
Proprietary + Confidential

Storage and Database
Services

In this module, we cover storage and database services in Google Cloud. Every
application needs to store data, whether it's business data, media to be streamed, or
sensor data from devices.

From an application-centered perspective, the technology stores and retrieves the
data. Whether it's a database or an object store is less important than whether that
service supports the application’s requirements for efficiently storing and retrieving the
data, given its characteristics.

Google offers several data storage services to choose from. In this module, we will
cover Cloud Storage, Filestore, Cloud SQL, Spanner, AlloyDB, Firestore, Bigtable,
and Memorystore. Let me start by giving you a high-level overview of these different
services.

Proprietary + Confidential

Storage and database services

Good for:
Binary or
object data

Such as:
Images,
media
serving,
backups

Good for:
Web
frameworks

Such as:
CMS,
eCommerce

Good for:
RDBMS +
scale, HA,
HTAP

Such as:
User
metadata,
Ad/Fin/
MarTech

Good for:
Enterprise
data
warehouse

Such as:
Analytics,
dashboards

Relational

Good for:
Hierarchical,
mobile, web

Such as:
User
profiles,
game state

Object

Cloud
Storage Cloud SQL Spanner

Good for:
Heavy read
+ write,
events,

Such as:
AdTech,
financial,
IoT

Non-relational Warehouse

BigQuery

Good for:
Network
Attached
Storage
(NAS)

Such as:
Latency
sensitive
workloads

File

Firestore BigtableFilestore AlloyDB

Good for:
Hybrid
transactional
and
analytical
processing

Such as:
Machine
learning,
Generative AI

Redis

Memorystore

Good for:
Automating
complex
Redis and
Memcached
tasks

Such as:
Enabling
high
availability,
failover,
patching

This table shows the storage and database services and highlights the storage
service type, what each service is good for, and intended use.

BigQuery is also listed on the right. I’m mentioning this service because it sits on the
edge between data storage and data processing. You can store data in BigQuery, but
the intended use for BigQuery is big data analysis and interactive querying. For this
reason, BigQuery is covered later in the course.

Proprietary + Confidential

Decision chart
NO YESIs your data

structured?

Does your
workload involve

analytics?

Is your data
relational?

Cloud
SQL

Spanner

Start

Do you need
HTAP? BigQueryBigtable

Do you need
extensive updates

and/or low latency?

Do you need a
shared file

system?

Filestore Cloud Storage

Firestore

Do you need
application
caching?

Memorystore

Data Warehouse
with SQL
querying

NoSQL with high
throughput

Do you
need global
scalability?

AlloyDB

If tables aren’t your preference, here’s a decision tree to help you identify the solution
that best fits your application. Let’s walk through this together:

● First, ask yourself: Is your data structured? If it’s not, then ask yourself if you
need a shared file system. If you do, then choose Filestore.

● If you don't, then choose Cloud Storage.
● If your data is structured, does your workload focus on analytics? If it does,

you will want to choose Bigtable or BigQuery, depending on your latency and
update needs.

○ BigQuery is recommended as a data warehouse, is the default storage
for tabular data, and is optimized for large-scale, ad-hoc SQL-based
analysis and reporting. While BigQuery data manipulation language
(DML) enables you to update, insert, and delete data from your
BigQuery tables, because it has a built-in cache BigQuery works really
well in cases where the data does not change often.

○ Bigtable is a NoSQL wide-column database. It's optimized for low
latency, large numbers of reads and writes, and maintaining
performance at scale.

○ In addition to analytics, Bigtable is also suited as a ‘fast lookup’
non-relational database for datasets too large to store in memory, with
use cases in areas such as IoT, AdTech and FinTec.

● If your workload doesn’t involve analytics, check whether your data is
relational. If it’s not relational, do you need application caching?

○ If caching is a requirement, choose Memorystore, an in-memory

○ database.
○ Otherwise choose Firestore, a document database.

● If your data is relational and you need hybrid transactional and analytical
processing, also known as HTAP, choose AlloyDB.

○ If you don’t need HTAP and don’t need global scalability, choose Cloud
SQL.

○ If you don’t need HTAP and need global scalability, choose Spanner.

Depending on your application, you might use one or several of these services to get
the job done. For more information on how to choose between these different
services, please refer to the following two resources:

https://cloud.google.com/storage-options/
https://cloud.google.com/products/databases/

https://cloud.google.com/storage-options/
https://cloud.google.com/products/databases/

Proprietary + Confidential

Scope

Infrastructure Track

● Service differentiators
● When to consider using each service
● Set up and connect to a service

Data Engineering Track

● How to use a database system
● Design, organization, structure, schema, and

use for an application
● Details about how a service stores and

retrieves structured data

Before we dive into each of the data storage services, let’s define the scope of this
module.

The purpose of this module is to explain which services are available and when to
consider using them from an infrastructure perspective. I want you to be able to set up
and connect to a service without detailed knowledge of how to use a database
system.

If you want a deeper dive into the design, organizations, structures, schemas and
details on how data can be optimized, served and stored properly within those
different services, I recommend Google Cloud’s Data Engineering courses.

Proprietary + Confidential

Agenda

01 Cloud Storage and Filestore

Lab: Cloud Storage

02 Cloud SQL

Lab: Implementing Cloud SQL

03 Spanner

04 AlloyDB

05 Firestore

06 Bigtable

07 Memorystore

Let’s look at the agenda. This module covers all of the services we’ve mentioned so
far. To become more comfortable with these services, you will apply them in two labs.

We’ll also provide a quick overview of Memorystore, which is Google Cloud’s fully
managed Redis service.

Let’s get started by diving into Cloud Storage and Filestore!

Proprietary + Confidential

Cloud Storage is an object storage service

Use cases:

● Website content
● Storing data for archiving and disaster

recovery
● Distributing large data objects to

users via direct download

Key features:

● Scalable to exabytes
● Time to first byte in milliseconds
● Very high availability across all

storage classes
● Single API across storage classes

Cloud Storage is Google Cloud’s object storage service, and it allows world-wide
storage and retrieval of any amount of data at any time. You can use Cloud Storage
for a range of scenarios including serving website content, storing data for archival
and disaster recovery, or distributing large data objects to users via direct download.

Proprietary + Confidential

Use cases:

● Website content
● Storing data for archiving and disaster

recovery
● Distributing large data objects to

users via direct download

Key features:

● Scalable to exabytes
● Time to first byte in milliseconds
● Very high availability across all

storage classes
● Single API across storage classes

Cloud Storage key features

Cloud Storage has a couple of key features:

● It’s scalable to exabytes of data
● The time to first byte is in milliseconds
● It has very high availability across all storage classes
● And It has a single API across those storage classes

Some like to think of Cloud Storage as files in a file system but it’s not really a file
system. Instead, Cloud Storage is a collection of buckets that you place objects into.
You can create directories, so to speak, but really a directory is just another object
that points to different objects in the bucket. You’re not going to easily be able to index
all of these files like you would in a file system. You just have a specific URL to access
objects.

