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Welcome to CLIC 2022

● First Hybrid CLIC workshop
● First time in person since CVPR 2019 (Long Beach)
● Virtual through Zoom

○ https://www.eventscribe.net/2022/2022CVPR/   —---------------------->
○ Event will be recorded and available later this week

● 8:30 AM start, 5:45 PM end of poster session

https://www.eventscribe.net/2022/2022CVPR/


Outline

● What is CLIC?
● Program
● Challenges / Tasks

○ Multiple Bitrate Image Compression Challenge
○ Video Compression Challenge
○ Perceptual Quality

● Future of CLIC



What is CLIC?

● Challenge on Learned Image Compression (and beyond) and a CVPR Workshop
● It was started in 2018 by a team of researchers from ETH Zurich, Twitter and Google. 

Now organizers from Microsoft, Apple, Interdigital and Netflix have also joined the 
board!

● Our 2022 goals:
○ Define a benchmark and incentivise the development of learning-based 

compression methods for images and video (new since 2020)
○ Perceptual evaluation for images
○ Incentivize research in learned compression of any kind, and encourage 

development of new perceptual quality metrics



Organizers & Sponsors



Organizers & Sponsors



The Competition Tracks

● Multiple Bitrate Image Compression
○ Target an average of 0.075 bpp, 0.15 bpp, and 0.3 bpp!

(Started this three rate track last year).
○ High quality images from Unsplash.

● Video Compression
○ Target a fixed size (will get into detail later)
○ 0.1 mbps and 1.0 mbps
○ 30 10-second video from Pexels 

● Perceptual Quality Evaluation
○ Request participants to submit metrics that are evaluated against the human ratings 

from the Multiple Bitrate Image Compression track
● Note:

Full description & statistics are available at http://compression.cc/

http://compression.cc/


Submission Trend



Challenge Format

●  Development phase:
○ We release a new partitioned dataset (potentially to be used for training)
○ Participants develop new methods
○ Participants submit decoder (model + other tools) to evaluation server
○ The server evaluates the model, and updates the leaderboard

● Test Phase
○ Participants can no longer update the models/binaries
○ One week after the development phase ends we release the previously unseen test set
○ Participants upload compressed files, which we decompress with their previously submitted 

decoder

● Evaluation Phase
○ Human evaluation
○ Results released at this workshop



Workshop Program



Workshop Program

● Invited Speakers

Tsachy Weissman

Stanford University

Debargha Mukherjee

Google

Zhou Wang

University of Waterloo

Auke Wiggers

Qualcomm

Guo Lu

Beijing Institute of 
Technology



Workshop Program

● Talks by the winners of:
○ Image Compression Challenge
○  Video Compression Challenge
○ Perceptual Metric Challenge

● Panel Discussion
● Awards Ceremony
● Poster Session



Overview of the Day

Also on compression.cc



The Multiple Bitrate Image 
Compression Challenge



Why human evaluation?



Multiple Bitrate Image Compression:
Human Evaluation

● Goal:
○ Use all images in the test set for the human evaluation (test set released after 

participants froze their models/code)
● Challenge:

○ Too many competitors, too many images, not enough rater time available to do all 
pairwise rating

● Solution:
○ Use the Pre-Selection Method from 2020 but include all participants and all images.



Designing the Test Set

● Fairness
○ Skin tone reproduction needs to be accounted for, so diversity is a must
○ Various scenery types need to be represented
○ Contents needs to be suitable for evaluation of compression methods

● Difficulty
○ How to find such a varied test?
○ How can we minimize human bias in this selection process?



Test Set Selection

● Addressing Fairness
○ We used unsplash as the source of images
○ Unsplash provides royalty free images, and allows searching by tags
○ We searched for location across all continents (i.e., for each continent we selected the same 

number of countries, and searched for their name)
○ From each search result, we took a random sample of images

● What we cannot account for:
○ Unsplash does have a photographerʼs bias in choice of subject
○ Many photographers like to photograph people, so many images in the test set have people
○ High end processing of photographs is most likely happening in the top results
○ Source is already compressed material. We downsample by a factor of 2 to compensate.



Test Set Selection

● Usefulness in compression evaluation
○ Fairness was addressed, and we believe we have one of the most diverse 

sets of images available for compression research
○ The set contains a wide range of processing styles for photographs, which 

should stress test methods which tend to enhance “normal” images to 
make them pop

● Possible Negative
○ Due to trying to avoid biases in these images, we donʼt necessarily have 

“canonical” test images. No effort has been made to find such images



How to use an image?

● Proposed idea:
○ Make raters choose a crop (768x768)

● Why crops?
○ Makes the rating task much more focused (fewer opportunities to have a more 

diverse set of artifacts that need to be disambiguated, and figured out which is 
more important)

● Why let raters choose which crop?
○ Choosing a random crop may yield completely uninformative regions of the image
○ Raters were able to choose “next crop” which would choose another random crop 

(and repeated this until a reasonable crop was found)



Rater interface



Rater interface



How to assign a score to each method?

