS-SSIM have more and more obvious
shortcomings in quality evaluation with the popularity of
GANs. Inspired by metrics such as LPIPS, IQT, etc., we
decided to design a metric that is learned by the network
itself. In this paper, we use a ConvNeXt-Tiny network to
extract features and calculate nonlinear residuals between
reference images and distorted images. We feed residuals
into transformers to compare the degree of distortion. In
addition, we use multi-metric fusion to improve the per-
formance of our network. Our model achieves 0.780 ac-
curacy on CLIC validation set. Our code is available at
https://github.com/JiangWeibeta/IQA-TMFM.

1. Introduction

In the era of rapid development of multimedia tech-
nology, a large amount of image or video data is gener-
ated in our daily life. In order to reduce the storage cost
and bandwidth brought by these data, many traditional and
learning-based lossy compression methods have been pro-
posed. However, the distortion introduced by these meth-
ods is difficult to measure, and obtaining the Mean Opin-
ion Score (MOS) using manual methods is expensive and
difficult to get immediate feedback in the production envi-
ronment. Therefore, in order to meet the growing visual
demands of the industry and people, we hope to find an ac-
curate and efficient image quality assessment metric that is
close to subjective quality assessment and can be easily em-
ployed in compression and other low-level vision tasks.

The IQA task aims to predict the subjective opinions
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of human viewers, and existing IQA methods are mainly
divided into 3 categories: full-reference (FR), reduced-
reference (RR), and no-reference (NR) IQA methods. NR
models, such as NIQE[13], are very flexible in practical ap-
plications, but the absence of reference pictures makes it
difficult to predict feelings of human raters. FR models
mainly focuses on the differences in texture and structure
between the reference image and distorted images, which
are still widely used in various visual reconstruction tasks.

The most classic FR reference metrics are Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM)[17], which focus on pixel differences and structural
differences between two images, respectively. They are of-
ten selected as optimization targets due to their excellent
performance on previous tasks and low computational com-
plexity. In addition, fusion-based metrics like VMAF[19]
are also popularized in video quality assessment.

However, with the continuous development of deep
learning technology, especially the application of GANs[5]
in image compression, restoration and other fields, the re-
constructed images contain unrealistic generation artifacts,
sharper edges and noise similar to real textures, which
brings new challenge to the IQA task. Traditional met-
rics can’t assess the quality of these images well. In this
respect, deep learning-based perceptual quality assessment
metrics[4][21] have better performance in the IQA task. Be-
cause of the strong expressive ability of the transformers,
Cheon et al[2]. proposed to use a transformer[16] to deal
with the fake pictures generated by GANs in the PIPAL
dataset[7]. They used a transformer to fuse the features of
reference images and distorted images, and finally obtained
satisfactory performance.

In this paper, the CLIC perceptual quality assessment
task is modeled as a binary classification task. Similar to
IQT[3], we first use a pre-trained model to extract multi-
scale features from the reference image and distorted im-
ages, and then use a transformer to obtain the probability of
preference for distorted images. Finally, multiple metrics
are fused to further improve our prediction accuracy.



2. Method

Figure 1 provides an overview of our proposed method.
In the following chapters, we will introduce the network ar-
chitecture, Feature Extraction Modules, Nonlinear Residu-
als Modules, Transformer Blocks and Multi-Metric Fusion
Module.

In order to match the training dataset given by CLIC,
the input of the network is a reference image and its cor-
responding two distorted images. To reduce computa-
tional overhead, full-resolution images are cropped to sev-
eral patches before fed into the neural network. We cal-
culate the nonlinear residuals between the distorted patches
and reference patches and concatenate them across channel.
The calculation results on the feature maps of different reso-
lutions are inputs of different transformer modules. The av-
erage value of the output of the transformer modules serves
as our main reference metric and other reference metrics
will be used as biases. Therefore, the method can be formu-
lated as:

fa, fb, fr = FE(ia, ib, ir) (1)

ra,r, rb,r = NR(fa, fr), NR(fb, fr) (2)

PA = MFM{TF [(ra,r||rb,r), fr], bias} (3)

FE means Feature Extraction Module, fa, fb and fr are
features extracted by FE. NR means Nonlinear Residuals
Module, ra,r and rb,r are residuals between features of dis-
torted images and features of reference images. TF is our
transformer[16] block. bias is other metrics. PA means the
probability of distorted image A better than distorted image
B.