Proprietary + Confidential

Overview of storage classes

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Cloud Storage has four storage classes: Standard, Nearline, Coldline and Archive and
each of those storage classes provide 3 location types:

● There’s a multi-region is a large geographic area, such as the United States,
that contains two or more geographic places.

● Dual-region is a specific pair of regions, such as Finland and the Netherlands.
● A region is a specific geographic place, such as London.

Proprietary + Confidential

Overview of storage classes

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Objects stored in a multi-region or dual-region are geo-redundant. Now, let’s go over
each of the storage classes:

Standard Storage is best for data that is frequently accessed (think of "hot" data)
and/or stored for only brief periods of time. This is the most expensive storage class
but it has no minimum storage duration and no retrieval cost.

When used in a region, Standard Storage is appropriate for storing data in the same
location as Google Kubernetes Engine clusters or Compute Engine instances that use
the data. Co-locating your resources maximizes the performance for data-intensive
computations and can reduce network charges.

When used in a dual-region, you still get optimized performance when accessing
Google Cloud products that are located in one of the associated regions, but you also
get improved availability that comes from storing data in geographically separate
locations.

When used in multi-region, Standard Storage is appropriate for storing data that is
accessed around the world, such as serving website content, streaming videos,
executing interactive workloads, or serving data supporting mobile and gaming
applications.

Proprietary + Confidential

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Overview of storage classes

Nearline Storage is a low-cost, highly durable storage service for storing infrequently
accessed data like data backup, long-tail multimedia content, and data archiving.
Nearline Storage is a better choice than Standard Storage in scenarios where slightly
lower availability, a 30-day minimum storage duration, and costs for data access are
acceptable trade-offs for lowered at-rest storage costs.

Proprietary + Confidential

Overview of storage classes

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Coldline Storage is a very-low-cost, highly durable storage service for storing
infrequently accessed data. Coldline Storage is a better choice than Standard Storage
or Nearline Storage in scenarios where slightly lower availability, a 90-day minimum
storage duration, and higher costs for data access are acceptable trade-offs for
lowered at-rest storage costs.

Proprietary + Confidential

Overview of storage classes

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Archive Storage is the lowest-cost, highly durable storage service for data archiving,
online backup, and disaster recovery. Unlike the "coldest" storage services offered by
other Cloud providers, your data is available within milliseconds, not hours or days.
Archive Storage also has higher costs for data access and operations, as well as a
365-day minimum storage duration. Archive Storage is the best choice for data that
you plan to access less than once a year.

Proprietary + Confidential

Overview of storage classes

Standard Nearline Coldline Archive

Use case “Hot” data and/or
stored for only brief
periods of time like
data-intensive
computations

Infrequently
accessed data like
data backup,
long-tail multimedia
content, and data
archiving

Infrequently
accessed data that
you read or modify at
most once a quarter

Data archiving, online
backup, and disaster
recovery

Minimum storage
duration

None 30 days 90 days 365 days

Retrieval cost None $0.01 per GB $0.02 per GB $0.05 per GB

Availability SLA 99.95% (multi/dual)
99.90% (region)

99.90% (multi/dual)
99.00% (region)

99.90% (multi/dual)
99.00% (region)

Durability 99.999999999%

Let’s focus on durability and availability. All of these storage classes have 11 nines of
durability, but what does that mean? Does that mean you have access to your files at
all times? No, what that means is you won't lose data. You may not be able to access
the data which is like going to your bank and saying well my money is in there, it's 11
nines durable. But when the bank is closed we don't have access to it which is the
availability that differs between storage classes and the location type.

Proprietary + Confidential

Cloud Storage overview

Buckets
● Naming requirements
● Cannot be nested

Objects
● Inherit storage class of bucket when created
● No minimum size; unlimited storage

Access
● gcloud storage command
● (RESTful) JSON API or XML API

Object

Bucket

Cloud Storage is broken down into a couple of different items here.

● First of all, there are buckets which are required to have a globally unique
name and cannot be nested.

● The data that you put into those buckets are objects that inherit the storage
class of the bucket and those objects could be text files, doc files, video files,
etc. There is no minimum size to those objects and you can scale this as much
as you want as long as your quota allows it.

● To access the data, you can use the gcloud storage command, or either the
JSON or XML APIs.

Proprietary + Confidential

● Default class is applied to new objects

● Regional bucket can never be changed to Multi-Region/Dual-Region

● Multi-Regional bucket can never be changed to Regional

● Objects can be moved from bucket to bucket

● Object Lifecycle Management can manage the classes of objects

Changing default storage classes

When you upload an object to a bucket, the object is assigned the bucket's storage
class, unless you specify a storage class for the object. You can change the default
storage class of a bucket but you can't change the location type from regional to
multi-region/dual-region or vice versa.

You can also change the storage class of an object that already exists in your bucket
without moving the object to a different bucket or changing the URL to the object.
Setting a per-object storage class is useful, for example, if you have objects in your
bucket that you want to keep, but that you don't expect to access frequently. In this
case, you can minimize costs by changing the storage class of those specific objects
to Nearline, Coldline or Archive Storage.

In order to help manage the classes of objects in your bucket, Cloud Storage offers
Object Lifecycle Management. More on that later.

Proprietary + Confidential

Access control

IAM Signed Policy
DocumentSigned URLACLs

Can be used together

Object

Bucket

Project

Let’s look at access control for your objects and buckets that are part of a project.

● We can use IAM for the project to control which individual user or service
account can see the bucket, list the objects in the bucket, view the names of
the objects in the bucket, or create new buckets. For most purposes, IAM is
sufficient, and roles are inherited from project to bucket to object.

● Access control lists or ACLs offer finer control.
● For even more detailed control, signed URLs provide a cryptographic key that

gives time-limited access to a bucket or object.
● Finally, a signed policy document further refines the control by determining

what kind of file can be uploaded by someone with a signed URL. Let’s take a
closer look at ACLs and signed URLs.

Proprietary + Confidential

Examples:
● collaborator@gmail.com
● allUsers
● allAuthenticatedUsers

Owner

Writer

Reader

PermissionScope

Max: 100 ACL entries

Access control lists (ACLs)

ACLs

An ACL is a mechanism you can use to define who has access to your buckets and
objects, as well as what level of access they have. The maximum number of ACL
entries you can create for a bucket or object is 100.