● We employed the same methodology as CLIC 2020
● Multiple methods evaluated (each comparison is treated as a 2-player 

game):
○ Monte Carlo Elo Ranking (Developed for CLIC 2019)
○ New this year: single ranking for all bitrates

● Evaluating 3 bitrates means 3 Elo scores. How to get the global rank?
○ We used the harmonic mean of the Elo ranks (not scores) across all three 

bitrates



Data Quality

● We split the ratings into per-rater sessions
○ A 15+ minute break starts a new session

● We generated gold questions (10% of questions) which ask to 
compare A to B, with the original being identical to A.

● We excluded answers from sessions with <80% accuracy on gold 
questions.

● The rating UI forces the rater to
○ Spend at least 1 second before submitting an answer
○ Switch between images at least 3 times (A->B, B->A, A->B)



Rater Survey - Monitor size



Rater Survey - Lighting environment



Rater Survey - viewing distances



Elo Scores (Higher=Better)



Final Rank = Harmonic Mean of Ranks
(Lowest Rank Wins)

Originals have a rank of 1.



MS-SSIM vs. Elo Score
There should be a positive correlation



Runtime vs. Elo Score @ 0.3bpp
We expect a positive correlation



Perceptual Metric 
Evaluation



Accuracy and Correlation



CVPR CLIC 2022 Video Track Video 
Quality Assessment

Ross Cutler
Microsoft Corp.



Introduction

●New crowdsourcing platform for VQA 

● Validation of the platform

●Results of CLIC video compression track

35



Video quality assessment

● Lab studies (e.g., ITU-T P.910) are the gold standard, 
but they are expensive, slow, not practical in a 
pandemic 

●Crowdsourcing
○ Unknown participants

○ Working at own environment

○ Using own devices

○ No moderator

●We introduce an open-source framework with 
participant eligibility tests, environment and setup 
tests and reliability checks

36



Related work

37



Framework

●Multiple scripts to automate the process

● Test methods
○ Absolute Category Rating (ACR)

○ ACR – Hidden reference

○ Degradation Category Rating (DCR)

○ Comparison Category Rating (CCR)

● Scales
○ 5 and 9 point Likert scale

●Can be used with any crowdsourcing 
platform or dedicated panel 

38



Test components

● The test is designed in different sections from participants perspective
●Rating sections: 10-12 clips to be rated
●Background hardware/network checks: 

○ Resolution
○ Screen refresh rate
○ PC or Mobile
○ Network test

39

• Video playback component:
• Full-screen (with/-out scaling)
• Record playback duration
• Force to watch until the end



Qualification

●Normal color vision Test
○ 2 plates from Ishihara test instead of 15

Pretest:
●  300 AMT and 191 from online color-blind 

communities

● Decision tree: 98% accuracy (sensitivity 0.996, 
specificity 0.95)

40

•Normal or corrected-to-normal 
Visual Acuity

• P.910: No error on the 20/30 line of a 
standard chart

•  5 Landolt ring optotypes



Setup I

● Ask to perform Resolution, Color and Brightness Calibration
○ For Windows/Mac devices raters are asked to calibrate their monitors

41

4 circles
10 
triangles



Setup II

● Viewing distance test

● 3 image pairs

●Blur effect, detected if
○ Too close

○ In proper distance

○ Even if too far

●Rater asked to adjust their 
distance if failed

42



Training + Rating

Training

● Every 60 minutes

● Anchoring

●One trapping question with feedback

Ratings

● 10 clips + 1 gold question + 1 trapping

43



Validation

● VQEG HD3 and VQEG HD5
○ 168 sequences

○ Ratings per clip: 

● Videos re-encoded using x264, 
CRF 17

●On average PCC 0.952

● Shows platform is accurate 
compared to lab study

44

VQEG-HD
3

VQEG-HD
5



Reproducibility

● 5 repetitions on different days 
with different raters

● Shows system is highly 
repeatable 

45



Ablation study

46
This shows each check in the platform gets us closer to the lab 
study



• CS-Lab: statistic between subset of CS and Lab

• CS-Full_CS: statistic between subset of CS and Full CS

• With N ~ 20 ratings we get close to the max CS-Lab and CS-CS PCC

Number of votes

47



Results: Round 1

48

● ACR

● 7 ratings per clip

● $1 per HIT

● Team_01: 0.1 Mbps

● Team_10: 1.0 Mbps



Results: Round 2

● Top 6 teams in each track

● 14 ratings per clip

49

Team name MOS 95% CI
NeutronStar_10 4.450 0.05
ZX_CRD_2022_10 4.431 0.05
YAVC_10 4.410 0.05
Night-Watch_10 4.346 0.05
Foo_10 4.327 0.05
BVI_VC_10 4.306 0.05
NeutronStar_01 3.214 0.08
ZX_CRD_2022_01 3.084 0.07
YAVC_01 2.979 0.07
Night-Watch_01 2.793 0.08
BVI_VC_01 2.673 0.08
Foo_01 2.551 0.08

