
Module 6: Apply SRE in
Your Organization

Throughout the last several modules, you’ve learned about Google’s SRE practical
and cultural fundamentals and ways you can adopt them in your own organization.
Before you can start employing many of the technical principles, it’s important to
understand a few additional points.

Learning topics
Assess organizational maturity level for SRE

Necessary SRE skills

How to train your workforce

SRE team implementations

How Google Cloud can support your organization

In this module, we’ll discuss how you can assess and understand your organization’s
maturity and readiness for adopting SRE principles, practices, and culture.

You’ll also learn what skills are necessary in an SRE and how to train your current
workforce.

Lastly, we’ll provide examples of SRE team implementations and the additional
support our Google Cloud Professional Services teams can provide as you continue
on your journey to SRE.

SLOs with Consequences

Make Tomorrow Better
than Today

Regulate Workload

It’s important that you assess your organization’s maturity level for adopting SRE
before you implement the various principles.

We've looked at Site Reliability Engineering as a three part journey: SLOs with
Consequences, Make Tomorrow Better than Today, and Regulate Workload.

Organizational maturity for SRE

Low: No adopted SRE principles,
practices, or culture

High: Well-established SRE team or
widely embraced principles,
practices, and culture

Organizational maturity is considered low if your organization has not yet adopted
SRE principles, practices, and culture. Organizational maturity is considered high if
you have a well-established SRE team, or if SRE principles, practices, and culture are
widely understood, implemented, and embraced.

High SRE maturity

● Well-documented and user-centric SLOs

● Error budgets

● Blameless postmortem culture

● Low tolerance for toil

An organization with high SRE maturity is expected to have the following:

● Well-documented and user-centric SLOs, where a target level of reliability is
ideally correlated with customer happiness.

● Error budgets, which are budgets for failure. The error budget is the
difference between perfection and your SLO. They allow IT teams to move
fast, as long as the budget is not exhausted, but with defined actions to
improve reliability if the production service fails.

● A blameless postmortem culture. This culture recognizes that things will go
wrong and that human errors are really systems problems.

● A low tolerance for toil. Again, toil is work that tends to be manual, repetitive,
automatable, tactical, and devoid of enduring value, and that scales linearly as
a service grows.

These principles can be adopted by any team responsible for production
systems—regardless of its name—before and in parallel to staffing an SRE team. As
you can see, these are many of the technical principles we’ve discussed throughout
the course.

At Google, we believe we can't achieve the business goals mentioned earlier—such
as aligning development and operations incentives, balancing feature velocity with
reliability, and fostering effective collaboration—without first defining SLOs and error
budgets and setting policies around them. It’s possible that your journey to SRE may
have a different first step based on your organizational culture and business needs.
However these are the Google-recommended first steps.

After setting up your SLOs, error budgets, and postmortem culture, you will be better
prepared to start defining and organizing your SRE teams. After that, you can start
implementing practices for automation and regulating workload.

DORA DevOps Quick Check tool

https://www.devops-research.com/quickcheck.html

You can also use this tool, called the DORA DevOps Quick Check, for a
recommendation on how to get started. It’s a quick, five-question assessment about
your current engineering practices. Access the tool at
https://www.devops-research.com/quickcheck.html.

https://www.devops-research.com/quickcheck.html

Work with your engineering and operations teams to understand where your
organization fits into this journey. Your organization might not use any SRE principles
yet. And that’s okay! Hopefully now you have a clearer understanding of the principles
to start with. We at Google want to help you get started. We’ll talk about how this
works at the end of this module.

In the next video, we’ll talk about the types of skills Site Reliability Engineers need to
have and develop to make your SRE team productive and successful.

In addition to understanding the practical and cultural fundamentals that we’ve
discussed so far in this course, SREs should have several skills to support your
organization’s adoption of Site Reliability Engineering.

Who to hire

● Engineers with SRE experience

● Systems administrators with
operations and scripting
experience

Who to hire

As you’ve learned, an SRE is an engineer who also runs operations. Unless you’re
hiring an engineer who has already worked as an SRE, you’ll likely need to upskill
any current or new engineers you put into the role. SRE concepts are not often taught
in school or university. At Google, we also hire SREs that were systems
administrators who have worked operations and who also have some scripting
experience. We offer them software engineering training to improve their engineering
skills.