Each ACL consists of one or more entries, and these entries consist of two pieces of
information:

● A scope, which defines who can perform the specified actions (for example, a
specific user or group of users).

● And a permission, which defines what actions can be performed (for example,
read or write).

The allUsers identifier listed on this slide represents anyone who is on the internet,
with or without a Google account. The allAuthenticatedUsers identifier, in contrast,
represents anyone who is authenticated with a Google account.

For more information on ACLs, refer to the links section of this video
[https://cloud.google.com/storage/docs/access-control/lists]

https://cloud.google.com/storage/docs/access-control/lists

Proprietary + Confidential

● “Valet key” access to buckets and objects via ticket:
○ Ticket is a cryptographically signed URL
○ Time-limited
○ Operations specified in ticket: HTTP GET, PUT, DELETE (not POST)
○ Any user with URL can invoke permitted operations

● Example using private account key and gcloud storage:
gcloud storage signurl -d 10m path/to/privatekey.p12
gs://bucket/object

Signed URLs

For some applications, it is easier and more efficient to grant limited-time access
tokens that can be used by any user, instead of using account-based authentication
for controlling resource access. (For example, when you don’t want to require users to
have Google accounts).

Signed URLs allow you to do this for Cloud Storage. You create a URL that grants
read or write access to a specific Cloud Storage resource and specifies when the
access expires. That URL is signed using a private key associated with a service
account. When the request is received, Cloud Storage can verify that the
access-granting URL was issued on behalf of a trusted security principal, in this case
the service account, and delegates its trust of that account to the holder of the URL.

After you give out the signed URL, it is out of your control. So you want the signed
URL to expire after some reasonable amount of time.

Proprietary + Confidential

Cloud Storage features

● Customer-supplied encryption key (CSEK)
○ Use your own key instead of Google-managed keys

● Object Lifecycle Management
○ Automatically delete or archive objects

● Object Versioning
○ Maintain multiple versions of objects

● Directory synchronization
○ Synchronizes a VM directory with a bucket

● Object change notifications using Pub/Sub

● Autoclass

There are also several features that come with Cloud Storage. We will cover these at
a high-level for now because we will soon dive deeper into some of them.

● Earlier in the course series, we already talked a little about
Customer-supplied encryption keys when attaching persistent disks to
virtual machines. This allows you to supply your own encryption keys instead
of the Google-managed keys, which is also available for Cloud Storage.

● Cloud Storage also provides Object Lifecycle Management which lets you
automatically delete or archive objects.

● Another feature is object versioning which allows you to maintain multiple
versions of objects in your bucket. You are charged for the versions as if they
were multiple files, which is something to keep in mind.

● Cloud Storage also offers directory synchronization so that you can sync a
VM directory with a bucket.

● Object change notifications can be configured for Cloud Storage using
Pub/Sub.

● When enabled, Autoclass manages all aspects of storage classes for a bucket.
We will discuss this later.

Proprietary + Confidential

● Objects are immutable.

● Object Versioning:
○ Maintain a history of

modifications of objects.
○ List archived versions of an

object, restore an object to an
older state, or delete a version.

Cloud Storage Object Versioning

Bucket Archive

Object A (g2)

Object A (g1) Object A (g1)

New Object A

Object Versioning supports the retrieval of objects that
are deleted or overwritten

In Cloud Storage, objects are immutable, which means that an uploaded object
cannot change throughout its storage lifetime. To support the retrieval of objects that
are deleted or overwritten, Cloud Storage offers the Object Versioning feature.

Object Versioning can be enabled for a bucket. Once enabled, Cloud Storage
creates an archived version of an object each time the live version of the object is
overwritten or deleted. The archived version retains the name of the object but is
uniquely identified by a generation number as illustrated on this slide by g1.

When Object Versioning is enabled, you can list archived versions of an object,
restore the live version of an object to an older state, or permanently delete an
archived version, as needed. You can turn versioning on or off for a bucket at any
time. Turning versioning off leaves existing object versions in place and causes the
bucket to stop accumulating new archived object versions.

Google recommends that you use Soft Delete instead of Object Versioning to protect
against permanent data loss from accidental or malicious deletions.

For more information on Object Versioning, refer to the documentation.

https://cloud.google.com/storage/docs/object-versioning

Proprietary + Confidential

Soft Delete overview

Provides default bucket-level protection from:

Accidental deletion
Malicious deletion

Retains overwritten or changed data.

Is enabled by default with a 7 day retention duration.

Soft Delete provides default bucket-level protection for your data from accidental or
malicious deletion by preserving all recently deleted objects for a specified period of
time.

The objects stored in Cloud Storage buckets are immutable. If you overwrite or
change the data of an object, Cloud Storage deletes its earlier version and replaces it
with a new one. Soft Delete retains all these deleted objects, whether from a delete
command or because of an overwrite, essentially capturing all changes made to
bucket data for the configured retention duration.

When you create a Cloud Storage bucket, the Soft Delete feature is enabled by
default with a retention duration of seven days. During the retention duration, you can
restore deleted objects, but after the duration ends, Cloud Storage permanently
deletes the objects. By updating the bucket's configuration, you can increase the
retention duration to 90 days or disable it by setting the retention duration to 0.

For more information on Soft Delete, refer to the documentation.

https://cloud.google.com/storage/docs/soft-delete

Proprietary + Confidential

Object Lifecycle Management policies specify actions
to be performed on objects that meet certain rules

Assign a lifecycle management configuration to a bucket.

Example use cases:

Downgrade storage class on objects older than a year.
Delete objects created before a specific date.
Keep only the 3 most recent versions of an object.

Object inspection occurs in asynchronous batches.

Changes can take 24 hours to apply.

To support common use cases like setting a Time to Live for objects, archiving older
versions of objects, or "downgrading" storage classes of objects to help manage
costs, Cloud Storage offers Object Lifecycle Management.

You can assign a lifecycle management configuration to a bucket. The configuration is
a set of rules that apply to all the objects in the bucket. So when an object meets the
criteria of one of the rules, Cloud Storage automatically performs a specified action on
the object.

Here are some example use cases:
● First, downgrade the storage class of objects older than a year to Coldline

Storage.
● Second, delete objects created before a specific date. For example, January

1, 2017.
● Or third, keep only the 3 most recent versions of each object in a bucket with

versioning enabled.

Object inspection occurs in asynchronous batches, so rules may not be applied
immediately. Also, updates to your lifecycle configuration may take up to 24 hours to
go into effect. This means that when you change your lifecycle configuration, Object
Lifecycle Management may still perform actions based on the old configuration for up
to 24 hours. So keep that in mind.

