
Module 2: DevOps, SRE, 
and Why They Exist

Now that you understand what this course will cover, let’s get started.



DevOps movement

Learning topics

Origin of Site Reliability Engineering

Who practices SRE

In this module, you’ll learn about the practice of DevOps, why Site Reliability 
Engineering, or SRE, came to exist, and who in an organization can and should 
practice them.

But first I want to tell you a story of an online retailer. Their application is similar to so 
many other online retailers. Customers browse the catalog, add items to the  cart, 
then complete their purchase.



The operations team at this online retailer holds weekly reviews of key metrics. 



At a recent review, the team noticed that the time it was taking between the customer 
clicking pay and the status coming back as confirmed was slowly increasing. They 
recognized this was not a critical issue but did need to be addressed. The team spent 
some time quietly working on addressing the latency.



Over time, on the business side of things, the product development kept pushing 
features. Can you guess what happened? 



Well, developers started working overtime not only to keep up with the business 
requests of pushing out new features, but also to resolve the “small” latency bug that 
was identified earlier.

The product teams still weren’t pleased with the pace of development. Basically, the 
IT teams put forth a heroic effort to not only satisfy the business, but also fix the 
bug—they suffered from burnout in order to meet the needs of both the business and 
reliability. 



No shared standards for communication

Later, when it came to light what the IT team was doing, the product teams agreed 
that if they had known about the latency bug, they definitely would have prioritized 
fixing that first before pushing new features. But because the business and IT didn’t 
have shared standards for communication, this didn’t happen.



What can you learn from this?

How can the business and IT communicate better?

Can you achieve this in your organization?

So, what can you learn from this? Do you think there are ways that the business and 
IT can communicate better? How do you think you could achieve this in your 
organization?



How to think about, measure, and incentivize reliability

Site Reliability Engineering

Google thought a good place to start was changing the way we think about, measure, 
and incentivize reliability. We call this collection of principles and practices Site 
Reliability Engineering, or SRE. 



DevOps SRE

Perhaps you’ve heard of the DevOps movement. It’s a movement that, like SRE, 
strives to align principles, practices, and incentives across teams. DevOps and SRE 
have a lot in common and they are often discussed together. In fact, you may be 
wondering how they are different. We will explore some of the common ground 
between the two and how they complement one another in the next video.



What is DevOps?

So, what is DevOps? To understand what it is, we first need to understand why 
DevOps exists.



Developers Operators

Traditionally, IT teams consist of developers and operators. Developers are 
responsible for writing code for systems, and operators are responsible for ensuring 
those systems operate reliably, so customers are happy. 



Work faster

Developers are expected to be agile, and are often pushed to write and deploy code 
as quickly as possible. Essentially, developers want to work faster, innovating and 
succeeding (or failing) quickly. 



Work slower

This resulted in developers throwing their code “over the wall” to the operators, who 
then had to deal with code that was written without much understanding of how it 
would run in production. Operators, who are expected to keep systems stable, would 
prefer to work slower, focusing on reliability and consistency.



Quite understandably, this way of working wasn’t sustainable between these two 
groups. Their priorities caused tension between the two teams and were not 
necessarily aligned with the needs of the business. And so, as a way to knock down 
the wall and close the gap between developers and operators,



DevOps

a culture and set of practices known as DevOps was born.

Let’s take a look at how Google breaks down DevOps. 

There are five key areas.



The first is to reduce organizational silos. You can increase and foster collaboration 
by breaking down barriers across teams.



Secondly, you need to accept failure as normal. Computers are inherently 
unreliable, so you can’t expect perfect execution. And when you introduce humans 
into the system, you get even more imperfection. Things failing will inevitably become 
part of the process.



Thirdly, you’ll want to implement gradual change. Small, incremental changes are 
easier to review. And in the event that a gradual change does release a bug in 
production, it allows you to reduce the time to recover, making it simple to roll back. 



Fourthly, you need to leverage tooling and automation. Identifying manual work that 
you can then automate is key to helping your IT team work efficiently and focus on the 
tasks that matter.



