

Challenges in incorporating ML in a mainstream nextgen video codec

Debargha Mukherjee Google, LLC

[Ack: Open Codecs, Research, ML Hardware Teams in Google, Apple, Nvidia]

Confidential + Proprietary

Outline

- Introduction
- Video Codec History
- Hardware constraints
- Current ML codecs
- Towards Practical ML
- Hybrid Codec Potential Research areas
- Make ML work Smarter
- Conclusion

Introduction

- Mainstream Video codec
 - Huge advancements in the last decade
 - HEVC, VP9, AV1, VVC, EVC
 - Getting harder to achieve gains [mostly with complexity constraints]
- ML based image/video codecs
 - Enormous advances in ML based image/video compression demonstrating their potential
 - Autoencoders, GANs, transformers
 - End-to-end trained frameworks
 - Constructive mechanism to come close to the Rate-Distortion function of a source
 - Transitioning from end-to-end image to end-to-end video compression
 - Hybrid frameworks
 - Enhance/replace certain parts of a conventional codec with ML based techniques
- How to incorporate the advances in ML compression in a mainstream codec

Video Codec History: Mainstream Video Codecs

- Historical evolution of mainstream video codecs:
 - 1991 MPEG2 DVD
 - o 1998 MPEG4 Part 2
 - 2003 H.264/AVC BlueRay, Streaming
 [End of DVD/Blue-Ray era; Enter streaming video era]
 - 2010 VP8 [WebM]
 - 2013 H.265/HEVC, VP9 [WebM]
 - 2018 AV1 [AOM]
 - 2020 H.266/VVC, EVC
 - Both AOM and MPEG are working on a nextgen codec need gains at low enough complexity
- Typical Standardization Process
 - Cost-benefit analysis is integral part of standardization process:
 - Constant tug-of-war between hw / sw complexity and coding efficiency
 - Every tool is scrutinized meticulously and all unnecessary computations are eliminated.
 - Every new standard advances the state of hardware

Video Codec History: Mainstream Video Codecs Characteristics

- Characteristics of a mainstream video codec
 - Decoder:
 - Should be ubiquitous
 - Should be cheap or free
 - Should support decoding either in hw or sw at desired throughput of 4K60 or 8K30
 - Should have very small hardware footprint silicon area very important f/ mobile chipsets
 - Should be low power
 - VOD:
 - Encoder can generally be much more complex
 - Software encoding better! but transition to HW encoders underway
 - RTC:
 - Stringent requirement for encoder + decoder together (sw only, hw only or sw/hw hybrid)
 - HW encoder has about 5x bigger budget than decoder for silicon area

Video Codec History: Distributed Video Coding

- For completeness of the discussion:
 - Reversed-complexity video coding was very popular in the 2000-2010 decade
 - Encoder very simple all Intra, little or no motion
 - Decoder complex for offline decoding, or decoding with continuous feedback channel

- Practical SW and WZ coding: Source/Channel coding + Side-Info generation
- ML could be very useful in these scenarios, but not explored much

Google

- Time horizon for these constraints: 5-6 years
 - AOM codec expected in 2 years
 - New MPEG codec expected in about 5 years speculative
- Also, these constraints are only for mainstream level deployment
- Niche applications /standards can be more forgiving

- On hardware for video decoder:
 - "Hardware implementations today cannot assume availability of external GPUs/NPUs/TPUs/DSPs that could perform outside of the coding loop ML operations while the rest of the processing is done with fixed function hardware."
 - Source: Google, "Recommendations for HW friendly ML-based tools in AV2," CWG-073, Alliance for Open Media, Codec Working Group
 - Apple, Nvidia similar thinking on preferring dedicated HW IP for video decoding
 - Throughput: Today's trend at least 4K60 or 8K30
 - Silicon area needed may be lower if throughput needed is lower (images) but not by a lot!
 - What matters most is the amount of raw computation (operations) needed in the decoder.
 - Memory Bandwidth, RAM size, etc. are also important but architecture dependent
 - Secondary still to raw compute