Since you’re making a large organizational shift to SRE, it’s important to understand
that you’ll need to provide necessary training and resources for people moving into
SRE roles. It’s an investment that will benefit your organization in the long run.

What skills to train
and hire

What skills to train and hire

At Google, we’ve discovered that there are particular skills to focus on when training
and hiring new SREs. This is by no means a comprehensive list, but it’s what Google
recommends as essentials when getting started.

What skills to train
and hire

● Operations and software
engineering

Operations and software engineering
Running applications in production gives invaluable insights that cannot be easily
gained otherwise, so engineers with little or no experience in operations will need to
be upskilled. Additionally, systems administrators or other operators can also make
great SREs, so they’ll need to understand the software they are supporting and be
empowered to improve it.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

Monitoring systems
SRE principles require SLOs that can be measured and accounted for, so an
understanding of monitoring systems is necessary.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

● Production automation

Production automation
Scaling operations requires automation. Your SREs will need an understanding of
how to automate processes.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

● Production automation

● System architecture

System architecture
Scaling an application requires good architecture, so SREs should have a skill set
that includes understanding system architecture and how to work with and create it.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

● Production automation

● System architecture

● Troubleshooting

Troubleshooting
SREs are regularly on-call and therefore require sharp troubleshooting skills. They
should be inquisitive and follow an analytical approach to solving problems.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

● Production automation

● System architecture

● Troubleshooting

● Culture of trust

Culture of trust
Because SREs and developers share ownership of services and what customers
experience, they need to have a good relationship. At Google, we’ve learned that the
top three characteristics of a healthy culture between SREs and developers are
communication, agreement, and trust. It’s important to extend this culture to other
teams as well, such as security and privacy teams.

What skills to train
and hire

● Operations and software
engineering

● Monitoring systems

● Production automation

● System architecture

● Troubleshooting

● Culture of trust

● Incident management

Incident management
Incident management has two sides: technical troubleshooting and communication
framework. For timely resolution for incidents, SREs will need to both technically
resolve problems and interact with many other people. They should be adept in
explicit and clear communication, time and task management, and record keeping, to
name a few skills.

Look for resilience and flexibility in an SRE.

As you build out your SRE team, you should remember that these individuals will be
in a difficult and ambiguous position between feature velocity and reliability goals.
Important character traits to look for are resilience and flexibility, because SREs will
need to provide the right balance between enabling product development and doing
what’s right for your customers.

If you start with these skills and begin adopting the practices of SLOs, error budgets,
and postmortems, you’ll be well-prepared to start implementing your first SRE team.

In the next video, we’ll give you an overview of several different types of SRE teams
that you can consider for your organization.

Once you have established some key practices and have begun training and hiring for
the SRE role in your organization, you can start thinking about how to implement your
SRE team. This implementation can and will look different depending on the size of
your organization and where you are on your journey to SRE.

In this video, we’ll give you an overview of the different types of implementations and
the benefits and disadvantages of each.

1. Kitchen Sink, or “Everything SRE”

2. Infrastructure

3. Tools

4. Product/Application

5. Embedded

6. Consulting

Google-recommended SRE team implementations

We’ve categorized our recommended implementations into six different categories:
1. Kitchen Sink, or “Everything SRE”
2. Infrastructure
3. Tools
4. Product/Application
5. Embedded
6. And Consulting

Kitchen Sink/“Everything SRE” team

● Its scope is unbounded.

● It is a good starting point for first SRE team.

● It is recommended for organizations with few applications and
user journeys.

● It is useful when a dedicated SRE team is needed.

The first is Kitchen Sink or “Everything SRE.”

Scope is usually unbounded with this type of team. If you’ve never created an SRE
team, this is a good place to start. We recommend this approach for organizations
that have few applications and user journeys, where the scope is small enough that
only one team is necessary, but a dedicated SRE team is needed in order to
implement its practices.

Benefits of Kitchen
Sink/“Everything SRE”

● There are no coverage gaps.

● It is easy to spot patterns and
similarities between services
and projects.

● It acts as glue between teams.

There are several benefits to the Kitchen Sink implementation:
● There are no coverage gaps between SRE teams, given that only one team is

in place.
● It’s easy to spot patterns and draw similarities between services and projects.
● SRE tends to act as a glue between disparate developer teams, creating

solutions out of distinct pieces of software.

Disadvantages of Kitchen
Sink/“Everything SRE”

● It usually lacks a team charter.

