
Module 4: Make
Tomorrow Better than
Today

In the previous module, we discussed the first step on the journey to SRE: SLOs with
Consequences. The next step on the journey is to Make Tomorrow Better than Today.

Learning topics

Continuous integration/Continuous delivery (CI/CD)

Canarying

Toil

Automation

In this module, you’ll learn about the SRE concepts of continuous
integration/continuous delivery (CI/CD) and canarying as they relate to the DevOps
pillar of implementing gradual change. We’ll also look at the concepts of toil and
automation and the idea of automating this year’s job away.

Along with these technical concepts, you’ll also learn about cultural concepts of
design thinking, prototyping, and how you can support your teams through change.

Developers

SREs

In the world of IT, there are different perspectives on how to approach software
development. Culturally, developers tend to focus on “moonshot” thinking, where they
can implement massive software changes that create breakthroughs and could
fundamentally change society, but have a high likelihood of failing. In contrast are
SREs focus on gradual change, where they can test smaller changes that will have
less impact on users if they fail.

Implementing gradual change
reduces the cost of failure

The DevOps pillar of implementing gradual change is practically implemented by
SREs in a few different ways to reduce the cost of failure. SREs believe that change
is best when it is small and frequent. And although change is risky, it’s less disruptive
to users when rolled out in smaller waves.

Continuous integration/Continuous delivery
(CI/CD)

Canarying

Google SRE culture focuses on practices of continuous integration/continuous
delivery, or CI/CD, and canarying.

Continuous integration: Building, integrating, and
testing code within the development environment

Continuous delivery: Deploying to production
frequently, or at the rate the business chooses

Let’s first define CI/CD.

Continuous integration (CI) usually refers to, building, integrating, and testing code
within the development environment. The main goal of this practice is to enable
engineers to work on code and test more often. As a result, code quality increases,
and critical issues can be avoided earlier.

Continuous delivery (CD) just means that you can deploy to production frequently
but may choose not to, usually due to businesses preferring a slower rate of
deployment. This stage involves continuous integration, testing automation, and
deployment automation.

If you think of software development as a process, you can divide it into these
categories: code, build, integrate, test, release, deploy, and operate. In agile
development, the process covers code and build. DevOps philosophy spans from
code to operate. Continuous integration and continuous delivery fill in the middle with
code to test, to release, and to deploy.

● Helps to overcome agile
transformation challenges.

● Can minimize code integration
headaches.

● Reduces human error.

● Promotes higher code quality.

CI/CD

So how does the practice of CI/CD help reduce the cost failure when implementing
gradual change?

● It helps to overcome agile transformation challenges.
● It can minimize code integration headaches.
● It reduces human error.
● It promotes higher code quality.

● Easier to “recover” after something
goes wrong.

● Can automate everything, which
saves time and money.

● Provides visibility on project
completion.

● Time to market is shorter.

● Provides you with more metrics to
review and act on.

CI/CD

● It’s easier to “recover” after something goes wrong.
● You can automate everything, which saves time and money.
● It provides visibility on project completion.
● The time to market is shorter.
● It provides you with more metrics to review and act on.

Canarying

The other practice SREs use for implementing gradual change is canarying.

You may have heard of the phrase “canary in a coal mine,” which is a metaphor for
advanced warning of danger. Coal miners would bring canaries into coal mines to
detect dangerous gases. Canaries are smaller and breathe faster than humans, so if
they died, the miners knew that there was danger.

Let’s simplify this metaphor a bit.

● We have something large that we don’t want to harm.
● We have something small that we are okay losing.
● The small thing detects danger as we go into the unknown.

Now let’s see how this relates in terms of SRE practice in production systems.

● We have a large service that we want to sustain.

● We are okay losing a small portion of it.

● We employ a production change with unknown impact to the small portion to
detect danger.

So what exactly does this mean? Canarying is deploying a change in service to a
group of users who don’t know they are receiving the change, evaluating the impact
to that group, then deciding how to proceed. If the change contains bugs, the cost is
much less than if it was rolled out to the whole system and can be reversed quickly.

Canarying requirements

1. Canary population should be large enough to
be a representative subset of the control. The
only difference should be the production
change.