- Disclaimer: Rough math, but okay for a general idea.
- Estimate of int8-MACs/pixel based on silicon area for an entire decoder
 - A full AV1 decoder needs lower ops/pixel than a modest MobilenetV1 network
 - Best equivalent estimate for a full AV1 decoder in ops/pixel is ~4K int8-MACs/pixel
- Nextgen codec typical target:
 - Historically the nextgen increase in decoder silicon area is less than 200%
 - About 30-40% BDRATE reduction
- A per coding efficiency gain budget:
 - Starting from a state of the art video codec today, every 1% BDRATE gain can only have
 ~100-200 ops / output pixel.
 - Lenient estimate due to unavoidable common tasks. Real number is more like <50.
- HW Encoder can be 5-10 times more in silicon area than the decoder
 - Historically 10x increase from one generation to the next

- Apple:
 - Source: Apple, "Recommendations for HW friendly ML-based tools for AV2," CWG-082, Alliance for Open Media, Codec Working Group
 - Decoder side int8-MACs/pixel: D = 1000 * BDRATE / 30
 - Only 33 int8-MACs/pixel per 1% BDRATE gain is acceptable
 - Encoder side int8-MACs/pixel: E = 4 D
- Google/Nvidia:
 - Similar may be a marginally higher

Current ML codecs

Google

Confidential + Proprietary

Current ML codecs

- The best Learned codecs so far:
 - Learned Image codec: ~50 500K MACs/pixel
 - Learned Image codec with GAN loss: ~500K+ MACs/pixel
 - Learned Video codec: Possibly higher!
 - Models usually do the equivalent of motion on decoder side
- Huge discrepancy:
 - o 500-1000x
 - ML tools need to be sub-1K MACs/pixel to be even within an order of magnitude of the target
- But mainstream codecs do need the gains from ML advances
 - Conventional codec development is getting to be tedious like finding special-cases, and special-cases of special-cases.

Current ML Codecs

Confidential + Proprietary

Towards practical ML

- Philosophy
 - Incremental gains in incorporating ML in a mainstream codec pipeline is okay!
 - Mainstream codecs are snapshots in time
 - State of evolution of hardware in video codecs is often incremental
 - Even if a simple but substantial ML tool gets into a mainstream nextgen codec, it makes it easier for a bigger tool in the next edition.
 - Need focus on hybrid techniques that add ML tools in a conventional video coding pipeline and satisfies the same cost-benefit trade-off as any other tool.
 - Cost-effective ML tools that give only 1-3% BDRATE gains are okay
 - A great deal of room for innovation in lightweight models
 - Not explored enough

Towards practical ML

- Need RDC metrics that incorporate model complexity
 - Use a score that uses model complexity as a parameter in addition to BDRATE
 - Slowly move the community to look at lightweight models
 - A new track for CLIC 2023 ?
- Better understanding of what exactly a ML model is doing to reduce compute.
- Find places in a conventional codec pipeline where ML can be substantially beneficial over standard signal processing methods.
 - ML for finding the best prediction (inter, intra, inter/intra)
 - Nonlinear transforms for prediction residues
 - In-loop filtering likely has the best potential in the short term
 - Restore frames with ML after decoding through a conventional pipeline
 - Super-resolution: Both in-loop and out-of-loop
- Use ML to work on a smaller subspace (high-freq, low-res, mid-res)

Hybrid Codec Potential Research areas: Conventional Codec

Reference Frame store

Hybrid Codec Potential Research areas: Prediction

• Improve prediction using ML

- Intra prediction In-painting
- Inter-Intra prediction a useful generalization
- Multimode predictor design is critical
 - Modern codecs have multiple signaled predictors
 - Need unsupervised multimode design

Intra Prediction

Inter-Intra Prediction

Hybrid Codec Potential Research areas: Residue Coding

- Use Learned Image Compression ideas for coding prediction residues
- Autoencoder with Side-Information (ANN-SI/Conditional Autoencoder)
 - Side-Information could be any predictor