● It risks overloading the team.

● It can run the risk of shallow
contributions.

● Team issues can have a
negative impact on the
business.

There are also several disadvantages:
● There is usually a lack of an SRE team charter, or the charter states that

everything in the company can be in scope, running the risk of overloading the
team.

● As the company and system complexity grows, the team tends to move from
having a deep, positive impact on everything to making many more shallow
contributions.

● Issues involving the team may negatively impact your entire business.

Infrastructure team

● It helps make other team’s jobs easier.

● It maintains shared services related to infrastructure.

● It is recommended for organizations with multiple
developer teams.

● It defines common standards for the IT team.

The second implementation is Infrastructure.

This type of team focuses on behind the scenes tasks that help make other teams’
jobs easier and faster. They work on maintaining shared services and components
related to infrastructure, versus an SRE team dedicated to working on services
related to products, like customer-facing code. We recommend this implementation
for a company with several development teams, since they probably need to staff an
infrastructure team to define common standards and practices. It is common for large
companies to have both an infrastructure DevOps team and an SRE team, where the
DevOps team focuses on features and SRE focuses on reliability.

Benefits of Infrastructure

● It allows developers to use
DevOps practices without
divergence across business.

● It keeps its focus on highly
reliable infrastructure.

● It defines production
standards.

A benefit of the Infrastructure implementation is that it allows product developers to
use DevOps practices to maintain user-facing products without divergence in practice
across the business. Additionally, SREs can focus on providing a highly reliable
infrastructure. They will often define production standards as code and work to
smooth out any sharp edges to greatly simplify things for the product developers
running their own services.

Disadvantages of Infrastructure

● It has possible negative impact to
business following team issues.

● Improvements the team makes
may not be tied to customer
experience.

● It may require teams to be split,
which can lead to duplication or
divergence of practices.

However there are some disadvantages:
● Depending on the scope of the infrastructure, issues involving such a team

may negatively impact your entire business, similar to a “Everything SRE”
implementation.

● Lack of direct contact with your company’s customers can lead to a focus on
infrastructure improvements that are not necessarily tied to the customer
experience.

● As the company and system complexity grows, you may be required to split
the infrastructure teams, which can lead to duplication of base infrastructure or
divergence of practices between teams, which is inefficient and limits
knowledge sharing and mobility.

Tools team

● It focuses on building software to help developers with
aspects of SRE work.

● It is recommended for organizations that need highly
specialized reliability-related tooling.

Third is a Tools-focused SRE team.

This type of SRE team tends to focus on building software to help their developer
counterparts measure, maintain, and improve system reliability or other aspects of
SRE work, such as capacity planning. A tooling SRE team risks solving the wrong
problems for the business, so it needs to stay aware of the practical problems
front-line reliability teams are addressing. This kind of team is recommended for any
organization that needs a highly specialized reliability-related tooling.

Benefits of Tools

● It allows developers to use DevOps
practices without divergence across
business.

● It keeps its focus on highly specialized
reliability-related tooling.

● It defines production standards.

Disadvantages of Tools

● It could unintentionally turn into an
infrastructure team.

● There is risk of increased toil and overall
workload on the team.

The benefits and disadvantages of infrastructure and tools SRE teams tend to be
similar. Additional disadvantages for tools teams include:

● Ensuring that the team doesn’t unintentionally turn into an infrastructure team,
and vice versa.

● Running the risk of an increase of toil and overall workload. This is usually
contained by establishing a team charter that business leaders approve.

Product/Application team

● It improves the reliability of a critical application.

● It is recommended for organizations that have Kitchen
Sink, Infrastructure, or Tools SRE team and application with
high reliability needs.

The next implementation is Product/Application.

This kind of SRE team works to improve the reliability of a critical application or
business area. We recommend this implementation for organizations that already
have a Kitchen Sink, Infrastructure, or Tools-focused SRE team and have a key
user-facing application with high reliability needs. Having each of these aspects
justifies the relatively large expense of a dedicated set of SREs.

Benefits of Product/Application

● It provides clear focus.

● It creates a clear link between business
priorities and team effort expenditure.

Disadvantages of
Product/Application

● It may require establishing new teams as
the business and complexity grow.

● It can lead to duplication of infrastructure
and divergence of practices.

The benefit of this approach is that it provides a clear focus for the team’s effort and
creates a clear link between business priorities and where the team spends effort.