2. Canary population should be small enough
not to endanger the whole service if broken.

3. Canary should not be overly complicated for
those who monitor it.

So what are requirements for canarying?

● The canary population should be large enough to be a representative subset
when compared to the control population. The difference between a canary
and the control population should, to the greatest extent practically possible,
be only the production change that you are testing.

● The canary population should be small enough to not endanger the quality of
service as a whole if the canary is broken.

● The canary deployment should not be overly complicated and impose
significant cognitive load on the operator. In other words, it should be easy to
reason about the canary process so that it's easy to understand how it can
impact current service health overall and easy to cancel in case of problems.

It’s true that these three points are, to some degree, in conflict with each other. These
generic requirements also do not include any additional requirements specific to a
service.

In the next video, we’ll talk about the SRE cultural concepts of design thinking and
prototyping that relate to implementing gradual change.

When you reduce the cost of failure by implementing gradual change practices such
as CI/CD and canarying, you open up your teams to be more innovative. Knowing
that any change will be tested allows individuals to think big and not restrict their
creativity or ideas. This is why design thinking and prototyping are key aspects of
SRE organizational culture.

Design thinking combines creativity and
structure to solve complex problems.

Design thinking is one approach that combines creativity and structure to solve
complex problems. Google uses design thinking as one method to teach teams and
individuals to think creatively, which is an important step in the process of innovation.

Design thinking

Design thinking methodology has five phases.

First, empathize. In this phase you want to observe and engage with your intended
users to learn more about them and immerse yourself in their environments. Empathy
helps you set aside your own assumptions in order to gain insight into your users and
their needs.

Design thinking

Second, define the problem you are attempting to solve. Express the problem in the
form of a point of view of the user, versus what you want to accomplish.

Design thinking

Third, ideate. Now that you’ve defined the problem, you can start generating ideas for
solutions. This is a time to “think outside the box.”

Design thinking

Fourth, it’s time to prototype. In this phase, you can get the ideas out of your head
and into the real world. It’s meant to be experimental, so you can identify the best
possible solution before committing.

Design thinking

And finally, test. You’ll want to test your prototype solutions in a real-world setting with
your intended users.

If you analyze this even more simply with a software development mindset, you want
to first focus on the user, then do some 10x thinking, and then prototype to test your
solution. This approach encourages your teams to think about what they are solving
for from the user’s perspective. Then they can brainstorm expansively on the solution,
and then prototype their solution. Finally, they can then test gradually using SRE
practices such as CI/CD and canarying, which you learned about in the last video.

It’s very important for organizations with SRE teams to promote being
prototype-driven.

Without prototyping:

● Fewer ideas are tested

● Slower failures

● Fewer successes

With prototyping:

● More ideas are tested

● Faster failures

● More successes

Without prototyping, fewer ideas are tested. This creates slower failures versus fast
ones, which can lead to fewer successes. However with a prototyping culture, teams
are encouraged to try more ideas. This leads to an increase in faster failures versus
slow ones, and ultimately can lead to more successes than without prototyping.

1. Physical prototyping

Ways to prototype

Remember that there is no right way to prototype. Here are some examples of how
teams can prototype fast to test their solutions.

1. Physical prototyping: Build a model with legos or other small building blocks.

1. Physical prototyping

2. Paper and drawing

Ways to prototype

2. Paper and drawing: Use pencil and paper to wireframe out ideas.

1. Physical prototyping

2. Paper and drawing

3. Clickable

Ways to prototype

3. Clickable: Create a clickable solution using software that simulates a solution.

1. Physical prototyping

2. Paper and drawing

3. Clickable

4. Role play

Ways to prototype

4. Role play: Find people to role-play testers and try out the prototype.

1. Physical prototyping

2. Paper and drawing

3. Clickable

4. Role play

5. Video

Ways to prototype

5. Video: Use video to record a solution or see how users interact with it.

No matter how you prototype, try to make it real enough for users to feel. More
concrete prototypes increase the likelihood of actionable feedback.