For more information, refer to the Object Lifecycle Management documentation.

https://cloud.google.com/storage/docs/lifecycle

Proprietary + Confidential

Object Retention Lock

Lets you define data retention requirements on a per-object basis.

Retention configuration governs how long the object must be retained.

Helps with regulatory and compliance requirements.

The Object Retention Lock feature lets you set retention configuration on objects
within Cloud Storage buckets that have enabled the feature. A retention configuration
governs how long the object must be retained and has the option to permanently
prevent the retention time from being reduced or removed. This helps you meet data
retention regulatory and compliance requirements, such as those associated with
FINRA, SEC, and CFTC. This also helps provide Google Cloud immutable storage
solutions with leading enterprise backup software vendor partners.

For more information, refer to the Object Retention Lock documentation.

https://cloud.google.com/storage/docs/object-lock

Proprietary + Confidential

● Transfer Appliance: Rack, capture and then
ship your data to Google Cloud.

● Storage Transfer Service: Import online data
(another bucket, an S3 bucket, or web source).

● Offline Media Import: Third-party provider
uploads the data from physical media.

Data import services

The Google Cloud console allows you to upload individual files to your bucket. But
what if you have to upload terabytes or even petabytes of data? There are three
services that address this: Transfer Appliance, Storage Transfer Service, and Offline
Media Import.

Transfer Appliance is a hardware appliance you can use to securely migrate large
volumes of data (from hundreds of terabytes up to 1 petabyte) to Google Cloud
without disrupting business operations. The images on this slide are transfer
appliances.

The Storage Transfer Service enables high-performance imports of online data. That
data source can be another Cloud Storage bucket, an Amazon S3 bucket, or an
HTTP/HTTPS location.

Finally, Offline Media Import is a third party service where physical media (such as
storage arrays, hard disk drives, tapes, and USB flash drives) is sent to a provider
who uploads the data.

For more information on these three services, refer to the following resources:
https://cloud.google.com/transfer-appliance/
https://cloud.google.com/storage-transfer/docs/
https://cloud.google.com/storage/docs/offline-media-import-export

https://cloud.google.com/transfer-appliance/
https://cloud.google.com/storage-transfer/docs/
https://cloud.google.com/storage/docs/offline-media-import-export

Proprietary + Confidential

● Read-after-write

● Read-after-metadata-update

● Read-after-delete

● Bucket listing

● Object listing

Cloud Storage provides strong global consistency

When you upload an object to Cloud Storage and you receive a success response,
the object is immediately available for download and metadata operations from any
location where Google offers service. This is true whether you create a new object or
overwrite an existing object. Because uploads are strongly consistent, you will never
receive a 404 Not Found response or stale data for a read-after-write or
read-after-metadata-update operation.

Strong global consistency also extends to deletion operations on objects. If a deletion
request succeeds, an immediate attempt to download the object or its metadata will
result in a 404 Not Found status code. You get the 404 error because the object no
longer exists after the delete operation succeeds.

Bucket listing is strongly consistent. For example, if you create a bucket, then
immediately perform a list buckets operation, the new bucket appears in the returned
list of buckets.

Finally, object listing is also strongly consistent. For example, if you upload an object
to a bucket and then immediately perform a list objects operation, the new object
appears in the returned list of objects.

Proprietary + Confidential

structured

unstructured

Start

Structured or
unstructured

data?

Read < 1
per year?

Read < 1 per 90
days? NoRead < 1 per 30

days?

Consider a
structured

database service

Consider
Archive Storage

Consider
Coldline Storage

Consider
Nearline Storage

Standard
Storage

Yes Yes Yes

Choose location and type by balancing latency, availability, and
bandwidth costs for data consumers

Choosing a storage class

Let’s explore the decision tree to help you find the appropriate storage class in Cloud
Storage.

● If you will read your data less than once a year, you should consider using
Archive storage.

● If you will read your data less than once per 90 days, you should consider
using Coldline storage.

● If you will read your data less than once per 30 days, you should consider
using Nearline storage.

● And if you will be doing reads and writes more often than that, you should
consider using Standard storage.

You also want to take into account the location type:

● Use a region to help optimize latency and network bandwidth for data
consumers, such as analytics pipelines, that are grouped in the same region.

● Use a dual-region when you want similar performance advantages as
regions, but also want the higher availability that comes with being
geo-redundant.

● Use a multi-region when you want to serve content to data consumers that
are outside of the Google network and distributed across large geographic
areas, or when you want the higher data availability that comes with being
geo-redundant.

If your data has a variety of access frequencies, or the access patterns for your data
are unknown or unpredictable, you should consider Autoclass.

Proprietary + Confidential

Autoclass storage in Google Cloud

Standard Nearline Coldline Archive

Objects not
accessed for 30
days move to
Nearline

Objects not
accessed for 90
days move to
Coldline

Objects not
accessed for
365 days move
to Archive

Objects stay
until accessed

Object is read

Objects stay
for 30 days

Objects stay
for 60 days

Objects stay
for 275 days

Objects stay
until accessed

Autoclass transitions
objects in your bucket to
appropriate storage classes
based on the access pattern
of each object.

The Autoclass feature automatically transitions objects in your bucket to appropriate
storage classes based on the access pattern of each object. Even if a different
storage class is specified in the request, all objects added to the bucket begin in
Standard storage. The feature moves data that is not accessed to colder storage
classes to reduce storage cost. Data that is accessed is also moved to Standard
storage to optimize future accesses.

When object data is read, the object transitions to Standard storage if it's not already
stored in Standard storage. Autoclass simplifies and automates cost saving for your
Cloud Storage data. When enabled on a bucket, there are no early deletion charges,
no retrieval charges, and no charges for storage class transitions.

For more information, view the storage classes documentation.

So far we have only considered unstructured data. Before we look at unstructured
data, let's explore a high-performance, fully managed file storage offering; Filestore.

https://cloud.google.com/storage/docs/storage-classes

Proprietary + Confidential

Filestore

● Fully managed network attached storage (NAS) for
Compute Engine and GKE instances.

● Predictable performance.

● Full NFSv3 support.

● Scales to 100s of TBs for high-performance workloads.

Filestore is a managed file storage service
for applications

Filestore is a managed file storage service for applications that require a filesystem
interface and a shared filesystem for data.

Filestore gives users a simple, native experience for standing up managed Network
Attached Storage (NAS) with their Compute Engine and Google Kubernetes Engine
instances.

The ability to fine-tune Filestore’s performance and capacity independently leads to
predictably fast performance for your file-based workloads.