At first, we wanted to make our model like a discrimina-
tor, but it didn’t work. Making it like a discriminator means
that we directly input feature maps of distorted images in
a batch and concatenate them with feature maps of refer-
ence images, using reference images as conditions. How-
ever, there is a situation where A has better quality than B,
and B has better quality than C, when B and C is in a batch,
the model should choose B, when A and B is in a batch, the
model should choose A. Interactions within batches are not
possible, and it may make our model confused.

2.1. Feature Extraction Module

Considering that when people assess image quality, they
pay more attention to the semantic information of the im-
age, and the effect of pixel differences on image quality is
not so obvious, we plan to measure the quality of the image
according to the semantic information which is extracted
from a pre-trained model. Since image quality assessment
is a very subjective task, we do not intend to use the en-
coder of the image compression track or the network for
other low-level vision tasks as our backbone, here we use

a ConvneXt-Tiny[10] which is pre-trained on imagenet to
extract features.

ConvneXt[10] follows the previous swin-transformer[9],
using a multi-stage design, it has four stages, each stage
outputs feature maps of different resolutions. Convolutions
with large kernel size, deep-wise Convolutions and GELU
activation functions are used. A ConvNeXt block is shown
in Figure 3. The number of ConvNeXt[10] block of ev-
ery stage in ConvNeXt-Tiny is {3, 3, 9, 3}. Feature maps
of different resolutions represent different information ex-
tracted from the image. We only extract feature maps from
the middle two stages to avoid too much computation. In
order to make the final result more convincing and reduce
randomness, before inputting an image, we crop it to several
patches.

2.2. Nonlinear Residual Module

In this section, we will describe how we calculate the
residuals between distorted features and reference features.
Our Nonlinear Residual Module is shown in Figure 2.

To calculate residuals between features, we first concate-
nate them across channels and compute the linear residuals
between them using 1×1 convolutions. The formula is as
follows:

Residuallinear = Conv1× 1(fd||fr) (4)

|| means concatenate operation.
We implement the non-linearity of the residuals by using

an activation function. Same as the backbone we use, we
choose GELU as our activation function.

Residualnon−linear = GELU(Residuallinear) (5)

Some previous work directly used subtraction to obtain
residuals, which we think is too simplistic. The feature
maps mapped to the high-dimensional space through the
backbone may not satisfy the linear relationship, because
the input image has undergone a lot of nonlinear transfor-
mations, so we prefer to let the network learn to calculate
residuals.

2.3. Transformer Block

Our transformer[16] module is very similar to IQT’s[3].
It has N encoders and decoders. In the experiment, we set
N to 1 to reduce the computational cost. Different from
IQT[3], our input to the encoder is the nonlinear residual
between the two distortion maps and the reference image.
The core of the transformer[16] is self-attention, which is
calculated according to the following formula.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

Where queries Q, keys K, its dimension dk, and values V
are needed. We use a linear layer to get Q,K, V from input.
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Figure 1. Overall architecture of the proposed image quality assessment method.
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Figure 2. Nonlinear Residuals Module

It should be noted that the K and V of the decoder come
from the encoder.

Encoder. When the encoder receives the input, it first
uses 1×1 convolution to reduce the dimension of all resid-
uals to the same dimension. We can get N = H × W
patches, H and W are the width and height of residuals,
by flattening the residuals in the spatial dimension. We use
trainable position embedding to emphasize spatial order be-
tween patches.

Decoder. We input the feature map of the reference im-
age into the decoder, and input the feature map of the ref-
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Figure 3. ConvNeXt Block

erence image to emphasize that the comparison is based on
the reference image. The output of the encoder is another
input of the decoder.

Head. At the end, we use a MLP head to compute qual-
ity predicition. The MLP head consists of two fully con-
nected (FC) layers, and the first FC layer is used followed
by the ReLU activation. The second FC layer has one chan-
nel to predict a single logit.