We at Google have learned, based on our customer interactions, that with the help of
simple prototypes, customers are able to improve the most complex processes. By
activating imaginative thinking, individuals feel motivated and encouraged to have
audacious ideas that they might not have by sitting at their desks or during a regular
meeting. Some of the examples of prototypes we’ve seen from customers include a
video of a panel discussion, a heatmap, and a banner with post-it notes.

One of the leading online retailers in the Netherlands used the design thinking
methodology to brainstorm about changes to their production process. The
participants arranged paper cups to represent each step in the process. While
prototyping, the team used different-colored cups to mark the steps needed to be
improved or deprecated.

Hopefully now you can understand how your organization can benefit from a culture
of design thinking and prototyping. Your teams will need your support to help promote
and encourage that culture.

In the next video you will learn about ways SREs leverage automation in order to put
more time and focus into software development versus operations, which is vital for
any business’s success.

If a human operator needs to touch your system
during normal operations, you have a bug. The
definition of normal changes as your systems grow.“ ”

A Google SRE once said, “If a human operator needs to touch your system during
normal operations, you have a bug. The definition of normal changes as your systems
grow.” As discussed earlier in the course, a key pillar of DevOps philosophy for
Google is leveraging tooling and automation. Focusing on this allows your
engineering teams to focus on development work instead of operational work. SREs
do this by eliminating that operational work, which we call toil.

● Manual

● Repetitive

● Automatable

● Tactical

● Without enduring value

● Scales linearly as the service grows

Toil

So what exactly do we mean by toil? Toil is work directly tied to a service that is
manual, repetitive, automatable, tactical, or without enduring value, or that scales
linearly as the service grows.

Toil isn’t just administrative work or work you don’t want to do, because that kind of
work can still be very important. Different people like different types of work, and
administrative work can be necessary overhead, such as team meetings or HR
paperwork. This type of work also isn’t tied to running a production service.

By eliminating toil, SREs can focus the majority of their time on work that will either
reduce future toil or add service features, which generally focuses on improving
reliability, performance, or utilization.

Site Reliability Engineering

Why is toil a problem?

Until now, you’ve learned a lot about the “reliability” part of site reliability engineering.
Reducing toil and scaling up services is now the “engineering” part of site reliability
engineering. Engineering work is what enables an SRE team to scale up and to
manage services more efficiently than either a pure Dev team or a pure Ops team. By
keeping your SREs working on toil less than 50% of the time, you’re also
distinguishing the SRE role as clearly different from a typical operations role.

So why is toil really a problem? Well, toil can create multiple issues in your
organization.

Excessive toil

1. Career stagnation

Toil can lead to career stagnation. Individual team members’ career progress will
slow down or stop if they spend too little time on projects. While it’s true that Google
rewards undesirable work when it’s inevitable and has a large positive impact, you
can’t make a career out of it.

Excessive toil

1. Career stagnation

2. Low morale

It promotes low morale. People have different levels of tolerance for how much toil
they can do, but everyone has a limit. Too much toil leads to burnout, boredom, and
discontent.

Excessive toil

1. Career stagnation

2. Low morale

3. Confusion

It creates confusion. At Google, we work hard to ensure that everyone who works in
or with the SRE organization understands that we are an engineering organization.
Individuals or teams within SRE that engage in too much toil undermine the clarity of
that communication and confuse people about the SRE role.

Excessive toil

1. Career stagnation

2. Low morale

3. Confusion

4. Slower progress

Toil slows progress. Excessive toil makes a team less productive. A product’s feature
velocity will slow if the SRE team is too busy with manual and reactionary work to roll
out new features promptly.

Excessive toil

1. Career stagnation

2. Low morale

3. Confusion

4. Slower progress

5. Precedence

It sets precedent. If you’re too willing to take on toil, your developer counterparts will
have incentives to load you down with even more toil, sometimes shifting operational
tasks that should rightfully be performed by developers to SRE. Other teams may also
start expecting SREs to take on such work, further perpetuating the issue.

1. Career stagnation

2. Low morale

3. Confusion

4. Slower progress

5. Precedence

6. Attrition

Excessive toil

It promotes attrition. Even if you’re not personally unhappy with toil, your current or
future teammates might like it much less. If you build too much toil into your team’s
procedures, you motivate the team’s best engineers to start looking elsewhere for a
more rewarding job.