Filestore offers native compatibility with existing enterprise applications and supports
any NFSv3-compatible client.

Applications gain the benefit of features such as scaleout performance, 100s of TBs
of capacity, and file locking, without the need to install or maintain any specialized
plugins or client side software.

Proprietary + Confidential

● Application migration

● Media rendering

● Electronic Design Automation (EDA)

● Data analytics

● Genomics processing

● Web content management

Filestore has many use cases

Filestore

Filestore has many use cases.

● Using Filestore, you can expedite migration of enterprise applications. Many
on-premises applications require a filesystem interface to data. As these
applications continue to migrate to the cloud, Filestore can support a broad
range of enterprise applications that need a shared filesystem.

● For media rendering, you can easily mount Filestore file shares on Compute
Engine instances, enabling visual effects artists to collaborate on the same file
share. As rendering workflows typically run across fleets (“render farms”) of
compute machines, all of which mount a shared filesystem, Filestore and
Compute Engine can scale to meet your job’s rendering needs.

● Electronic Design Automation (EDA) is all about data management. It requires
the ability to batch workloads across thousands of cores and has large
memory needs. Filestore offers the necessary capacity and scale to meet the
needs of manufacturing customers doing intensive EDA and also makes sure
files are universally accessible.

● Data analytics workloads include compute complex financial models or
analysis of environmental data. These workloads are latency sensitive.
Filestore offers low latency for file operations and, as capacity or performance
needs change, you can easily grow or shrink your instances as needed. As a
persistent and shareable storage layer, Filestore enables immediate access to
data for high-performance, smart analytics without the need to lose valuable
time on loading and off-loading data to clients’ drives.

● Genome sequencing requires an incredible amount of raw data, on the order

● of billions of data points per person. This type of analysis requires speed,
scalability, and security. Filestore meets the needs of companies and research
institutions performing scientific research, while also offering predictable prices
for the performance.

● Web developers and large hosting providers also rely on Filestore to manage
and serve web content, including needs such as WordPress hosting.

Proprietary + Confidential

Lab Intro
Cloud Storage

Let’s take some of the Cloud Storage concepts that we just discussed and apply them
in a lab.

In this lab, you'll create buckets and perform many of the advanced options available
in Cloud Storage. You'll set access control lists to limit who can have access to your
data and what they're allowed to do with it. You'll use the ability to supply and manage
your own encryption keys for additional security. You'll enable object versioning to
track changes in the data, and you'll configure lifecycle management so that objects
are automatically archived or deleted after a specified period. Finally, you’ll use the
directory synchronization feature.

Proprietary + Confidential

Lab Review
Cloud Storage

In this lab, you learned to create and work with buckets and objects, and applied the
following Cloud Storage features:

● Customer-supplied encryption keys
● Access control lists
● Lifecycle management
● Object versioning
● Directory synchronization
● And cross-project resource sharing using IAM

Now that you're familiar with many of the advanced features of Cloud Storage, you
might consider using them in a variety of applications that you might not have
previously considered. A common, quick, and easy way to start using Google Cloud,
is to use Cloud Storage as a backup service.

You can stay for a lab walkthrough, but remember that Google Cloud’s user interface
can change, so your environment might look slightly different.

Proprietary + Confidential

Cloud SQL

02
Let’s dive into the structured or relational database services. First up is Cloud SQL.

Proprietary + Confidential

DB

Compute
Engine

Build your own database solution or use
a managed service

Bigtable Cloud
Storage

Cloud
SQL

Spanner Firestore

Storage

Why would you use a Google Cloud service for SQL, when you can install a SQL
Server application image on a VM using Compute Engine?

The question really is, should you build your own database solution or use a managed
service? There are benefits to using a managed service, so let’s learn about why
you’d use Cloud SQL as a managed service inside of Google Cloud.

Proprietary + Confidential

● Patches and updates automatically applied

● You administer MySQL users

● Cloud SQL supports many clients
○ gcloud sql

○ App Engine, Google Workspace scripts
○ Applications and tools

■ SQL Workbench, Toad
■ External applications using standard MySQL drivers

Cloud SQL is a fully managed database service
(MySQL, PostgreSQL, or Microsoft SQL Server)

Cloud SQL

Cloud SQL is a fully managed service of either MySQL, PostgreSQL, or Microsoft
SQL Server databases.

This means that patches and updates are automatically applied but you still have to
administer MySQL users with the native authentication tools that come with these
databases.

Cloud SQL supports many clients, such as Cloud Shell, App Engine and Google
Workspace scripts. It also supports other applications and tools that you might be
used to like SQL Workbench, Toad and other external applications using standard
MySQL drivers.

Proprietary + Confidential

Cloud SQL instance

Performance:
● 64 TB of storage
● 60,000 IOPS
● 624 GB of RAM
● Scale out with read replicas

Choice:
● MySQL 5.6, 5.7, or 8.0 (default)
● PostgreSQL 9.6, 10, 11, 12, 13, 14 or 15 (default)
● Microsoft SQL Server 2017 or 2019 (Standard default)

Cloud SQL delivers high performance and scalability with up to 64 TB of storage
capacity, 60,000 IOPS, and 624 GB of RAM per instance. You can easily scale up to
96 processor cores and scale out with read replicas.

Currently, you can use Cloud SQL with either MySQL 5.6, 5.7, or 8.0, PostgreSQL
9.6, 10, 11, 12, 13, 14, or 15, or either of the Web, Express, Standard or Enterprise
SQL Server 2017 or 2019 editions.

Proprietary + Confidential

● HA configuration

● Backup service

● Import/export

● Scaling
○ Up: Machine capacity
○ Out: Read replicas

Cloud SQL services

IP address

Persistent disk 01

Primary instance

Zone A

Region 1

Cloud SQL

Zone B

Standby instance

Cloud SQL

Persistent disk 02

Regional

Persistent disk

Client
application

Servers Disks

Servers Disks

Let’s focus on some other services provided by Cloud SQL:

● In HA configuration, within a regional instance, the configuration is made up of
a primary instance and a standby instance. Through synchronous replication
to each zone's persistent disk, all writes made to the primary instance are
replicated to disks in both zones before a transaction is reported as
committed. In the event of an instance or zone failure, the persistent disk is
attached to the standby instance, and it becomes the new primary instance.
Users are then rerouted to the new primary. This process is called a failover.

● Cloud SQL also provides automated and on-demand backups with
point-in-time recovery.

● You can import and export databases using mysqldump, or import and export
CSV files.