The disadvantage is that, as the company and system complexity grow, the
organization will require new product/application teams. As with an infrastructure
team, the focus of each team can lead to duplication of base infrastructure or
divergence of practices, which is inefficient and limits knowledge sharing and mobility.

Embedded team

● SREs are embedded with developers.

● SREs and developers have a project- or time-bounded
relationship.

● It is hands-on, changing code and configuration of services.

● It is recommended for organizations to start a team or scale
another implementation.

● It can augment the impact of a tools or infrastructure team.

The fifth type of SRE team implementation is an Embedded team.

This team has SREs embedded with their developer counterparts, usually one per
developer team in scope. An embedded SRE usually shares an office with the
developer, but the embedded arrangement can be remote. The work relationship
between the embedded SREs and developers tends to be project- or time-bounded.
During embedded engagements, the SREs are usually very hands-on, performing
work like changing code and configuration of the services in scope. We recommend
this implementation to either start an SRE function or scale another implementation.
This model is useful when you have a project or team that needs SRE for a period of
time. This type of team can also augment the impact of a tools or infrastructure team
by driving adoption.

Benefits of Embedded

● It is focused expertise directed to
specific problems or teams.

● It allows side-by-side demonstration
of SRE practices.

Disadvantages of Embedded

● It can cause a lack of standardization
between teams.

● It can lead to divergence in practice.

● There is less time for mentoring.

A benefit of an embedded SRE team is that focused SRE expertise can be directed to
specific problems or teams. It also allows side-by-side demonstration of SRE
practices, which can be a very effective teaching method.

Disadvantages are that it may result in lack of standardization between teams, or
divergence in practice, and SREs may not have the chance to spend much time with
peers to mentor them.

Consulting team

● It is similar to an Embedded team.

● It is less hands-on.

● SREs may write code and maintain tools for themselves and
developers.

● It is not recommended until organizational complexity is large.

● Google recommends staffing one to two part-time consulting SREs
before the first SRE team.

Our last recommended SRE implementation is Consulting.

This implementation is very similar to the embedded implementation. The difference is
that consulting SREs are less hands-on. These SREs tend to avoid changing
customer code and configuration of the services in scope. However, they may write
code and configuration to build and maintain tools for themselves or for their
developer counterparts, which is a hybrid of the consulting and tools-focused SRE
role. We recommend waiting to staff a dedicated SRE team of consultants until your
organization or complexity is considered to be large, and when demands have
outgrown what can be supported by existing SRE team implementations. We also
recommend staffing one or two part-time consultants before you staff your first SRE
team.

Benefits of Consulting

● It can help with the scaling of an
existing SRE team’s positive impact.

● It is decoupled from directly
changing code and configuration.

Disadvantages of Consulting

● It may lack sufficient context to offer
useful advice.

● It can be perceived as hands-off.

The benefit of a consulting SRE team is that it can help with additional scaling of an
existing SRE team’s positive impact by being decoupled from directly changing code
and configuration.

The disadvantage is that consultants may lack sufficient context to offer useful advice.
Additionally, a common risk for consulting SRE teams is being perceived as hands-off,
given that they typically don't change code and configuration, even though they are
capable of having indirect technical impact.

Do one or any of these SRE team implementations resonate or appeal to you for your
organization? Remember that it’s important to assess your organization’s maturity for
SRE adoption and identify areas for training before creating your first SRE team.

In the next and final video, you’ll learn how Google can help your organization get
started with SRE.

So, you see the value of implementing SRE practices and teams in your organization.
What now? Google Cloud is here to support you!

We want to make sure we provide valuable experience to our customers. Google
Cloud’s Professional Services team specializes in supporting organizations like yours
in jumpstarting its SRE journey.

Reach out to your Account Director or
Account Executive to request

a Google Professional Services consultation.

To request Google Cloud Professional Services consultation, be sure to reach out to
your [role] to start the conversation.

Thank you so much for coming along this SRE journey with us! We hope you’ve
gained valuable insights into Google SRE culture and how it can benefit your IT
operations and your business.

To make sure you’ve fully grasped the SRE concepts we’ve covered, and to get credit
for this course, complete the final assessment in the last module.

Finally, please be sure to review the Resources section at the end of this course for
additional materials on Google SRE. You can also find these resources in your
Learner Workbook.

Good luck on your SRE journey! We hope to hear from you soon.