Excessive toil

1. Career stagnation

2. Low morale

3. Confusion

4. Slower progress

5. Precedence

6. Attrition

7. Breach of faith

Lastly, toil causes breach of faith. New hires or transfers who join SRE with the
promise of project work will feel cheated, which is bad for morale.

Even though a lot of toil is unhealthy when running a service, there are some
positives for having a little bit of toil. Toil doesn’t make everyone unhappy all the time,
especially in small amounts. Predictable and repetitive tasks can be quite calming.
They produce a sense of accomplishment and quick wins. They can be low-risk and
low-stress activities. Some people gravitate toward tasks involving toil and may even
enjoy that type of work. But it should never be primary work for an SRE.

Toil isn’t always and invariably bad, and everyone needs to be absolutely clear that
some amount of toil is unavoidable in the SRE role, and in almost any engineering
role. Toil becomes toxic when experienced in large quantities. You should be
concerned if your teams complain about being burdened with too much toil.

So now you may be wondering how you can balance toil with project work.

Toil must be a bounded part of an SRE role. If SREs don’t have time for anything else,
they are doing traditional sysadmin tasks that DevOps advocates against.

If you put a threshold for toil at 50% for SREs, they are freed to do project work that
supports your engineering and reliability goals the rest of the time. Priority project
work for SREs is work that impacts or might impact the team’s SLOs. After that, their
focus should be work that causes SREs toil.

Automation
● What to automate

● How to automate it

A key aspect of eliminating toil is automation. SREs strive to automate this year’s job
away—that is, determining what to automate, under what conditions, and how to
automate it.

1. Consistency

Value of automation

Automation in a production service provides several values.

First, it can provide consistency. Any action performed by a human is prone to error,
especially the same action performed hundreds of times. A person isn’t likely to be as
consistent as a machine. Lack of consistency leads to mistakes, oversights, issues
with data quality, and even reliability problems. Automation remedies this by creating
consistency.

1. Consistency

2. A platform

Value of automation

Next, automated systems provide a platform that can be extended and applied to
more systems. A platform also provides a way to centralize mistakes, so that a bug is
fixed once in one place. With humans, you’d have to communicate that fix across
multiple people, and there is more room for error and for the bug to be reintroduced.
Additionally, a platform can execute additional tasks faster and with more accuracy
than humans, and can also export performance metrics more easily than a manual
system.

1. Consistency

2. A platform

3. Quicker resolutions

Value of automation

If automation runs regularly and successfully enough, any common faults can be
resolved more quickly. You can then spend your time on other tasks instead, which
promotes increased developer velocity since you don’t have to spend time either
preventing a problem or, more commonly, cleaning up after it. A problem discovered
later in the product life cycle is more expensive to fix. Generally, problems that occur
in actual production are most expensive to fix, both in terms of time and money. This
means that an automated system looking for problems as soon as they arise has a
good chance of lowering the total cost of the system.

1. Consistency

2. A platform

3. Quicker resolutions

4. Faster action

Value of automation

Another value of automation is faster action. Machines react faster than humans, so
for large production services, automating is necessary for survival since the amount of
work required is usually beyond a manageable manual threshold.

1. Consistency

2. A platform

3. Quicker resolutions

4. Faster action

5. Time saved

Finally, automation saves time. Even though it may be a significant time investment
to code a particular automated process, once done there is no need for continual
training of humans and maintenance of the process. Once a task is automated,
anyone can execute it.

If automation is not common in your organization, you’re likely to see some resistance
to change from your teams as you start to introduce it or any SRE practices. In the
next video, you’ll learn about the psychology of and resistance to change, and how
you can help support your teams through SRE adoption.

When you start to implement the SRE practice of automation to eliminate toil, some
individuals will probably begin to resist. It’s important to acknowledge that people
react to a push for automation in different ways and that some may resist it more than
others. Individuals may feel as though their jobs are in jeopardy, or they may disagree
that certain tasks are toil and don’t need to be automated. Because of this, it’s
important to understand how to address resistance to change in your organization.

Psychology of change

But let’s first start with the psychology of change.