2.4. Multi-Metric Fusion Module

We use Multi-Metric Fusion Module to improve the gen-
eralization of our model. Multi-Metric Fusion takes outputs



of decoder and other metrics as input and first normalizes
them before input. The Multi-Metric Fusion Module con-
sists of 7 hidden layers. The size of them is {192, 64, 64,
32, 16, 8, 4}. We send the output to the sigmoid function to
get the final probability.

We also tried to use decision tree to fuse multiple met-
rics, and the final result is not much different from using
MLP.

2.5. Loss Function

Different from previous work[3, 6], we treat quality as-
sessment as a classification task rather than a regression task
according to the characteristics of the dataset. The classifi-
cation here includes two labels, the quality of distorted im-
age A is better then the quality of distorted image B (posi-
tive, label is 1) and the quality of distorted iamge B is better
then the quality of distorted image A (negative, label is 0).

We use cross entropy as our loss function.

Loss = − 1

N
[Label×log(PA)+(1−Label)×log(1−PA)]

(7)
where PA represents the probability that the quality of dis-
torted image A is better than the quality of distorted image
B and we choose distorted image A.

Actually, we also tried MSE as a loss function like
LSGAN[12], but it didn’t work well.

3. Experiments
Training. Our experiments are conducted on the

datasets provided by CLIC, which includes 122107 triples
of images. We use 80% of them as our training set and
20% of them as our testing set. Our model is implemented
based on Pytorch[14] framework with a NVIDIA Tesla
V100 GPU. We train the model in two stages. In the first
stage we train the model without Multi-Metric Fusion Mod-
ule to initialize the parameters, and the model with Multi-
Metric Fusion Module are trained to improve accuracy in
the second stage. During training, distorted images and ref-
erence images are cropped into to four 224 × 224 patches.
We use Adam[8] optimizer with the initial learning rate of
1e-4, and use cosine annealing scheduler[11] to adjust the
learning rate dynamically. The first stage takes 5 hours for
3 epochs and the second stage takes about 30 minutes.

Results. Table 1 demonstrates the accuracy on CLIC
validation set, which includes 5220 triples of images. When
testing, we crop every images to thirty-two 224 × 224
patches. The results shows that our model has higher ac-
curacy on the CLIC validation set than LPIPS[21], MSE,
MS-SSIM[18].

The results of the ablation experiments are shown in
Table 2. When using MSE as the loss function like
LSGAN[12], there is a very large drop in performance. The

Table 1. Accuracy on CLIC validation set.

Accuracy↑
LPIPS(Vgg)[21] 0.744
LPIPS(Alex)[21] 0.737

LPIPS(Squeeze)[21] 0.739
DISTS[4] 0.756

MSE 0.573
MS-SSIM[18] 0.613

GMSD[20] 0.646
VIF[15] 0.605

Ours 0.780

gain brought by the nonlinear residual layer is very consid-
erable, which is in line with our previous assumptions. The
gain of multi-metric fusion module is very small, we think
it is because the metrics such as LPIPS[21], DISTS[4] and
our metric are very similar. When using the cheng2020-
anchor[2] pretrained model provided by CompressAI[1] as
our backbone, the performance is poor. We think the rea-
son is that the model we selected is optimized for MSE, but
the MSE metric itself cannot reflect the quality of the im-
age well, as shown in Table 1, which leads to the fact that
the feature map extracted by cheng2020-anchor[2] is not as
capable of reflecting semantics as ConvNeXt’s[10] .

Table 2. Ablation experiments on CLIC Validation Set.

Accuracy↑
w/o MFM 0.779
w/o NRM 0.745

Ours(MSE) 0.484
Ours(Cheng2020-anchor[2]) 0.502

Ours 0.780

4. Conclusion

In this paper, we study how to design an image quality
assessment metric that conforms to human subjective per-
ception. Although we finally outperformed metrics such as
LPIPS[21], MS-SSIM[18], DISTS[4] on the CLIC valida-
tion set, it is still difficult for our metric to make a very
reasonable evaluation of image quality, which is one of the
contents of our future research.
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