● Cloud SQL can also scale up, which does require a machine restart or scale
out using read replicas. That being said, if you are concerned about horizontal
scalability, you’ll want to consider Spanner which we’ll cover later in this
module.

https://cloud.google.com/compute/docs/disks#repds

Proprietary + Confidential

Connecting to a Cloud SQL instance

Cloud SQL
Connection

Connecting from
within Google

Cloud

Cloud SQL
Private IP

Need manual
control over SSL

certificates

Manual SSL
Connection

Cloud SQL
Auth Proxy

Authorized
Networks

Yes

No, would like
automation

Yes

Cannot use
SSL

Connecting from
outside Google

Cloud

Yes

Choosing a connection type to your Cloud SQL instance will affect how secure,
performant, and automated it will be. If you’re connecting an application that is hosted
within the same Google Cloud project as your Cloud SQL instance, and it is
collocated in the same region, choosing the Private IP connection will provide you
with the most performant and secure connection using private connectivity. In other
words, traffic is never exposed to the public internet. Note that connecting to the
Cloud SQL Private IP address from VMs in the same region is only a
performance-based recommendation and not a requirement.

If the application is hosted in another region or project, or if you are trying to connect
to your Cloud SQL instance from outside of Google Cloud, you have 3 options. In this
case, I recommend using the Cloud SQL Auth Proxy, which handles authentication,
encryption, and key rotation for you. If you need manual control over the SSL
connection, you can generate and periodically rotate the certificates yourself.
Otherwise, you can use an unencrypted connection by authorizing a specific IP
address to connect to your SQL server over its external IP address.

You will explore these options in an upcoming lab.

[https://cloud.google.com/sql/docs/mysql/private-ip].

https://cloud.google.com/sql/docs/mysql/private-ip

Proprietary + Confidential

Choosing Cloud SQL
Do you need
in-memory

store?

Is your data
relational?

Is your
workload
analytics?

Spanner

Start

Do you need a
document
database?

Bigtable

BigQuery

NO YES

Firestore
Memorystore

Do you need
99.999%

availability?

Cloud SQL

To summarize, let’s explore this decision tree to help you find the right data storage
service with full relational capability.

Memorystore provides a fully-managed in-memory data store service for workloads
requiring microsecond response times, or that have large spikes in traffic, as seen in
gaming environments and real-time analytics.

If you don’t need an in-memory data store, but your use case is relational data used
primarily for analytics, these workloads are best supported by BigQuery.

However, if your relational data workload isn’t analytics the choice lies between
Spanner and Cloud SQL.

If you don’t need horizontal scaling or a globally available system, Cloud SQL is a
cost-effective solution.

If Cloud SQL as a managed service is better than using or re-implementing your
existing MySQL solution, refer to this solution on how to migrate from MySQL to Cloud
SQL.

https://cloud.google.com/solutions/migrating-mysql-to-cloudsql-concept
https://cloud.google.com/solutions/migrating-mysql-to-cloudsql-concept

Proprietary + Confidential

Lab Intro
Implementing Cloud SQL

Let’s take some of the Cloud SQL concepts that we just discussed and apply them in
a lab.

Proprietary + Confidential

Lab objectives

Create a Cloud SQL database01

Configure a virtual machine to run a proxy02

Create a connection between an
application and Cloud SQL03

Connect an application to Cloud SQL
using Private IP address04

In this lab, you configure a Cloud SQL server and learn how to connect an application
to it via a proxy over an external connection. You also configure a connection over a
Private IP link that offers performance and security benefits. The app we chose to
demonstrate in this lab is Wordpress, but the information and best practices are
applicable to any application that needs a SQL Server.

Proprietary + Confidential

 VPC

Wordpress-us-
private-ip

Encrypted connection

Internal
IP

Internal
IP

External IP
Address

Wordpress-europe
-proxy instance

Proxy
127.0.0.1

External IP
Address

Private IP

us-central1europe-west1

Cloud SQL

By the end of this lab, you will have 2 working instances of a Wordpress frontend
connected over 2 different connection types to its SQL instance backend, as shown in
this diagram.

Proprietary + Confidential

Lab Review
Implementing Cloud SQL

In this lab, you created a Cloud SQL database and configured it to use both an
external connection over a secure proxy and a Private IP address, which is more
secure and performant.

If your application is hosted in another region, VPC or even project, use a proxy to
secure its connection over the external connection.

You can stay for a lab walkthrough, but remember that Google Cloud’s user interface
can change, so your environment might look slightly different.

Proprietary + Confidential

Spanner
03

If Cloud SQL does not fit your requirements because you need horizontal scalability,
consider using Spanner.

Proprietary + Confidential

● Scale to petabytes

● Strong consistency

● High availability

● Used for financial and inventory applications

● Monthly uptime
○ Multi-regional: 99.999%
○ Regional: 99.99%

Spanner combines the benefits of relational
database structure with non-relational
horizontal scale

Spanner

Spanner is a service built for the cloud specifically to combine the benefits of
relational database structure with non-relational horizontal scale.

This service can provide petabytes of capacity and offers transactional consistency at
global scale, schemas, SQL, and automatic, synchronous replication for high
availability. Use cases include financial applications and inventory applications
traditionally served by relational database technology.

Depending on whether you create a multi-regional or regional instance, you’ll have
different monthly uptime SLAs as shown on this slide. However, for up-to-date
numbers, you should always refer to the documentation.
[https://cloud.google.com/spanner/sla]

https://cloud.google.com/spanner/sla

Proprietary + Confidential

Characteristics

Spanner Relational DB Non-Relational DB

Schema Yes Yes No

SQL Yes Yes No

Consistency Strong Strong Eventual

Availability High Failover High

Scalability Horizontal Vertical Horizontal

Replication Automatic Configurable Configurable

Let’s compare Spanner with both relational and non-relational databases. Like a
relational database, Spanner has schema, SQL, and strong consistency. Also, like a
non-relational database, Spanner offers high availability, horizontal scalability, and
configurable replication.

As mentioned, Spanner offers the best of the relational and non-relational worlds.
These features allow for mission-critical uses cases, such as building consistent
systems for transactions and inventory management in the financial services and
retail industries. To better understand how all of this works, let’s look at the
architecture of Spanner.

Proprietary + Confidential

Spanner instance

Zone 1 Zone 2 Zone 3

DB 1

DB 2

DB 1

DB 2

DB 1

DB 2

Spanner architecture

A Spanner instance replicates data in N cloud zones, which can be within one region
or across several regions. The database placement is configurable, meaning you can
choose which region to put your database in. This architecture allows for high
availability and global placement.