Change elicits emotions. There are hundreds of different types of reactions and
emotions. You should always expect to get positive and negative reactions, even if the
change is for the good. Broadly, people and their emotions fall into four categories.
Let’s talk about each group and how you can support them.

Navigators
● Help you succeed.

You should:

● Celebrate their behaviors.

● Use them as champions.

Navigators: These are the people who will make teams and businesses successful.
As leaders, spot them and celebrate their behaviors. Use them as champions for the
change.

Critics
● Have passion and energy.

● Have valid fears.

You should:

● Spend time with them.

● Persuade them.

Critics: These are the second type of individuals that you should care about. They
have passion and energy. Critics care, and they have valid fears, so it’s important not
to ignore them. Spend some time with them, because they will be very powerful
advocates if you can persuade them.

Victims
● Need to express emotions.

● Take change personally.

You should:

● Listen to and empathize
with them.

Victims: Often, this type of individual just needs to get their emotions out. Victims
tend to take organizational change very personally. Your role as a leader is to listen to
them and empathize. Once they feel heard, then they can start to listen.

Bystanders
● Are difficult to understand.

● Do not know what’s going on.

● Continue with normal routine.

You should:

● Communicate with them.

● Ascertain their feelings.

Bystanders: These people are tricky because you never know what they are thinking.
Often, bystanders have no idea what’s going on, and they will just continue as if
nothing, or no change, is happening. You should try to communicate with them to
ascertain their feelings.

Sometimes one person can fall into several categories. Remember that it’s likely
you’ve experienced all of these faces of change at some point in your career.

As a leader, the way you navigate your own emotions to change will highly impact the
teams you lead. Teams look to their leaders to get signals on how to react to change.

Brains are hard-wired
to reflect emotions.

Brains are hard-wired to reflect emotions. People experience reactions to change not
because they are trying to be difficult, but because it’s natural.

Take a look at how the brain responds to change biologically.

● Exclusion
● Anterior cingulate
● Physical pain

1

1. When you experience the feeling of being excluded from something, it triggers
response in the anterior cingulate (dorsal portion)—which is the same part of the brain
that deals with physical pain.

● Exclusion
● Anterior cingulate
● Physical pain

1

● Realization
● Prefrontal cortex
● Deception
● Heightened anxiety

2

2. When you realize that something you were told in the past is unrealistic or untrue,
the prefrontal cortex switches to high alert, looks for other signs of deception, and
triggers feelings of heightened anxiety.

● Exclusion
● Anterior cingulate
● Physical pain

1

● Problem-solving
● Rush of adrenaline
● Positivity

3

● Realization
● Prefrontal cortex
● Deception
● Heightened anxiety

2

3. When you solve your own problems, you get a rush of adrenaline (positivity/natural
high).

● Exclusion
● Anterior cingulate
● Physical pain

1

● Problem-solving
● Rush of adrenaline
● Positivity

3
● Unfamiliar concepts
● Amygdala
● Anxiety, depression, fatigue, anger

4

● Realization
● Prefrontal cortex
● Deception
● Heightened anxiety

2

4. The prefrontal cortex can only deal with a few concepts at a time. When you are
overwhelmed by unfamiliar concepts, your amygdala is triggered, making you feel
anxious, afraid, depressed, tired, or angry.

● Exclusion
● Anterior cingulate
● Physical pain

1

● Problem-solving
● Rush of adrenaline
● Positivity

3
● Unfamiliar concepts
● Amygdala
● Anxiety, depression, fatigue, anger

4

● Greater attention
● Adaptation5● Realization

● Prefrontal cortex
● Deception
● Heightened anxiety

2

5. When you pay a greater amount of attention (attention density) to something, you
find it easier to adapt.

● Exclusion
● Anterior cingulate
● Physical pain

1

● Realization
● Prefrontal cortex
● Deception
● Heightened anxiety

● Problem-solving
● Rush of adrenaline
● Positivity

3
● Unfamiliar concepts
● Amygdala
● Anxiety, depression, fatigue, anger

4

● Greater attention
● Adaptation5

● Habits
● Comfort
● Hard-wired
● Basal ganglia

6

2

6. Habitual tasks feel easy and comfortable because they are hard wired and require
little conscious thought (controlled by the basal ganglia).