 NeutronStar_01 ZX_CRD_2022_01 YAVC_01 Night-Watch_01 BVI_VC_01
NeutronStar_01      
ZX_CRD_2022_01 0.000    
YAVC_01 0.000 0.006   
Night-Watch_01 0.000 0.000 0.000  
BVI_VC_01 0.000 0.000 0.000 0.005 
Foo_01 0.000 0.000 0.000 0.000 0.009

 NeutronStar_10 ZX_CRD_2022_10 YAVC_10 Night-Watch_10 Foo_10
NeutronStar_10      
ZX_CRD_2022_10 0.426    
YAVC_10 0.259 0.731   
Night-Watch_10  0.008 0.058 0.124  
Foo_10  0.004 0.032 0.073 0.789 
BVI_VC_10 0.000 0.006 0.016 0.381 0.548

ANOVA (p-values)

NeutronStar_01, ZX_CRD_2022_01, YAVC_01 are significantly difference (p < 
0.01)  

NeutronStar_01, ZX_CRD_2022_01, YAVC_01 are significantly tied, separated 
from Night-Watch_10  (p < 0.06)



ACR comparison to existing objective 
metrics

PCC SRCC

PSNR 0.69 0.67

MS-SSIM 0.75 0.79

VMAF 0.89 0.86

50

These existing objective metrics are insufficient to evaluate / stack rank ML 
codecs 



Comparison to DCR

● DCR reduces the content bias
● DCR gives similar results to ACR

○ PCC: 0.976
○ SRCC: 0.994

● The top 3 for 0.1 and 1.0 Mbps tracks donʼt change
○ There are some differences

● Note there are no public DCR lab studies to compare with
● DCR takes 2X longer to rate after qualification

51



Conclusion

●Platform in process of being standardized in ITU-T

●Platform available at: http://github.com/microsoft/P.910 

●Paper: A crowdsourced implementation of ITU-T P. 910
○ Babak Naderi, Ross Cutler

●Next steps:
○ Create an objective full reference VQA model with PCC > 0.95 and SRCC > 0.95

○ Release this FRVQA and dataset to promote ML codec development

52

http://github.com/microsoft/P.910
https://arxiv.org/abs/2204.06784


Lunch Break from 12:20 
pm to 13:20pm CDT

In Person Poster Session in 
Evening: Hall D/E 
225a-253a 



Break from 15:45 pm to 
15:55pm CDT

In Person Poster Session in 
Evening: Hall D/E 
225a-253a 



Potential Changes for 2023



Potential Changes for 2023

● Realism in image compression - topics for the Panel Discussion
○ Impose a much tighter runtime limit when using a GPU (e.g., 1x the 

time it takes VVC to decode on CPU)?
○ Create a track specific to “realistic” codecs (i.e., “1000 

FLOPs/pixel”)?
● Year-round evaluation server

○ Fixed validation set to track progress over time.
○ Test set released / decoder fix released before next workshop (as 

we currently do).



Potential Changes for 2023

● Video perceptual metrics
○ Have a similar track as our image perceptual metric, except on video

● Community raters
○ Training and getting time for expert raters is expensive.
○ Involving more raters from the compression community would be beneficial to a year-round 

evaluation setup.



Awards Ceremony



Prize Structure

● Top 3 on the leaderboard allotted for a monetary prize.
○ Limited to academic submissions.

● *New* Best Student Paper Award (for the paper only track).
● After conference, contact me (nickj at google.com) and ETH Zurich will disperse 

prize money (all listed awards in USD).



Perceptual Metric Track

1. IMCL-T1 ($600)

2. IQA_LY (Prize ineligible)

3. Kingslayer ($600)



Image Compression Track

1. NewbieCodec (Prize ineligible)

2. PKUSZ-201 ($600)

3. IMCL-T2 ($600)



Video Compression Track

1. NeutronStar (Prize ineligible)

2. ZX_CRD_2022 ($600)

3. YAVC ($600)



Best Student Paper Award

● Encourage more student participation (student as first author)
● Challenge tracks are very important (and also very competitive)

"Neural Face video Compression using Multiple Views" by Anna Volokitin et al.

$400 prize.



Poster Sessions: Hall D/E

225a-253a



Thank you for Attending the 
5th Challenge on Learned Image Compression

Poster Session Now

See you in 2023!