Proprietary + Confidential

Zone 1 Zone 2 Zone 3

Table 1

Table 2

Table 1

Table 2

Table 1

Table 2

Update

Data replication is synchronized across zones using
Google’s global fiber network

The replication of data will be synchronized across zones using Google’s global fiber
network. Using atomic clocks ensures atomicity whenever you are updating your data.

That’s as far as we’re going to go with Spanner. Because the focus of this module is
to understand the circumstances when you would use Spanner, let’s look at a
decision tree.

Proprietary + Confidential

Consider Spanner

start

Yes Yes Yes Yes Yes

YesNo

NoNoNoNoNo

Outgrown
single instance

RDBMS?

Are you sharding
for DB

throughput?

Need
transactional
consistency?

Global data +
strong

consistency?
DB

consolidation?*

Need full
relational

capability?

Consider a
NoSQL service

Consider
Cloud SQL

Choosing Spanner

If you have outgrown any relational database, are sharding your databases for
throughput high performance, need transactional consistency, global data and strong
consistency, or just want to consolidate your database, consider using Spanner.

If you don’t need any of these, nor full relational capabilities, consider a NoSQL
service such as Firestore, which we will cover next.

If you’re now convinced that using Spanner as a managed service is better than using
or re-implementing your existing MySQL solution, refer to the documentation for a
solution on how to migrate from MySQL to Spanner.
[https://cloud.google.com/solutions/migrating-mysql-to-spanner]

https://cloud.google.com/solutions/migrating-mysql-to-spanner

Proprietary + Confidential

AlloyDB

04
Let’s now talk about AlloyDB.

Proprietary + Confidential

AlloyDB is a fully managed
database service
● Fully managed database service

● Fast transactional processing

● High availability

● Real-time business insights

AlloyDB

AlloyDB for PostgreSQL is a fully managed, PostgreSQL-compatible database service
that's designed for demanding workloads such as hybrid transactional and analytical
processing. AlloyDB pairs a Google-built database engine with a cloud-based,
multi-node architecture to deliver enterprise-grade performance, reliability, and
availability.

AlloyDB automates administrative tasks, such as backups, replication, patching, and
capacity management. AlloyDB also uses adaptive algorithms and machine learning
for PostgreSQL vacuum management, storage and memory management, data
tiering, and analytics acceleration.

AlloyDB provides fast transactional processing, more than 4 times faster than
standard PostgreSQL for transactional workloads. It's suitable for demanding
enterprise workloads, including workloads that require high transaction throughput,
large data sizes, or multiple read replicas.

AlloyDB provides high-availability and an 99.99% uptime SLA, inclusive of
maintenance.

AlloyDB also provides real-time business insights and is up to 100 times faster than
standard PostgreSQL for analytical queries. Built-in integration with Vertex AI,
Google's artificial intelligence platform, lets you call machine learning models.

Proprietary + Confidential

Firestore

05
If you are looking for a highly-scalable NoSQL database for your applications,
consider using Firestore.

Proprietary + Confidential

Firestore is a NoSQL document database

● Simplifies storing, syncing, and querying data

● Mobile, web, and IoT apps at global scale

● Live synchronization and offline support

● Security features

● ACID transactions

● Multi-region replication

● Powerful query engine

Firestore

Firestore is a fast, fully managed, serverless, cloud-native NoSQL document
database that simplifies storing, syncing, and querying data for your mobile, web, and
IoT apps at global scale. Its client libraries provide live synchronization and offline
support, and its security features and integrations with Firebase and Google Cloud
accelerate building truly serverless apps.

Firestore also supports ACID transactions, so if any of the operations in the
transaction fail and cannot be retried, the whole transaction will fail.

Also, with automatic multi-region replication and strong consistency, your data is safe
and available, even when disasters strike. Firestore even allows you to run
sophisticated queries against your NoSQL data without any degradation in
performance. This gives you more flexibility in the way you structure your data.

Proprietary + Confidential

Datastore mode (new server projects):
● Compatible with Datastore applications
● Strong consistency
● No entity group limits

Native mode (new mobile and web apps):
● Strongly consistent storage layer
● Collection and document data model
● Real-time updates
● Mobile and Web client libraries

Firestore is the next generation of Datastore

Firestore is actually the next generation of Datastore. Firestore can operate in
Datastore mode, making it backwards- compatible with Datastore. By creating a
Firestore database in Datastore mode, you can access Firestore's improved storage
layer while keeping Datastore system behavior.

This removes the following Datastore limitations:

● Queries are no longer eventually consistent; instead, they are all strongly
consistent.

● Transactions are no longer limited to 25 entity groups.
● Writes to an entity group are no longer limited to 1 per second.

Firestore in Native mode introduces new features such as:

● A new, strongly consistent storage layer
● A collection and document data model
● Real-time updates
● Mobile and Web client libraries

Firestore is backward compatible with Datastore, but the new data model, real-time
updates, and mobile and web client library features are not. To access all of the new
Firestore features, you must use Firestore in Native mode. A general guideline is to
use Firestore in Datastore mode for new server projects, and Native mode for new
mobile and web apps.

As the next generation of Datastore, Firestore is compatible with all Datastore APIs
and client libraries. For more information, refer to the documentation.

https://cloud.google.com/datastore/docs/firestore-or-datastore
https://cloud.google.com/datastore/docs/upgrade-to-firestore

https://cloud.google.com/datastore/docs/firestore-or-datastore
https://cloud.google.com/datastore/docs/upgrade-to-firestore

Proprietary + Confidential

Choosing Firestore

cost / size

Start

Schema might change
and need an adaptable

database?

Scale down
to zero?

Want low maintenance
overhead scaling

up to TBs?

Consider Firestore Consider Bigtable

Transactional consistency
required?

No

No

Yes

To summarize, let’s explore this decision tree to help you determine whether Firestore
is the right storage service for your data.

If your schema might change and you need an adaptable database, you need to scale
to zero, or you want low maintenance overhead scaling up to terabytes, consider
using Firestore.

Also, if you don’t require transactional consistency, you might want to consider
Bigtable, depending on the cost or size.

Bigtable is covered next.

Proprietary + Confidential

Bigtable

06
If you don’t require transactional consistency, you might want to consider Bigtable.

Proprietary + Confidential

● Petabyte-scale

● Consistent sub-10ms latency

● Seamless scalability for throughput

● Learns and adjusts to access patterns

● Ideal for Ad Tech, Fintech, and IoT

● Storage engine for ML applications

● Easy integration with open source big data tools

Bigtable is a NoSQL big data
database service

Bigtable

Bigtable is a fully managed NoSQL database with petabyte-scale and very low
latency. It seamlessly scales for throughput and it learns to adjust to specific access
patterns. Bigtable is actually the same database that powers many of Google’s core
services, including Search, Analytics, Maps, and Gmail.