Hybrid Codec Potential Research areas: Loop filtering

- In-loop-filtering
 - Probably the biggest potential of all
 - Some recent work beyond AV1 and VVC
 - 3-5% BDRATE gain at about 15-40K FLOPS/pixel;
 6-8% BDRATE gain at 100k+ FLOPS/pixel
 - Need focused effort to reduce the ops down to sub-1000
 - Easier to integrate at the end of the pipeline
- Some experimental findings
 - With a model with 20K MACs/pixel: BDRATE ~3%
 - With a model with 600 MACs/pixel: BDRATE ~1%
- Need novel architectures with low ops and perhaps closer connection with standard signal/image processing methodologies

Hybrid Codec Potential Research areas: Super-resolution

• A great deal of interest in <downsample - compress - upsample> pipeline

Hybrid Codec Potential Research areas: Super-resolution

40

• CrowdRun

Google

- BDRATE [2:1] = -8.84%
- BDRATE [3:2] = -6.23%
- BDRATE [4:3] = -4.76%
- BDRATE [5:4] = -4.39%
- What matters is convex hull
- Smaller models seem to be sufficient for super-resolution

36 32 32 34 34 32 32 30 30 Res Full Res Full - Res 2:1 Res 3:2 28 Res 2:1 SR Res 3:2 SR 25 26 0 5 10 15 0 5 10 15 Filesize $\times 10^{6}$ Filesize ×10⁶ CrowdRun 4:3 CrowdRun 5:4 38 38 36 36 34 34 NNSq-Y **Y-PSNR** 32 30 30 - Res Full Res Full 28 - Res 4:3 Res 5:4 28 Res 4:3 SR Res 5:4 SR 26 26 0 5 10 15 0 5 10 15 ×10⁶ Filesize Filesize ×10⁶

38

CrowdRun 2:1

2K #params; 2K MACs/pixel

Confidential + Proprietary

CrowdRun 3:2

Make ML work Smarter: Some General strategies

- Multiplier depth and quantization optimization
 - QKeras: <u>https://github.com/google/qkeras</u>
 - Many layers in a deep neural network can do just as well with low-bit-depth multipliers
 - Vizier: <u>https://cloud.google.com/ai-platform/optimizer/docs/overview</u>
 - Black-box parameter search
- Use more processing at lower resolution
 - U-Net type architecture preferred
- Use origin symmetric kernels
 - Reduces multiplies by ~ a factor of 2
- Use networks where the initial layers are integer analysis filterbanks
 - Haar, Integer wavelets, etc.

Make ML work Smarter: Change balance

- Change balance of computation between Encoder and Decoder networks
 - HW constraints are more stringent on decoder side
 - So try to reduce decoder side network size
 - Becomes similar to Vector Quantization

Google

Make ML work Smarter: Switchable Networks

- Switchable models on common hardware
 - Use one of N different models based on information already available, classification based on image characteristics and/or encoder-side search, and signaling of the model index in the bit-stream
 - The specific model is downloaded to decoder hardware at decoding time at a suitable interval
 - Frame/tile level switching is okay
 - Video chipsets already designed to store large frame buffers; storing/retrieving multiple models not hard.
- Each instance of inference is low complexity
- Multimode design needed
 - Unsupervised clustering-cum-training can be useful

Make ML work Smarter: Guided Networks

- Guided CNN
 - Certain weights and layers of a pre-trained CNN are signaled by encoder to decoder
 - Benefit: Each inference instance can be lower complexity
 - Particularly convenient if the last layer weights are signaled to decoder
 - CNN learns to produce M-channel output in a suitable subspace (w/ modified loss function)
 - Weights for combination are signaled to decoder at a suitable interval
- CNN followed by Wiener filter is a special case of this formulation

Explicitly signal linear combination weights $(a_0, a_1, ...)$ of output channels

Conclusion

- Mainstream video codecs
 - Further advancement becoming tedious (still possible without complexity constraints)
 - Very stringent requirements on decoder side complexity for cost-effectiveness
- ML codecs
 - Potential has been adequately demonstrated in recent years
 - May be okay for niche applications from a complexity perspective
 - But... big gap in complexity/cost requirements for mainstream deployment in the next 5-10 years
- ML Research focus:
 - Too much focus on demonstrating potential with bigger and more complex models
 - Too little focus on bringing ML advances into the mainstream domain by optimizing compute
 - Need more focus on: what can we do with smaller/lighter models ?
 - New research opportunities in hybrid approaches with traditional signal processing