Involve people in the change.1

2

3 4

5

6

Set realistic
expectations.

Identify opportunities for
co-creation and provide
coaching instead of solutions.

Simplify messaging and focus on
key concepts per user group.

Ensure that
communications are
engaging and training is
interactive.

Allow people time to build
new habits.

So how can you address these responses? Google has some recommended ways to
manage and account for people's reactions to change in the teams you lead.

1. Exclusion is painful: Involve people in the change.
2. Deception anxiety: Set realistic expectations.
3. Self-solve adrenaline: Identify opportunities for co-creation and provide

coaching rather than solutions.
4. Amygdala hijack: Simplify messaging and focus on key concepts per user

group.
5. Attention density: Ensure that communications are engaging and training is

interactive.
6. Unconscious habit: Allow people time to build new habits.

P
E

R
F

O
 R

 M
 A

 N
 C

 E

Denial Resistance Acceptance
Exploration

Commitment
Emotional response to change Growth

(Unconscious
incompetence)

(Conscious
incompetence)

(Conscious
incompetence)

(Conscious
competence)

(Unconscious
competence)

Indifferent
Passive
Guarded

Angry
Hostile
Disagrees with
feedback
Withdrawn

Aware
Confused
Guilty
Worried

Open
Questioning
Accepts
feedback

Energized
Confident
Takes
ownership

Self evaluates
Takes risks
Seeks feedback
Experiments

Keeping the neuroscience of change in mind, let’s look at the stages of transition that
individuals experience when going through change. There are different versions of the
change curve, but this is the way we’ll look at it today.

As you can see, there is a beginning, middle, and an end, yet it is completely normal
for people to move backward and forward at different times.

Remember to present change as an opportunity, not a threat, to your teams. To do
this, you’ll want to connect with individuals on three levels:

1. Head, which is rational.
2. Heart, which is emotional.
3. Feet, which is behavioral.

For the Head, talk about why the change is happening and the strategic mission,
vision, and rationale behind it.

For the Heart, talk about why people should care. Remember that people can be
egotistical and self-motivated. Address how the change will affect them personally in
their day-to-day role and how it will impact them positively. Find a way to make them
feel like they are a part of the change. People often just want to feel like they are a
part of something.

And lastly, for the Feet, talk about the knowledge, skills, and resources you will
provide to make sure they are successful in this change. Teams need support to make
sure they are and feel competent when asked to change what they know.

Now that you’ve learned some ways to address change in your organization, let’s look
at how to handle resistance to change.

Research has shown that resistance is the primary reason changes fail in businesses.
Resistance to change is usually a fear of loss. Specifically, people fear losing security
or control, competence, relationships, or sense of direction.

Human reaction to loss is much stronger than human reaction to gain.

● Are all your leaders and managers role
modeling the new processes and behaviors?

● Do people understand the reason for the
change?

● Do people care about the change being
successful?

● Do people have the knowledge and ability to
be successful in your new world?

● Are the right reinforcement and recognition
programs in place?

Handling resistance to change

So how can you handle resistance to change? Keep this checklist in mind as you
navigate your business’s adoption of SRE practices.

● Are all your leaders and managers role modeling the new processes and
behaviors?

● Do people understand the reason for the change?
● Do people care about the change being successful?
● Do people have the knowledge and ability to be successful in your new world?
● Are the right reinforcement and recognition programs in place?

If the answers to any of these are “no,” we recommend that your leadership teams
brainstorm how to address them, because all of these pieces need to happen for any
successful organizational changes.

Let’s look at how one of our customers experienced resistance to change.

One of the leading commercial banks in Spain identified a number of processes that
they wanted to automate. Their VP of Engineering, an executive sponsor for SRE
implementation, was eager to showcase the benefits of the project to the business by
investing in automation. The teams on the ground were very reluctant and skeptical
about automating the earlier-identified processes. It turned out that they perceived
automation as a direct threat to their jobs. Because they hadn’t been supported during
the SRE implementation with a proper explanation of what the changes entailed and
the impact changes would have on their projects, their resistance was prominent.

Now that we’ve covered SRE concepts that help organizations make their tomorrow
better than today, the next module will cover the last step of the SRE journey,
regulating workload.