Bigtable is a great choice for both operational and analytical applications, including
IoT, user analytics, and financial data analysis, because it supports high read and
write throughput at low latency. It’s also a great storage engine for machine learning
applications.

Bigtable integrates easily with popular big data tools like Hadoop, Dataflow, and
Dataproc. Plus, Bigtable supports the open source industry standard HBase API,
which makes it easy for your development teams to get started. Dataflow and
Dataproc are covered later in the course series. For more information on the HBase
API, refer to the documentation. [https://hbase.apache.org/]

https://hbase.apache.org/

Proprietary + Confidential

Follows

Row Key gwashington jadams tjefferson wmckinley
gwashington 1
jadams 1 1
tjefferson 1 1 1
wmckinley 1

multiple versions

"follows" column family

Bigtable storage model

Bigtable stores data in massively scalable tables, each of which is a sorted key/value
map. The table is composed of rows, each of which typically describes a single entity,
and columns, which contain individual values for each row. Each row is indexed by a
single row key, and columns that are related to one another are typically grouped
together into a column family. Each column is identified by a combination of the
column family and a column qualifier, which is a unique name within the column
family.

Each row/column intersection can contain multiple cells, or versions, at different
timestamps, providing a record of how the stored data has been altered over time.
Bigtable tables are sparse; if a cell does not contain any data, it does not take up any
space.

The example shown here is for a hypothetical social network for United States
presidents, where each president can follow posts from other presidents. Let me
highlight some things:

● The table contains one column family, the follows family. This family contains
multiple column qualifiers.

● Column qualifiers are used as data. This design choice takes advantage of the
sparseness of Bigtable tables, and the fact that new column qualifiers can be
added as your data changes.

● The username is used as the row key. Assuming usernames are evenly
spread across the alphabet, data access will be reasonably uniform across the
entire table.

Proprietary + Confidential

Clients

Processing

Storage

Colossus file system

Bigtable
node

Bigtable
node

Bigtable
node

Processing is separated from storage

This diagram shows a simplified version of Bigtable’s overall architecture. It illustrates
that processing, which is done through a front-end server pool and nodes, is handled
separately from the storage.

A Bigtable table is sharded into blocks of contiguous rows, called tablets, to help
balance the workload of queries. Tablets are similar to HBase regions, for those of
you who have used the HBase API.

Tablets are stored on Colossus, which is Google's file system, in SSTable format. An
SSTable provides a persistent, ordered immutable map from keys to values, where
both keys and values are arbitrary byte strings.

Proprietary + Confidential

Learns access patterns

Bigtable
node

Bigtable
node

Bigtable
node

A B C D
E

Clients

Processing

Storage

Colossus file system

As mentioned earlier, Bigtable learns to adjust to specific access patterns. If a certain
Bigtable node is frequently accessing a certain subset of data...

Proprietary + Confidential

Rebalances without moving data

Bigtable
node

Bigtable
node

Bigtable
node

A B C D
E

Clients

Processing

Storage

Colossus file system

… Bigtable will update the indexes so that other nodes can distribute that workload
evenly, as shown here.

Proprietary + Confidential

20,000

2 4 6 8 0 10 20 30 40 0 100 200 300 400

Bigtable Nodes

QPS

40,000

60,000

80,000

0
0

100,000

200,000

300,000

400,000

0

Bigtable Nodes Bigtable Nodes

QPS QPS

1m

2m

3m

4m

0

Throughput scales linearly

That throughput scales linearly, so for every single node that you do add, you're going
to see a linear scale of throughput performance, up to hundreds of nodes.

Proprietary + Confidential

● Bigtable scales UP well
● Firestore scales DOWN well

start

Storing > 1 TB
structured data?

Very high
volume of

writes?

r/w latency < 10
millisecond and strong

consistency?
HBase API compatible?

Consider FirestoreConsider Bigtable

Yes

No

No

Choosing Bigtable

In summary, if you need to store more than 1 TB of structured data, have very high
volume of writes, need read/write latency of less than 10 milliseconds along with
strong consistency, or need a storage service that is compatible with the HBase API,
consider using Bigtable.

If you don’t need any of these and are looking for a storage service that scales down
well, consider using Firestore.

Speaking of scaling, the smallest Bigtable cluster you can create has three nodes and
can handle 30,000 operations per second. Remember that you pay for those nodes
while they are operational, whether your application is using them or not.

Proprietary + Confidential

Memorystore
07

Let me give you a quick overview of Memorystore.

Proprietary + Confidential

Memorystore is a fully managed
Redis service
● In-memory data store service

● Focus on building great apps

● High availability, failover, patching, and monitoring

● Sub-millisecond latency

● Instances up to 300 GB

● Network throughput of 12 Gbps

● Easy Lift-and-Shift

Memorystore

Memorystore for Redis provides a fully managed in-memory data store service built
on scalable, secure, and highly available infrastructure managed by Google.
Applications running on Google Cloud can achieve extreme performance by
leveraging the highly scalable, available, secure Redis service without the burden of
managing complex Redis deployments. This allows you to spend more time writing
code so that you can focus on building great apps.

Memorystore also automates complex tasks like enabling high availability, failover,
patching, and monitoring. High availability instances are replicated across two zones
and provide a 99.9% availability SLA.

You can easily achieve the sub-millisecond latency and throughput your applications
need. Start with the lowest tier and smallest size, and then grow your instance
effortlessly with minimal impact to application availability.

Memorystore can support instances up to 300 gigabytes and network throughput of
12 gigabits per second.

Because Memorystore for Redis is fully compatible with the Redis protocol, you can
lift and shift your applications from open source Redis to Memorystore without any
code changes by using the import/export feature. There is no need to learn new tools
because all existing tools and client libraries just work.

Proprietary + Confidential

Review: Storage and
Database Services

In this module, we covered the different storage and database services that Google
Cloud offers. Specifically, you learned about Cloud Storage, a fully managed object
store; Filestore, a fully managed file storage service; Cloud SQL, a fully managed
MySQL and PostgreSQL database service; Spanner, a relational database service
with transactional consistency, global scale and high availability; AlloyDB, a fully
managed, PostgreSQL-compatible database service; Firestore, a fully managed
NoSQL document database; Bigtable, a fully managed NoSQL wide-column
database; and Memorystore, a fully managed in-memory data store service for Redis.

From an infrastructure perspective, the goal was to understand what services are
available and how they're used in different circumstances. Defining a complete data
strategy is beyond the scope of this course; however, Google offers courses on data
engineering and machine learning on Google Cloud that cover data strategy.