And lastly, you’ll want to measure everything. Measurement is a critical gauge for 
success. There’s no way to tell if what you’re doing is successful if you have no way 
to measure it.

It’s important to understand that DevOps is a philosophy, versus a development 
methodology or technology.



That’s where SRE comes in

While DevOps philosophy highlights critical ways for IT teams to operate, it doesn’t 
give explicit guidance on how an organization should implement practices to be 
successful.

That’s where SRE comes in.



2003

So what is SRE? 

SRE evolved at Google in the early 2000s, separately from DevOps. Back in 2003, 
Benjamin Treynor Sloss, currently a VP of Engineering at Google, was tasked with 
managing a team of engineers who were responsible for keeping Google’s websites 
up and running. 



You’re probably wondering, “Wait… so a bunch of software engineers who write the 
code now also had to be responsible for running their production systems? But 
doesn’t the ops team do that?”

Well, the answer, at least traditionally, is yes. However this team only had software 
engineers, so Ben had them spend some of their time on operations tasks in addition 
to development tasks, so they could better understand how their code ran in 
production. 



Site Reliability Engineering

This way of working is what led to the term Site Reliability Engineering, and the 
associated job role, where SREs, who are generally engineers, are responsible for 
operations.

Just as DevOps aims to close the gap between software development and software 
operations, this new SRE approach is a concrete way to solve the problems that the 
DevOps philosophy addresses.



A role and 
a practice

Title isn’t 
necessary in 

order to 
practice

Focus on 
practices and 

principles

Note that SRE is both a role and a practice. Not every organization that follows SRE 
principles necessarily must have engineers with the title “SRE”. This course mostly 
focuses on the practices and principles themselves; things like titles and team 
structures are implementation details.



Technical

There are a number of SRE practices that align to Google’s categorizations of 
DevOps. And you should not only implement SRE technical practices, 



Technical

Cultural

you’ll also want to implement cultural practices. Without a culture to sustain them, it 
is not possible to maintain the practical aspects of SRE.



Let me explain where these fundamentals fit into the key areas of DevOps we 
discussed.

When it comes to reducing organizational silos, SREs share ownership of production 
with developers. Together, they define Service Level Objectives, or SLOs, and error 
budgets, sharing the responsibility of how they determine reliability and prioritize 
work. Culturally this promotes shared vision and knowledge, as well as a need for 
improved collaboration and communications.



Complex systems fail in interesting and complex ways. Accepting failure as a normal 
state is an important practice within SRE. A blameless post mortem is held after an 
incident to improve the understanding of the failure mode and to identify effective 
preventive actions to reduce the likelihood or impact of a similar incident. Learning 
from incidents in this manner requires a culture of psychological safety and 
blamelessness.



When implementing gradual change, SREs aim to reduce the cost of failure by 
rolling out changes to a small percentage of users before making them generally 
available. Culturally this promotes more design thinking and prototyping.



Next, in order to leverage tooling and automation, SREs focus on toil automation, 
reducing the amount of manual, repetitive work. Automating this year’s job away can 
undoubtedly be met by resistance. That’s why teams need to talk about and 
understand the psychology of change and how to address resistance to change 
within the team.



Finally, measure everything means that SREs work to measure everything related 
to toil, reliability, and the health of their systems. To foster these practices, 
organizations need a culture of goal setting, transparency, and data-driven 
decision making.



Before diving into each of these pillars as they relate to SRE, I want to acknowledge 
that sometimes people can see these practices aligning to different or many, of the 
pillars of DevOps. It is likewise important to acknowledge that the language and 
definitions across different organizations are less critical than driving towards the 
goals of your organization and the outcomes you are trying to deliver for your 
customers. In other words, we may disagree on the precise terminology, but many of 
the underlying principles are the same. The goal of SRE is to serve the business and 
the user, not the other way around.

The next three modules will dig a bit deeper into all of these SRE practices and 
cultural concepts.


